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ABSTRACT OF THE DISSERTATION

A Cognition Platform for Joint Inference of

3D Geometry, Object States, and Human Belief

by

Tao Yuan

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2019

Professor Song-Chun Zhu, Chair

Humans can extract rich information from visual scenes, such as the 3D locations of

objects and humans, the actions of humans, the states of objects, the belief of humans.

Although various state-of-the-art algorithms can achieve good results for solving individual

tasks, building a system to jointly infer these different tasks for scene understanding is still

an underexplored area. Most of these tasks are not independent with each other, and humans

can jointly infer hidden information with their commonsense knowledge among these tasks.

In this dissertation, we propose a spatio-temporal framework to jointly infer and optimize

multiple tasks across different times and views with a unified explicit probabilistic graphical

representation.

This dissertation contains four main parts. 1) we describe the system overview, the data

flow in the system, and engineering efforts to make the system scalable under different sce-

narios. 2) we propose an algorithm for holistic 3D scene parsing and human pose estimation

with human-object interaction and physical commonsense. Human-object interaction can

model the fine-grained relations between agents and objects, and physical commonsense can

model the physical plausibility of the reconstructed scene. 3) we introduce a joint parsing

framework that integrates view-centric proposals into scene-centric parse graphs that rep-

resent a coherent scene-centric understanding of cross-view scenes. 4) we present a joint

inference algorithm to understanding object states, robot knowledge, and human beliefs un-
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der multi-view settings by maintaining three types of parse graphs. The algorithm can be

applied to the cross-view small object tracking problem and some false-belief problems. Ex-

periments show that our joint inference framework can achieve better results than individual

algorithms.
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CHAPTER 1

Introduction and System Overview

1.1 Motivation

During the past decades, remarkable progress has been made in many vision tasks, e.g.

image classification, object detection, pose estimation. However, in most works, these vision

tasks are studied independently without considering the information provided by each other.

And more and more complex AI tasks, such as visual question answering, and social norm

understanding, require the results from various vision tasks and multiple inputs from different

fields of views. According to the observation that there are consistent correlations accross

different cognition tasks and input sources, and contraints provided by commonsense. We

propose a cognition platform for joint inference of 3D geometry, object states, and human

belief.

Our humans, even babies, can understand and extract rich information from complex

scenes. For example, given a picture of a girl is using a computer, we can still infer there is

a mouse in her hand, even we cannot see it, by applying our knowledge of the human-object

interaction. And we can also infer the 3D location of the girl is on the chair by using our

physical commonsense that the chair can support the girl. Inspired by this, our system first

focuses on a new 3D holistic++ problem includes two main tasks: 1) 3D scene parsing and

reconstruction, 2) 3D human pose estimation. We jointly tackle these two tasks by exploiting

the human-object interaction and physical commonsense constraints.

Multiple-camera systems, such as security systems, are widely applied in our daily lives.

It is essential to have a framework to resolve ambiguity and establish cross-reference among

information from different views. We tackle the problem with a spatio-temporal joint parsing
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framework that integrates information from each view into scene-centric parse graphs to

present the coherent understanding of cross-view videos by maintaining some correlations

and constraints in commonsense.

Once we have the unified explicit graphical model to track object states, our system can

further infer human beliefs and discover false-beliefs from segments of the graphs. With the

proposed joint inference algorithm, our system can achieve good results in recognizing some

human belief tasks.

1.2 Related Work

Our work is related to the following areas in computer vision and artificial intelligence.

AI Cloud Platforms Various companies provide computer vision services on their cloud

AI platforms, such as Google Cloud AI Platform, Microsoft Azure AI Platform, and Face++

AI Open Platform. These platforms can provide cognitive services such as object detection,

optical character recognition, and face detection. However, most of these modules are run

separately. In our system, different modules can be inferred and optimized with the joint

inference algorithms. Inputs on most cloud AI platforms are single images. On our system,

inputs could be video streams from single-view or multi-view, which can utilize both the

spatial and temporal information.

Multi-view video analytics Typical multi-view visual analytics tasks include object de-

tection [LS10a, UB11a], cross-view tracking [BFT11a, LPR12, XLL16, XLQ17], action recog-

nition [WNX14], person re-identification [XLZ13, XMH14] and 3D reconstruction [HWR13a].

While heuristics such as appearances and motion consistency constraints have been used to

regularize the solution space, these methods focus on a specific multi-view vision task whereas

we aim to propose a general framework to jointly resolve a wide variety of tasks.

Visual Cognitive Reasoning Related work includes recovering incomplete trajecto-

ries [LZZ18], predicting human activities [QHW17], learning utility and affordance [ZJZ16,

ZZZ15], inferring human intention and attention [FCW18, WLS18], etc. As to understand-

ing (false-)belief, despite many psychological experiments and theoretical analysis [CT99,
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WAS18, BBP16], very few attempts have been made to solve (false-)belief in man-made

scenes with visual input; handcrafted constraints are usually required for specific problems

in prior work. In contrast, our work utilizes a unified representation across different domains

with heterogeneous information to model human mental states.

1.3 System Architecture

The system includes three main components: the input module, the joint inference module,

and the visualization module.

…

…

Input Module Joint Inference Module Visualization Module

Figure 1.1: System Architecture

Input Module: The system can receive frame sequence input from different types of

sources, such as webcams via USB interfaces, remote surveillance cameras, cameras from

robots, and offline videos. Our system pre-processes frame sequence from these sources and

encodes them into a unified binary format data stream. The frame size, frame rate, and

frame quality can be set in the configuration files.

Joint Inference Module: the most important part of the system is the joint inference

engine. It receives encoded image streams from input devices and feeds them into various

computer vision modules. The computer vision modules are organized in a hierarchical
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structure, because many high-level modules may depend on other mid-level modules. We

will introduce some modules in the following chapters. The module dependencies are handled

with a topological sorting algorithm. All modules are run in separate containers with several

benefits:

• Isolation: The environments of each container could be different. Developers and

researchers can build and test their own modules without worry about breaking the

environments of other modules.

• Compatibility: Once the environment is configured, the module can be run on every

other device, whatever a personal computer or a cloud server. This compatibility

enables rapid deployment and continuous deployment and testing.

• Scalability: The modules can be swarm with many copies. The system automatically

does the load balance according to compute resources and requests.

Visualization Module: we employ a set of web-based tools to visualize results from the

joint inference module in realtime. The web server receives serialized results and then send

them to the client-side web application via WebSocket. The javascript based web application

draws 2D results, such as 2D bounding boxes, on the original frames in SVG containers and

renders 3D results, such as 3D poses, with WebGL. We also provide APIs to let modules

render 2D results themselves on the server.

1.4 Outline

The remainder of the dissertation is organized as follows:

In Chapter 2, we focus on the 3D holistic scene parsing and human pose estimation

with human-object interaction and physical commonsense. The HOI priors and physical

commonsense constraints are helpful to infer the spatial relations between human and the

scene. The indoor scenes can be represented by parse graphs, and the system can iteratively

optimize these parse graphs by MCMC sampling.
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In Chapter 3, we propose a scene-centric joint parsing algorithm for understanding cross-

view videos. We find that overlapping fields of views embed rich appearance and geometry

correlations, and individual vision tasks are governed by consistency constraints available in

commonsense knowledge. Our system represents such correlations and constraints explicitly

and generates semantic scene-centric parse graphs.

