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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Rapid prediction of acute thrombosis via 
nanoengineered immunosensors with unsupervised 
clustering for multiple circulating biomarkers
Kaidong Wang1,2,3†, Shaolei Wang1,2†, Samuel Margolis1, Jae Min Cho1,3, Enbo Zhu1,  
Alexander Dupuy4,5, Junyi Yin2, Seul-Ki Park1,3, Clara E. Magyar6, Oladunni B. Adeyiga7,  
Kristin Schwab Jensen8, John A. Belperio8, Freda Passam4,5, Peng Zhao1, Tzung K. Hsiai1,2,3*

The recent SARS-CoV-2 pandemic underscores the need for rapid and accurate prediction of clinical thrombotic 
events. Here, we developed nanoengineered multichannel immunosensors for rapid detection of circulating bio-
markers associated with thrombosis, including C-reactive protein (CRP), calprotectin, soluble platelet selectin (sP-
selectin), and D-dimer. We fabricated the immunosensors using fiber laser engraving of carbon nanotubes and CO2 
laser cutting of microfluidic channels, along with the electrochemical deposition of gold nanoparticles to conju-
gate with biomarker-specific aptamers and antibody. Using unsupervised clustering based on four biomarker con-
centrations, we predicted thrombotic events in 49 of 53 patients. The four-biomarker combination yielded an area 
under the receiver operating characteristic curve (AUC) of 0.95, demonstrating high sensitivity and specificity for 
acute thrombosis prediction compared to the AUC values for individual biomarkers: CRP (0.773), calprotectin 
(0.711), sP-selectin (0.683), and D-dimer (0.739). Thus, a nanoengineered multichannel platform with unsupervised 
clustering provides accurate and efficient methods for predicting thrombosis, guiding personalized medicine.

INTRODUCTION
Acute viral infections are emerging as increasingly complex and 
prevalent threats to public health worldwide (1–4). While the inci-
dence of the illness known as COVID-19 is declining, a growing as-
sociation has been reported between respiratory viral infections and 
clinical thrombotic events. A prothrombotic state predisposes pa-
tients to acute coronary syndromes, cerebrovascular accidents, and 
pulmonary embolism (5–8). The presence of COVID-19–associated 
thromboses raises concern for worse patient recovery rates (3, 5, 9–
11). Reports of these thrombotic events underscore the need for an 
accurate and rapid prediction tool that can be used to determine ap-
propriate anticoagulation prophylaxis and to prepare for the next 
wave of the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pandemic (5, 12).

In response to the COVID-19–associated thrombosis crisis, the 
International COVID-19 Thrombosis Biomarkers Colloquium for-
mulated a panel of recommended biomarkers that can be used to 
predict the risk of developing thrombosis associated with COVID-
19 (5). This formulated panel is based on retrospective studies of 
several thousand patients with COVID-19, which have revealed 

the presence of elevated blood levels of C-reactive protein (CRP), 
calprotectin, soluble platelet selectin (sP-selectin), and D-dimer in 
these patients. However, relying on a single biomarker often falls 
short in terms of sensitivity and specificity for predicting throm-
botic events. Furthermore, a primary obstacle in predicting throm-
bosis is the complex interplay of multiple variables, such as viral 
strain, virulence, individual health conditions, genetic predisposi-
tion, and social determinants of health (13, 14). A comprehensive 
analytical approach that uses multiple biomarkers simultaneously 
may improve the accuracy of predicting thrombotic risk during 
acute illnesses.

In this context, we have developed nanoengineered multichannel 
immunosensors for the simultaneous detection of four key biomark-
ers, using unsupervised clustering to analyze variations in biomarker 
concentrations. This approach enhances thrombosis prediction by 
capturing the nuanced interplay of these biomarkers (15, 16). In mul-
tichannel detection, the signal-to-noise ratio of the electrodes is de-
termined by the specific binding affinity of aptamers or antibodies to 
the biomarkers (17, 18). Aptamers and antibodies are immobilized 
on electrochemically deposited gold nanoparticles (Au NPs) based 
on fiber laser–engraved carbon nanotube (CNT) electrodes, enabling 
sensitive and specific detection across multiple biomarkers, in con-
trast to traditional single-biomarker detection methods like the 
enzyme-linked immunosorbent assay (ELISA) method that require 
longer detection times and process optimizations (19, 20). Ultimate-
ly, our customized and scalable approach is poised to improve the 
health care team responses to thrombotic events in future pandemics.

Following biomarker detection and quantification, we applied a 
machine learning technique called unsupervised clustering to iden-
tify inherent patterns within the unlabeled data (16, 21). This ap-
proach allowed us to organize the data points into distinct clusters, 
and the unsupervised clustering algorithms effectively stratified pa-
tients based on their thrombotic risk from various illnesses. This 
stratification is grounded in objective and quantifiable biomarker 
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data, providing a robust framework for the personalized assessment 
of risk profiles to prevent thrombotic complications, including 
stroke, pulmonary embolism, and acute coronary syndrome, in 
high-risk patients (22, 23).

RESULTS
Nanoengineered immunosensors with unsupervised 
clustering to enhance thrombosis prediction
Here, we demonstrate a rapid strategy to detect circulating biomark-
ers in human plasma (Fig. 1). We sought to combine the abnormal 
fluctuations in the concentrations of four biomarkers associated 
with thrombosis in COVID-19: CRP, calprotectin, sP-selectin, and 
D-dimer (Fig. 1, A and B). These biomarkers were measured in dei-
dentified blood samples collected from patients with COVID-19 
admitted to the medical center. We fabricated nanoengineered mul-
tichannel immunosensors using fiber and CO2 laser technologies 
(Fig. 1C). We conjugated the electrochemically deposited CNTs on 

the electrodes with aptamers and antibody specific to the biomark-
ers (Fig. 1D). We detected the concentration of these biomarkers as 
features of unsupervised clustering to predict the risk for acute 
blood clots. Subsequently, we compared different unsupervised 
clustering methods for classifying thrombotic risk from the blood 
specimens (Fig. 1E). We validated our predicted results against the 
International Classification of Diseases, Tenth Revision (ICD-10) 
code for thrombosis provided by the UCLA (University of Califor-
nia, Los Angeles) Pathology Biobanks and Biospecimen Research 
(PBBR) Core.

