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The XGPT method extends the Generalized Perturbation Theory capabilities of Monte Carlo codes to
continuous-energy sensitivity functions. In this work, this method is proposed as a new approach to
nuclear data uncertainty propagation. XGPT overcomes some of the limitations of legacy perturbation-
based approaches. In particular, it allows the nuclear data uncertainty propagation to be performed
adopting continuous energy covariance matrices, instead of discretized (multi-group) data. The XGPT
capabilities are demonstrated in three simple fast criticality benchmarks for 239Pu and 208Pb cross section
uncertainties. The new method is also applied in selected cases to estimate higher moments of the keff
distribution, starting from TENDL random evaluations. The XGPT estimates, when compared against
reference Total Monte Carlo (TMC) results, show a good agreement and a significant reduction in
computational requirements with respect to the TMC approach. Finally, the capabilities for uncertainty
propagation involving adjoint-weighted response functions are demonstrated.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Interest in sensitivity and uncertainty analysis within the
nuclear community is continuously increasing, and recently there
has been a wide spread effort to develop and consolidate tools
and methods for uncertainty propagation (e.g., see Cacuci, 2005;
Aliberti et al., 2006; Rochman et al., 2011).

Nuclear data uncertainty propagation for reactor response func-
tions is typically performed using the Generalized Perturbation
Theory (GPT) inside deterministic codes. GPT allows calculating
the effect of several perturbations on reactor parameters in a single
step instead of separate direct perturbation calculations. Legacy
deterministic approaches adopt discretized nuclear data for both
the neutron transport solution (i.e., multi-group cross sections)
and the uncertainty propagation process (i.e., multi-group
covariance matrices). These approaches were extensively adopted
for data assimilation and cross section adjustment studies (e.g.,
Palmiotti et al., 2009,1), also benefiting from the fact that cross
sections and covariances are adopted in a consistent multi-group
form. Recently, interest in perturbation calculations in Monte Carlo
has risen, and several codes have gained the capability to calculate
multi-group sensitivities, adopting continuous energy cross sections
for the solution of the neutron transport problem (e.g., Perfetti,
2012; Kiedrowski and Brown, 2013; Truchet et al., 2013; Perfetti
and Rearden, 2014; Aufiero et al., 2015). Nevertheless, using these
codes for uncertainty propagation purposes still requires discretized,
multi-group covariance matrices, and the applications of these tech-
niques for data adjustment studies is complicated by the inconsis-
tency between the continuous energy cross sections adopted as
input, and the multi-group sensitivities obtained as output from
the sensitivity calculations.

The purpose of this work is to present a new perturbation-based
approach to nuclear data uncertainty propagation in Monte Carlo
codes, which overcomes some of the limitations of available meth-
ods. A collision-history based method was recently implemented
in Serpent (Aufiero et al., 2015) for sensitivity/perturbation calcu-
lations. Differently from other approaches, this method allows for
the calculation of effects of perturbations of nuclear data on gener-
alized response functions as keff , reaction rate ratios and bi-linear
ratios (e.g., adjoint-weighted kinetics parameters and reactivity
worth). Moreover, the method provides fully continuous (in energy
and angle) estimators for sensitivity calculations involving Legen-
dre moments of scattering distributions, with no requirement for
angular discretization. This is obtained via weighting the scattering
events in particle histories with continuous functions of the scat-
tering cosine (i.e., the Legendre polynomials, see Aufiero et al.,
2015).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2016.06.012&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2016.06.012
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http://www.sciencedirect.com/science/journal/03064549
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The presentwork presents a generalization of such approach and
a new method is proposed to perform sensitivity/perturbation cal-
culations with no requirement for multi-group discretization of
the energy-dependent sensitivity profiles or the covariance
matrices. This newmethod is namedXGPT as it extendsMonte Carlo
Generalized Perturbation Theory capabilities to continuous-energy
sensitivity functions. The proposed method is demonstrated per-
forming nuclear data uncertainty propagation studies in fast criti-
cality benchmarks. The case studies involve cross section
uncertainties in 208Pb and 239Pu. The application of the method to
estimate higher moments of the response distributions is also pre-
sented. All results were obtained through a purpose-made exten-
sion of the code Serpent version 2.1.24 (SERPENT, 2011), and show
a drastic reduction in computational requirements, compared to
modern approaches based on the Total Monte Carlo method.

2. Standard methods for nuclear data uncertainty propagation:
covariance- and TMC-based approaches

A common way to propagate nuclear data uncertainties is to
use the so-called first-order uncertainty propagation formula (or
sandwich rule, Cacuci, 2005):

Var R½ � ¼ SRx Cov x½ � SRx
� �T

ð1Þ

where Var R½ � is the variance of the generic response function R and
x; Cov x½ � is the covariance matrix of the vector x of considered
nuclear data parameters (e.g., multi-group cross sections); SRx is the

vector of sensitivity coefficients describing the effect of perturba-
tions on x on the response R, and defined as follow (Williams, 1986):

SRx � dR=R
dx=x

ð2Þ

Methods for calculating continuous-energy accurate estimates
of keff (and sometime other response functions) sensitivity coeffi-
cients are available in multiple Monte Carlo codes (e.g., Perfetti,
2012; Kiedrowski and Brown, 2013; Truchet et al., 2013; Perfetti
and Rearden, 2014; Aufiero et al., 2015). These codes make use of
continuous-energy cross sections data for neutron transport, over-
coming some of the limitations related to the use of multi-group
data in deterministic codes. Nevertheless, the propagation of
nuclear data uncertainty requires introducing a discretization
and score group-wise integrals of SRx on a given energy grid.
Increasing the accuracy of the energy discretization requires calcu-
lating a higher number of energy-integrated sensitivity coeffi-
cients. Moreover, the statistical error of Monte Carlo estimates
rapidly increases when SRx are scored on a finer energy grid. For
these and other reasons, beyond few hundreds groups it is imprac-
tical to calculate discretized sensitivity profiles using Monte Carlo,
and most often no more than few tens of groups are used.