In Chapter 4, we present the joint inference algorithm of object states, robot knowledge,

and human beliefs to understand false-belief. The system first infers single-view parse graphs

from each individual view and then fuses these parse graphs into a joint parse graph. Belief

parse graphs can be extracted from the joint parse graph and provide the capability of

recognizing human false-belief.
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CHAPTER 2

Single-view 3D Holistic Scene Parsing and Human

Pose Estimation with Human-Object Interaction and

Physical Commonsense

2.1 Introduction

Scene

Human Layout

Human-Object Interaction

Use Computer Sit

Physics Commonsense

Ground-Object
Support

Table-Monitor
Support

KeyboardTable Monitor Chair

Objects

Physical	Relation HOI	Relation

Reconstruction Result

Parse Graph

Root	Node Non-terminal	Node Terminal	Node Attributes

…

Figure 2.1: holistic++ scene understanding task requires to jointly recover a parse graph that
represents the scene, including human poses, objects, camera pose, and room layout, all in 3D.
Reasoning human-object interaction (HOI) helps reconstruct the detailed spatial relations between
humans and objects. Physical commonsense (e.g ., physical property, plausibility, and stability)
further refines relations and improves predictions.

Humans, even young infants, are adept at perceiving and understanding complex indoor

scenes. Such an amazing vision system not only relies on the data-driven pattern recognition
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but also roots from the visual reasoning system, known as the core knowledge [SK07] that

facilitates the 3D holistic scene understanding tasks. Consider a typical indoor scene shown

in Figure 2.1 where a person sits in an office. We can effortlessly extract rich knowledge from

the static scene, including 3D room layout, 3D position of all the objects and agents, and

correct human-object interaction (HOI) relations in a physically plausible manner. In fact,

psychology studies have established that even infants employ at least two constraints—HOI

and physical commonsense—in perceiving occlusions [THK87, KS83], tracking small objects

even if contained by other objects [FC03], realizing object permanence [BSW85], recognizing

rational HOI [Woo99, SCS13], understanding intuitive physical [GBK02, Nee97, Bai04], and

using exploratory play to understand the environment [SF15]. All these evidence in literature

call for a treatment to integrate HOI and physical commonsense with a modern computer

vision system.

In contrast, few attempts have been made to achieve this goal. This challenge is difficult

partially due to the fact that the algorithm has to jointly accomplish both 3D holistic scene

understanding task and the 3D human pose estimation task in a physically plausible fashion.

Since this task is beyond the scope of holistic scene understanding in the literature, we de-

fine this comprehensive task as holistic++ scene understanding—to simultaneously estimate

human pose, objects, room layout, and camera pose, all in 3D.

Existing work only individually solves the task of 3D holistic scene understanding [HQZ18,

ZLH17, BRG16, SYZ17] or 3D human pose estimation [ZWM17, RKS12, FXW18] from a

single RGB image, although one can achieve an impressive performance in a single task by

training with an enormous amount of annotated data. We, however, argue that these two

tasks are intertwined tightly since the indoor scenes are invented and constructed by human

designs to support the daily activities, generating affordance for various tasks and human

activities [Gib79].

To solve the holistic++ scene understanding task, we attempt to address four fundamental

challenges:

1. How to utilize the coupled nature of human pose estimation and holistic scene under-
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standing, and make them benefit each other? How to reconstruct the scene with complex

human activities and interactions?

2. How to constrain the solution space of the 3D estimations from a single 2D image?

3. How to make a physically plausible and stable estimation for complex scenes with human

agents and objects?

4. How to improve the generalization ability to achieve a more robust reconstruction across

different datasets?

To address the first two challenges, we take a novel step to incorporate HOI as con-

straints for joint parsing of both 3D human pose and 3D scene. The integration of HOI

is inspired by crucial observations of human 3D scene perception, which are challenging for

existing systems. Take Figure 2.1 as an example, humans are able to not only infer the

relative position and orientation between the girl and chair but also impose a constraint by

recognizing the girl is sitting in the chair. Similarly, such constraint can help to recover

the small objects (e.g ., recognizing keyboard by detecting the girl is using a computer in

Figure 2.1). By learning HOI priors and using the inferred HOI as visual cues to adjust

the fine-grained spatial relations between human and scene (objects and room layout), the

geometric ambiguity (3D estimation solution space) in the single-view reconstruction would

be largely eased, and the reconstruction performances of both tasks would be improved.

To address the third challenge, we incorporate physical commonsense into the pro-

posed method. Specifically, the proposed method reasons about the physical relations (e.g .,

support relation) and penalizes the physical violations to predict a physically plausible and

stable 3D scene. The HOI and physical commonsense serve as general prior knowledge

across different datasets, thus help address the fourth issue.

To jointly parse 3D human pose and 3D scene, we represent the configuration of an indoor

scene by a parse graph shown in Figure 2.1, which consists of a parse tree with hierarchical

structure and a Markov random field (MRF) over the terminal nodes, capturing the rich

contextual relations among human, objects, and room layout. The optimal parse graph to

reconstruct both the 3D scene and human poses is achieved by a MAP estimation, where

the prior characterizes the prior distribution of the contextual HOI and physical relations
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among the nodes. The likelihood measures the similarity between (i) the detection results

directly from 2D object and pose detector, and (ii) the 2D results projected from the 3D

parsing results. The parse graph can be iteratively optimized by sampling an MCMC with

simulated annealing based on posterior probability. The joint optimization relies less on a

specific training dataset since it benefits from the prior of HOI and physical commonsense

which is almost invariant across environments and datasets, and other knowledge learned

from well-defined vision task (e.g ., 3D pose estimation, scene reconstruction), improving the

generalization ability significantly across different datasets compared with purely data-driven

methods.

Experimental results on PiGraphs [SCH16], Watch-n-Patch [WZS15], and SUN RGB-

D [SLX15] demonstrate that the proposed method outperforms state-of-the-art methods for

both 3D scene reconstruction and 3D pose estimation, demonstrating an improved general-

ization ability across different datasets comparing with pure data-driven methods. Moreover,

the ablative analysis shows that the HOI prior improves the reconstruction and the physical

common sense helps to make physically plausible predictions.

This work makes four major contributions:

1. We propose a new holistic++ scene understanding task with a computational framework

to jointly infer human poses, objects, room layout, and camera pose, all in 3D.

2. We integrate HOI into the proposed algorithm to bridge the human pose estimation and

the scene reconstruction, reducing the geometric ambiguity (solution space) of the single-

view reconstruction.

3. We incorporate physical commonsense, which helps to predict physically plausible scenes

and improve the 3D localization of both humans and objects.