To fabricate the nanoengineered multichannel immunosensor, a 
polyvinyl chloride (PVC) substrate was converted into an electrically 
conductive substrate (Fig. 1C) by spraying with acid-treated CNTs. 
Then, a fiber laser (1064 nm, 50W) was used to pattern a predesigned 
mask onto the CNT substrate to form the multiplexed electrodes. 
The multichannel detection and wash chambers were engraved with 
a CO2 laser (10,600 nm, 50W) (19, 24, 25). To achieve electrochemical 
detection of the thrombosis biomarkers (Fig. 1D), the CNT electrodes 

Fig. 1. Nanoengineered immunosensors detected multiple biomarkers and used unsupervised clustering for rapid and accurate prediction of acute blood clots. 
(A) Respiratory viruses (e.g., SARS-CoV-2) infected human lung epithelial cells and bound to a specific receptor (e.g., ACE2). (B) Invasion by the respiratory virus led to 
abnormal fluctuations in the concentrations of specific biomarkers in blood circulation due to inflammatory and thrombotic processes, including CRP, calprotectin, sP-
selectin, and D-dimer. (C) Fabrication of a nanoengineered multichannel immunosensor using fiber and CO2 laser technologies. (D) Conjugation of aptamers and antibody 
to the CNT electrodes enabled the rapid electrochemical detection of targeted biomarkers [bovine serum albumin (BSA)]. (E) Unsupervised clustering analysis stratified 
53 patients into distinct levels of thrombotic risk, using the concentrations of four distinct biomarkers as clustering features. The clustering results were validated with the 
ICD-10 diagnostic code for thrombosis provided by the UCLA Biobank (PBBR) Core.
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were electrochemically deposited with Au NPs and conjugated 
with aptamers against CRP, sP-selectin, and D-dimer via an Au─S 
bond (26–28). The antibody against calprotectin was conjugated to 
the acid-treated CNT electrode using N-(3-dimethylaminopropyl)-
N′-ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS)–based 
chemistry (29, 30). The recognition components of aptamers and anti-
body on the conductive surfaces changed the charge-transfer resis-
tance (Rct) at the electrode interface, enabling electrical impedance 
techniques to be highly effective in assessing the degree of binding 
affinity (29, 30).

To develop the thrombosis prediction model using the acquired 
data, we used patient blood specimens (m) and biomarkers (n) to 
construct an m × n computing matrix (Fig. 1E). We used dimension-
ality reduction and unsupervised clustering algorithms to facilitate 
the rapid and accurate prediction of thrombotic risk (21, 31). In this 
representation, each dot corresponds to an individual patient. The 
concentration of the biomarkers determines the positioning of each 
dot on the two-dimensional plot. The spatial distance between these 
plotted points forms the basis of the clustering analysis, which, in 
turn, dictates the final risk classifications assigned to each patient 

specimen. This classification enables a visually intuitive and quantita-
tively robust method to assess the thrombotic risk profile of patients 
based on the concentration of specific biomarkers. We validated it by 
comparing it with the ICD-10 diagnostic codes for thrombosis, as 
provided by the UCLA PBBR Core (5, 32, 33).

Rapid detection of biomarkers using nanoengineered 
multichannel immunosensors
Given the nature of thrombotic onset in acute infections, rapid detec-
tion of a combination of four biomarkers is clinically important. We 
detected four biomarkers within 1 hour by using a electrochemical 
immunosensor, using a 5 mM [Fe(CN)6]3+/4+ solution to capture the 
distinct impedance signals among various concentration levels of bio-
markers. The CO2 laser–engraved washing chamber was designed to 
eliminate residual elements from plasma samples. We verified the re-
generation potential of our immunosensor using the surface plasmon 
resonance (SPR) technique (Fig. 2, C and F), whereby a 0.1 M glycine-
HCl buffer (pH 2) removed adherent proteins and effectively regener-
ated the immunosensor (34). To augment the detection range, we used 
CNTs as the foundational electrodes for their large and specific surface 

Fig. 2. The fabrication and characterization of nanoengineered multichannel immunosensors were demonstrated. (A) Schematic representation of a multichannel 
and multilaminated (10 layers) immunosensor. (B) Modification of the CNT electrodes with Au NPs, Ag/AgCl NPs, and Pt NPs, followed by the conjugation of aptamers and 
antibody. (C) Utilization of SPR techniques to study the association, dissociation, and regeneration of targeted biomarkers on the aptamer channel. (D) TEM images and 
EDX elemental mapping of the Au NP working electrode, the Ag/AgCl NP reference electrode, and the Pt NP counter electrode. Scale bars, 100 nm. (E) X-ray photoelectron 
spectroscopy (XPS) spectra of the modified electrodes. (F) Comparative responses of control and aptamer channels to targeted biomarkers using SPR techniques. A linear 
relationship between different dissociation times, response units, and biomarker concentrations was established on the basis of the calibrated response units (RU) via the 
control and aptamer channels. a.u., arbitrary units; B.E., binding energy.
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area, enabling conjugation with the aptamers onto the electrochemi-
cally deposited Au NPs (Fig. 2, B and D) (35). We applied high-resolution 
transmission electron microscopy (TEM) to image the working elec-
trodes (Au NPs), reference electrodes (Ag/AgCl NPs), and counter 
electrodes (Pt NPs) (Fig. 2D). Energy-dispersive x-ray (EDX) elemen-
tal mapping confirmed the effective integration of Au, Pt, Ag, and Cl 
elements (Fig. 2D).

We further used x-ray photoelectron spectroscopy (XPS) to elu-
cidate the valence states of the fabricated electrodes (Fig. 2E) (35). 
The Au 4f spectrum revealed a singular peak pair (Au 4f5/2/4f7/2) at 
83.6 and 87.2 eV, indicating the Au0 state. In the Pt 4f spectrum, two 
peak pairs were observed (Pt 4f5/2/4f7/2) at 74.5 and 71.0 eV and 77.4 
and 71.8 eV, corresponding to the Pt0 and Pt2+ states, indicating 
strong binding of Pt NPs to the supporting CNT electrode. The Ag 
3d spectrum exhibited two peak pairs (Ag 3d3/2/3d5/2) at 373.2 and 
367.2 eV and 367.7 and 373.6 eV, indicating the presence of Ag0 and 
Ag+ states and the chlorination of the Ag NPs. Complementing 
these findings, EDX elemental mapping verified the uniform distri-
bution of Cl elements in the Ag NPs, supporting the efficient synthe-
sis of the Ag/AgCl NP reference electrodes. SPR techniques were 
used to investigate the association and dissociation kinetics between 
the modified aptamer immobilized on an Au surface and its targeted 
biomarker (Fig. 2, C and F) (36). The results demonstrate robust 
interactions between the aptamer and the biomarker, as depicted in 
Fig. 2F. As the biomarker concentration increased, there was a linear 
rise in the response signals. This linearity persisted with minimal 
variation during the dissociation phase, affirming the efficacy of this 
aptamer-based immunosensor in targeted biomarker detection. The 
robust interactions were attenuated in a pH 2 buffer solution when 
rejuvenating the immunosensor surface, suggesting the presence of 
strong noncovalent forces, including hydrogen bonding and Van 
der Waals interactions (37).

