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SUMMARY

Humanity is currently facing the challenge of two devastating pandemics caused by two very different RNA
viruses: HIV-1, which has been with us for decades, and SARS-CoV-2, which has swept the world in the
course of a single year. The same evolutionary strategies that drive HIV-1 evolution are at play in SARS-
CoV-2. Single nucleotide mutations, multi-base insertions and deletions, recombination, and variation in sur-
face glycans all generate the variability that, guided by natural selection, enables both HIV-1’s extraordinary
diversity and SARS-CoV-2’s slower pace of mutation accumulation. Even though SARS-CoV-2 diversity is
more limited, recently emergent SARS-CoV-2 variants carry Spike mutations that have important phenotypic
consequences in terms of both antibody resistance and enhanced infectivity. We review and compare how
these mutational patterns manifest in these two distinct viruses to provide the variability that fuels their evo-
lution by natural selection.
INTRODUCTION

In the past half century, two distinct, novel RNA viruses have

caused global pandemics: human immunodeficiency virus type

1 (HIV-1) and severe acute respiratory syndrome coronavirus

type 2 (SARS-CoV-2). Both emerged as zoonotic pathogens.

HIV-1 is most closely related to immunodeficiency viruses

found in wild chimpanzees (SIVcpz; Hahn et al., 2000; Sharp

and Hahn, 2011); zoonoses involving SIVcpz have occurred mul-

tiple times (Li et al., 2012). The vast majority of HIV/AIDS cases

worldwide are associated with the M-group (Main), which com-

prises subgroups A, B, C, D, F, G, H, and J in addition to circu-

lating recombinant forms (CRFs). In this review, we use the

term HIV-1 in a restricted sense to refer to the M-group only.

HIV-1 is transmitted sexually or through other body fluids such

as blood and breast milk. The ancestor to the HIV-1 M group,

which ultimately gave rise to the pandemic, is likely to have first

entered the human population in Africa early in the 20th century

(Zhu et al., 1998; Korber et al., 2000; Worobey et al., 2008). HIV-1

is a chronic infection that over many years results in immunode-

ficiency and eventually causes death by impairing immune

defenses, allowing opportunistic infections to arise. As a

consequence, acquired immune deficiency syndrome (AIDS)
Ce
was not recognized as a distinct disease until 1981 (Centers

for Disease Control (CDC), 1981; Hymes et al., 1981). A major

challenge in eliminating HIV-1 is latency, which is not an issue

in SARS-CoV-2.

By contrast, SARS-CoV-2 ismost closely related to a virus iso-

lated from bats (Zhou et al., 2020). An ancestral recombination

event in the ACE-2 receptor binding region and an unusual inser-

tion at the furin cleavage site of this virus are likely to have poten-

tiated its transmission in humans (Li et al., 2020b; Walls et al.,

2020). Its dominant form of transmission is respiratory (Meyero-

witz et al., 2021). There have been three major zoonotic out-

breaks of betacoronaviruses in the past two decades. The first

outbreak, in 2002–2003, was of severe acute respiratory syn-

drome coronavirus [type 1] (SARS-CoV), which infected over

8,000 people and killed around 800 (Graham and Baric, 2010).

The next was of Middle East respiratory syndrome coronavirus,

MERS-CoV, which requires close contact for transmission but is

a more lethal virus, with 35% mortality (Cui et al., 2019; Graham

and Baric, 2010). There were 2,442 cases and 842 killed by

MERS between 2012 and May 2019 (Donnelly et al., 2019). The

third has been caused by SARS-CoV-2 (Gorbalenya et al.,

2020). From its first detection in Wuhan, China (Zhou et al.,

2020), it was just a matter of months before the global spread
ll Host & Microbe 29, July 14, 2021 Published by Elsevier Inc. 1093

mailto:btk@lanl.gov
https://doi.org/10.1016/j.chom.2021.05.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chom.2021.05.012&domain=pdf


ll
Review
of SARS-CoV-2 was formally recognized by theWorld Health Or-

ganization (WHO) as a pandemic (Ghebreyesus, 2020).

Over the course of 40 years since its discovery, at the close of

2019, the WHO estimated that HIV-1 has infected between 56

and 100million people and that AIDS-related illnesses have taken

between 25 and 42million human lives. Despite great progress in

treatment and in strategies to prevent HIV-1 transmission, be-

tween 32 and 45 million people were estimated to be living with

HIV-1 at the close of 2019. In contrast, the WHO estimates that

there have been over 110 million COVID-19 cases and 2.4 million

deaths globally in the first year of the SARS-CoV-2 pandemic.

The two viruses are from different families and differ substan-

tially in their ecology, mode of infection, genome content, and

pathogenesis. HIV-1 belongs to the genus Lentivirus in the family

Retroviridae. Its name derives from the Latin word lenti, meaning

‘‘slow’’; this refers to the long chronic period of the virus, which

typically lasts many years before the disease AIDS manifests

(Giorgi et al., 2002). Like all retroviruses, HIV-1 replicates its

genome in amultistep process: (1) reverse transcription of the viral

genetic material, single-stranded RNA, to DNA; (2) insertion of the

DNA copy into the genomeof the infected host cell; and (3) subse-

quent expression of new genomic transcripts (as well as mRNAs

for protein production) from the integrated DNA. When activated

CD4+ T cells are infected, some revert to a resting memory state

that is non-permissive for viral expression, creating a latent reser-

voir of infected cells that can eventually be reactivated. This latent

reservoirmakes it very difficult to clear the virus using antiretroviral

or immune therapy, a major challenge for the HIV field. The HIV-1

reverse transcriptase RT, part of the Pol polyprotein, is an RNA-

dependent DNA polymerase without proofreading activity.

Compared to other viral families, all retroviruses, including HIV-1,

have a high per-replication-cycle mutation rate (Mansky and Te-

min, 1995). Retroviruses are enveloped viruses, with amembrane,

derived from the host cell, that incorporates host proteins (Burnie

and Guzzo, 2019). The viral membrane is also studded with Enve-

lope (Env) trimers that interact with host cell-surface proteins to

enable cellular entry. During the course of an HIV-1 infection, the

virusevolvesunder continuous immunepressure fromthehost (re-

viewed inKorberetal., 2017). In turn, botharmsof thehost immune

response, T cell (Liu et al., 2013) and B cell responses (Gao et al.,

2014;Bonsignori et al., 2016, 2017;Bhimanetal., 2015), adapt and

respond to the changing antigenic profile of the virus. During the

course of a single HIV-1 infection, the replicating viral population

diversifies extensively, so that every HIV-1 infection is distinct,

with each individual carrying a diverse HIV-1 quasispecies. In

particular, diversification of Env proteins during chronic infection

often includesmutations in key epitope regions and hypervariable

regions that affect sensitivity to neutralizing antibodies (see Ste-

phenson et al., 2020, for a recent review that addresses the role

of hypervariable region evolution).

SARS-CoV-2 belongs to the Coronaviridae, a family of envel-

oped RNA viruses in which the genetic material is a single strand

of positive-sense RNA that can serve directly as either an mRNA

for protein production in an infected cell or as a template for

genome production (in which it is copied by RNA polymerase

to a negative strand, which then serves as the template for

new positive strands that are packaged into viral progeny (Deni-

son et al., 2011; Pal et al., 2020). Somemembers of this family of

viruses cause severe respiratory or gastrointestinal diseases in
1094 Cell Host & Microbe 29, July 14, 2021
mammals and birds. Coronaviruses have a proofreading mech-

anism that reduces the replication error rate (Romano et al.,

2020), which is one factor in the relatively slow accumulation of

mutations in the SARS-CoV-2 pandemic. Another critical factor

is that the SARS-CoV-2 peak infectivity window is brief, occur-

ring early in infection (He et al., 2020), so there is typically little

time for in vivo viral evolution in any individual host prior to trans-

mission. The combination of these two factors explains the low

levels of diversity observed in the COVID-19 pandemic. Several

variant lineages with relatively large numbers of mutations are

emerging, and some may have accumulated these mutations

in the context of prolonged infections in immunocompromised

individuals (Rambaut et al., 2020b), and multiple studies docu-

menting instances of such accumulation over time have been re-

ported (Avanzato et al., 2020; Choi et al., 2020; Baang et al.,

2021; Hensley et al., 2021; Kemp et al., 2021b). The B.1.1.7 line-

age (named using the phylogenetically-based ‘‘Pango’’ nomen-

clature system; Rambaut et al., 2020a) that was first sampled

in England in the fall of 2020, soon becoming highly prevalent

there and spreading internationally, is an example of such a mul-

tiple-mutation lineage, though its specific origin is unknown.