4. We demonstrate the joint inference improves the performance of each sub-module and

achieves better generalization ability across various indoor scene datasets compared with

purely data-driven methods.
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2.1.1 Related Work

Single-view 3D Human Pose Estimation. Previous methods on 3D pose estimation can

be divided into two streams: (i) directly learning 3D pose from a 2D image [SRA12, LC14],

and (ii) cascaded frameworks that first perform 2D pose estimation and then reconstruct

3D pose from the estimated 2D joints [ZWM17, MSS17, RKS12, WXL16, CLO16, TRA17].

Although these researches have produced impressive results in scenarios with relatively clean

background, the problem of estimating the 3D pose in a typical indoor scene with arbitrary

cluttered objects has rarely been discussed. Recently, Zanfir et al . [ZMS18] adopts con-

straints of ground plane support and volume occupancy by multiple people, but the detailed

relations between human and scene (objects and layout) are still missing. In contrast, the

proposed model not only estimates the 3D poses of multiple people with an absolute scale

but also models the physical relations between humans and 3D scenes.

Single-view 3D Scene Reconstruction. Single-view 3D scene reconstruction has

three main approaches: (i) Predict room layouts by extracting geometric features to rank

3D cuboids proposals [ZLH17, SYZ17, ISS17]. (ii) Align object proposals to RGB or depth

image by treating objects as geometric primitives or CAD models [BRG16, SX14, ZLX14].

(iii) Joint estimation of the room layout and 3D objects with contexts [SYZ17, ZZ13, CCP13,

ZSY17, ZLH17]. A more recent work by Huang et al . [HQZ18] models the hierarchical

structure, latent human context, physical constraints, and jointly optimizes in an analysis-

by-synthesis fashion. Although human context and functionality were taken into account,

indoor scene reconstruction with human poses and HOI remains untouched.

Human-Object Interaction. Reasoning fine-grained human interactions with objects

are essential for a more holistic indoor scene understanding as it provides important cues

for human activities and physical interactions. There have been a great deal of work in

robotics and computer vision that exploits human-object relations in event, object and scene

modeling, but most work focuses on human-object relation detection in image space [CLL18,

QWJ18, ML16, KRK11], probabilistic modeling from multiple data sources [WZZ13, SCH14,

GKD09], and snapshots generation or scene synthesis [SCH16, MLZ16, QZH18, JQZ18].
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Different from all previous work, we use the learned 3D HOI priors to refine the relative

spatial relations between human and scene, enabling a top-down prediction of interacted

objects.

Physical Commonsense The ability to infer hidden physical properties is a well estab-

lished human cognitive ability [KHL17]. By exploiting the underlying physical properties

of scenes and objects, recent efforts have demonstrated the capability of estimating both

current and future dynamics of static scenes [WYL15, MBR16] and objects [ZZZ15], under-

standing the support relationships and stability of objects [ZZY13], volumetric and occlusion

reasoning [SHK12, ZZY15], inferring the hidden force [ZJZ16], and reconstructing the 3D

scene [HQX18, DLB18] and 3D pose [ZMS18]. In addition to the physical properties and

support relations among objects adopted in previous methods, we further model the physical

relations (i) between human and objects, and (ii) between human and room layout, resulting

in a physically plausible and stable scene.

2.2 Representation of the Scene

We represent the configuration of an indoor scene by a parse graph pg = (pt, E) as shown

in Figure 2.1. It combines a parse tree pt and contextual relations E among the leaf nodes.

Here pt = (V,R) and we denote V = Vr ∪ Vm ∪ Vt the vertex set and R the decomposing

rules. The tree has three levels. The first level is the root node Vr that represents the scene,

and the second level Vm has three nodes (objects, human, and room layout). The third level

(terminal nodes Vt) contains child nodes of the second level nodes, representing the detected

instances of the parent node in this scene. E ⊂ Vt × Vt is the set of contextual relations

among the terminal nodes, represented by horizontal links.

Terminal Nodes Vt in pg can be further decomposed as Vt = Vlayout ∪ Vobject ∪ Vhuman:

• The room layout v ∈ Vlayout is represented by a 3D bounding box XL ∈ R3×8 in the world

coordinate. The 3D bounding box is parametrized by the node’s attributes, including its

3D size SL ∈ R3, center CL ∈ R3, and orientation Rot(θL) ∈ R3×3. See the supplementary

for the parametrization of the 3D bounding box.
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• Each 3D object v ∈ Vobject is represented by a 3D bounding box with its semantic label.

We keep the same parameterization of the 3D bounding box as the one for room layout.

• Each human v ∈ Vhuman is represented by 17 3D joints XH ∈ R3×17 with their action

labels. These 3D joints are parametrized by the pose scale SH ∈ R, pose center (i.e.,

hip) CH ∈ R3, local joint position RelH ∈ R3×17, and pose orientation Rot(θH) ∈ R3×3.

Each person is also attributed by a concurrent action label a, which is a multi-hot vector

representing the current actions of this person: one can “sit” and “drink”, or “walk” and

“make phone call” at the same time.

Contextual Relations E contains three types of relations in the scene E = {Es, Ec, Ehoi}.

Specifically:

• Es and Ec denote support relation and physical collision, respectively. These two relations

penalize the physical violations among objects, between objects and layout, and between

human and layout, resulting in a physically plausible and stable prediction.

• Ehoi models HOI and gives us more constraints to reconstruct 3D from 2D. For instance,

if a person is detected as sitting on the chair, we can constrain the relative 3D positions

between this person and chair using a pre-learned spatial relation of “sitting”.

2.3 Probabilistic Formulation

The parse graph pg is a comprehensive interpretation of the observed image I. The goal of

the holistic++ scene understanding is to infer the optimal parse graph pg∗ given I by a MAP

estimation:

pg∗ = arg max
pg

p(pg|I) = arg max
pg

p(pg) · p(I|pg)

= arg max
pg

1

Z
exp{−Ephy(pg)− Ehoi(pg)− E(I|pg)},

(2.1)

We model the joint distribution by a Gibbs distribution, where the prior probability of parse

graph can be decomposed into physical prior and HOI prior.

Physical Prior Ephy(pg) represents physical commonsense in a 3D scene. We consider

two types of physical relations among the terminal nodes: support relation Es and collision

relation Ec. Therefore, the energy of physical prior is defined as Ephy(pg) = λsEs(pg) +
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λcEc(pg), where λs and λc are balancing factors. Specifically:

• Support Relation Es(pg) defines the energy between the supported object/human and the

supporting object/layout:

Es(pg) =
∑

(vi,vj)∈Es

Eo(vi, vj) + Eheight(vi, vj), (2.2)

where Eo(vi, vj) = 1 − area(vi ∩ vj)/area(vi) is the overlapping ratio in the xy-plane, and

Eheight(vi, vj) is the absolute height difference between the lower surface of the supported

object vi and the upper surface of the supporting object vj. We define

Eo(vi, vj) = Eheight(vi, vj) = 0

if the supporting object is floor or wall.