The Total Monte Carlo method (TMC, Koning and Rochman,
2008; Rochman et al., 2011) is a different approach to nuclear data
uncertainty propagation. In TMC, a large number of independent
ENDF files are randomly generated starting from resonances and
nuclear models parameters and their uncertainties (e.g., with
TALYS, Koning et al., 2007). These files are then processed with
NJOY to produce a set of formatted continuous-energy cross
sections (i.e., ACE files), and independent Monte Carlo neutron
transport simulations are run with these different ACE files as
input. Finally, the distributions of the response functions of inter-
est are obtained directly from the results of the Monte Carlo runs.

Despite several improvements to the TMC method (Zwermann
et al., 2012; Rochman et al., 2014), this approach is often consid-
ered an inefficient way of propagating nuclear data uncertainties,
when adopted in combination with Monte Carlo neutron transport
codes. Covariance-based method presents important advantages
for several applications, especially when different sources of
uncertainties are to be investigated separately. On the other hand,
clear advantages of the TMC method over classical approaches are
that (1) no artificial multi-group covariance matrices are required,
and (2) higher moments of the response distributions can be easily
obtained. This method also allows to easily take into account
source of uncertainties that are often neglected (e.g., secondary
angular distributions) and to propagate uncertainties to virtually
any response function.
3. The XGPT method for nuclear data uncertainty propagation

In this work, the XGPT method is proposed to extend Monte
Carlo Generalized Perturbation Theory capabilities to continuous-
energy sensitivity functions. The new method allows for nuclear
data uncertainty quantification with no requirements for energy
discretization. It enables efficient estimation of higher moments
of the probability distributions of the considered response func-
tions, if adopted in combination with TMC-like random evaluation
files. The XGPT method is based on the projection of both the
nuclear data uncertainties and the perturbation/sensitivity calcula-
tions on a set of continuous-energy basis functions.

The practice of adopting a reduced subspace is common in
uncertainty propagation (e.g., see Abdel-Khalik et al., 2008; Chen
et al., 2015). Nonetheless, previously available methods in Monte
Carlo neutron transport codes are not able to provide unbiased
sensitivity estimators for the continuous-energy bases forming
the uncertainty projection subspace. Thus, legacy approaches
require either the multi-group discretization of the nuclear data
uncertainties (i.e., covariance matrices) or the adoption of compu-
tationally expensive direct perturbation techniques.

The key point of the new approach is the possibility to score the
continuous Monte Carlo sensitivity estimates on an arbitrary
defined set of bases. This approach has been previously imple-
mented and tested in Serpent for sensitivity to scattering angular
distributions, the continuous basis functions being related to the
Legendre Polynomials of the scattering cosine (Aufiero et al.,
2015; Aufiero and Fratoni, 2016).

In the following sections, the XGPT method and the adopted
Monte Carlo estimators are briefly presented. Different case studies
are used to test the XGPT results for cross sections uncertainties
propagation against reference TMC results. XGPT capabilities were
implemented in a purpose-made extension of the Serpent Monte
Carlo code, version 2.1.24.
3.1. Cross section uncertainties in the form of random nuclear data
files

TheTMCapproachmakesuseof randomnucleardata evaluations
as the input of the independentMonte Carlo runs for the uncertainty
propagation process. As example, in Fig. 1, fifty TENDL-2013 random
evaluations for the 208Pb elastic scattering cross section are shown.
The independent TENDL evaluations were randomly generated by
varying nuclear data parameters (e.g., resonances parameters, opti-
cal model parameters, etc.) according to their estimated expected
values and uncertainties. The description of the processes adopted
for the generation of the random evaluations is beyond the scope
of this work. A detailed description of the TMC approach can be
found in (Koning and Rochman, 2012). It is worth noting that
although the quality of the uncertainty propagation always depends
on the assumptions employed for the generation of the input
uncertainties, the XGPT method is meant to be adopted
independently from the specific approach used to produce the
random evaluations or the continuous energy covariance matrices.
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Fig. 1. TENDL-2013 208Pb random scattering cross section. Top: 60–100 keV
interval. Bottom: 300–600 keV interval. Red curve represents the reference
TENDL-2013 value. (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.)
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Fig. 2. 208Pb elastic scattering relative standard deviation (top). 208Pb TENDL-2013
reference elastic scattering cross section (bottom).
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Fig. 3. 208Pb elastic scattering relative standard deviation, details of the 65–90 keV
energy region.
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In order to present the XGPT approach, approximately 3000
independent 208Pb ACE files were produced with NJOY adopting
the reference TENLD-2013 evaluation along with the MF2–MT151
and MF3–MT1,2,16,51–57,102 sections of random ENDF files. This
way, 3000 continuous energy 208Pb nuclear data sets were pro-
duced with random elastic scattering, (n;2n), inelastic scattering,
and capture cross sections.

Cross sections standard deviation and correlation matrices were
obtained as continuous function of the incident neutron energy,
directly from the random TENDL-2013 evaluations by processing
the independent ACE files. Fig. 2 shows elastic scattering relative
standard deviation as obtained for 208Pb. Details of the energy
range between 65 and 90 keV are presented in Fig. 3. The sharp
increase in the cross section relative standard deviation in the
region of the tails of the 78.25 keV resonance and the decrease
close to the resonance peak are clearly visible. Calculating average
effective values of group-wise cross section uncertainties and sen-
sitivities in resonances regions is a sensitive task and one of the
most challenging steps for the classical approach to nuclear data
uncertainty propagation, based on multi-group energy discretiza-
tion. Both the TMC approach and the proposed XGPT method do
not require this error-prone step.