Although these levels of mutational distance would be trivial in

the context of circulating HIV-1 (Figure 1), the lineages are quite

divergent in the context of SARS-CoV-2; when they alter amino

acids that display phenotypic differences in infectivity and rela-

tive antibody resistance, they may become epidemiologically

significant.

Here, we discuss striking parallels and profound differences in

the modes of evolution of these two viruses. We focus primarily,

but not exclusively, on the docking/fusion proteins that mediate

cell entry, Env (HIV-1) and Spike (SARS-CoV-2), because of the

immediate importance of these proteins for immune-based

therapeutics, potential small-molecule drugs, and vaccines.

Although the tempo and pattern of change differ between the

two viruses, HIV-1 and SARS-CoV-2 employ similar evolutionary

tool kits in their adaptation for propagation through the human

population. Single nucleotide mutations can alter antigenic pro-

files and infectivity in both viruses, but evolutionary change also

occurs via insertions and deletions (indels) and recombination.

While each of these mutational events can directly modify a pro-

tein, they can also alter the proteins’ display of surface glycans,

an important modulator of sensitivity to neutralizing antibodies.

Finally, in addition to sharing their human host and a set of evolu-

tionary mechanisms, these two pathogens have one additional

critical thing in common: many in the HIV-1 research community,

which for decades has been working on challenges in HIV-1 vac-

cine development, are now translating their experience to SARS-

CoV-2 immunity and vaccines (Dumiak, 2020; Moore and Wil-

son, 2021). Thus, the evolutionary trajectory of HIV-1, which is

very familiar to us and others in this research community, informs

our perspective on the new pandemic.

In this review, we provide some basic analyses to enable a

comparative framework for considering the overlapping sets of

evolutionary strategies employed by HIV-1 and SARS-CoV-2.

We compare the frequencies of mutations, their genomic and

phylogenetic distributions, and the importance of insertions

and deletions in variant lineages among thousands of HIV-1 ge-

nomes and hundreds of thousands of SARS-CoV-2 genomes

sequenced since that outbreak came to worldwide attention.



Figure 1. Variability of HIV-1 and SARS-CoV-
2 docking/fusion proteins
Right panel: Variant-visualized amino-acid sequence
alignments of HIV-1 Env (A) and SARS-CoV-2 Spike
(B and C). The colored panels are a matrix in which
each row represents a single sequence, and the
columns are positions in a sequence alignment,
where coloredmarks (‘‘+’’) denote positions that vary
compared to a reference sequence and reference-
identical positions are white. A consensus sequence
based on the most common base in each position
serves as the reference for HIV-1 Env, and the
outbreak strain (NC_045512) is the reference
sequence for the SARS-CoV-2 Spike. Amino acid
colors are based on Taylor (1997). Sequences are
ordered top to bottom according to the phylogenetic
tree in the left panel. Each phylogenetic tree is
derived from a whole-genome nucleotide alignment:
an approximation to the maximum-likelihood tree,
generated with RAxML-NG (Kozlov et al., 2019) for
HIV-1 Env (A) and a parsimony tree generated with
TNT (Goloboff and Catalano, 2016) for SARS-CoV-2
Spike (B). As a consequence, continuous vertical
stripes indicate lineage-specific mutations that are
shared by related sequences (see text). Variant
amino acids for the 100 most recent sequences (as
of 2020-03-07) of 6 SARS-CoV-2 lineages with
multiple Spike mutations, including 5 VOC/VOIs, are
shown in (C). Mutations of particular interest that are
discussed in the text are labeled in (B) and (C). The
SARS-CoV-2 sequence data in this figure used data
from the GISAID 2021-02-25 release date, ‘‘near-
complete’’ alignment as described in Korber et al.,
(2020b); alignment statistics at https://cov.lanl.gov/.
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We also evaluate the three-dimensional structures of the Spike

and Env docking/fusion proteins in terms of immunological

masking of critical epitopes by glycan shielding. We discuss

the evidence for and the importance of recombination in both vi-

ruses and provide examples of evidence for recombination in

SARS-CoV-2 data from South Africa. Finally, we summarize

and evaluate the development of distinct epidemiologically rele-

vant lineages as affected by virus ecology and consider the po-

tential impact of viral diversity on vaccines going forward.
But first, a comparison of the data we

used and its sources follows. All SARS-

CoV-2 sequence data used here were

provided through GISAID, The Global

Initiative for Sharing All Influenza Data,

a global repository of both Influenza

and SARS-CoV-2 viral sequence data

(http://gisaid.org). The sequences were

aligned and processed at cov.lanl.gov

(https://cov.lanl.gov/content/index). The

SARS-CoV-2 sequence data in GISAID

were contributed by laboratories from

throughout the world. Unless otherwise

noted, most of the summaries and ana-

lyses provided here are based on the

GISAID March 1, 2021 release, including

519,035 Spike protein sequences. At

the time of this writing, May 23, 2021,

just 18 months since SARS-CoV-2 was

first detected in humans, 1,675,199 se-
quences are available through GISAID, reflecting an aston-

ishing global effort.

The HIV-1 sequence data used here originated at GenBank

(https://www.ncbi.nlm.nih.gov/genbank/), but are taken directly

fromacurated alignment of 7,590globalHIVEnvsequencespub-

licly available through the HIV database (https://www.hiv.lanl.

gov/), and restricted to include only one sequence per sampled

individual. Unlike SARS-CoV-2, published HIV-1 sequences are

very often sampled in great depth and longitudinally, and they
Cell Host & Microbe 29, July 14, 2021 1095
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sometimes includemanyhundredsof sequences fromasingle in-

dividual, so restricting to one sequence per person provides a

way to better reflect diversity at the population level.

NUCLEOTIDE AND AMINO-ACID DIVERSITY IN
SARS-CoV-2 COMPARED TO HIV-1

The paucity of mutations in SARS-CoV-2 compared to HIV-1 is

immediately evident (see Figure 1 for Spike and Env amino acids

and Figure S1 for full-genome base mutations). As touched on

above, this is due in part to the comparatively high fidelity of

the coronavirus RNA polymerase (Denison et al., 2011): its 30-
to-50 exonuclease activity removes mis-incorporated nucleo-

tides, providing effective proofreading of the nascent transcript

(Bouvet et al., 2012; reviewed by Robson et al., 2020). HIV-1’s

RNA polymerase has a high intrinsic error rate and no such

proofreading mechanism (Mansky and Temin, 1995). As noted

above, the relative lack of SARS-CoV-2 diversity is also due in

part to the timing of the transmission window, which has a nar-

row peak, early in infection. Consequently, very little selection

pressure is imposed by the adaptive immune system in response

to a first infection. In contrast, within-host evolution of HIV-1 is

extensive: it begins early in infection and continues through

years of chronic infection, and selection for immune resistance

drives significant diversification (Phillips et al., 1991; Arendrup

et al., 1992; Fischer et al., 2010; Boutwell et al., 2010; Liu

et al., 2013; Bonsignori et al., 2016, 2017; Bhiman et al., 2015;

Bar et al., 2012). Natural selection can act decisively upon rare

but favorable mutations; this was first noted for SARS-CoV-2

when the Spike mutation D614G, which confers greater infec-

tivity, rapidly became the globally dominant form of the virus dur-

ing the spring of 2020 (Korber et al., 2020b). In the case of influ-

enza, antigenic drift results from the accumulation of mutations

during a flu season arising as a consequence of the interplay be-

tween selection for immunological resistance and viral fitness

(Wu et al., 2020); this drives the need to develop new influenza

vaccines every few seasons. Many new SARS-CoV-2 variants

that carried mutations conferring resistance to neutralizing anti-

bodies and sera, as well as enhanced infectivity, began to

emerge in late 2020 (Deng et al., 2021, West et al., 2021, Ram-

baut et al., 2020b, Bugembe et al., 2021). This suggests that,

even as the virus continues to adapt to its new human host, anti-

genic drift may be well underway.

The major HIV-1 clades were well-established within 30–50

years of the origin of the HIV-1M group (Korber et al., 2000;Wor-

obey et al., 2008) and have a star-like phylogenetic distribution.

As the HIV-1 pandemic continues, within-clade Env proteins

show ever greater levels of diversity. As a consequence, over

time, sera from infected people will become less potent even

against viruses of the same clade as the infecting virus (Hraber

et al., 2014; Rademeyer et al., 2016).