Performances of nanoengineered multichannel 
immunosensors in biomarker detection
Cyclic voltammetry (CV) was performed to investigate the electro-
chemical behavior of the immunosensor before and after the specific 
adsorption of the targeted biomarker (Fig. 3A). Notably, after the 
adsorption of the biomarker onto the immunosensor, a pronounced 
reduction in peak current density was observed. This suggests that 
the formation of the specific immune complex served as a blocking 
layer, inhibiting charge transfer on the surface of the electrode. To 
validate the capability of the immunosensor to detect various con-
centrations of four biomarkers, we conducted electrochemical im-
pedance spectroscopy (EIS) analysis to examine the linear relationship 
between multiple concentrations of the targeted biomarkers and 
charge-transfer resistance (Rct) using the Randles equivalent circuit 
model (Fig. 3, B and C) (38). In the Nyquist plots (Fig. 3B), the semi-
circular region at high frequencies correlates with the charge-transfer 
limited process, while the linear segment at low frequencies is asso-
ciated with the diffusion-limited process (38). A consistent increase 
in Rct values was observed with increasing concentrations of target-
ed biomarkers. This specific adsorption reduced the charge transfer 
between the electrodes and the [Fe(CN)6]3+/4+ redox probe, consis-
tent with our CV findings. As presented in Fig. 3C, the calibration 
curve illustrates the proportional changes in Rct values with the con-
centrations of targeted biomarkers, indicating robust linear relations 
within specified ranges. These linear relations were observed over 
the ranges of 0.1 to 104 μg ml−1 for CRP (R2 = 0.983), 0.1 to 104 ng 

ml−1 for calprotectin (R2 = 0.987), 0.1 to 104 ng ml−1 for sP-selectin 
(R2 = 0.982), and 1 to 105 ng ml−1 for D-dimer (R2 = 0.994). The 
established limits of detection (LODs; S/N = 3) were determined to 
be 0.023 μg ml−1 for CRP, 0.035 ng ml−1 for calprotectin, 0.019 ng 
ml−1 for sP-selectin, and 0.035 ng ml−1 for D-dimer, as detailed in 
tables S1 to S4. We first proposed the four-biomarker combination 
for acute thrombosis prediction and manufactured a four-channel 
immunosensor to detect the four biomarkers simultaneously. This 
robust detection capability can be attributed to the large surface area 
of the CNT-based immunosensor and the high specificity of aptam-
ers and antibody (35).

We evaluated the reproducibility, specificity, and storage stability of 
the manufactured immunosensor for detecting standard and known 
biomarkers in phosphate-buffered saline (PBS) (pH 7.4) solution. The 
reproducibility of the nanoengineered multichannel immunosensor 
was assessed using six independently constructed sensors (Fig. 3D), 
with relative SD values ranging from 3.2 to 5.8%. To assess specificity, 
biomarkers were mixed, resulting in distinct sensing signals for each 
biomarker: 95.3% for CRP, 103.2% for calprotectin, 93.2% for sP-
selectin, and 103.7% for D-dimer (Fig. 3E). Specificity measurements 
were repeated three times. In our evaluation of the immunosensor’s 
reproducibility (n = 6) and specificity (n = 3), the repeated measure-
ments showed slight variations, confirming the excellent reproducibil-
ity and specificity of our nanoengineered multichannel immunosensor. 
Next, the long-term storage stability of the nanoengineered multi-
channel immunosensor was assessed, revealing sustained sensing sig-
nals above 91.1% for CRP, 93.1% for calprotectin, 92.1% for sP-selectin, 
and 90.5% for D-dimer over 2 weeks (Fig. 3F), demonstrating the ro-
bust stability of the fabricated immunosensors. In summary, the nano-
engineered multichannel immunosensor boasted wide-ranging and 
rapid detection of multiple circulating biomarkers within 1 hour, com-
pared with ELISA, which takes about 5 hours.

Unsupervised clustering to enhance thrombosis prediction
We used a chord diagram to illustrate the relational network among 
four biomarkers and 53 blood specimens (Fig. 4A) (39, 40). Notably, 
the diminished arc span of patient 49 indicates prediction challeng-
es despite the combination of multiple biomarkers. Using the vari-
ous concentrations detected from the biomarkers, we performed 
unsupervised hierarchical clustering to categorize blood specimens 
into three groups, as depicted in Fig. 4B. To ensure patient confiden-
tiality, we adopted a numeric pseudonymization approach for each 
patient, aligning the clustering outcomes with the ICD-10 diagnos-
tic codes for thrombosis. Notably, the clustering was solely influ-
enced by the concentrations of the four biomarkers. Patient IDs 
were organized on the basis of diagnostic outcomes to ensure clarity 
and facilitate comparative analysis.

As illustrated in Fig. 4 (B and C), patients 47, 48, 50, 51, 52, and 53 
were identified with the highest thrombotic risk (scores = 2), while 
patients 3, 17, and 36 exhibited a moderate risk (scores = 1). The other 
patients were identified with the lowest thrombotic risk (scores = 0). 
To validate these findings, we cross-referenced them with the ICD-
10 codes for thrombosis from hospitalized patients with COVID-19. 
We reorganized the patient identifiers based on the diagnostic out-
comes of positive and negative thrombosis. According to the diag-
nostic results, 46 patient specimens were negative for thrombosis, 
and 7 were positive. For comparative analysis, we arranged the nega-
tive thrombosis samples from 1 to 46 and the positive thrombosis 
samples from 47 to 53. We validated the results of the unsupervised 
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hierarchical clustering against the medical ICD code for thrombosis 
(Fig. 4C) and accurately predicted positive or negative thrombosis in 
49 of 53 specimens. A moderate risk rating (score = 1) was assigned 
to patients 3, 17, and 36, which led to false-positive predictions. In 
contrast, the lowest risk rating (score = 0) was assigned to patient 49, 
resulting in a false-negative prediction.

Principal components analysis (PCA), t-distributed stochastic 
neighbor embedding (t-SNE), and Uniform Manifold Approximation 
and Projection (UMAP) are dimensionality reduction techniques, 

each with distinct characteristics suitable for unsupervised clustering 
(16, 41, 42). Although the PCA algorithm correctly clustered patient 
49 into the thrombosis-positive group, many false-positive samples 
were identified, including patients 18, 25, 30, 31, 33, 40, and 44. In 
contrast, t-SNE, a nonlinear technique, effectively visualizes high-
dimensional data clusters by preserving local structures (Fig. 4E) and 
shows results similar to those of hierarchical clustering (Fig. 4B) 
(16, 41, 42). However, t-SNE incorrectly classified patient 49 as part 
of the thrombosis-negative group, resulting in a false-negative 

Fig. 3. The performance of the nanoengineered multichannel immunosensor was evaluated. (A) CV testing compared current density with (gray curve) and without 
(light gray curve) the targeted biomarkers. (B) Electrochemical impedance measurements of the targeted biomarker at various concentrations. (C) Linear relationship 
between charge-transfer resistance and four biomarker concentrations. (D) Independent measurements demonstrating the reproducibility of the individual immunosen-
sor (n = 6). (E) Specificity toward targeted biomarkers in the presence of interferents (n = 3). (F) Storage stability was established over 14 days. Error bars represent the SD 
from repeated measurements (n = 3) unless otherwise specified.
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prediction. We identified that the thrombosis-positive group harbors 
a higher risk (score = 2), including patients 47, 48, 50, 51, 52, and 53. 
Nevertheless, the distance between the thrombosis-positive group 
with a higher risk (score = 2) and the thrombosis-positive group with 
a lower risk (score = 1), including patients 3, 17, and 36, is small, lead-
ing to three false-positive predictions. UMAP maintains both local 
and global structures and offers faster computational speeds (Fig. 5F) 
(16, 41, 42). The single thrombosis-positive group, which includes pa-
tients 47, 48, 50, 51, 52, and 53, demonstrates the effectiveness of 
combining holistic data structures with nonlinear strategies for pre-
dicting thrombosis, especially when using biomarker concentrations 
as indicative features.