The continuous-energy MT2/MT2 correlation matrix obtained
from the 3000 random evaluations is presented in Fig. 4. For com-
parison, the multi-group correlation matrix is presented in Fig. 5,
adopting approximately 100 energy groups (retrieved from the
OECD/NEA software JANIS-4.0). As expected, the two correlation
matrices show very similar values. Nonetheless, the artificial struc-
tures introduced by the multi-group discretization are clearly vis-
ible in Fig. 5.
Fig. 4. 208Pb MT2/MT2 continuous energy correlation matrix.
3.2. Projecting the cross section covariances onto a set of continuous
basis functions

The first step for the discretization-free XGPT method for
nuclear data uncertainty propagation consists in the projection of
the cross section uncertainties onto a set of continuous-energy
basis functions.

Considering for sake of simplicity only the elastic scattering
reaction channel, the set of random-generated cross sections



Fig. 5. 208Pb MT2/MT2 multi-group correlation matrix (retrieved from OECD/NEA
software JANIS-4.0).
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R1; R2; R3 . . . RNf g can be rewritten in the form of relative cross
section differences:

AN ¼ dR;1 Eð Þ; dR;2 Eð Þ; dR;3 Eð Þ . . . dR;N Eð Þ� � ð3Þ
where:

dR;i Eð Þ ¼ Ri Eð Þ � R0 Eð Þ
R0 Eð Þ ð4Þ

with R0 Eð Þ being the reference cross section. In the present case
study, N is equal to 3000 and R0 Eð Þ is the reference TENDL-2013
elastic scattering cross section for 208Pb.

Using the method of snapshots (Volkwein, 2011) for the Proper
Orthogonal Decomposition (POD) of AN , an optimal set of orthogo-
nal basis functions for the projection of the cross section variability
is produced. This method only requires that an inner product for
the relative cross section difference function can be defined, so that
the elements kij of the snapshot correlation matrix K 2 RN�N can be

calculated as kij ¼ dR;i; dR;j
� �

. Several definitions for the inner pro-
duct dR;i; dR;j

� �
could be adopted in the form:

dR;i; dR;j
� � � Z Emax

Emin

x Eð Þ � dR;i Eð Þ � dR;j Eð ÞdE ð5Þ

by choosing an optimal weighting function x Eð Þ. The present work
assumes a simple weighting function uniform in lethargy over the
whole energy domain.

By computing a truncated eigen-decomposition of the snap-
shots correlation matrix K, a set Bn of n relative basis functions
for the cross section R can be reconstructed2:

Bn ¼ bR;1 Eð Þ; bR;2 Eð Þ; bR;3 Eð Þ . . . bR;n Eð Þ� � ð6Þ
This way, each random continuous-energy cross section can be
approximated as a linear combination of the basis functions:

dR;i Eð Þ ’ gdR;i Eð Þ ¼
Xn
j¼1

a j
i � bR;j Eð Þ ð7Þ

where a j
i is the linear combination coefficient obtained by project-

ing dR;i Eð Þ onto the basis function bR;j Eð Þ.
Fig. 6 shows three basis functions obtained from the POD of the

3000 random 208Pb cross sections data. Joint basis functions were
2 Volkwein (2011) provides a clear description of the snapshot method with
weighted inner products, along with the simple steps required to perform the Proper
Orthogonal Decomposition.
produced for all the reactions considered in the present uncer-
tainty propagation study, meaning that each basis contains infor-
mation on all the perturbed cross sections, fully accounting for
the cross terms in the nuclear data correlations. For sake of sim-
plicity, only elastic scattering values are presented.

Those bases represent the continuous-energy functionsonwhich
the uncertainties are projected. The three bases of Fig. 6 were
selected for illustrative purposes: the basis functions are not con-
structed directly from the uncertainties in nuclear data parameters,
but from the derived uncertainties in the continuous energy cross
sections, minimizing the average squared projection errors of the
randomevaluations.Nevertheless, thebasis functions carryphysical
information from the underlying process adopted to create the ran-
dom cross sections. For example, it might be guessed that the basis
function#3 in Fig. 6a is representative of uncertainties in the optical
model parameters, whereas basis functions 4 and 5 (Fig. 6b and c)
appear to relate to uncertainties in resonance parameters.

The 208Pb MT2/MT2 continuous energy correlation matrices
obtained from the random cross sections reconstructed via Eq.
(7) (i.e., after the orthogonal decomposition of the nuclear data
uncertainties) are presented in Fig. 7. Plots are included for differ-
ent number n of orthogonal basis functions bR;j. A simple compar-
ison of Fig. 7d and Fig. 4 suggests that 20 basis functions are able to
fully represent the 208Pb elastic scattering covariance matrix. For a
more rigorous analysis, the eigenvalues obtained from the Proper
Orthogonal Decomposition are presented in Fig. 8. These eigenval-
ues are often considered proportional to the relative covariance
information carried by each POD basis. The usual trend with expo-
nential decrease of the relative information is noticeable.

In the present approach, the Proper Orthogonal Decomposition
(POD) of the random cross sections could be replaced directly with
the eigenvalue decomposition of the continuous energy covariance
matrix, with no need for generation of random evaluations. More-
over, the adoption of XGPT in combination with available fine
multi-group covariance matrices is preliminary tested, as well,
and shows promising efficiency.