The mutational patterns observed in the two different viruses

are distinctive. We inferred approximate maximum likelihood

trees (Kozlov et al., 2019) from HIV-1 M-group and SARS-CoV-

2 nearly-whole-genome datasets, using the same number of

taxa (3,903) to facilitate direct comparisons. The parameteriza-

tion of this model offers a compact summary of the mutational

landscape of these viruses (Table S1). In terms of base fre-

quencies, HIV-1 is A-rich (the genome is 45% adenine), while
1096 Cell Host & Microbe 29, July 14, 2021
SARS-CoV-2, though A-T rich, is biased toward T (37% thymine

in the coding strand). HIV-1 is subject to mutagenesis via APO-

BEC proteins (part of the host antiviral response, which acts on

the pre-integration complementary DNA copy), but this is coun-

tered in part by the HIV-1 Vif protein (Malim, 2009). SARS-CoV-2

may likewise be subject to editing by host deaminases, including

APOBEC3C, as part of the host innate response to viral infection

(Di Giorgio et al., 2020; Wei et al., 2020).

Since the ancestral outbreak sequence for the SARS-CoV-2

pandemic is known, we can use it as a reference sequence to

illustrate observed mutations in an alignment of SARS-CoV-2

sequence data; organizing the aligned sequences by the phylo-

genetic tree highlights the mutational patterns that distinguish

the emerging lineages (Figure 1B). To provide a visual compar-

ison with HIV-1, we created an HIV consensus sequence using

the Los Alamos HIV-1 database curated reference set, simply

taking the most common base found in each position in the

alignment to use as a central reference point. This choice of a

reference sequence wasmade to minimize the number of differ-

ences highlighted in our HIV figures (Figures 1A and S1). For

illustration, we condense the alignments into a single figure

that displays the 35million bases in the 3,903-sequence curated

full-genome HIV-1 alignment (containing only one sequence per

infected individual) and >100 million bases in a randomly

sampled 3,903-sequence near-full-genome SARS-CoV-2 align-

ment (Figure S1). The mutational patterns in the Env and Spike

proteins, most relevant to vaccine design, are shown in Figures

1A and 1B, respectively; the high density of Env mutations re-

flects the formidable challenge of creating a HIV vaccine that

can elicit cross-reactive immune responses.

Other conspicuous features of the data are the different de-

grees of ‘‘bushiness’’ in the phylogenetic trees (Figure 1) and

the large numbers of lineage-specific mutations in HIV-1 Env;

these patterns of enriched mutations are specific to, and help

to define, major clades and circulating forms (Figures 1 and

S1). The HIV-1 tree itself has a star-like structure that is consis-

tent with a rapidly expanding infection in a homogeneously sus-

ceptible population. Contrastingly, in Spike, the emerging

clades and variants of interest (VOIs) of SARS-CoV-2 are asso-

ciated with a small number of amino-acid changes across the

protein (or base mutations across the �30,000 bases of

genome). The long vertical lines in Figures 1B and S1 represent

mutations that are shared among phylogenetically clustered se-

quences. Some clade-defining prominent mutations in Spike

are apparent (Figure 1B). These include D614G, (Korber et al.,

2020b), which is embedded in a 4-mutation haplotype that de-

fines the G clade (Figure S1); A222V, which became common

in the UK and Europe in the summer of 2020 (Hodcroft et al.,

2020; Bartolini et al., 2020); and S477N, which dominated the

Australian sampling in the summer of 2020. Both A222V and

S477N became relatively less common in late 2020 and early

2021 as the lineages with these mutations were replaced

(Shen et al., 2021) by VOIs or variants of concern (VOCs)—see

the CDC SARS-CoV-2 Variant Classifications and Definitions

website, https://www.cdc.gov/coronavirus/2019-ncov/cases-

updates/variant-surveillance/variant-info.html.

In the first quarter of 2021, different VOIs/VOCs have been

increasing in prevalence in some geographically distinct local

populations at a rapid pace (Deng et al., 2021; West et al.,

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
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2021; Rambaut et al., 2020b; Bugembe et al., 2021), but only the

B.1.1.7 formwas sampled at a high enough frequency globally to

be visually apparent in the subset of sampled viruses included in

Figure 1B. We therefore highlight the changes in the Spike pro-

tein (Figure 1C) and in the full-length genome (Figure S1C) that

characterize the baseline forms in six of the variants that are

increasing in frequency in local populations and are spreading

globally. Two things are evident in these figures: first, that each

VOI/VOC is itself a lineage—continuing to evolve, sampling addi-

tional mutations over time—and also that multiple VOIs/VOCs

share particular mutations. To wit, the mutation N501Y, noticed

first in the B.1.1.7 lineage and considered important due to its

location in the Receptor Binding Motif (Rambaut et al., 2020b),

is also found in the distinct lineages B.1.351 (South Africa; also

called 501Y.V2; Wibmer et al., 2021) and P.1 (Brazil). N501Y en-

hances infectivity with a modest impact on neutralization (Leung

et al., 2021; Rathnasinghe et al., 2021). L452R, found in the

B.1.427 and B.1.429 lineages from California and more recently

in the B.1.617-related lineages from India, can enhance infec-

tivity and impart resistance to many RBD-targeting antibodies

and sera (Deng et al., 2021, McCallum et al., 2021b). E484K is

found in B.1.351, P.1, and in a sublineage of A.23.1; it confers

neutralizing antibody resistance (Wibmer et al., 2021). Two

distinct mutations from amino acid K417, K417T and K417N,

appear in P.1 and B.1.351, respectively; mutations in K417

also contribute to neutralizing antibody resistance (Wibmer

et al., 2021). B.1.351 shares a further mutation, A701V, with

the B.1.526 variant first reported from New York (Figure 1C);

A701V is an example of a shared mutation that is as yet unex-

plored for phenotypic consequences. The observation of any

single mutation in multiple expanding lineages suggests conver-

gent evolution, i.e., that fitness effects of that mutation help drive

lineage expansion. As noted above, several of these mutations

have been shown experimentally to be advantageous to the vi-

rus. The observation of multiple such mutations in particular lin-

eages suggests that these fitness effects can be cumulative.

INSERTIONS AND DELETIONS: AN ADAPTIVE
MECHANISM FOR HIV-1 AND SARS-COV-2

Insertions and deletions (indels) are a critical adaptive mecha-

nism for both HIV-1 and SARS-CoV-2, but they manifest differ-

ently. Indels originate via non-homologous recombination and

can happen anywhere in the HIV genome. However, viable indels

that do not introduce frameshifts are most commonly found in

hypervariable regions (Wood et al., 2009). HIV-1 insertions

generally manifest as direct, short-repeat duplications (Wood

et al., 2009). Four of the variable loops of the HIV-1 Env protein,

(V1, V2, V4, and V5, but not V3) contain hypervariable sections

that have an extraordinary capacity to change by insertion and

deletion (Bricault et al., 2019); the variability in these regions is

dramatic and plays an important role in neutralizing antibody

resistance. The extraordinary length variation in these four hy-

pervariable loops (Figure 2A) is accompanied by changes in

net charge and in the number of N-linked glycosylation sites

(Tian et al., 2016). For example, the V1 loop in Env can accom-

modate lengths that range between 5 and 66 amino acids

(median 30; Figure 2A); some hypervariable V1 loops include

no N-linked glycosylation sites, others up to 11 (median 4), and
they have a net charge ranging from �6 to 8 (median �1).

Much of the observed population-level variation in these loops

can be recapitulated in a single individual during the course of

infection (Stephenson et al., 2020). Hypervariable region indel

evolution begins early in HIV-1 infections and contributes to viral

escape from the earliest antibodies as they begin to impose se-

lective pressure during antibody/viral co-evolution (Bar et al.,

2012; Gao et al., 2014; Bonsignori et al., 2017; Roark et al.,

2021; Korber et al., 2017).

Because indels are the primary evolutionary driver within the

hypervariable regions of Env, it is inappropriate to assume

sequence homology and base-substitution drive evolution in

these regions. Thus, alignment dependent strategies for identi-

fying positive selection associated with the acquisition of immu-

nological resistance can be misleading. Generally, therefore, we

explore the impact of hypervariable regions on neutralizing anti-

body sensitivity by using three attributes of the variable loops

that are independent of alignment: loop length, net charge, and

number of glycosylation sites. Particular characteristics of

certain loops are associated with resistance to particular classes

of broadly neutralizing antibodies (Bricault et al., 2019). The loop

lengths, their charge, and variable glycosylation patterns all

affect loop conformation, directly modulating access to critical

epitopes. A remarkable aspect of Env hypervariable region evo-

lution is that the location of hypervariable indels observed in a

human host during early infection with HIV-1 will often be pre-

cisely recapitulated when that same Env is incorporated into a

SHIV construct and used to infect Rhesus macaques (Roark

et al., 2021).