• Physical Collision Ec(pg) denotes the physical violations. We penalize the intersection

among human, objects, and room layout except the objects in HOI and objects that could

be a container. The potential function is defined as:

Ec(pg) =
∑
C(v, Vlayout)

v∈(Vobject∪Vhuman)

+
∑
C(vi, vj)

vi∈Vobject

vj∈Vhuman

(vi,vj)/∈Ehoi

+
∑
C(vi, vj)

vi,vj∈Vobject

vi,vj /∈Vcontainer

, (2.3)

where C() denotes the volume of intersection between entities. Vcontainer denotes the objects

that can be a container, such as a cabinet, desk, and drawer.

Human-object Interaction Prior Ehoi(pg) is defined on the interactions between hu-

man and objects:

Ehoi(pg) =
∑

(vi,vj)∈Ehoi

K(vi, vj, avj), (2.4)

where vi ∈ Vobject, vj ∈ Vhuman, and K is an HOI function that evaluates the interaction

between an object and a human given the action label a:

K(vi, vj, avj) = − log l(vi, vj|avj), (2.5)
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where l(vi, vj|avj) is the likelihood of the relative position between node vi and vj given an

action label a, and λa the balancing factor. We formulate the action detection as a multi-

label classification; see subsection 2.5.3 for details. The likelihood l(·) models the distance

between key joints and the center of the object; e.g ., for “sitting”, it models the relative

spatial relation between the hip and the center of a chair. The likelihood can be learned

from 3D HOI datasets with a multivariate Gaussian distribution (∆x,∆y,∆z) ∼ N3(µ,Σ),

where ∆x,∆y, and ∆z are the relative distances in the directions of three axes.

Likelihood E(I|pg) characterizes the consistency between the observed 2D image and

the inferred 3D result. The projected 2D object bounding boxes and human poses can be

computed by projecting the inferred 3D objects and human poses onto a 2D image plane.

The likelihood is obtained by comparing the directly detected 2D bounding boxes and human

poses with projected ones from inferred 3D results:

E(I|pg) =
∑

λo
v∈Vobject

·Do(B(v), B′(v)) +
∑

λh
v∈Vhuman

·Dh(Po(v), Po′(v)), (2.6)

where B() and B′() are the bounding boxes of detected and projected 2D objects, Po() and

Po′() the poses of detected and projected 2D humans, Do(·) the IoU between the detected

2D bounding box and the convex hull of the projected 3D bounding box, and Dh(·) the

average pixel-wise Euclidean distance between two 2D poses.

2.4 SHADE Dataset

We collect SHADE (Synthetic Human Activities with Dynamic Environment), a self anno-

tated dataset that consists of dynamic 3D human skeletons and objects, to learn the prior

model for each HOI. It is collected from a video game Grand Theft Auto V with various daily

activities and HOIs. Currently, there are over 29 million frames of 3D human poses, where

772,229 frames are annotated. On average, each annotated frame is associated with 2.03

action labels and 0.89 HOIs. There are 19 different HOI relation categories in the dataset;

we choose 6 that usually occur in indoor scenes. Figure 2.2 shows some typical examples

and relations in the dataset.
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Figure 2.2: Examples of typical HOIs and examples from the SHADE dataset. The heatmap
indicates the probable locations of HOI.

2.5 Joint Inference

Given a single RGB image as the input, the goal of joint inference is to find the optimal

parse graph that maximizes the posterior probability p(pg|I). The joint parsing is a four-step

process: (i) 3D scene initialization of the camera pose, room layout, and 3D object bounding

boxes, (ii) 3D human pose initialization that estimates rough 3D human poses in a 3D scene,

(iii) concurrent action detection, and (iv) joint inference to optimize the objects, layout, and

human poses in 3D scenes by maximizing the posterior probability.

2.5.1 3D Scene Initialization

Following [HQX18], we initialize the 3D objects, room layout, and camera pose cooperatively,

where the room layout and objects are parametrized by 3D bounding boxes. For each object

vi ∈ Vobject, we find its supporting object/layout by minimizing the supporting energy:

v∗j = arg min
vj

Eo(vi, vj) + Eheight(vi, vj)− λs log pspt(vi, vj), (2.7)
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where vj ∈ (Vobject, Vlayout) and pspt(vi, vj) are the prior probabilities of the supporting relation

modeled by multinoulli distributions, and λs a balancing constant.

2.5.2 3D Human Pose Initialization

We take 2D poses as the input and predict 3D poses in a local 3D coordinate follow-

ing [TRA17], where the 2D poses are detected and estimated by [CSW17]. The local 3D

coordinate is centered at the human hip joint, and the z-axis is aligned with the up direction

of the world coordinate. To transform this local 3D pose into the world coordinate, we find

the 3D world coordinate v3D ∈ R3 of one visible 2D joint v2D ∈ R2 (e.g ., head) by solving

a linear equation with the camera intrinsic parameter K and estimated camera pose R. Per

the pinhole camera projection model, we have

α

v2D

1

 = K ·R · v3D, (2.8)

where α is a scaling factor in the homogeneous coordinate. To make the function solvable,

we assume a pre-defined height h0 for the joint position v3D in the world coordinate. Lastly,

the 3D pose initialization is obtained by aligning the local 3D pose and the corresponding

joint position with v3D.

2.5.3 Concurrent Action Detection

We formulate the concurrent action detection as a multi-label classification problem to ease

the ambiguity in describing the action. We define a portion of the action labels (e.g .,

“eating”, “making phone call”) as the HOI labels, and the remaining action labels (e.g .,

“standing”, “bending”) as general human poses without HOI. The mixture of HOI actions

and non-HOI actions covers most of the daily human actions in indoor scenes. We manually

map each of the HOI action labels to a 3D HOI relation learned from the SHADE dataset,

and use the HOI actions as cues to improve the accuracy of 3D reconstruction by integrating

it as prior knowledge in our model. The concurrent action detector takes 2D skeletons as the

input and predicts multiple action labels with a three-layer multi-layer perceptron (MLP).
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Algorithm 1 Joint Inference Algorithm

Given: Image I, initialized parse graph pginit
procedure Phase 1

for Different temperatures do
Inference with physical commonsense Ephy but without HOI Ehoi: randomly select
from room layout, objects, and human poses to optimize pg

procedure Phase 2
Match each agent with their interacting objects

procedure Phase 3
for Different temperatures do

Inference with total energy E , including physical commonsense and HOI: randomly
select from layout, objects, and human poses to optimize pg

procedure Phase 4
Top-down sampling by HOIs

The dataset for training the concurrent action detectors consists of both synthetic data

and real-world data. It is collected from: (i) The synthetic dataset described in section 2.4.

We project the 3D human poses of different HOIs into 2D poses with random camera poses.

(ii) The dataset proposed and collected by [JSL17], which also contains 3D poses of multiple

persons in social interactions. We project 3D poses into 2D using the same method as

(i). (iii) The 2D poses in an action recognition dataset [YJK11]. Our results show that

the synthetic data can significantly expand the training set and help to avoid overfitting in

concurrent action detection.