The next step of the XGPT method for nuclear data uncertainty
propagation involves scoring Monte Carlo sensitivities estimates
on the same basis functions generated via the POD or eigendecom-
position of cross section uncertainties. The adopted MC estimators
are presented in the following Section.

3.3. Collision history-based generalized sensitivity estimators

We will consider a generic response function R defined as the
ratio of two arbitrary Monte Carlo estimates:

R ¼ E e1½ �
E e2½ � ð8Þ

As an example, e1 and e2 can be two Monte Carlo reaction rate
detectors, if the response function R is a reaction rate ratio:

R ¼ R1;/h i
R2;/h i ð9Þ

In the collisions rejection and particle weight perturbation
framework presented in Aufiero et al. (2015), the sensitivity of R
to the cross section R can be estimated as:

SRR Eð Þ ¼
COV e1;

Xhistory
ACCR;E � REJR;E
� 	" #
E e1½ �

�
COV e2;

Xhistory
ACCR;E � REJR;E
� 	" #
E e2½ � ð10Þ
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Fig. 6. Basis functions number 3, 4, and 5 from the POD decomposition of the 208Pb elastic scattering uncertainty (top plots). Reference TENDL-2013 cross section (bottom
plots).

Fig. 7. 208Pb MT2/MT2 continuous energy correlation matrix reconstructed after POD decomposition of the random elastic scattering cross sections, for different number n of
orthogonal basis functions bR;j .
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where COV X;Y½ � � E X � Y½ � � E X½ � � E Y½ � represents the covariance
between the quantities X and Y associated to each particle, esti-
mated over the whole neutron population. SRR Eð Þ is the sensitivity
density function, ACCR;E and REJR;E represent the accepted and
rejected events with an incident neutron energy E, and is related
to the cross section R in the history of each particle. In continuous
energy Monte Carlo transport, the probability of occurrence of a col-
lision at the exact energy E is zero. For this reason, energy-resolved
sensitivity profiles are obtained by calculating group-wise integrals
of SRR Eð Þ:
SRR;g ¼
Z Egþ1

Eg

SRR Eð ÞdE ð11Þ

The sensitivity coefficient SRR;g of the response R to the cross section
R in the energy group g can be estimated from the accepted and
rejected events in the collision histories of the neutron population,
occurred within the energy boundaries Eg and Egþ1. In most cases
(e.g., for scattering cross sections), the efficiency of the analog
Monte Carlo sensitivity estimators is directly related to the number
of collisions that occur within the boundaries of the considered
energy group, per number of source particle. For this reason, the
statistical error of Monte Carlo estimates rapidly increases when
SRx are scored on a finer energy grid.

3.4. Basis functions sensitivities

The XGPT approach to nuclear data uncertainty propagation
involves the Monte Carlo estimation of basis functions sensitivities
SRbR;j where SRbR;j represents the relative change in the response func-

tion R due to a perturbation of the cross section R Eð Þ equal to the
relative basis function bR;j Eð Þ, and can be expressed as:

SRbR;j ¼
Z Emax

Emin

bR;j Eð Þ � SRR Eð ÞdE ð12Þ

Extending the collision history-based approach presented in
(Aufiero et al., 2015) and recalled in the previous section, SRbR;j can

be estimated from the covariance between the terms of the
response function R and the collisions related to the cross section
R, weighted by bR;j Eð Þ:
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SRbR;j ¼
COV e1;

Xhistory
GbR;j

" #
E e1½ � �

COV e2;
Xhistory

GbR;j

" #
E e2½ � ð13Þ

where GbR;j represents a score equal to bR;j Eð Þ, evaluated at the col-
lision energy E, which is added to the particle history buffer in case
of accepted collisions, and subtracted in case of rejected collisions.

The effective multiplication factor keff and the effective prompt
lifetime ‘eff are the two responses considered in the present study.
In case of keff being the response function, adopting the Iterated
Fission Probability (IFP, Nauchi and Kameyama, 2010) adjoint esti-
mators, Eq. (13) can be simplified to:

SkeffbR;j
¼ E

X ð�cÞGbR;j

� �h i
ð14Þ

where
P ð�cÞGbR;j

� �
is the sum of the weighted GbR;j scores, collected

during the cth previous neutron generation, and c represents the
number of latent generations adopted for the convergence of the
adjoint estimators (Kiedrowski et al., 2011).

Adopting the IFP for the effective prompt lifetime described in
(Leppänen et al., 2014), Eq. (13) is reduced to:

S‘effbR;j
¼

COV ð�cÞl;
Xhistory

GbR;j

" #
E ð�cÞl½ � ð15Þ

ð�cÞl is the lifetime of the cth neutron ancestor of the present
population.

3.5. First order uncertainty propagation with XGPT

The simplest way to perform continuous-energy uncertainty
propagation with the proposed XGPT method involves the adop-
tion of the first-order uncertainty propagation formula or sandwich
rule:

Var R½ � ¼ SRbR Cov a½ � SRbR

� �T
ð16Þ

where SRbR is the vector of the sensitivities of R to the set Bn of the

first n basis functions bR;j Eð Þ, obtained adopting the Monte Carlo
estimators presented in Eq. (13); a is the vector of linear combina-
tion coefficients a j for the projection of the R cross section uncer-
tainties onto the set Bn. Cov a½ � can be calculated directly from the
projections of the N dR;i Eð Þ, obtained from the random cross sections
Ri. In case POD is adopted to produce the set of basis functions Bn,

the matrix V 2 RN�n, whose elements a j
i are the linear combination

coefficients for the relative cross section difference dR;i Eð Þ and the
basis function bR;j Eð Þ, is easily obtained after the eigendecomposi-
tion of K. Moreover, thanks to the Proper Orthogonal Decomposi-

tion, the linear combination coefficients a j are linearly
uncorrelated, and Eq. (16) simplifies to:

Var R½ � ¼
Xn
j¼1

Var a j

 � � SRbR;j

� �2
ð17Þ

In a similar way, the continuous energy basis functions can be
obtained from the eigenvalue decomposition of relative covariance
matrices. Eq. 1 can be rewritten in continuous form, considering a
single cross section R Eð Þ, for simplicity:

Var R½ � ¼
Z Emax

Emin

Z Emax

Emin

SRR Eð Þ � COV RðEÞ;RðE0Þ
 � � SRR E0� 	
dEdE0 ð18Þ

After eigendecomposition of the relative covariance matrix:

COV RðEÞ;RðE0Þ
 � ¼Xn
j¼1

UjðEÞ � V j � UjðE0Þ ð19Þ
Eq. (18) becomes:

Var R½ � ¼
Xn
j¼1

V j �
Z Emax

Emin

Uj Eð Þ � SRR Eð ÞdE
 !2

ð20Þ

where V j are the eigenvalues of the continuous energy covariance
matrix corresponding to the eigenfunctions UjðEÞ. Adopting the
basis function sensitivity defined in the previous section, the uncer-
tainty from nuclear data in the response function R can be obtained
as:

Var R½ � ¼
Xn
j¼1

V j � SRUj

� �2
ð21Þ

which is equivalent to Eq. (16). If the continuous energy covariance
matrices were produced numerically from a set of random evalua-
tions, the Proper Orthogonal Decomposition of the random nuclear
data and the eigenvalue decomposition of the covariance matrix
produce the same set of orthogonal functions.

Apart from changing the set of parameters from the multi-
group cross sections to the continuous energy basis functions,
the XGPT approach can be adopted in combination with the solid
methods developed from classical linear perturbation theory
(e.g., see Salvatores et al., 2013). This could disclose the possibility
to perform experiment data assimilation and cross sections adjust-
ment studies with continuous-energy cross sections, adopting
legacy Generalized Linear Least Squares (GLLS) approaches.

As pointed out in the previous Sections, one of the advantages of
the TMC approach is the possibility to easily obtain higher
moments of the response function distributions due to nuclear
data uncertainties. For example, the adoption of the 208Pb uncer-
tainties from TENDL-2013 random evaluations lead to highly
skewed keff distributions, in the case studies presented in the fol-
lowing sections. These distributions are not well represented by
the standard deviation alone. For this reason, the XGPT method
was adopted to obtain higher moments of the response function
distributions.

3.6. XGPT and POD as a reduced order model for TMC

The nuclear data Proper Orthogonal Decomposition allows to
approximate every random cross section Ri Eð Þ as a function of
the reference cross section R0 Eð Þ and a linear combination of the
orthogonal basis functions bR;j Eð Þ:

Ri Eð Þ ’ fRi Eð Þ ¼ R0 Eð Þ � 1þ
Xn
j¼1

a j
i � bR;j Eð Þ

 !
ð22Þ

adopting the XGPT method, the value for the response function R
obtained adopting a random cross section Ri as input can be
approximated as follows:

RRi
’ fRRi

¼ RR0 � 1þ
Xn
j¼1

a j
i � SRbR;j

 !
ð23Þ

where RRi
is the value for the response calculated for the random

cross section Ri Eð Þ;RR0 is the value of R for the reference cross sec-

tion R0 Eð Þ and SRbR;j are the R sensitivities to the basis functions

bR;j Eð Þ calculated via the Monte Carlo estimators presented in the
previous sections.

The XGPT method allows estimating values of any response
function R for each of the N considered random cross sections
set, within a single criticality source Monte Carlo run. The present
implementation of the XGPT approach involves the calculations of
only the first-order sensitivity coefficients, as common in nuclear



Fig. 9. Continuous energy and multigroup 239Pu MT18/MT18 TENDL-2013 correla-
tion matrix.

Table 1
239Pu fission cross section contribution to the keff uncertainty (standard deviation) in
Jezebel. XGPT and eigendecomposition of the continuous covariance matrix vs. TMC.

Method Uncertainty (MT18) Uncert. stat. err.

TMC 828 pcm ±1 pcm
XGPT + eig. 827 pcm ±1 pcm
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data uncertainty propagation. The impact of this approximation is
discussed in the following Section.

4. Verification of the XGPT results against TMC estimates

In this Section, nuclear data uncertainty propagation results
obtained using the XGPT approach are compared to TMC results
for several criticality benchmarks.

4.1. keff uncertainty from continuous energy covariance matrix in
Jezebel

The first verification case study involves the propagation of
239Pu fission cross section uncertainties in a bare metallic pluto-
nium sphere (Jezebel, PU-MET-FAST-001 from NEA Nuclear
Science Committe, 2011), using continuous energy MT18/MT18
covariance matrix. For this purpose, approximately 650 TENDL-
2013 (Koning and Rochman, 2012a) evaluations were processed
with NJOY, adopting random MF3–MT18 sections in the ENDF files.
For consistency, the 239Pu random ACE files were read with Serpent
and all the fission cross sections from the independent evaluations
were scored on the same energy grid (5000 uniform lethargy bins
between 2.5 keV and 20 MeV). The 239Pu MT18/MT18 relative
covariance matrix was produced directly from the 650 cross sec-
tions set. The obtained continuous energy correlation matrix is
presented in Fig. 9, and compared to the multigroup values from
TENDL-2013 MF33 file.