SARS-CoV-2 is also accumulating indels that can have crit-

ical phenotypic consequences, but thus far only a few specific

deletions have become prominent among pandemic variants.

As in HIV-1 Env, these deletions often occur in, or proximal

to, structurally flexible loop regions. The Spike DH69/V70 dele-

tion (D69/70) is the most common globally and is found in many

lineages and distinctive Spike contexts (Figures 2B and 2C). It

first came to prominence in association with mink farm out-

breaks in Denmark (European Centre for Disease Prevention

and Control, 2020; Lassaunière et al., 2020; van Dorp et al.,

2020) paired with either the N439K or Y454F mutations in the

RDB (Shen et al., 2021; Kemp et al., 2021a). One study sug-

gested that D69/70 has minimal impact on the neutralization

potency of serum from convalescents or vaccinees (Shen

et al., 2021), although another found that this deletion could

affect antibody binding and/or neutralization (McCarthy et al.,

2021); a third study reported that D69/70 can enhance infec-

tivity in vitro (Kemp et al., 2021a). These forms of the virus

were a significant presence in the European epidemic in the

summer and early fall of 2020 (Shen et al., 2021). Their preva-

lence, however, like that of the G clade they descended from,

began to decline soon after the more transmissible B.1.1.7

variant (also a G clade descendant) was first sampled in the

United Kingdom in late September 2020 (Volz et al., 2021;

Rambaut et al., 2020b; Davies et al., 2020). B.1.1.7 carries

both the D69/70 deletion and a common deletion in the NTD

supersite, DY144 (D144), which can confer resistance to multi-

ple neutralizing antibodies that target this region (McCallum

et al., 2021). Like D69/70, D144 also recurs in multiple lineages

(Figures 2B, 2C, and S2A), although much of the growing global
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Figure 2. Distributions of Env loop lengths in
HIV-1 and indel lengths and positions in
SARS-CoV-2
(A) The distribution of hypervariable loop lengths (for
loops V1, V2, V4, and V5) from the global Env
sequence alignment from the HIV-1 database (1
sequence per individual). Hypervariable region
lengths are calculated via the HIV-1 Los Alamos
Database (https://cov.lanl.gov/) ‘‘Variable Region
Characteristics’’ web interface; net charge and
number of potential N-linked glycosylation sites can
also be calculated using this tool.
(B) Frequencies of Spike indels from the GISAID 1-
March-2021 release. A log scale is used, as most
indels are quite rare except D69/70 and D144, which
are common because they are present in the highly
sampled B.1.1.7 lineage. Both, however, are also
frequently sampled in other contexts: D69/70 was
found an additional 10,168 times and D144 an
additional 1,513 times. Focused regions of rare but
recurring indels are highlighted here, and details are
provided in Figures S1 and S2. The different regions
in Spike are highlighted and include: the signal
peptide (SP), the N-terminal domain (NTD), the re-
ceptor binding domain (RBD) and motif (RBM),
subdomain 1 and 2 (SD1 and SD2), the fusion pep-
tide (FP), heptad repeat 1 and 2 (HR1 and HR2), the
central helix (CH), and the connecting domain (CD)
and the transmembrane region (TM).
(C) A parsimony tree based on the cov.lanl.gov 17-
March-2021 full-genome alignment (inferred with
TNT 1.5; Goloboff and Catalano, 2016), showing the
recurrence of the most common indel patterns in
multiple lineages in the phylogeny. Branches are
colored by the geographic region of the viral sample
to illustrate that these mutations are geographically
as well as phylogenetically dispersed.
(D) Structural representation of the SARS-CoV-2
Spike trimer, with three protomers shown in light
blue, yellow, and cyan. Dashed circle indicates the
NTD domain of one protomer. In the (lower) close-up
view of NTD, the positions of the most common
deletions—69/70, 144, and 242–244—are depicted
as red beads. Residues shown in light blue are loops
N1 (14-26), N3 (141-156), and N5 (246-260) that
define the supersite for NTD-binding neutralizing
antibodies (Cerutti et al., 2021). Since deletion sites
are near or in the supersite, those deletions can alter
the shape, hydrophobicity, and/or surface charge
distribution of the supersite. These factors may
perturb the binding of antibodies to NTD. The Spike
structure shown here was modeled by Mansbach

et al. (2021) based on the cryo-EM reconstruction fromWalls et al. (2020) (PDB ID: 6VXX). Modeling was required because numerous regions were not resolved in
the 6VXX structure, including loops N1, N3, and N5. Molecular visualization was prepared using VMD (Humphrey et al., 1996).
(E) The position of the 6-nucleotide, 3-codon deletion at SARS-CoV-2 genome positions 21,766–21,771 that causesmost instances of the SpikeD69/70 2-amino-
acid deletion. Note that the third position of the original isoleucine codon ‘‘ATA’’ (I68) is replaced by the ‘‘C’’ that was originally the third base of the ‘‘GTC’’ codon
encoding V70. The 6-base, out-of-frame nucleotide deletion translates to a 2-amino-acid in-frame deletion.

ll
Review
presence of both D69/70 and D144 can be attributed to their

presence in the rapidly expanding B.1.1.7 lineage (Figure 1).

Both deletions likely contribute to B.1.1.7’s relative fitness

and increasing prevalence in some regions.

There are also small, spatially localized clusters of distinct in-

dels found in Spike that are rare but likely to be viable and trans-

mitted, as they often are sampled multiple times (Figures 2B and

S2). The most interesting of these clusters is in the region be-

tween Spike positions 137–148 (Figure S2A). While this Spike

variable region is much less variable than the hypervariable re-

gions of HIV-1, it shares some features with them: (1) the region

overlaps with an exposed loop on Spike, the N3 loop (Chi et al.,

2020); (2) there are many distinctive patterns of local deletions
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observed in this region—along with the very frequently observed

D144 deletion, a spectrum of 24 other distinct deletion patterns

are found among 341 different Spike sequences (Figure S2); and

finally, (3) it is embedded in the NTD supersite, and so, like D144

(McCallum et al., 2021; Cerutti et al., 2021), the other deletions in

this region are also likely to impact antibody resistance. There

are also rare deletions that are near to or span the furin cleavage

site (Figure S2A, positions 671–693); a deletion of the furin cleav-

age site augmented viral growth in culture but produced virus

that was attenuated in vivo (Johnson et al., 2021).

A third deletion, DL242/A243/L244 (D242–244), is found in the

B.1.351 lineage that has come to dominate the South African

epidemic (Wibmer et al., 2021). This variant has a formidable

https://cov.lanl.gov/
http://cov.lanl.gov
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neutralization resistance profile, and D242–244 has been pro-

posed to alter the loop structure and contact region for NTD-tar-

geting neutralizing antibodies (Wibmer et al., 2021). The posi-

tions 242–244 are not themselves in a loop, but represent three

hydrophobic residues at the end of a strand in a b-hairpin motif;

deleting them would likely alter the N5 loop structure that con-

nects the strands, a contact region for NTD-targeting neutral-

izing antibodies. Interestingly, D242–244 is found not only in

the B.1.351 backbone but also in a small number of B.1.1.7 line-

age sequences as well as in a few sequences with no additional

Spike mutations (e.g., 3 from South Africa in Dec. 2020 and one

fromChina in Feb. 2020; in all, 4 cases in the context of an ances-

tral form of Spike at position 614, D614). The ancestral D614 is

currently (March 2021) very rarely sampled. D614G confers a

fitness advantage in terms of transmissibility, and global sam-

ples had almost entirely shifted to the mutated form by early

summer of 2020 (Korber et al., 2020b; Hou et al., 2020). Still,

the D614G mutation may come at a cost for the virus, as some

have found the ancestral D614 form to be more resistant to

neutralization by sera. A 4- to 6-fold increase in vaccine sera

sensitivity was observed for D614G in one study (Weissman

et al., 2021), while in another, an average 1.7-fold difference

was observed among sera from hamsters infected with D614 vi-

rus against the D614G variant (Plante et al., 2021). However, not

all studies find such a difference. For example, Hou and col-

leagues did not see a significant difference between the two

forms in terms of neutralization sensitivity to human convales-

cent sera (Hou et al., 2020). As the virus is increasingly con-

fronted with convalescent and vaccine sera over the course of

2021, the greater neutralization sensitivity of the D614G form (if

this is indeed the case) may come to outweigh its increased

transmissibility as a selective force at the population level, and

D614 may begin to re-emerge. Of note in this regard, the ances-

tral D614 is part of the Spike signature of the VOI in the A23.1

lineage that recently emerged from Uganda. D614 has also

recently resurfaced in combination with D69/70 and with D144

(Figure 2C). A small number of interesting D614 sequences

sampled in Wales and England carry both D69/70 and D144

(as of March 1, 2021, Figure 2) as well as a third distinctive 2-

amino-acid deletion, D243–244. This could lead to concerted

conformational changes in the NTD supersite region due to the

spatial proximity of D243/244 and D69/70.