Our research focused on predicting acute thrombosis. The four 
selected biomarkers were associated with acute responses (5, 43). 
The pattern of these antigens being predominantly at low or high 
levels, rather than intermediate levels, was characteristic of acute 
response markers. These markers typically exhibited a binary ex-
pression pattern, reflecting a rapid clinical response to a trigger-
ing event, such as acute thrombosis formation. In the context of 
acute-phase responses, the immune system quickly up-regulated 
the production of these markers during an acute event, leading 
to a sharp increase in their levels. Conversely, in the absence of 
such an event, these markers remained at baseline, low levels. 
The absence of intermediate levels suggested that the regulatory 

Fig. 4. Unsupervised clustering was used for thrombosis prediction with 53 blood specimens from patients with COVID-19. (A) A chord diagram illustrates the 
network relationship among the four biomarkers and 53 patients. (B) Hierarchical clustering analysis used the concentrations of the four biomarkers to assess thrombotic 
risk in the 53 blood specimens. (C) Hierarchical clustering outcomes were validated using the ICD-10 diagnostic code for thrombosis. (D) PCA analysis was used to cluster 
the 53 blood specimens. Each arrow represents the influence of a different biomarker concentration in the PCA space. (E) t-SNE analysis converted similarities between 
data points into joint probabilities, facilitating the visualization of patient clusters. (F) UMAP analysis preserved both local and global structures, enabling the effective 
visualization of specimen clusters that are positive or negative for thrombosis.
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mechanisms controlling these markers function in a switch-like 
manner, turning on or off rather than increasing or decreasing 
gradually (5, 43).

In contrast, we used a “4-bit barcode” method (fig. S5) to evaluate 
thrombotic risk, compared to the “accurate four-biomarker concen-
tration” method (Fig. 4). Low biomarker concentrations were coded 
as 0, while high concentrations were coded as 1. We applied the 4-bit 
barcode method as an input feature in various unsupervised ma-
chine learning models, including hierarchical clustering (fig. S5, B 
and C), PCA (fig. S5D), t-SNE (fig. S5E), and UMAP (fig. S5F). The 
performance of the 4-bit barcode method for acute thrombosis pre-
diction was slightly worse than the accurate four-biomarker concen-
tration method. Specifically, both the 4-bit barcode method (fig. S5, 
B and C) and the accurate four-biomarker concentration method 

(Fig. 4, B and C) produced a false negative for patient 49 in the hier-
archical clustering analysis. In the thrombosis-negative group, the 
accurate four-biomarker concentration method performed better 
than the 4-bit barcode method. Only patients 3, 17, and 36 received 
false-positive predictions using the accurate four-biomarker con-
centration method in the hierarchical clustering analysis (Fig. 4, B 
and C). However, patients 3, 6, 17, 36, and 46 received false positives 
using the 4-bit barcode method in the hierarchical clustering analy-
sis (fig. S5, B and C).

In addition, it was difficult to distinguish between the thrombosis-
positive and thrombosis-negative groups in the PCA analysis using 
the 4-bit barcode method (fig. S5D). The t-SNE analysis using the 
4-bit barcode method also incorrectly classified patient 49 as part of 
the thrombosis-negative group, resulting in a false-negative prediction, 

Fig. 5. Statistical analysis of the concentrations of four biomarkers was performed on 53 patient blood specimens. (A to D) Violin plots compare the concentrations 
of four biomarkers (A: CRP; B: calprotectin; C: sP-selectin; D: D-dimer) between thrombosis-negative (−) and thrombosis-positive (+) patients. (E) Proximity matrix among 
the four biomarkers. (F) Proximity matrix among the 53 patients. (G to J) Receiver operating characteristic (ROC) curve analysis illustrates the relationship between the 
concentration of a single biomarker (G: CRP; H: calprotectin; I: sP-selectin; J: D-dimer) and thrombosis prediction, using the ICD-10 code for validation. (K) ROC curve 
analysis using the combination of four biomarkers (CRP, calprotectin, sP-selectin, and D-dimer) for thrombosis prediction. (L to Q) ROC curve analysis using the combina-
tions of two biomarkers for thrombosis prediction (L: CRP and calprotectin; M: CRP and sP-selectin; N: CRP and D-dimer; O: calprotectin and sP-selectin; P: calprotectin and 
D-dimer; Q: sP-selectin and D-dimer). (R to U) ROC curve analysis using the combinations of three biomarkers for thrombosis prediction (R: CRP, calprotectin, and sP-
selectin; S: CRP, calprotectin, and D-dimer; T: CRP, sP-selectin, and D-dimer; U: calprotectin, sP-selectin, and D-dimer). ns, not significant.
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while identifying patients 3, 6, 17, 36, and 46 as part of the thrombosis-
positive group, leading to false positives (fig. S5E). Similarly, the 
UMAP analysis using the 4-bit barcode method incorrectly classified 
patient 49 as part of the thrombosis-negative group, resulting in a 
false negative, and classified patients 3, 6, 12, 17, 36, and 46 as part of 
the thrombosis-positive group, leading to false positives (fig. S5F). 
Despite these discrepancies, the 4-bit barcode method (fig. S5) re-
mains an effective strategy for acute thrombosis prediction and has a 
comparable, although slightly worse, predictive capability for acute 
thrombotic events in the COVID-19 cohort compared to the accu-
rate four-biomarker concentration method (Fig. 4).

Statistical analysis to evaluate different combinations 
of biomarkers
On the basis of the ICD-10 diagnostic code, patients 1 to 46 were 
negative for thrombosis, and patients 47 to 53 were positive. Specifi-
cally, we juxtaposed the two cohorts: those tested negative (−) and 
those positive (+) for thrombosis (Fig. 5, A to D). The various con-
centrations of CRP (Fig. 5A), calprotectin (Fig. 5B), sP-selectin (Fig. 
5C), and D-dimer (Fig. 5D) were determined using the fabricated 
immunosensors. The accuracy of analyzing these four biomarkers 
was validated against ELISA as the reference standard (figs. S1 to 
S4). Of 53 specimens, CRP (P = 0.0191) and D-dimer (P = 0.0427) 
were statistically significant for predicting thrombosis (Fig. 5, A and 
D), whereas calprotectin (P = 0.0751) and sP-selectin (P = 0.1251) 
were not statistically significant (Fig. 5, B and C). In addition, the 
proximity matrix of four biomarkers and 53 patients was displayed 
in Fig. 5 (E and F), respectively.