2.5.4 Inference

Given an initialized parse graph, we use MCMC with simulated annealing to jointly optimize

the room layout, 3D objects, and 3D human poses through the non-differentiable energy

space; see 1 as a summary. To improve the efficiency of the optimization process, we adopt

a scheduling strategy that divides the optimization process into following four phases with

different focuses: (i) Optimize objects, room layout, and human poses without HOIs. (ii)

Assign HOI labels to each human in the scene, and search the interacting objects of each

human. (iii) Optimize objects, room layout, and human poses jointly with HOIs. (iv)

Generate possible miss-detected objects by top-down sampling.
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(a) Input (c) Step 30 (d) Step 60 (e) Step 90 (f) Step 120(b) Initialization (g) Final output

Figure 2.3: The optimization process of the scene configuration by simulated annealing MCMC.
Each step is the number of accepted proposal.

Dynamics. In Phase (i) and (iii), we use distinct MCMC processes. To traverse non-

differentiable energy spaces, we design Markov chain dynamics qo1, q
o
2, q

o
3 for objects, ql1, q

l
2 for

room layout, and qh1 , q
h
2 , q

h
3 for human poses.

• Object Dynamics: Dynamics qo1 adjusts the position of an object, which translates the

object center in one of the three Cartesian coordinate axes or along the depth direction. The

depth direction starts from the camera position and points to the object center. Translation

along depth is effective with proper camera pose initialization. Dynamics qo2 proposes rotation

of the object with a specified angle. Dynamics qo3 changes the scale of the object by expanding

or shrinking corner positions of the cuboid with respect to object center. Each dynamic can

diffuse in two directions: each object can translate in the direction of ‘+x’ and ‘−x,’ or

rotate in the direction of clockwise and counterclockwise. To better traverse in energy space,

the dynamics may propose to move along the gradient descent direction with a probability

of 0.95 or the gradient ascent direction with a probability of 0.05.

• Human Dynamics: Dynamics qh1 proposes to translate 3D human joints along x, y, z,

or depth direction. Dynamics qh2 is designed to rotate the human pose with a certain angle.

Dynamics qh3 adjusts the scale of human poses by a scaling factor on the 3D joints with

respect to the pose center.

• Layout Dynamics: Dynamics ql1 translates the wall towards or away from the layout

center. Dynamics ql2 adjusts the floor height, equivalent to change the camera height.

In each sampling iteration, the algorithm proposes a new pg′ from current pg under the

proposal probability of q(pg → pg′|I) by applying one of the above dynamics. The generated
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proposal is accepted with respect to an acceptance rate α(·) as in the Metropolis-Hastings

algorithm [Has70]:

α(pg → pg′) = min(1,
q(pg′ → pg) · p(pg′|I)

q(pg → pg′) · p(pg|I)
), (2.9)

A simulated annealing scheme is adopted to obtain pg with high probability.

Top-down sampling. By top-down sampling objects from HOIs, the proposed method

can recover the interacting 3D objects that are too small or novel to be detected by the

state-of-the-art 2D object detector. In Phase (iv), we propose to sample an interacting

object from the person if the confidence of HOI is higher than a threshold. Specifically,

we minimize the HOI energy in Equation 2.4 to determine the category and location of the

object; see examples in Figure 2.4.

Implementation Details. In Phase (ii), we search the interacting objects for each agent

involved in HOI by minimizing the energy in Equation 2.4. In Phase (iii), after matching

each agent with their interacting objects, we can jointly optimize objects, room layout,

and human poses with the constraint imposed by HOI. Figure 2.3 shows examples of the

simulated annealing optimization process.

2.6 Experiments

Since the proposed task is new and challenging, limited data and state-of-the-art methods

are available for the proposed problem. For fair evaluations and comparisons, we evaluate

(a) Input (b) 2D Detection (c) Initialization (d) Model Output

Figure 2.4: Illustration of the top-down sampling process. The object detection module misses the
detection of the bottle held by the person, but our model can still recover the bottle by reasoning
HOI.
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the proposed algorithm on three types of datasets: (i) Real data with full annotation on

PiGraphs dataset [SCH16] with limited 3D scenes. (ii) Real data with partial annotation

on daily activity dataset Watch-n-Patch [WZS15], which only contains ground-truth depth

information and annotations of 3D human poses. (iii) Synthetic data with generated anno-

tations to serve as the ground truth: we sample 3D human poses of various activities in SUN

RGB-D dataset [SLX15] and project the sampled skeletons back onto the 2D image plane.

2.6.1 Comparative methods

To the best of our knowledge, no previous algorithm jointly optimizes the 3D scene and 3D

human pose from a single image. Therefore, we compare our model against state-of-the-art

methods for each task. Particularly, we compare with [HQX18] for single-image 3D scene

reconstruction and VNect [MSS17] for 3D pose estimation in the world coordinate.

Since VNect can only estimate a single person during the estimation, we also design an ad-

ditional baseline for multi-person 3D human pose estimation in the world coordinate. We first

extract a 2048-D image feature vector using the Global Geometry Network (GGN) [HQX18]

to capture the global geometry of the scene. The concatenated vector (GGN image feature,

2D pose, 3D pose in the local coordinate, and the camera intrinsic matrix) is then fed into

a 5-layer fully connected network to predict the 3D pose. The fully-connected layers are

trained using the mean squared error loss. We train the network on the training set of the

synthetic SUN RGB-D dataset. Please refer to supplementary materials for more details of

the baseline model.

2.6.2 Dataset

PiGraphs [SCH16] contains 30 scenes and 63 video recordings obtained by Kinect v2, de-

signed to associate human poses with object arrangements. There are 298 actions available in

approximately 2-hours of recordings. Each recording is about 2-minute long with an average

4.9 action annotation. We removed the frames without human appearance or annotations,

resulting in 36,551 test images.

Watch-n-Patch (WnP) [WZS15] is an activity video dataset recorded by Kinect v2. It
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Figure 2.5: Augmenting SUN RGB-D with synthetic human poses.

contains several human daily activities as compositions of multiple actions interacting with

various objects. The dataset comes with activity annotations, depth maps, and 3D human

poses by Kinect. We test our algorithm on 1,210 randomly selected frames.

SUN RGB-D [SLX15] contains rich indoor scenes that are densely annotated with 3D

bounding boxes, room layouts, and camera poses. The original dataset has 5,050 testing

images, but we discarded images with no detected 2D objects, invalid 3D room layout an-

notation, limited space, or small field of view, resulting in 3,476 testing images.

Synthetic SUN RGB-D is an augmented SUN RGB-D dataset by sampling human

poses in the scenes. Following methods of sampling imaginary human poses in [HQZ18],

we extend the sampling to more generalized settings for various poses. The augmented

human is represented by a 6-tuple 〈a, µ, t, r, s, µ̂〉, where a is the action type, µ the pose

template, t translation, r rotation, s scale, and µ̂ = µ · r · s+ t the imagined human skeleton.