Spike deletions D69/70, D144, and D242-244 recur in multiple

lineages, indicating that their indel boundary specificity may be

biochemically favored by local RNA structure. For example, the

Spike D69/70 2-amino-acid deletion is generally encoded, in the

B.1.1.7 variant and in many other contexts, by a precise 6-base

deletion that overlaps 3 codons encoding Spike amino acids

68–70 (Figure 2E). As noted above, such repeated precise muta-

tions were also found in SHIV studies with specific HIV-1 Envs

even in different infected hosts (Roark et al., 2021). In addition

to spontaneous indel recurrence, recombination may contribute

to indel movement through the population, enabling selection

and increasing the frequencies of distinct variants, and variants-

of-variants, that carryD60/70,D144, andD242–244 inSpike back-

bones (Giorgi et al., 2021; Varabyou et al., 2020).

More extensive indel patterns have been increasingly

observed in recent regionally emerging variants through the

spring of 2021. Some examples include a complex variant,
increasingly sampled in Chile and spreading internationally,

that carries a seven-amino-acid deletion at Spike D246–252

(previously Pango lineage B.1.1.1; now called C.37); a variant

that is increasingly sampled in the Philippines that carries two

deletions, Spike D141–143 and D243–244 (lineage P.3); a variant

increasingly frequently sampled globally, first sampled in India

(lineage B.1.617.2, a CDC-listed VOI), that carries a two-

amino-acid deletion in a distinctive region, Spike D156–157;

and a still very rare but particularly interesting variant in terms

of indels that was first sampled in Russia (lineage AT.1) with a

large nine-amino-acid deletion, Spike D136–144, and a four-

amino-acid insertion at Spike 679, GIAL, very near the furin

cleavage site.

LARGE-SCALE COMPARISONS OF ENV AND SPIKE
STRUCTURES

The SARS-CoV-2 Spike protein and HIV-1 Envelope (Env) pro-

tein are Class I viral fusion glycoproteins (White et al., 2008)

that are trimeric in both pre- and post-fusion states. Env is the

smaller of the two. In its native state, it forms a heterodimeric

trimer comprised of the gp120 and gp41 subunits. It has approx-

imately 650 residues per protomer in the extracellular domain

(ECD; Kwon et al., 2015) and a solvent-accessible surface area

(SASA) of approximately 830 nm2 (Figure 3). The Spike trimer

has �1,200 residues per protomer (Walls et al., 2020) in the

ECD and a SASA of 1,250 nm2 in the closed conformation.

Both proteins undergo large-scale structural rearrangements.

The Spike protein transitions from a closed to an open conforma-

tion with the upward movement of a single receptor binding

domain (RBD; see Figure 3C; Wrobel et al., 2020); this increases

the SASA to 1,300 nm2. HIV-1 Env also undergoes substantial

conformational change during the pre-fusion process of docking

to a target cell. Upon Env binding to its primary receptor (CD4),

the variable V1 and V2 loops move away from the Env apex,

exposing the CCR5 co-receptor binding site. CCR5 binding trig-

gers a conformational transition that enables the gp41 fusion

machinery to access the target cell membrane and initiate fusion

(Wang et al., 2016). Thus, both viral surface proteins exhibit

significant conformational plasticity that protects the receptor-

binding interface until the critical moment, enabling the

preservation of high-affinity binding to host receptors in the

face of immune pressure.

STRUCTURAL COMPARISONS OF THE GLYCAN
SHIELDS OF SPIKE AND ENV

Both Spike and Env proteins are highly glycosylated, primarily

with N-linked glycans, although both also include less well-char-

acterized O-glycans (Shajahan et al., 2020; Silver et al., 2020).

Glycans are extremely dynamic and are much more flexible

than the underlying protein, so any single glycan can sample a

large volume in space. Multiple glycans in combination become,

in effect, a physical shield that blocks antibody access to the

antigenic surface of the protein for both HIV-1 Env (Wei et al.,

2003; Berndsen et al., 2020) and coronavirus Spikes (Walls

et al., 2016; Watanabe et al., 2019). The SARS-CoV-2 Spike pro-

tein typically has 22 N-glycans per protomer, although N-linked

glycosylation sites occasionally vary, giving a total of 63–69
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Figure 3. Structural comparison of HIV-1 Env and SARS-CoV-2 Spike glycoproteins
(A) Single conformation of Env (top) and Spike in 1-RBD-up state (bottom) from side and top view of trimers. Glycans are shown as stick representations and are
colored by class (oligomannose, fucosylated 2-antennae, fucosylated 3-antennae and hybrid; see key given). Protein surface is shown in white. Protein sizes are
to scale, with the maximum dimensions of the underlying protein represented by arrows.
(B) Ensemble picture of the dynamic glycan shield, including 500 different conformations of each glycan represented as point densities based on fraction of
occupancy. Glycans are colored as in part (A).

(legend continued on next page)
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glycans per trimer. Other coronavirus species have more gly-

cans, e.g., 87 per trimer for the HCoV-HKU1 (a betacoronavirus,

like SARS-CoV-2; Watanabe et al.2020b), and 102 for HCoV-

NL63 (an alphacoronavirus; Walls et al., 2016), but there is little

variation in glycan count within coronavirus species. In contrast,

the number of potential N-linked glycosylation sites in HIV-1 Env

varies throughout the course of every infection, with a typical

range of between 23–32 per protomer (69-96 for the trimer).

Site-specific mass spectrometry studies (Behrens et al., 2016;

Watanabe et al., 2020a) indicate that, in both proteins, each

glycosylation site is occupied by heterogeneous mixtures of gly-

coforms: high oligomannose, complex (with or without fucosy-

lated cores and negatively charged sialic acid tips), and hybrids

of the two. Relative glycoform frequencies depend on expres-

sion cell lines and their glycosylation enzyme repertoire (Goh

and Ng, 2018). Both the chemical composition of individual gly-

cans and of the amino acids in physical contact with them can

affect the orientation of glycans and inter-glycan interactions

(Chakraborty et al., 2020). All these factors affect the overall to-

pology and the immunological protection conferred by the

glycan shield.

For HIV-1, glycan shield evolution is an important immune

evasion strategy. Glycans on the HIV-1 Env are concentrated

on long, flexible loops, increasing their dynamic range and

spatial coverage (Figure 3B). The glycan encounter factor

(GEF) gives the probability of a probe’s encountering a sugar’s

heavy atoms as it approaches the Env surface. This provides a

metric to quantify the glycan coverage over the surface of the

protein, illustrating how well the glycan shield can protect

against approaching antibodies (Figure 3C; Chakraborty et al.,

2020). Due to the dense and dynamic glycan coverage, the

Env protein has high GEF across almost the entire antigenic sur-

face, although the CD4 binding site where the Env interacts with

the host receptor (Figure 3C) remains relatively exposed. In HIV-

1 Env, certain glycan sites can sometimes shift by a few amino

acids with important immunological consequences. For

example, a shift of a glycan from position 332 to 334 can result

in significant antibody resistance for broadly neutralizing anti-

bodies (bNAbs) targeting V3-glycans (Bricault et al., 2019).

HIV-1 bNAbs with breadth and potency favor long heavy-chain

third complementarity-determining regions (HCDR3s) (Haynes

et al., 2019), which enable these antibodies to reach through

the glycan shield to target epitopes at the protein surface (Dashti

et al., 2019). Since the glycan shield topology varies between

HIV-1 viruses, glycan holes with low GEF regions may vary like-

wise, greatly affecting Env variant sensitivity to different antibody

responses.