A binary logistic regression analysis was performed, correlating 
the concentration of the four biomarkers of CRP, calprotectin, sP-
selectin, and D-dimer with the ICD-10 code for thrombosis predic-
tion. As delineated in Fig. 5 (G to U), an area under the receiver 
operating characteristic curve (AUC-ROC) value of 0.95 indicated a 
high true-positive rate (high sensitivity) and a low false-positive rate 
(1-specificity) when combining these four biomarkers for thrombo-
sis prediction (Fig. 5K). Single-biomarker ROC values were lower 
than those of the combined biomarkers: CRP (AUC: 0.773) (Fig. 5G), 
calprotectin (AUC: 0.711) (Fig. 5H), sP-selectin (AUC: 0.683) (Fig. 
5I), and D-dimer (AUC: 0.739) (Fig. 5J). In addition, we calculated 
the AUC for combinations of two and three biomarkers. These AUC 
values were below the combination of four biomarkers (AUC: 0.95; 
Fig. 5K): CRP and calprotectin (AUC: 0.891; Fig. 5L); CRP and sP-
selectin (AUC: 0.885; Fig. 5M); CRP and D-dimer (AUC: 0.929; Fig. 
5N); calprotectin and sP-selectin (AUC: 0.879; Fig. 5O); calprotectin 
and D-dimer (AUC: 0.919; Fig. 5P); sP-selectin and D-dimer (AUC: 
0.916; Fig. 5Q); CRP, calprotectin, and sP-selectin (AUC: 0.885; Fig. 
5R); CRP, calprotectin, and D-dimer (AUC: 0.916; Fig. 5S); CRP, sP-
selectin, and D-dimer (AUC: 0.916; Fig. 5T); calprotectin, sP-selectin, 
and D-dimer (AUC: 0.929; Fig. 5U). Thus, combining the four bio-
markers of CRP, calprotectin, sP-selectin, and D-dimer demonstrates 
high sensitivity and specificity for thrombosis prediction.

Specifically, using only CRP and D-dimer yielded an AUC of 
0.929, which is close to the four-biomarker AUC of 0.95. Among the 
53 specimens, CRP (P = 0.0191) and D-dimer (P = 0.0427) were sta-
tistically significant for predicting thrombosis (Fig. 5, A and D), while 
calprotectin (P = 0.0751) and sP-selectin (P = 0.1251) were not statis-
tically significant (Fig. 5, B and C). Among the four biomarkers evalu-
ated, CRP exhibited the most significant statistical association with 
thrombosis, as evidenced by the lowest P value (P = 0.0191) and the 

highest area under the curve (AUC = 0.773) in ROC analysis, outper-
forming calprotectin, sP-selectin, and D-dimer. CRP is an acute-phase 
protein produced by the liver in response to inflammatory cytokines, 
with levels markedly elevated in patients with COVID-19, correlating 
positively with disease severity and mortality (44, 45). Retrospective 
studies have consistently demonstrated a positive correlation between 
CRP levels and COVID-19 severity, further establishing its role in pre-
dicting thrombosis risk (44, 45). When incorporated into predictive 
models, CRP’s low detection limits enhance the sensitivity of the 
model, particularly in detecting early or subclinical inflammatory 
changes that may precede thrombotic events. This attribute positions 
CRP as an effective early warning signal within a layered prediction 
model, warranting closer monitoring or additional testing with more 
specific biomarkers. While CRP is highly sensitive, its lack of specificity 
for thrombosis necessitates its use within a multibiomarker framework 
to achieve a balance between sensitivity and specificity. The proposed 
four-biomarker combination ensures that the predictive model remains 
responsive to early inflammatory changes while maintaining precision 
in identifying thrombotic events.

DISCUSSION
Our machine learning–assisted prediction, using nanoengineered 
immunosensors that detect multiple circulating biomarkers, repre-
sents an accurate and rapid strategy for predicting acute blood clots. 
We used fiber laser engraving and CO2 laser cutting techniques to 
create microchannels and used electrochemical deposition of Au NPs 
on CNTs for conjugation with aptamers and antibody. This approach 
enabled high-throughput fabrication of nanoengineered multichan-
nel immunosensors. Our strategy provides rapid electrochemical de-
tection of multiple biomarkers, followed by unsupervised clustering, 
to enhance thrombosis prediction.

The nanoengineered multichannel immunosensor was fabricated 
using fiber laser–engraved CNTs for microelectrodes and CO2 laser 
cutting for microfluidic channels, resulting in a large surface area for 
the electrochemical deposition of Au NPs and conjugation with spe-
cific aptamers and antibody. Electrical impedance techniques were 
highly effective in assessing the binding affinity at the recognition 
components of the aptamers and antibody, and the conductive sur-
faces altered the charge-transfer resistance (Rct) at the electrode in-
terface (30). Electrochemical impedance spectra showed a robust 
linear relationship between various concentrations of the targeted 
biomarkers and Rct, as depicted in Fig. 2F. As the concentration of 
biomarkers increased, response signals showed a proportional rise. 
This linearity persisted with minimal variation during the dissocia-
tion phase. The interactions were attenuated in a pH 2 buffer solution 
when rejuvenating the immunosensor surface, suggesting the pres-
ence of strong noncovalent forces, including hydrogen bonding and 
Van der Waals interactions (37). The established LODs (S/N = 3) 
were 0.023 μg ml−1 for CRP, 0.035 ng ml−1 for calprotectin, 0.019 ng 
ml−1 for sP-selectin, and 0.035 ng ml−1 for D-dimer, respectively.

In response to the urgency to combat acute illness–induced 
thrombosis, we fabricated nanoengineered multichannel immuno-
sensors designed to quantify specific circulating biomarkers. Now, 
ELISAs are the reference standard for protein detection and quantifi-
cation (20). The LOD in the “sandwich” ELISA strategy is determined 
by the binding affinity and specificity of the selected antibody pairs, 
which were screened and purchased from Thermo Fisher Scientific 
for optimal performance (note S2 and fig. S7) (46, 47). However, 



Wang et al., Sci. Adv. 10, eadq6778 (2024)     11 December 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 14

ELISAs are limited by several experimental constraints that affect the 
rapid and accurate prediction of thrombosis. These include multistep 
labeling processes, costly labeling reagents, and extended detection 
durations (20, 48). In this context, the development of our nanoengi-
neered multichannel immunosensor is unique for its rapid fabrica-
tion, specific targeting of biomarkers, and broad detection spectrum. 
This enables a customized solution for early prediction of acute ill-
nesses, thus preventing thrombosis-associated complications in vital 
organ systems.