For each action label, we sample an imagined human pose inside a 3D scene: 〈t∗, r∗, s∗〉 =

arg min
t,r,s

Ephy +Ehoi. If a is involved with any HOI unit, we further augment the 3D bounding

box of the object. After sampling a human pose, we project the augmented 3D scenes

back onto the 2D image plane using the ground truth camera matrix and camera pose; see

examples in Figure 2.5. For a fair comparison of 3D human pose estimation on synthetic

SUN RGB-D, all the algorithms are provided with the ground truth 2D skeletons as the

input.
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For 3D scene reconstruction, both [HQX18] and the proposed 3D scene initialization are

learned using SUN RGB-D training data and tested on the above three datasets. For 3D

pose estimation, both [MSS17] and the initialization of the proposed method are trained on

public datasets, while the baseline is trained on synthetic SUN RGB-D. Note that we only

use the SHADE dataset for learning a dictionary of HOIs.

2.6.3 Quantitative and Qualitative Results

We evaluate the proposed model on holistic++ scene understanding task by comparing the

performances on both 3D scene reconstruction and 3D pose estimation.

Scene Reconstruction: We compute the 3D IoU and 2D IoU of object bounding boxes

to evaluate the 3D scene reconstruction and the consistency between 3D world and 2D image.

Following the metrics [HQX18], we compute the 3D IoU between the estimated 3D bounding

boxes and the annotated 3D bounding boxes on PiGraphs and SUN RGB-D. For dataset

without ground-truth 3D bounding boxes (i.e., Watch-n-Patch), we evaluate the distance

between the camera center and the 3D object center. To evaluate the 2D-3D consistency,

the 2D IoU is computed between the projected 2D boxes of the 3D object bounding boxes

and the ground-truth 2D boxes or detected 2D boxes (i.e., Watch-n-Patch). As shown

in Table 2.1, the proposed method improves the state-of-the-art 3D scene reconstruction

results on all three datasets without specific training on each of them. More importantly, it

significantly improves the results on PiGraphs and Watch-n-Patch compared with [HQX18].

The most likely reason is [HQX18] is trained on SUN RGB-D dataset in a purely data-

driven fashion, therefore difficult to generalize across to other datasets (i.e., PiGraphs, and

Watch-n-Patch). In contrast, the proposed model incorporates more general prior knowledge

of HOI and physical commonsense, and combined such knowledge with 2D-3D consistency

(likelihood) for joint inference, avoiding the over-fitting caused by the direct 3D estimation

from 2D. Figure 2.6 shows the qualitative results on all three datasets.

Pose Estimation: We evaluate the pose estimation in both 3D and 2D. For 3D evalua-

tion, we compute the Euclidean distance between the estimated 3D joints and the 3D ground

truth and average it over all the joints. For 2D evaluation, we project the estimated 3D pose
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Table 2.1: Quantitative Results of 3D Scene Reconstruction

Methods Huang et al . [HQX18] Ours
Metric 2D IoU (%) 3D IoU (%) Depth (m) 2D IOU (%) 3D IoU (%) Depth (m)

PiGraphs 68.6 21.4 - 75.1 24.9 -
SUN RGB-D 63.9 17.7 - 72.9 18.2 -

WnP - - 0.375 - - 0.162

Table 2.2: Quantitative Results of Global 3D Pose Estimation

Methods VNect[MSS17] Baseline Ours
Metrics 2D (pix) 3D (m) 2D (pix) 3D (m) 2D (pix) 3D (m)

PiGraphs 63.9 0.732 284.5 2.67 15.9 0.472
SUNRGBD - - 45.81 0.435 14.03 0.517

WnP 50.51 0.646 325.2 2.14 20.5 0.330

Table 2.3: Ablative results of HOI on 3D object IoU (%), 3D pose estimation error (m), and
miss-detection rate (MR, %)

Methods w/o hoi Full model
HOI Type Object ↑ Pose ↓ MR ↓ Object ↑ Pose ↓ MR ↓

Sit 26.9 0.590 15.2 27.8 0.521 13.1
Hold 17.4 0.517 78.9 17.6 0.490 54.6

Use Laptop 14.1 0.544 58.8 15.0 0.534 43.3
Read 14.5 0.466 65.3 14.3 0.453 41.9

back to 2D image plane and compute the pixel distance against ground truth. Quantitative

results are shown in Table 2.2. The proposed method outperforms two other methods in

both 2D and 3D. On the synthetic SUN RGB-D dataset, all algorithms are given the ground

truth 2D poses as the input for fair comparison. Although the baseline model achieves

better performances since the 3D human poses are synthesized with limited templates and

the baseline model fits it well, the 3D poses estimated by VNect and baseline model de-

viate a lot from the ground truth for datasets with real human poses (i.e., PiGraph, and

Watch-n-Patch). In contrast, the proposed algorithm still performs well, demonstrating an

outstanding generalization ability across various datasets.

Ablative Analysis to analyze the contributions of HOI and physical commonsense

by comparing two variants of the proposed full model: (i) model w/o HOI: without HOI

Ehoi(pg), and (ii) model w/o phy.: without physical commonsense Ephy(pg).
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Input Initialization(2D) Initialization(3D)3D Ground Truth Result(2D) Result(3D)
(C) Synthetic SUN RGB-D

(A) PiGraphs

(B) Watch-n-Patch

Figure 2.6: Qualitative results of the proposed method on three datasets. The proposed model
improves the initialization with accurate spatial relations and physical plausibility and demonstrates
an outstanding generalization across various datasets.

Human-Object Interaction. We compare our full model with model w/o hoi to evaluate

the effects of each category of HOI. Evaluation metrics include 3D pose estimation error,

3D bounding box IoU, and miss-detection rate (MR) of the objects interacted with agents.

The experiments are conducted on PiGraphs dataset and Synthetic SUN RGB-D dataset

with the annotated HOI labels. As shown in Table 2.3, the performances of both scene

reconstruction and human pose estimation are hindered without reasoning HOI, indicating

HOI helps to infer the relative spatial relationship between humans and interacted objects to

further improve the performance of both two tasks. Moreover, a marked performance gain

of miss-detection rate implies the effectiveness of the top-down sampling process during the

joint inference.

Physical Commonsense. Reasoning about physical commonsense drives the reconstructed
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Figure 2.7: Qualitative comparison between (a) model w/o phy. and (b) the full model on PiGraphs
dataset.

3D scene to be physically plausible and stable. We tested 3D estimation of object bounding

boxes on the PiGraphs dataset using w/o phy. and the full model. The full model out-

performs w/o phy. from two aspects: (i) 3D object detection IoU (from 23.5% to 24.9%),

and (ii) physical violation (from 0.223m to 0.150m). The physical violation is computed as

the distance between the lower surface of an object and the upper surface of its supporting

object. The qualitative comparisons are shown in Figure 2.7. Objects detected by model

w/o phy. may float in the air or penetrate each other, while the full model yields physically

plausible results.