Due to the smaller number of glycans on a larger surface area,

the density of glycosylation is much lower on the SARS-CoV-2

Spike than it is on HIV-1 Env (Figure 3). Since the Spike protein

surface is less effectively shielded by glycan coverage relative

to the Env surface, two regions that harbor critical neutralizing

antibody epitopes, the RBD and the N-terminal Domain (NTD)

supersite region, are relatively exposed. The RBD forms the

functional interface between the Spike protein and the host
(C) Glycan Encounter Factor represented as a color map on the surface of the Env
indicates regions of relatively high shield vulnerability. The CD4 binding site of E
marked by green circles.
ACE2 receptor and contains several mutations seen in the recent

variants. The recurrent N501Y mutation alters specific interac-

tions with ACE2 and may lead to increased binding affinity as

well as enhanced infectivity (Leung et al., 2021; Rathnasinghe

et al., 2021). When a single RBD is rotated up, effecting the

change from ‘‘all-down’’ to ‘‘one-up’’ conformation that enables

ACE-2 receptor binding (Wrapp et al., 2020), all-atom molecular

dynamics simulations show that there is an accompanying tran-

sition in the glycan shield (Figure 3C): in the ‘‘one-up’’ conforma-

tion, the glycan coverage at the apex of the trimer in disappears

(Mansbach et al., 2021). Of note, when the RBD is in the ‘‘one-

up’’ conformation (Figure 3C) the amino acid at site 501 is

exposed to solvent with no glycan coverage, not even by neigh-

boring RBD glycans N331 and N343.

An N-terminal domain (NTD) ‘‘supersite’’ (Figure 3C) is recog-

nized by several specific neutralizing antibodies. The supersite

comprises Spike residues 14–20 (the N1 loop at the NTD termi-

nus), 140–158 (the N3 loop, b-hairpin), and 245–264 (the N5

loop) (McCallum et al., 2021); it remains largely exposed with

very low GEF. Mutations at or within contact distance of the

supersite region can disrupt the structural motif or change the

loop lengths, altering antibody recognition and binding. Intrigu-

ingly, there are also four potential glycosylation sites (asparagines

N17, N74, N122, and N149) where glycans could potentially

interact with antibodies bound to the NTD (Cerutti et al., 2021).

The occasional loss of glycosylation motifs at these sites (386,

542, 28, and 280 times, respectively, out of a dataset of

519,035 Spike sequences sampled March 1, 2021) could affect

antibody interactions. Of note, one of the multiple Spike muta-

tions in the Brazilian P.1 variant (Toovey et al., 2021) introduces

a novel N-linked glycosylation site, T20N. Thus, in SARS-CoV2,

variation in glycosylation sites is just beginning to emerge. It re-

mains to be seen whether these mutations are immunologically

relevant or whether they will become increasingly epidemiologi-

cally relevant.

RECOMBINATION

Recombination is an important evolutionary mechanism for

RNA viruses, including retroviruses like HIV-1 and coronavi-

ruses like SARS-CoV-2. Natural recombination can occur

when two distinctive viral variants co-infect the same host,

and has the potential to accelerate evolution by bringing

together advantageous mutations that arose independently. It

can be challenging to detect recombination in situations of

low diversity like SARS-CoV-2, and recombination can arise

in vitro or as methodological artifacts of sequence assembly,

thus a clear understanding of the role of recombination in viral

evolution can be complicated by both false negatives and false

positives. In this section we briefly describe the major role of

recombination in HIV-1 in terms of global diversity and within-

host evolution, as well as the role of recombination in SARS-

CoV-2’s origins. We also provide an illustration of likely recom-

bination events among locally co-circulating SARS-CoV-2 var-

iants in S. Africa.
(top) and Spike (bottom) proteins. Blue indicates high glycan shielding and red
nv and the receptor binding motif and NTD supersite of the Spike protein are
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Recombination in HIV-1
Recombination has played a critical role in HIV-1 evolution

(Zhang et al., 2010). HIV-1 nomenclature (Robertson et al.,

2000) recognizes both major clades, specified A–K, and over

100 circulating recombinant forms (CRFs) (characterized and

listed at the Los Alamos HIV database, http://www.hiv.lanl.

gov). Such inter-subtype recombination events are readily de-

tected by sequence analysis; within-subtype recombination is

more challenging to resolve, but can still be identified (Kiwelu

et al., 2013; Nikolaitchik et al., 2015). Recombination is also a

very important evolutionary mechanism over the course of a nat-

ural HIV-1 infection within a single individual (Shriner et al., 2004,

Song et al., 2018). A bioinformatic tool developed to track within-

subject recombination in the low-diversity setting of HIV early

infection (RAPR, Song et al., 2018) can also be usefully applied

in the low-diversity setting of SARS-CoV-2 in the COVID-19

pandemic.

Recombination in SARS-CoV-2
Coronavirus infections are frequent and widespread across

different animal reservoirs, where distinct viruses may coexist

in the same hosts and often recombine (Denison et al., 2011;

Su et al., 2016). At high multiplicities of infection, more than

25% of viral progeny may be recombinant (Baric et al., 1990).

Recombination is an important element of coronavirus evolution,

can be observed even between different coronavirus families,

and has been implicated in the origin of SARS-1, MERS, and

SARS-CoV-2 (Sabir et al., 2016; Li et al., 2020a; Lam et al.,

2020; Hon et al., 2008). In low-diversity settings, such as the first

year of the SARS-CoV-2 pandemic, many standard bio-

informatic strategies for detecting recombination will be insuffi-

ciently sensitive (this includes, e.g., strategies developed to

detect recombination between major HIV-1 clades). Neverthe-

less, several studies have found occurrences of recombination

among SARS-CoV-2 pandemic variants (De Maio et al., 2020;

Korber et al., 2020a; Varabyou et al., 2020). Varabyou and col-

leagues found evidence of recombination in SARS-CoV-2 based

on major clades and their defining mutations. By using this

method to screen the full GISAID database (https://gisaid.org/),

they found hundreds of instances of likely recombinants, some

of which persisted in the population. They could demonstrate

that at least some of these recombinants were not the result of

sequencing from mixed infections, and that some were parts

of transmitted lineages (Varabyou et al., 2020).

Using the RAPR tool, which was designed specifically for low-

diversity settings (Song et al., 2018), we find strong evidence of

recombination among geographically regional sets of SARS-

CoV-2 sequences. RAPR uses the full set of variable positions

in its analysis, not just major clade defining positions, which

may enhance sensitivity in some cases, but it is computationally

intensive (as it compares all possible sequence triplets), which

limits its use to fairly small datasets. Here we present, as an illus-

tration, four examples of likely recombination from sequences

recently sampled in South Africa (Figure 4). Three of these

recombination events involve B.1.351 variants (Wibmer et al.,

2021) recombining with viruses outside of that lineage. A careful

review of the original sequencing data from each of these four

examples found no indication that the recombinants were from

individuals with mixed infection, and the relevant base calls
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were well supported. While recurring mutations are a plausible

explanation of the frequent observation of identical SNPs in

different lineages (e.g., E484K and N501Y, Figure 1, and the

recurrent deletions discussed above), the observed patterns of

a series of clustered mutations presented here are more parsi-

moniously explained by recombination events that grafted sets

of mutations from co-circulating forms onto the backbone of ex-

isting variants in regions with high rates of infections.

TRANSITIONS IN GLOBAL DIVERSITY

The level of sequence diversity differs conspicuously between

SARS-CoV-2 and HIV-1 (Figures 1 and S1). Outside of closely

related transmission chains, within-subtype Hamming distances

between Env proteins typically range from 10% to 25% with be-

tween-subtype differences of 20% to 40%. Within each single

host, HIV evolves at a rate approaching 1% per year (Krakoff

et al., 2019). The baseline form of the most divergent lineage of

SARS-CoV-2 characterized to date, P.1, carries only 12 changes

in the 1,273 amino acids of the Spike protein, less than 1% (Too-

vey et al., 2021). But a comparison of the global transitions in

variant frequencies over timemerits consideration, as for both vi-

ruses, variants and global diversity will shape the future success

of vaccines. A general feature of the HIV-1 epidemic is the

gradual increase in diversity within clades in local geographic

populations; these changes are accompanied by greater levels

of resistance to sera derived from natural infection (Hraber

et al., 2014; Rademeyer et al., 2016).