Blood clots from thrombosis are well-recognized to cause complica-
tions, including pulmonary embolism in the lungs, stroke in the brain, 
and acute coronary syndrome in the heart, all of which are associated 
with high morbidity and mortality (5, 49). CRP is primarily synthesized 
in the liver in response to inflammatory cytokines, with interleukin-6 
(IL-6) being an essential inducer. As an acute-phase protein, CRP levels 
increase rapidly during systemic inflammation, making it a crucial bio-
marker for assessing the inflammatory status of patients. Mounting evi-
dence supports a positive correlation between CRP levels and the 
severity of COVID-19. In contrast to IL-6, CRP levels have emerged as a 
potential predictive marker for the risk of thrombosis in these patients 
(5, 50). Calprotectin levels (S100A8/S100A9), a cytosolic component of 
neutrophils, have been independently associated with thrombosis 
(5, 51). Upon activation, platelets express P-selectin, a molecule adept at 
binding to and activating leukocytes. The vascular inflammatory re-
sponse induces endothelial cell dysfunction, accompanied by elevated 
levels of adhesive molecules like P-selectin, which promote thrombus 
formation (5, 50). This process underscores the interconnected roles 
of inflammation and thrombosis, particularly in disease states like 
COVID-19, where systemic inflammation is prevalent. Subsequent 
enzymatic processes can cleave P-selectin into its soluble form. D-dimer, 
the fibrin degradation product, is a biomarker for coagulation and fibri-
nolysis. D-dimer levels may serve as a valuable tool for thrombosis 
screening (5). However, factors such as disease severity, progression, 
and medication use can vary between patients, limiting the interpre-
tation of changes in individual biomarkers. For the selection of four 
specific biomarkers associated with acute thrombosis, we followed 
the consensus of the COVID International Thrombosis Biomarkers 
Colloquium, which recommended a panel of individual biomarkers 
to predict the risk of developing thrombosis (5). We then proposed our 
strategy of combining four biomarkers for acute thrombosis prediction. 
CRP and calprotectin are typically elevated in various inflammatory and 
acute infection states (44, 52, 53). In addition, we included sP-selectin 
and D-dimer, which are associated with thrombosis risk. Thus, we devel-
oped a strategy that combines these four biomarkers for acute thrombo-
sis prediction. Using this approach, we accurately predicted thrombosis 
in 49 of 53 patient specimens through unsupervised clustering based on 
the concentrations of the four biomarkers (Fig. 4). In addition, we dem-
onstrated that the combined four biomarkers could enhance the sensi-
tivity and specificity for thrombosis prediction (Fig. 5).

In our cohort of 53 blood specimens collected from hospitalized 
patients with COVID-19, single biomarkers proved insufficient for 
predicting thrombotic risk due to inadequate sensitivity and speci-
ficity. However, combining all four biomarkers in an integrative ap-
proach greatly improved prediction (5, 13, 14). Four anomalies were 
identified within our blood specimens: Patient 49 rendered a false-
negative outcome, and patients 3, 17, and 36 were misclassified during 
unsupervised hierarchical clustering. Despite this, the thrombotic risk 
prediction scores for the other 49 patients were consistent with their 
clinical evaluations. Notably, patient 49 was correctly classified within 

the thrombosis-positive group using the PCA algorithm, while pa-
tients 3, 17, and 36 were classified as thrombosis negative using the 
UMAP algorithm. This emphasizes the need for multiple unsuper-
vised learning techniques and cross-comparisons.

In our study on acute thrombosis prediction, we demonstrated 
that combining four biomarkers enhanced the sensitivity and speci-
ficity of predicting acute thrombosis using 53 blood specimens from 
hospitalized patients with COVID-19 (Fig. 5). We successfully pre-
dicted 43 of 46 specimens in the thrombosis-negative group and 6 of 
7 in the thrombosis-positive group, achieving an overall accuracy of 
49 of 53 patient specimens (Fig. 4). Only COVID-19 patient samples 
were analyzed, with the majority showing no indication of throm-
botic risk. This focus raises concerns about the generalizability of our 
findings to other patient populations with different underlying condi-
tions and risk profiles. Specifically, patients with cancer, patients with 
HIV, patients with trauma and hemorrhage, patients with sepsis, and 
those on anticoagulants exhibit distinct pathophysiological mecha-
nisms that may influence biomarker expression differently from pa-
tients with COVID-19. For instance, patients with cancer often 
present a hypercoagulable state due to tumor-associated procoagu-
lant factors, while patients with HIV may experience chronic im-
mune activation that affects coagulation pathways (54, 55). Patients 
on anticoagulants, meanwhile, might exhibit suppressed biomarker 
levels, potentially leading to false negatives if not accounted for in the 
predictive model. This represents a limitation of our research.

If we extend our current nanoengineered multichannel immuno-
sensor with unsupervised clustering to detect patients with cancer, 
patients with HIV, patients with trauma and hemorrhage, patients 
with sepsis, or those on anticoagulants, then the selected combination 
of four biomarkers specific to acute thrombosis (5) may not effectively 
predict these conditions based on the current biomarker concentra-
tions. However, when analyzed through unsupervised clustering, our 
strategy using the nanoengineered multichannel immunosensor holds 
potential for predicting these diseases. The layer-by-layer procedures 
for manufacturing the nanoengineered multichannel immunosensor 
and the unsupervised clustering analysis strategy are detailed in Mate-
rials and Methods. If a panel of biomarkers associated with these dis-
eases is identified, then the nanoengineered immunosensor can be 
tailored to detect these biomarkers by modifying the corresponding 
aptamers or antibodies on the sensing electrodes. These biomarker 
concentrations can then be used as inputs for disease prediction mod-
els using unsupervised machine learning, generating a disease risk 
score for conditions such as cancer, HIV, hemorrhagic trauma, sepsis, 
and for anticoagulated patients. On the basis of multiple biomarkers, 
this strategy is expected to provide an accurate and efficient method 
for predicting various diseases and guiding personalized medicine.

The sP-selectin is a marker of platelet activation and endothelial 
dysfunction, and its elevation can be associated with both arterial 
and venous thrombosis (5,  50,  56). However, it is more strongly 
linked to arterial thrombosis due to its association with platelet acti-
vation, as platelet-rich thrombi are commonly involved in myocar-
dial infarction or ischemic stroke. While elevated sP-selectin is more 
indicative of arterial thrombosis, elevated D-dimer is nonspecific and 
can indicate the presence of a thrombus in either the arterial or ve-
nous system. Elevated levels of CRP and calprotectin, both markers 
of inflammation, are also linked to thrombosis, but neither defini-
tively indicates arterial versus venous thrombosis. Given the stronger 
association of sP-selectin with arterial thrombosis, combining elevated 
sP-selectin with CRP, calprotectin, and D-dimer levels could help 
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predict the location of arterial thrombosis. This information can guide 
anticoagulation strategies, such as choosing between antiplatelet or 
antithrombotic therapy (57, 58).

Now, our detection strategy requires approximately 1.5 hours to 
provide a thrombotic risk score. This includes about 25 min for blood 
collection and processing, 1 hour for the simultaneous detection of 
four biomarkers using multichannel techniques, and around 5 min for 
unsupervised machine learning calculations to determine the throm-
botic risk score. In comparison, the commercial ELISA takes about 
5 hours to detect a single biomarker. While our proposed detection 
strategy shortens the detection time and demonstrates high accuracy, 
the acute thrombosis readouts highlight the need for bedside, point-of-
care technology with a readout time of less than 15 min and minimal 
user interaction. In addition, the relatively slow generation of plasma 
could affect clinical decision-making for acute coronary syndromes, 
stroke, pulmonary embolism, or traumatic injury. With emerging auto-
mation techniques that integrate blood collection and processing, mul-
tichannel detection, and unsupervised machine learning into a single 
system, we anticipate a shortened turnaround time by minimizing 
manual operations and further reducing detection time (59, 60).