The eigenvalue decomposition of the continuous energy covari-
ance matrix was performed adopting the first 150 eigenpairs, to
allow the XGPT estimate of the 239Pu fission cross section contribu-
tion to the keff uncertainty in Jezebel via Eq. (21). XGPT estimates
were obtained adopting five latent generations for the convergence
of the adjoint estimators and are compared to TMC reference
results in Table 1. The Total Monte Carlo simulations were run
on a 20 cores machine equipped with two Intel(R) Xeon(R) CPU
E5-2670 v2 processors @ 2.50 GHz, using 4� 108 active particles
per run, for a total of approximately 130 h wall-clock time (650
runs). The statistical uncertainty on the Monte Carlo keff estimates
in each simulation was around 5 pcm, which resulted to be negli-
gible compared to the keff uncertainty derived from the fission
cross section TENDL-2013 data. The relative statistical error in
the TMC uncertainty estimate was calculated as ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2 ðn� 1Þp
,

where n ¼ 650 represents the number of samples (Ahn and
Fessler, 2003). The XGPT results were obtained with a single
extended Serpent run on a laptop machine with Intel(R) Core
(TM) i7-5500U CPU (two cores), adopting 4� 107 active particles
(approx. 6 min wall-clock time). This resulted in statistical error
for the keff uncertainty similar to the TMC result (�1 pcm).

This simple uncertainty propagation case study shows a very
goodagreementbetweenXGPTand referenceTMCresults.Nonethe-
less, it should be noted that this test is only meant to be considered
as verification case, and similar studies performed adopting other
covariance data (e.g., from ENDF/B-VII.1) showed a smaller contribu-
tion of 239Pu fission to keff uncertainty in Jezebel (e.g., see Zhu et al.,
2015). For a better understanding of the presented results, Fig. 10
shows the TMC keff distribution from random 239PuMF3/MT18
uncertainties. The continuous line shows a normal distribution
having the standard deviation obtained from the XGPT results.

The effect of the eigenvalue expansion truncation on the accu-
racy of the XGPT uncertainty estimate for the considered case
study is presented in Fig. 11. Few basis functions are required to
reduce the truncation error to a low level and below statistical
uncertainties (i.e., around 1 pcm). Despite the fact that more com-
plex cases are expected to require more functions to reach the
required accuracy, the good converging properties of this approach
is intrinsically related to the usual behavior of rapidly decreasing
eigenvalues in eigendecomposition of covariance matrices. It is
worth noting that the number of orthogonal functions required
(i.e., the number of sensitivity coefficients to be calculated with
Monte Carlo) should be compared to the standard practice for
GPT-based uncertainty propagation, which adopts a much larger
number of multi-group sensitivity coefficients.

4.2. Higher moments of responses distributions adopting XGPT and
POD

In this Section, the capabilities of the XGPT method to estimate
higher moments of the uncertain response function distributions
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Fig. 12. Simplified geometrical description of the PMF-35 criticality safety bench-
mark from (NEA Nuclear Science Committe, 2011). The central plutonium core is
depicted in green. The lead reflector is shown in gray color. (For interpretation of
the references to colour in this figure caption, the reader is referred to the web
version of this article.)

Fig. 13. Simplified geometrical description of the HMF-64 criticality safety bench-
mark from (NEA Nuclear Science Committe, 2011). The highly enriched uranium
disks are presented in red. Lead is show in gray. Other materials in blue. (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)
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are presented. For this purpose, the 208Pb nuclear data were con-
sidered. Previously published TMC results showed highly skewed
keff distribution for cases involving this nuclide (e.g., see Alhassan
et al., 2015).

The case studies considered in this Section are two lead-
reflected criticality benchmarks: PU-MET-FAST-035 and HEU-
MET-FAST-064 from (NEA Nuclear Science Committe, 2011). The
PMF-35 is a critical assembly consisting of a concentric shells of
metallic 239Pu (d, 98%) of 6 cm radius, reflected by 3.15 cm of lead
(see Fig. 12). The HMF-64 is a critical assembly consisting of a
cylinder of alternating layers of highly enriched uranium (96 at.
%) and lead with a lead reflector (see Fig. 13).

Reference keff distributions were obtained with the standard
TMC approach: 3000 independent 208Pb ACE files were produced
with NJOY adopting the TENLD-2013 evaluation (Koning and
Rochman, 2012a) along with the MF2–MT151 (resonance parame-
ters) and MF3–MT1,2,16,51,52,53,54,55,57,102 sections of random
ENDF files. This way, 3000 continuous energy 208Pb nuclear data
sets were produced with random elastic scattering, inelastic scat-
tering, ðn;2nÞ and capture cross sections.

The random ACE files were also adopted to numerically derive
the joint probability distributions of the 208Pb continuous energy
cross sections for the considered reactions, scored on a 5000 uni-
form lethargy bins grid. The Proper Orthogonal Decomposition
was adopted to produce basis functions for the XGPT uncertainty
propagation process. In the presented case studies, a single set of
orthogonal functions was produced. Thus, the information on the
cross terms covariances (e.g., representing the correlation between
elastic scattering and capture) is implicitly embedded in the lin-
early uncorrelated multi-reaction bases.

XGPT estimates for the keff distributions were obtained in both
cases with a single criticality source calculation by the modified
Serpent version. This extended version includes the capability to
calculate orthogonal basis sensitivities to reconstruct a reduced
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order model approximation of response function distributions, as
presented in the previous Section.