To illustrate the degree of large-scale change in the HIV-1

pandemicover time,wecompare the global subtype andCRFdis-

tribution between two 6-year windows, 2000–2005 and 2015–

2020 (Figure 5A). A striking feature of this analysis is the relatively

consistent frequency of sampling of different subtypes in different

major geographic regions (Bbosa et al., 2019). This consistency,

which is likely a consequence of the much lower transmission

rate of sexually transmitted, as opposed to respiratory, patho-

gens, may enable regional deployment of subtype-specific immu-

nological strategies for prevention if they can be successfully

developed. The C clade continues to dominate in Southern Africa

and India. The Western Hemisphere remains a predominantly B-

clade epidemic, with the C clade just beginning to make inroads

in North America. The A6 sub-lineage of the A clade continues

to be the most common form in Russia and the former Soviet

Union. CRF02, of an AG recombinant origin, continues to domi-

nate in West and Central Africa, but co-exists with a very diverse

viral population.

In other regions of the world, subtype distributions of sampled

sequences are gradually changing. The United Kingdom and Eu-

rope have gottenmore diverse over time (UK Collaborative Group

on HIV Drug Resistance, 2014). In Uganda, there has been a shift

from D to A clade (Figure 5A), and recombinants are increasing

in prevalence (Grant et al., 2020); such an increase in the number

of recombinant forms is common in regions with complex HIV-1

epidemics (Hemelaar et al., 2019). Since standard pseudovirus

panels typically include only major clades and CRF01 and

CRF02 (Bricault et al., 2019), an increased prevalence of recombi-

nants complicates the extrapolation of laboratory studies of anti-

body neutralization breadth to real-world global diversity. Previ-

ously under-sampled regions can reveal unexpected patterns of

http://www.hiv.lanl.gov
http://www.hiv.lanl.gov
https://gisaid.org/


Figure 4. Phylogenetic tree and recombinant
triplets from South Africa
(A) Phylogenetic tree of 298 SARS-CoV-2 sequences
sampled in South Africa from 10/01/2020 to 01/31/
2021. Sequences bearing the set of Spike mutations
L18F, D80A, D215G, D242-244, K417N, E848K,
N501Y,D614G, andA701V, characteristic of themost
common form of Spike in the B.1.351 lineage, are
labeled in magenta; all other regional variants are
labeled in blue. Lowercase letters a thoughdmark the
4 recombinants shown in the right panels, and red
stars indicate the recombinant leaves on the tree.
(B) Each graph represents a recombinant triplet. The
full genome of each parental strain is shown as a
solid line, one in red and one in light blue, and the
recombinant is shown below with mutations marked
in either light blue or red, according to the parental
strain they match, or black if they match neither
parent. The Spike gene is demarcated with a black
box. Recombination p values, calculated via the
Runs Test statistic (obtained using the tool RAPR;
Song et al., 2018), are shown to the left of each
graph. The top graph (recombinant a) shows the
strongest recombination signal detected in the full
alignment (p = 73 10�5); however, while the parental
strain in light blue is a B.1.351 variant, the recom-
binant is not. The other three recombinants (b
through d) are all B.1.351 variants.
(C) Each graph shows the Spike positions and cor-
responding amino acid at which the triplets shown in
(B) differ. Color-coded boxes are either blue or red
depending on which parental strain the recombinant
matches at those position(s). Mutations typical of
the B.1.351 variant are highlighted in bold. Note that,
given sampling limitations, the sequences identified
by RAPR are not expected to be the precise parents
and child giving rise to the recombinant; rather, each
member of the triplet represents a lineage to which
the true parents and child belong.
(D) The time period used to identify examples of
likely recombination between co-circulating strains
was selected to be 10/1/2020 through 1/31/21
because during this period B.1.351 came to domi-
nate the South African epidemic and the B.1.351
variant was co-circulating with other natural vari-
ants, providing an opportunity for detectable natural
recombination to arise. Weekly average counts of
sampling of B.1.351 (magenta) relative to other
variants (dark blue) during this study period are
shown on the left; the same data is plotted as
sampling frequencies on the right. B.1.351 was
initially rare, but came to dominate the South African
epidemic during this 3-month time frame.
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change. For example, a CRF02/B recombinant formwas found to

be commonly circulating inNigeria, an unexpected finding since B

clade variants have rarely been sampled in Africa (Billings et al.,

2019).Oneof themoreunfortunaterecent trendsevident inFigure5

is that CRF01 viruses, which once had a more limited distribution

focused in Southeast Asia, are now more commonly sampled in

China and Australia. Due to glycan shifts, as discussed above,

CRF01 viruses are almost completely insensitive to V3-glycan-tar-

geting bNAbs, a key focus of current vaccine design efforts.

In contrast to the slow transitions in HIV subtypes and diversifi-

cation over decades, SARS-CoV-2 variants that carry an advanta-

geous set of mutations can move very globally swiftly and effect

near-total turnover of local populations on the timescale of a few

months (Figures 5B and 5C). If this occurs repeatedly without line-

age extinction, a star-like phylogeny results; in contrast, if less-fit

lineages are repeatedly driven to very low levels, a ladder-like
tree is expected, as with influenza. A visual signature of this phe-

nomenon ispresent inFigures1andS1, inwhich rapidlyexpanding

lineages have reduced background mutations. Rapid lineage

expansion in SARS-CoV-2 was first observed as the G clade

rapidly replaced the ancestral virus that had initially seeded the

global pandemic in the spring of 2020 (Korber et al., 2020a). By

the autumn of 2020, the viruses carrying the ancestral D614 form

of the virus were very rarely seen (Figure 5B). Similarly, the

B.1.1.7 virus, first detected in the UK in late September 2020,

within a matter of months had replaced the G and GV clade vari-

ants as the regionally prevalent form (Figure 5C) and had begun

its global spread. Unlike the recent scenario in the UK, however,

other forms of the virus with different combinations of advanta-

geous mutations are concurrently circulating in other geographic

regions, so multiple high-fitness variants are co-circulating in the

same geographic regions. Thus, as the B.1.1.7 virus has spread
Cell Host & Microbe 29, July 14, 2021 1103



Figure 5. A comparison of transition patterns
in major clades
(A) Major HIV-1 clades and CRF sampling fre-
quencies in two 6-year windows: 2000–2005 and
2015–2020. The circle area reflects the relative
number of sequences available from a given region
within each map.
(B) Frequency of sampling of the SARS-CoV-2 G
clade (carrying D614G) and its descendants (shown
in blue) versus the frequency of sampling of the
ancestral form of the virus that carried D614 (shown
in orange) in two time-windows, roughly the first
10 weeks of the pandemic (through March 1, 2020),
and the last 3 months of 2020.
(C) The top two graphs show the frequency of
sampling of different variant forms in the United
Kingdom between November 1, 2020 and May 10,
2021. In the fall, the G clade (light gray), and the GV
clade (theG cladewith an additional A222Vmutation
(darker gray) were co-circulating, with a gradual
relative increase in the GV clade relative to G clade
over the summer and fall. B.1.1.7 (orange) was first
sampled in September, and rapidly increased in
prevalence in the UK, comparable to the global
transitions we found when the G clade became
globally dominant (Korber et al., 2020b). In the spring
of 2021, B.1.627.2, initially sampled in India, had
begun to rise significantly in frequency in the UK. In
this evolutionary pattern, one form gave way suc-
cessively to another: G to GV to B.1.1.7. Currently
B.1.617.2 has begun to be increasing sampled; over
the next few months we will learn if B.1.617.2 con-
tinues in this upward trajectory in the UK and else-
where. The same data are plotted two ways: weekly
average tallies of each form, to give a sense of
sampling, and weekly average frequencies. Below,
the same data is plotted for North America. The G
clade is dominant in the fall. G clade forms which
carried additional mutations near the furin cleavage
site (magenta and purple) became increasingly
frequently sampled, but then gave way to variants
with more complex forms of Spike, which often still
carried a positive charge near the furin cleavage site.
When the B.1.1.7 variant began to be sampled in
early December, there are already distinct forms
with an established presence and relative fitness
advantages co-circulating, and VOI/VOCs first
sampled from California, Brazil, and New York all
had a significant presence. Still, B.1.1.7 has been

increasingly sampled throughout North America, although P.1 and B.1.526 are also continuing to maintain or increase in frequency in some regions states in the
USA. As of early May, 2021, B.1.617.2 is still rare but present and increasing in frequency in North America.
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globally, it hasbeen introduced intocommunitieswithcomplexep-

idemics, and although the increase in prevalence of B.1.1.7 has

been observed in most regions of the world with recent sampling,

some variants in local regions may be persisting. Current North

American diversity provides an example of this (Figure 5C); all

VOIs currently being tracked by GISAID have a presence in North

America (https://www.gisaid.org/hcov19-variants/), and while

B.1.147 and B.1.149 are diminishing, others, including P.1 and

B.1.562, are persisting. One of several CDC-designated B.1.617-

related VOIs that were originally detected in India, B.1.617.2, has

begun to be increasingly sampled globally, is rapidly increasing

inprevalence inEngland,andalsohasapresence inNorthAmerica

(Figure 5C). So althoughB.1.1.7 is the currently the dominant form

inmuchof thenorthernhemisphere, it remains tobeseen ifB.1.1.7,

B.1.617.2, yet another VOC/VOI, a recombinant, or further

mutated descendants of a currently circulating VOC/VOI will

emerge from this complexmilieu to become the globally dominant

form over the coming year.
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DISCUSSION