The strengths and shortcomings of the current clinical assays 
[e.g., aPTT (Activated Partial Thromboplastin Time), PT (Pro-
thrombin Time), near-infrared (NIR), and clotting time] and the 
proposed strategy [nanoengineered multichannel immunosensor 
with unsupervised clustering (NMIUC)] in this research are sum-
marized in table S6. In summary, while aPTT and PT are effective 
for monitoring anticoagulation therapy, they lack specificity for 
predicting acute thrombosis. NIR shows promise for noninvasive 
monitoring but has not yet been widely adopted in clinical practice 
and may exhibit variable sensitivity and specificity. Clotting time is 
a quick test but is unreliable for thrombosis risk prediction due to 
its limited specificity and sensitivity. In contrast, our proposed 
strategy offers advantages, including high sensitivity, specificity, 
and accuracy for acute thrombosis prediction, while being simple, 
rapid, cost-effective, and customizable for multiple biomarkers. 
The proposed strategy is also readily accessible and user-friendly 
for blood testing, providing thrombotic risk assessments that 
could aid in acute thrombosis management and support personal-
ized patient care. However, current limitations include validation 
restricted to only 53 specimens and its use being limited to re-
search settings. Our NMIUC provides a fundamental and experi-
mental basis to expand validation to larger cohorts for future 
clinical translation.

Furthermore, including diverse clinical data (e.g., sex, age, and 
thrombosis risk factors) and medical history (e.g., antiplatelet and 
anticoagulation drugs) is crucial for conducting a comprehensive 
analysis to strengthen this research (5, 61, 62). The diversity of clini-
cal data enhances the generalizability of acute thrombosis predic-
tion. Specifically, men and women often have different risk profiles 
for thrombosis due to biological differences such as hormone levels, 
genetic factors, and immune responses (5, 61, 62). Incorporating sex 
into the model helps tailor predictions to these differences and en-
sures that both sexes are adequately represented, improving accuracy 
across different patient populations. Thrombosis risk generally in-
creases with age due to factors like reduced mobility, increased inci-
dence of comorbidities, and changes in the coagulation system 
(5, 61, 62). Including age in the prediction model allows for consid-
eration of these age-related variations, enabling risk stratification 
into different categories for personalized predictions. Incorporating 

a wide range of thrombosis risk factors allows the model to provide a 
more comprehensive risk assessment, capturing complex interactions 
between factors. Some risk factors may have a more substantial im-
pact when combined, and accounting for these interactions improves 
the predictive power of the model. Patients on antiplatelet or antico-
agulation therapy have modified thrombosis risk (61). While these 
medications are designed to reduce clot formation, their effective-
ness can vary on the basis of individual patient factors. Including this 
information in the model helps account for the protective effects of 
these drugs and potential variations in their efficacy. In summary, 
the diversity of clinical data is essential for developing a robust acute 
thrombosis prediction model. By incorporating factors such as sex, 
age, thrombosis risk factors, and medication use, the model can bet-
ter account for individual variability, resulting in more personalized 
and reliable predictions.

In summary, our study elucidates the combined utility of four 
biomarkers of CRP, calprotectin, sP-selectin, and D-dimer in aug-
menting the prediction of acute blood clots. This enhancement is 
achieved by applying nanoengineered multichannel immunosen-
sors with unsupervised learning techniques for clustering and anal-
ysis. The nanoengineered multichannel immunosensor allows for 
sensitive and specific detection of a wide range of biomarker con-
centrations, facilitating unsupervised clustering. Thus, the nanoen-
gineered multichannel immunosensor provides accurate and rapid 
prediction of acute blood blots, enabling timely responses to acute 
illnesses and public health crises.

MATERIALS AND METHODS
Materials and reagents
Gold (III) chloride hydrate (~52% Au basis), hexachloroplatinic (IV) 
acid hydrate (~40% Pt basis), silver (I) nitrate (≥99.0%), potassium 
chloride hydrate, sodium hypochlorite solution (available chlorine, 
4.00 to 4.99%), sulfuric acid (95.0 to 98.0%), nitric acid (70%), potas-
sium hexacyanoferrate (II) trihydrate (≥98.5%), potassium ferricya-
nide (III) (99%), toluene (99.9%), xylene (99%), Hepes solution, 
Tween 20, glycine (≥98.5%), silver chloride (99%), ethanol (≥99.5%), 
sodium chloride (≥99.0%), PBS [1.0 M (pH 7.4)], NHS (98%), EDC 
(≥97.0%), and human CRP, human calprotectin, human sP-selectin, 
human D-dimer, and bovine serum albumin were all purchased 
from Sigma-Aldrich.

The CNTs (XFM01, multiwalled, 5 to 15 nm in diameter, 10 to 
30 μm in length) were sourced from XFNANO Technology Co. 
Ltd. The PVC substrate was procured commercially from Takiron 
Co. Ltd. Styrene–isoprene styrene (SIS; D1113) elastomer was ac-
quired from Kraton Corporation. Adhesive Very High Bond (VHB) 
tapes were obtained from 3M Company. The aptamers were synthe-
sized and purified by Integrated DNA Technologies (table S5). The 
anti-calprotectin (S100A8/S100A9, MABF291) antibody was pur-
chased from Sigma-Aldrich. The Invitrogen CRP Human ELISA Kit, 
Invitrogen Calprotectin Human ELISA Kit, Invitrogen sP-selectin 
Human ELISA Kit, and Invitrogen D-Dimer Human ELISA Kit were 
all obtained from Thermo Fisher Scientific. The ultrapure water 
(18.2 megohm·cm) was purified using a Millipore system.

Fabrication of a nanoengineered 
multichannel immunosensor
SIS (1 g) was initially dissolved in a 20-ml solvent mixture of toluene 
and xylene at a 1:1 ratio. This SIS solution was subsequently sprayed 
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onto a PVC substrate (layer 1) to form an adhesive layer (layer 2). 
Acid-treated CNTs were ultrasonically dispersed in ethanol and 
sprayed onto the SIS adhesive layer (layer 2). Electrodes and con-
nection wires for the CNTs (layer 3) were patterned using selective 
laser ablation via a 1064-nm Monport 30W fiber laser engraver and 
a marking system. The CNT connection wires were subsequently 
encapsulated using a diluted SIS solution applied through a prede-
signed mask, forming layer 4. For the preparation of layer 5, the Au 
NPs, Pt NPs, and Ag NPs were electrochemically deposited onto the 
four working electrodes, the counter electrode, and the reference 
electrode using gold (III) chloride hydrate, hexachloroplatinic (IV) 
acid hydrate, and silver (I) nitrate solutions, respectively. The Ag 
NPs were then chloridized using a diluted sodium hypochlorite so-
lution, resulting in AgCl/Ag NPs.

For the sixth layer of the immunosensor, thiol-modified aptam-
ers (50 μM) specific to CRP, sP-selectin, and D-dimer were incu-
bated on the Au NP working electrodes for 1 hour, producing the 
aptamer/AuNP/CNT electrode. To modify the calprotectin anti-
body onto the carboxylated CNTs, the CNTs were initially incubated 
in a solution containing EDC (0.15 M) and NHS (0.1 M) for 1 hour 
to activate the carboxylic groups. This was followed by adding the 
calprotectin antibody solution and incubating for an hour.