Using Eq. (23), the keff values for the 3000 random evaluations
were estimated via XGPT from the basis functions sensitivities
and the coefficients of the POD decomposition. Fig. 14 shows the
XGPT results in the PMF-35 case study versus reference values
obtained with independent Monte Carlo runs. Results are
expressed as differences from the average keff over 3000 random
samples. The XGPT run adopted 8 latent generations for the con-
vergence of the IFP adjoint estimators and 150 POD bases. Fig. 15
shows the errors in the XGPT estimates (XGPTkeff � TMCkeff ). The
error bars represents �1r statistical uncertainty, accounting for
both the keff error in each independent TMC simulation and the sta-
tistical uncertainty in the continuous functions keff sensitivity coef-
ficients in XGPT. For the few extreme cases of random cross
sections sets leading to a system reactivity excess beyond 1500
pcm from the average value, a slight underestimation of the XGPT
results can be noticed. These differences are likely related to non-
linear perturbation effects that are not taken into account in the
present implementation. Nonetheless, most of the 3000 estimates
obtained via XGPT lie within ±20 pcm from the reference TMC
results.

The PMF-35 keff distribution derived from TENDL-2013 uncer-
tainties for the main reaction cross sections in 208Pb is presented
in Fig. 16. The histogram plot compares XGPT and TMC results,
showing a good agreement between perturbation-based and refer-
ence results.

As reported in previous works related to the TENDL-based TMC
analysis of lead isotopes (e.g., see Alhassan et al., 2015), the keff dis-
tribution appears to be highly skewed. The sample standard devi-
ation and higher moments of the distribution are presented in
Table 2. Estimating higher moments of the uncertain keff distribu-
tions represents one of the most interesting advantage of the Total
Monte Carlo method, compared to legacy multi-group
perturbation-based approaches.

The simple case studies considered in the present work show
that the XGPT method can reproduce the TMC distributions with
fairly good accuracy, in a more computationally efficient way.
Fig. 17 presents the statistical convergences of the XGPT and
TMC estimators for the standard deviation, the skewness and the
kurtosis of the considered PMF-35 case, as function of the total
number of active particles. The Monte Carlo sampling-based TMC
approach shows slow convergence compared to perturbation-
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Fig. 14. Comparison between XGPT estimates for the keff for each random 208Pb
cross section and reference results from independent Monte Carlo runs. PMF-35
case study. Results expressed as differences from the average keff over 3000
samples.

Table 2
Standard deviation, skewness and kurtosis of the PMF-35 keff distribution from
TENDL-2013 208Pb cross section data.

Methods Standard deviation Skewness Kurtosis

TMC 426 pcm 0.81 3.62
XGPT 423 pcm 0.80 3.58
based results, especially for higher moments of the distributions.
The difference is mainly related to the fact that the TMC method
requires a large number of independent Monte Carlo transport
simulations to reach satisfactory convergence. It should be noted
that a relatively high number of active particles (2� 108) was
adopted in the TMC runs, to reach few pcm statistical uncertainty
in the keff estimates, for better comparison with the XGPT results.
For the simple purpose of estimating the moments of keff distribu-
tion, the number of active particle in the TMC runs could be
reduced.

As a further demonstration of the capabilities of the XGPT
approach, the HMF-64 keff distribution from TENDL 208Pb cross sec-
tion uncertainties and its first four moments are presented in
Fig. 18 and Table 3, respectively. Compared to the previous case



10
5

10
6

10
7

10
8

10
9

10
10

10
11

Total number of simulated active particles [-]

350

400

450

500

550

600

ke
ff
 s

an
da

rd
 d

ev
ia

ti
on

 [
pc

m
]

Reference (TMC sample # 3000)
XGPT + POD
TMC

Standard deviation

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Total number of simulated active particles [-]

0

0.5

1

1.5

ke
ff
 s

ke
w

ne
ss

 [
 -

 ]

Reference (TMC sample # 3000)
XGPT + POD
TMC

Skewness

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Total number of simulated active particles [-]

2

3

4

5

6

ke
ff
 k

ur
to

si
s 

[ 
- 

]

Reference (TMC sample # 3000)
XGPT + POD
TMC

Kurtosis

Fig. 17. Convergence of sample estimators for the standard deviation, skewness
and kurtosis of the PMF-35 keff distribution versus the total number of simulated
active particles.

-4000 -2000 0 2000 4000 6000
keff  -  keff [pcm]

0

100

200

300

400

500

N
um

be
r 

of
 c

ou
nt

s 
pe

r 
bi

n 
[-

]

Total Monte Carlo
XGPT + POD

HMF-64 - keff uncertainty - XGPT + POD vs. TMC

Fig. 18. HMF-64 keff distribution from TENDL-2013 208Pb cross section data.
Histogram bins size is approximately 450 pcm.

Table 3
Standard deviation, skewness and kurtosis of the HMF-64 keff distribution from
TENDL-2013 208Pb cross section data.

Standard deviation Skewness Kurtosis

TMC 1326 pcm 0.74 3.49
XGPT 1371 pcm 0.81 3.65
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study, in this criticality safety benchmark, the content of lead is
greatly increased, and it is present not only as reflector, but also
between the highly enriched metallic uranium disks (see Fig. 13).

The XGPT run was performed adopting the same orthogonal
basis functions produced for the previous cases, along with 10
latent generations for the convergence of the adjoint IFP estima-
tors. This case study shows a very large impact of 208Pb nuclear
data uncertainties on keff , leading to an uncertainty in the order
of 1300 pcm. This result is rather unexpected to the authors, taking
into account that a single, non-fissile isotope was considered in the
uncertainty propagation study. Nonetheless the result is consistent
with uncertainty quantification studies that used similar TMC
input uncertainties for lead (Alhassan et al., 2015). Despite larger
differences between XGPT and reference results compared to the
PMF-35 benchmark, also this case study confirms a good agree-
ment between the proposed perturbation-based approach and
the TMC method, especially considering the large reduction in
computational time requirements.