As we have highlighted throughout this review, there are some

similarities between SARS-CoV-2 and HIV-1, but there are key

differences as well. Both are enveloped RNA viruses, both are

animal viruses that crossed into humans, and both gave rise to

pandemics. HIV-1 is primarily sexually transmitted and took

many decades to acquire a global presence, whereas SARS-

CoV-2 is a respiratory infection that became a global pandemic

withinmonths of its initial detection. Both viruses evolve using in-

sertions, deletions, and recombination in addition to base substi-

tution. Both viruses evolve under immune pressure and have

circulating variants with mutations in key epitope regions that

confer relative resistance to neutralizing antibodies; indels are

important for the evolution of antibody resistance in both HIV-1

and SARS-CoV-2. Both viruses have heavily glycosylated recep-

tor-binding surface proteins that enable entry into host cells, but

the glycan shield conferred by HIV-1 is far denser. A fundamental

https://www.gisaid.org/hcov19-variants/
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biological difference is that HIV-1 is a retrovirus and its genetic

material can be harbored in latently infected cells, making it

very difficult to achieve virological cure. As a chronic infection,

HIV-1 continues to evolve under immune pressure in every in-

fected individual. In contrast, SARS-CoV-2 infections are typi-

cally soon cleared, although rare chronic cases of COVID-19

may be contributing to the more extensively mutated variants

of interest and concern. Vaccines for HIV-1 are very challenging,

in part because of the difficulty of inducing antibodies that can

penetrate the glycan shield and in part because of the tremen-

dous diversity of the virus. Vaccines for SARS-CoV-2 were

enabled by the relative accessibility of the key epitopes for

neutralizing antibodies in the RBD and the NTD supersite and

by the limited variability of these epitope regions in the initial

phases of the pandemic. As further variation in these regions

continues to emerge, it will be critical to document the impact

of arising mutations and to remain agile in our response to

COVID-19.

In the spring of 2020, SARS-CoV-2 was advancing through

an immunologically naive population and swiftly spreading in

the context of its new human host. In such a scenario, it was

reasonable to suppose that enhanced infectivity and transmis-

sibility would confer a primary selective advantage, and this

indeed proved to be the case. There was a repeated and

very rapid shift in prevalence to G-clade viruses (which carried

the D614G mutation) essentially whenever that variant entered

a new geographic region, even if that region had an ongoing,

well-established, ancestral Wuhan-variant epidemic (Korber

et al., 2020b). G-clade viruses were found to be more infectious

in pseudotype assays, were associated with higher viral loads

in the upper respiratory tract (Korber et al., 2020b), and were

shown to be more infectious in laboratory animals (Hou

et al., 2020).

What changed over the course of 2020 is that the virus began

to encounter and propagate through populations with varying

levels of immunity from prior exposure. Under these conditions,

immunological resistance has greater potential to be favored as

a force for positive selection; widespread vaccination will

further increase such selective pressure during 2021. The G-

clade viruses may be somewhat more susceptible to serum

neutralization (Weissman et al., 2021; Plante et al., 2021), and

selection for antibody resistance may in the future counter-

select for viruses with the ancestral D614 form. Some early ev-

idence for this is that the A.23.1 viral lineage, which was

increasing in prevalence in Central Africa (Bugembe et al.,

2021), carries the ancestral D614 form. Many new VOIs and

VOCs have begun to emerge that simultaneously carry both

multiple neutralizing antibody resistance mutations and

enhanced-infectivity mutations, and many of the mutations

that phenotypically benefit the virus are being resampled

concurrently in different lineages (Figures 1, 2, and 4). This sug-

gests that the virus may be exploring and re-exploring a

favored mutational landscape within the context of currently

circulating forms. Thus, understanding and defining recurrent

mutation events may serve to guide us as we prepare for the

possibility of second-generation vaccine designs to contend

with growing viral diversity. By the summer of 2021, the virus

will be moving through mostly-vaccinated populations in

some countries and through populations increasingly enriched
for recovered individuals, and so the evolutionary pressures

driving selection may once again be altered.

The future course of the SARS-CoV-2 pandemic may well be

set by the events surrounding large-scale vaccine rollout in the

first and second quarter of 2021. Although complete viral erad-

ication is unlikely, there are different possible modes of viral

persistence with different implications for future vaccine con-

trol. In influenza, selection for resistance and seasonal bottle-

necking give rise to a ladder-like tree topology: there is exten-

sive diversity over many years but relatively little in any one

season. In HIV-1, long-term persistent infection and co-evolu-

tion with immune responses produce a ‘‘bushy’’ tree with the

simultaneous and temporally extended epidemiological pres-

ence of extremely diverse viral lineages. Forcing case counts

to low levels (as in the influenza seasonal bottleneck) reduces

the variation available for viral evolution. If this were achieved

in the current pandemic, SARS-CoV-2 might be driven to an

influenza-like evolutionary trajectory. The developing phylogeny

would then have a more ladder-like topology, with population-

level immunity influencing shifts in dominant variants over time.

In this case, a strategy with periodically updated vaccines spe-

cifically targeting the currently circulating variants may suffice

for continuing vaccine protection. If, on the other hand, a

wide range of variants continues to circulate, diversify, and re-

combine, the eventual result could be simultaneous and contin-

uous circulation of various phylogenetically and immunologi-

cally distinctive variants, and possibly emerging recombinants

between them. This situation—more reminiscent of HIV-1

than of influenza—would present a different kind of challenge

for vaccines, and might require vaccines to be designed to

induce broad responses specifically addressing frequently

sampled antibody-resistance mutations that arise in multiple

lineages.

Several highly efficacious COVID-19 vaccines were deployed

within a year of the emergence of SARS-CoV-2 (Richman, 2021;

Tumban, 2020), whereas 40 years of research has failed to pro-

duce any comparable vaccine for HIV-1. To begin to understand

this discrepancy, one only has to look at Figures 1 and 3. In

HIV-1, the key vaccine-elicited antibody epitopes are diverse at

the sequence level, and they are well-protected by a dense, highly

variable, and dynamic glycan shield. These challenges require

innovative and complex strategies to ultimately enable the design

of an effective HIV-1 vaccine that can achieve broadly neutralizing

antibody induction. In contrast, the SARS-CoV-2 key epitope re-

gions have been comparatively slow in accumulating small

numbers of mutations (Figure 1), and key neutralizing epitope re-

gions are exposed and hence vulnerable to antibodies (Figure 3).

Spike vaccine antibody responses are very potent and targetmul-

tiple epitopes, and to date they have generally been resilient and

able to offer protection against variants with modest numbers of

mutations. The SARS-CoV-2 vaccines may also elicit cross-reac-

tive T cell responses; known SARS-CoV-2 T cell epitopes are

highly conserved (Tarke et al., 2021; Reddet al., 2021). The impact

of such responses is still being determined. Rhesus macaques

(RMs) are naturally resistant to severe disease, and one CD4+ or

CD8+ T cell depletion experiment in RMS only slightly prolonged

recovery from infection and did not impact re-infection (Hasenk-

rug et al., 2021), while another found that CD8+ T cell depletion

of convalescent macaques partially abrogated protective
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immunity against rechallenge (McMahan et al., 2021). In the more

diverse HIV-1, many T cell epitopes are also highly variable, and

relatively few vaccine-elicited responses to full HIV-1 proteins

are likely to cross-react with circulating variants (Korber and

Fischer, 2020). As variants shift in prevalence and the SARS-

CoV-2 pandemic takes on new forms, our capacity to track and

test these variants and to use past mutational patterns to antici-

pate the futuremay enable us to keep upwith our viral foe’s evolu-

tionary twists and turns.
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