2.7 Conclusion

This work tackles a challenging holistic++ scene understanding problem to jointly solve 3D

scene reconstruction and 3D human pose estimation from a single RGB image. By incorpo-

rating physical commonsense and reasoning about HOI, our approach leverages the coupled

nature of these two tasks and goes beyond merely reconstructing the 3D scene or human pose

by reasoning about the concurrent action of human in the scene. We design a joint inference

25



algorithm which traverses the non-differentiable solution space with MCMC and optimizes

the scene configuration. Experiments on PiGraphs, Watch-n-Patch, and Synthetic SUN

RGB-D demonstrate the efficacy of the proposed algorithm, and the general prior knowledge

of HOI and physical commonsense.
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Figure 2.8: More results
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Figure 2.9: More results
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CHAPTER 3

Scene-centric Joint Parsing of Cross-view Videos

3.1 Introduction

During the past decades, remarkable progress has been made in many vision tasks, e.g., image

classification, object detection, pose estimation. Recently, more comprehensive visual tasks

probe deeper understanding of visual scenes under interactive and multi-modality settings,

such as visual Turing tests [GGH15, QWL15] and visual question answering [AAL15]. In ad-

dition to discriminative tasks focusing on binary or categorical predictions, emerging research

involves representing fine-grained relationships in visual scenes [KZG17, ABY16] and unfold-

ing semantic structures in contexts including caption or description generation [YYL10], and

question answering [TML14, ZGB16].

In this work, we present a framework for uncovering the semantic structure of scenes in

a cross-view camera network. The central requirement is to resolve ambiguity and establish

cross-reference among information from multiple cameras. Unlike images and videos shot

from single static point of view, cross-view settings embed rich physical and geometry con-

straints due to the overlap between fields of views. While multi-camera setups are common

in real-word surveillance systems, large-scale cross-view activity dataset are not available

due to privacy and security reasons. This makes data-demanding deep learning approaches

infeasible.

Our joint parsing framework computes a hierarchy of spatio-temporal parse graphs by

establishing cross-reference of entities among different views and inferring their semantic

attributes from a scene-centric perspective. For example, Fig. 3.1 shows a parse graph

hierarchy that describes a scene where two people are playing a ball. In the first view,
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Figure 3.1: An example of the spatio-temporal semantic parse graph hierarchy in a visual scene
captured by two cameras.

30



person 2’s action is not grounded because of the cluttered background, while it is detected

in the second view. Each view-centric parse graph contains local recognition decisions in an

individual view, and the scene centric parse graph summaries a comprehensive understanding

of the scene with coherent knowledge.

The structure of each individual parse graph fragment is induced by an ontology graph

that regulates the domain of interests. A parse graph hierarchy is used to represent the

correspondence of entities between the multiple views and the scene. We use a probabilistic

model to incorporate various constraints on the parse graph hierarchy and formulate the

joint parsing as a MAP inference problem. A MCMC sampling algorithm and a dynamic

programming algorithm are used to explore the joint space of scene-centric and view-centric

interpretations and to optimize for the optimal solutions. Quantitative experiments show

that scene-centric parse graphs outperforms the initial view-centric proposals.

Contributions. The contributions of this work are three-fold: (i) a unified hierarchical

parse graph representation for cross-view person, action, and attributes recognition; (ii) a

stochastic inference algorithm that explores the joint space of scene-centric and view-centric

interpretations efficiently starting with initial proposals; (iii) a joint parse graph hierarchy

that is an interpretable representation for scene and events.

3.2 Related Work

Our work is closely related to three research areas in computer vision and artificial intelli-

gence.

Multi-view video analytics. Typical multi-view visual analytics tasks include ob-

ject detection [LS10a, UB11a], cross-view tracking [BFT11a, LPR12, XLL16, XLQ17], ac-

tion recognition [WNX14], person re-identification [XLZ13, XMH14] and 3D reconstruc-

tion [HWR13a]. While heuristics such as appearances and motion consistency constraints

have been used to regularize the solution space, these methods focus on a specific multi-view

vision task whereas we aim to propose a general framework to jointly resolve a wide variety

of tasks.
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Figure 3.2: An illustration of the proposed ontology graph describing objects, parts, actions and
attributes.

Semantic representations. Semantic and expressive representations have been devel-

oped for various vision tasks, e.g., image parsing [HZ09], 3D scene reconstruction [LZZ14,

PBH13], human-object interaction [KS16], pose and attribute estimation [WZZ16]. In this

work, our representation also falls into this category. The difference is that our model is de-

fined upon cross-view spatio-temporal domain and is able to incorporate a variety of tasks.

Interpretability. Automated generation of explanations regarding predictions has a

long and rich history in artificial intelligence. Explanation systems have been developed for

a wide range of applications, including simulator actions [VFM04, LCV05, CLV06], robot

movements [LCC12], and object recognition in images [BM14, HAR16]. Most of these ap-

proaches are rule-based and suffer from generalization across different domains. Recent

methods including [RSG16] use proxy models or data to interpret black box models, while

our scene-centric parse graphs are explicit representations of the knowledge by definition.

32



Scene

ḡ𝑡−1
(2)

Time

View-centric

trunk

hood

door

vehicle

𝑔𝑡−1 𝑔𝑡 𝑔𝑡+1

ḡ𝑡−1
(1)

ḡ𝑡−1
(3)

ḡ𝑡
(2)

ḡ𝑡
(1)

ḡ𝑡
(3)

ḡ𝑡+1
(2)

ḡ𝑡+1
(1)

ḡ𝑡+1
(3)

Scene-centric

t-1 t+1

lower bodytorso

long sleeves
long 
hair

head

person

jeans

male

moving

lower bodytorso

long sleeves

long 
hair

head

person

jeans

male

moving
lower body

torso

long sleeves
long 
hair

head

person

jeans

female

moving

moving

closed open closed
lower bodytorso

T-shirt
short 
hair

head

person

shorts

female

moving

driving

trunk

hood

door

vehicle

lower 
body

torso

long 
sleeves

long 
hair

head

person

jeans

male

moving

moving

closed open closed

lower bodytorso

T-shirtshort hair

head

person

shorts

female

moving

driving
trunk

hood

door

vehicle

moving

closed openclosed

driving
running

running

driving

t

Figure 3.3: The proposed spatio-temporal parse graph hierarchy. (Better viewed electronically and
zoomed).

3.3 Representation

A scene-centric spatio-temporal parse graph represents humans, their actions and attributes,

interaction with other objects captured by a network of cameras. We will first introduce the

concept of ontology graph as domain definitions, then we will describe parse graphs and

parse graph hierarchy as view-centric and scene-centric representations respectively.

Ontology graph. To define the scope of our representation on scenes and events, an

ontology is used to describe a set of plausible objects, actions and attributes. We define an

ontology as a graph that contains nodes representing objects, parts, actions, attributes re-

spectively and edges representing the relationships between nodes. Specifically, every object

and part node is a concrete type of object that can be detected in videos. Edges between

object and part nodes encodes “part-of” relationships. Action and attribute nodes connected

to an object or part node represent plausible actions and appearance attributes the object

can take. For example, Fig. 3.2 shows an ontology graph that describes a domain including

people, vehicles, bicycles. An object can be decomposed into parts (i.e., green nodes), and

enriched with actions (i.e., pink nodes) and attributes (i.e., purple diamonds). The red edges

among action nodes denote their incompatibility. The ontology graph can be considered a

compact AOG [LZZ14, WZZ16] without the compositional relationships and event hierarchy.