The detection chamber (layer 7), the washing chamber cover 
(layer 8) with specific flow-directing holes, the chamber (layer 9), 
and the top cover (layer 10) were patterned using a 50-W CO2 laser 
cutter from Universal Laser Systems. A 3M VHB double-sided tape 
was patterned to incorporate four secondary chambers as the detec-
tion chamber (layer 7). Using the CO2 laser, four distinct holes were 
cut into a 0.1-mm-thick PVC film for the washing chamber cover 
(layer 8). The washing chamber (layer 9) featured a unified flow 
channel for waste liquid collection. Last, another PVC film was cut 
to introduce a hole as the liquid entrance for the top cover (layer 10).

Material characterization
XPS measurements were conducted using a Kratos AXIS Ultra DLD 
spectrometer. High-resolution transmission electron microscopy 
images and EDX elemental mapping were acquired with an FEI 
TITAN transmission electron microscope operating at 120 kV.

Operational workflow of the nanoengineered 
multichannel immunosensor
The priming of the chip, loading with plasma, signal acquisition, and 
regeneration of the nanoengineered multichannel immunosensor are 
shown in fig. S6 in the Supplementary Materials. Briefly, the immu-
nosensor was washed with PBS (pH 7.4; 1 ml, repeated three times) 
before use. A 100-fold diluted plasma sample (0.2 ml) was pipetted 
into the immunosensor via the inlet. After a 45-min incubation to 
allow for the formation of noncovalent solid interactions between the 
targeted biomarkers in each of the four chambers and the modified 
aptamers or antibody, the residual plasma was removed with PBS 
(pH 7.4; 1 ml, repeated three times). Electrochemical measurements 
were conducted using a Gamry Interface 1010E workstation (Gamry 
Instruments Inc., USA). EIS was performed over a frequency range of 
100 kHz to 0.1 Hz. The EIS data were fitted to the Randles model to 
extrapolate the Rct parameter (38). CV was performed with potentials 
set between 0.4 and 1.3 V (versus the reversible hydrogen electrode) 
at a scan rate of 50 mV/s. For electrochemical measurements, the 
[Fe(CN)6]3−/4− solution (0.2 ml) was pipetted into the individual de-
tection chambers (measurement time: 5 min). After detecting the 

four biomarkers, the [Fe(CN)6]3−/4− solution was removed from the 
detection chambers, which were then washed with PBS (pH 7.4; 1 ml, 
repeated three times). Subsequently, the immunosensor chambers 
were regenerated using 0.1 M glycine-HCl buffer (pH 2; 1 ml, repeated 
twice) to remove the bound biomarkers from the aptamers or anti-
body. Last, the chambers were washed with PBS and stored at 4°C for 
future use. We compared the performance of the fabricated nanoen-
gineered multichannel immunosensor with previously reported im-
munosensors and demonstrated its high detection capabilities for the 
four biomarkers (tables S1 to S4) (63–78).

Surface plasmon resonance
SPR measurements for binding kinetics were performed on a Bi-
acore 2000 system. Assays were conducted at 25°C using a running 
buffer composed of 10 mM Hepes, 150 mM NaCl (pH 7.4), and 
0.005% (v/v) Tween 20. The aptamer was immobilized onto a Series 
S Sensor Chip SA (GE Healthcare). A twofold dilution series of the 
specific biomarker was injected over the immobilized aptamer at a 
flow rate of 30 μl/min, with association and dissociation times of 
180 and 900 s, respectively. The aptamer was regenerated using 
0.1 M glycine-HCl buffer (pH 2) for two 10-s intervals.

Ethics statement
All procedures and handling of human blood samples were con-
ducted in accordance with the guidelines set by UCLA and received 
approval from the UCLA Institutional Review Board (no. IRB-
23-1768). Diagnoses of SARS-CoV-2 infection and thrombosis were 
obtained from the UCLA Pathology Biobank and Biospecimen Re-
search Core.

Biosafety
All blood samples were processed in accordance with the biocon-
tainment procedures established for handling SARS-CoV-2–positive 
samples. These specimens were approved by the UCLA Institutional 
Review Board protocol and provided by the UCLA Pathology Bio-
bank and Biospecimen Research Core. All participants provided 
informed consent. The blood samples were deidentified, ensuring 
that no personally identifiable information was associated with them.

Patient plasma samples
Patients testing positive for SARS-CoV-2 were recruited into the 
study subsequent to their diagnosis. The diagnosis of thrombosis 
was validated with the ICD-10 diagnostic code. Blood samples were 
handled in strict accordance with the biocontainment procedures 
designed for SARS-CoV-2–positive specimens. The details for blood 
collection and processing are provided in note S1 of the Supplemen-
tary Materials.

Unsupervised hierarchical clustering and dimensionality 
reduction analysis
Hierarchical clustering and dimensionality reduction were executed 
using the Scikit-learn library in Python and GraphPad Prism 9 soft-
ware. Furthermore, data visualization, including chord diagrams, was 
accomplished using Origin Lab 2021 and GraphPad Prism 9 software 
suites. Specifically, we used the Ward’s agglomerative hierarchical 
clustering technique, performing unsupervised clustering based on 
Euclidean distances, and emphasized optimizing the cluster count for 
the datasets. We used GraphPad Prism software for PCA and the 
Scikit-learn library in Python for nonlinear dimensionality reduction 



Wang et al., Sci. Adv. 10, eadq6778 (2024)     11 December 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

12 of 14

methods, including t-SNE and UMAP, to transform high-dimensional 
data into two-dimensional spaces.

Statistical analysis
Statistical analyses were conducted using IBM SPSS Statistics 26, 
GraphPad Prism 9 software, and Python scripts. The P value was 
determined by the Mann-Whitney U test. A correlation was consid-
ered statistically significant at P values below 0.05. All data are pre-
sented as the mean ± SEM (n = 3), unless otherwise specified.

ROC curves
To assess the precision of thrombosis prognosis, we tallied the num-
bers for true positives, true negatives, false positives, and false nega-
tives. The ROC curve was illustrated on the basis of sensitivity and 
1-specificity scores. The 95% confidence interval was computed for 
each AUC value. Binary logistic regression is a statistical method 
used to predict the probability of an event occurring given a set of 
predictor variables, when the outcome variable is binary: thrombo-
sis (−) and thrombosis (+). A binary logistic regression model was 
initially calculated using the given dataset. Subsequently, the mod-
el’s predicted probabilities for the positive class were used to con-
struct an ROC curve.

Comparison with previously reported immunosensors and 
thrombosis prediction strategies
We compared the performance of the fabricated nanoengineered 
multichannel immunosensor with previously reported immunosen-
sors (tables S1 to S4) (63–78). In addition, the strengths and short-
comings of current clinical assays (e.g., aPTT, PT, NIR, and clotting 
time) and the strategy proposed in this research are summarized in 
table S6 (5, 49, 79, 80).

Supplementary Materials
This PDF file includes:
Notes S1 and S2
Figs. S1 to S7
Tables S1 to S6
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