One of the foreseen application of the XGPT approach involves
assimilation, data adjustment and representativity studies.
Recently, Rochman et al. (2015) and Alhassan et al. (2016) pro-
posed a new approach to incorporate integral experiment informa-
tion in the TMC methodology. This TMC-based approach requires a
separate Monte Carlo run per each integral experiment, per each
random nuclear data evaluation. Thus, the adoption of the pro-
posed perturbation-based method is expected to lead to a great
reduction in CPU time, while still relying on the same random eval-
uations adopted in the TMC approach, without the assumptions
and approximations related to the generation of multi-group
covariance matrices and the use of the first order propagation for-
mula. As a simple example, Fig. 19 shows the keff correlation
between HEU-MET-FAST-064 and PU-MET-FAST-035, considering
208Pb cross section uncertainties.

The collision history-based approach to Generalized Perturba-
tion Theory calculations proposed in (Aufiero et al., 2015) allows
to estimate the effect of nuclear data perturbation on virtually
any quantity from the output of standard Monte Carlo runs,
included adjoint-weighted response functions. These capabilities,
not available in other continuous energy Monte Carlo codes, are
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adopted in the present work to estimate the HMF-64 effective
prompt lifetime uncertainty due to 208Pb cross sections.

The ‘eff sensitivity coefficients to the continuous energy orthog-
onal functions were calculated via Eq. (15). The distribution of the
effective prompt lifetime reconstructed via XGPT is presented for
the 3000 random cross sections sets in Fig. 20, and compared to
reference TMC results. The relative ‘eff uncertainty (1r) predicted
by the two methods, from the same random TENDL data is 4.01%
and 3.99%, respectively. This simple test case confirms that the
XGPT approach could be extended beyond keff uncertainty
quantification.

5. Conclusions and ongoing development

In this work, we presented the Monte Carlo eXtended General-
ized Perturbation Theory (XGPT) approach to nuclear data uncer-
tainty propagation. This new method was implemented into a
modified version of the Serpent code. It extends the previously
implemented generalized perturbation capabilities to continuous
basis functions sensitivity calculations.

The new capabilities allow the uncertainty propagation process
to be performed with continuous-energy covariance matrices. This
possibility was demonstrated adopting a well known criticality
safety benchmark (Jezebel, PU-MET-FAST-001) and 239Pu MF3-
MT18 (fissions cross section) uncertainties, as case study. The con-
tinuous energy covariance matrix was produced numerically, pro-
cessing random TENDL-2013 evaluations via NJOY. The random
ACE files were also adopted, along with the Total Monte Carlo
(TMC) method, to produce reference uncertainty estimates for
the considered case study. The XGPT keff uncertainty for this simple
case was found to be in good agreement with reference TMC
results, showing that XGPT can be effectively used for
discretization-free uncertainty propagation studies, with no
requirement for multi-group discretization of the covariance
matrices. Moreover, whereas the TMC method requires a few hun-
dreds independent Monte Carlo criticality source simulations, the
XGPT approach adopts a single Serpent run, ensuring a significant
reduction in computational requirements.

The continuous energy basis functions for the Jezebel case
study were produced via truncated eigenvalue decomposition
of the cross section relative covariance matrix. Other options
are available for the selection of the bases for the sensitivity cal-
culations. As a further investigation of the XGPT capabilities, the
new method was adopted along with the Proper Orthogonal
Decomposition (POD) of random TENDL 208Pb evaluations, to
reproduce higher moments of uncertain response functions
probability distributions in two lead-reflected fast systems
(PU-MET-FAST-035 and HEU-MET-FAST-064). Previous
TMC-based studies highlighted that Pb nuclear data uncertainties
lead to highly skewed keff distributions in lead-reflected fast
systems. The case studies presented in this work show that
XGPT can accurately reproduce these skewed probability
distributions, with a good agreement between TMC and XGPT
estimate of higher moments.

In conclusion, the new Monte Carlo XGPT method offers the
possibility to overcome some of the limitations of legacy
perturbation-based approaches to nuclear data uncertainty quan-
tification, which require the discretization of uncertainties into
multi-group covariance matrices and are unable to estimate higher
moments of the response distributions. At the same time, when
compared to the TMC approach, which does not suffer from major
approximations, the new XGPT method showed to be significantly
more efficient from the point of view of computational require-
ments. In this sense, XGPT provides a reduced order model approx-
imation that can be employed as fast-running TMC surrogate or as
a preliminary analysis tool, prior to a full TMC study. It is worth
noting that the description of continuous-energy covariance matri-
ces is not available in the legacy ENDF format. This is likely due to
the fact that existing codes do not make use of continuous-energy
covariance matrices. A wide adoption of the XGPT method will
require the generation of such data.

The authors are currently involved in several research activities
related to the adoption of XGPT for nuclear data assimilation and
uncertainty studies. The direct calculation of resonance parameters
sensitivities was successfully tested in simple 2D PWR pin-cell case
studies (Aufiero et al., 2016). In this case, the continuous basis
functions for the perturbation calculations are the cross sections
sensitivities to the resonance parameters (e.g., total resonance
width and partial resonance widths). Adopting this new approach,
uncertainty propagation in the resolved resonance region can be
performed directly throughMF32-MT151 files (covariance informa-
tion for resonance parameters). The same method is being tested
for the quantification of uncertainties related to the thermal scat-
tering parameters for Sða; bÞ tables.

The XGPT method is also being used for research activities
related to cross section adjustment and nuclear data assimilation.
This approach involves the adoption of basis functions from the
eigendecomposition of covariance matrices and the related
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sensitivities within the Generalized Linear Least Square (GLLS)
adjustment methodology, replacing the legacy multi-group
approach.
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