In this work, we focus on a restricted domain inspired by [QWL15], while larger ontology

graphs can be easily derived from large-scale visual relationship datasets such as [KZG17]
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and open-domain knowledge bases such as [LS04].

Parse graphs. While an ontology describes plausible elements, only a subset of these

concepts can be true for a given instance at a given time. For example, a person cannot

be both “standing” and “sitting” at the same time, while both are plausible actions that a

person can take. To distinguish plausible facts and satisfied facts, we say a node is grounded

when it is associated with data. Therefore, a subgraph of the ontology graph that only

contains grounded nodes can be used to represent a specific instance (e.g. a specific person)

at a specific time. In this work, we refer to such subgraphs as parse graphs.

Parse graph hierarchy. In cross-view setups, since each view only captures an incom-

plete set of facts in a scene, we use a spatio-temporal hierarchy of parse graphs to represent

the collective knowledge of the scene and all the individual views. To be concrete, a view-

centric parse graph g̃ contains nodes grounded to a video sequence captured by an individual

camera, whereas a scene-centric parse graph g is an aggregation of view-centric parse graphs

and therefore reflects a global understanding of the scene. As illustrated in Fig. 3.3, for

each time step t, the scene-centric parse graph gt is connected with the corresponding view-

centric parse graphs g̃
(i)
t indexed by the views, and the scene-centric graphs are regarded as

a Markov chain in the temporal sequence. In terms of notations, in this work we use a tilde

notation to represent the view-centric concepts x̃ corresponding to scene-centric concepts x.

3.4 Probabilistic Formulation

The task of joint parsing is to infer the spatio-temporal parse graph hierarchy

G = 〈Φ, g, g̃(1), g̃(2), . . . , g̃(M)〉

from the input frames from video sequences I = {I(i)t } captured by a network of M cameras ,

where Φ is an object identity mapping between scene-centric parse graph g and view-centric

parse graphs g̃(i) from camera i. Φ defines the structure of parse graph hierarchy. In this

section, we discuss the formulation assuming a fixed structure, while defer the discussion of

how to traverse the solution space to section 3.5.
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We formulate the inference of parse graph hierarchy as a MAP inference problem in a

posterior distribution p(G|I) as follows

G∗ = arg max
G

p(I|G) · p(G). (3.1)

Likelihood. The likelihood term models the grounding of nodes in view-centric parse

graphs to the input video sequences. Specifically,

p(I|G) =
M∏
i=1

T∏
t=1

p(I
(i)
t |g̃

(i)
t )

=
M∏
i=1

T∏
t=1

∏
v∈V (g̃

(t)
i )

p(I(v)|v),

(3.2)

where g̃
(i)
t is the view-centric parse graph of camera i at time t and V (g̃

(i)
t ) is the set of nodes

in the parse graph. p(I(v)|v) is the node likelihood for the concept represented by node v

being grounded on the data fragment I(v). In practice, this probability can be approximated

by normalized detection and classifications scores [PRF11].

Prior. The prior term models the compatibility of scene-centric and view-centric parse

graphs across time. We factorize the prior as

p(G) =p(g1)
T−1∏
t=1

p(gt+1|gt)
M∏
i=1

T∏
t=1

p(g̃
(i)
t |gt), (3.3)

where p(g1) is a prior distribution on parse graphs that regulates the combination of nodes,

and p(gt|gt−1) is a transitions probability of scene-centric parse graphs across time. Both

probability distributions are estimated from training sequences. p(g̃
(i)
t |gt) is defined as a

Gibbs distribution that models the compatibility of scene-centric and view-centric parse
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graphs in the hierarchy (we drop subscripts t and camera index i for brevity).

p(g̃|g) =
1

Z
exp{−E(g, g̃)}

=
1

Z
exp{−w1ES(g, g̃)− w2EA(g, g̃)

− w3EAct(g, g̃)− w4EAttr(g, g̃)},

(3.4)

where energy E(g, g̃) is decomposed into four different terms described in detail in the sub-

section below. The weights are tuning parameters that can be learned via cross-validation.

We consider view-centric parse graphs for videos from different cameras are independent

conditioned on scene-centric parse graph under the assumption that all cameras have fixed

and known locations.

3.4.1 Cross-view Compatibility

In this subsection, we describe the energy function E(g, g̃) for regulating the compatibility

between the occurrence of objects in the scene and an individual view from various aspects.

Note that we use a tilde notation to represent the node correspondence in scene-centric and

view-centric parse graphs (i.e., for a node v ∈ g in a scene-centric parse graph, we refer to

the corresponding node in a view-centric parse graph as ṽ).

Appearance similarity. For each object node in the parse graph, we keep an appear-

ance descriptor. The appearance energy regulates the appearance similarity of object o in

the scene-centric parse graph and õ in the view-centric parse graphs.

EA(g, g̃) =
∑
o∈g

||(φ(o)− φ(õ)||2, (3.5)

where φ(·) is the appearance feature vector of the object. At the view-level, this feature

vector can be extracted by pre-trained convolutional neural networks; at the scene level, we

use a mean pooling of view-centric features.

Spatial consistency. At each time point, every object in a scene has a fixed physical

location in the world coordinate system while appears on the image plane of each camera
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according to the camera projection. For each object node in the parse graph hierarchy, we

keep a scene-centric location s(o) for each object o in scene-centric parse graphs and a view-

centric location s(õ) on the image plane in view-centric parse graphs. The following energy

is defined to enforce the spatial consistency:

ES(g, g̃) =
∑
o∈g

||s(o)− h(s(õ))||2, (3.6)

where h(·) is a perspective transform that maps a person’s view-centric foot point coordinates

to the world coordinates on the ground plane of the scene with the camera homography, which

can be obtained via the intrinsic and extrinsic camera parameters.

Action compatibility. Among action and object part nodes, scene-centric human ac-

tion predictions shall agree with the human pose observed in individual views from different

viewing angles:

EAct(g, g̃) =
∑
l∈g

− log p(l|p̃), (3.7)

where l is an action node in scene-centric parse graphs and p̃ are positions of all human

parts in the view-centric parse graph. In practice, we separately train a action classifier that

predicts action classes with joint positions of human parts and uses the classification score

to approximate this probability.

Attribute consistency. In cross-view sequences, entities observed from multiple cam-

eras shall have a consistent set of attributes. This energy term models the commonsense

constraint that scene-centric human attributes shall agree with the observation in individual

views:

EAttr(g, g̃) =
∑
a∈g

1(a 6= ã) · ξ, (3.8)

where 1(·) is an indicator function and ξ is a constant energy penalty introduced when the

two predictions mismatch.
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3.5 Inference

The inference process consists of two sub-steps: (i) matching object nodes Φ in scene-centric

and view-centric parse graphs (i.e. the structure of parse graph hierarchy) and (ii) estimating

optimal values of parse graphs {g, g̃(1), . . . , g̃(M)}.

The overall procedure is as follows: we first obtain view-centric objects, actions, and

attributes proposals from pre-trained detectors on all video frames. This forms the initial

view-centric predictions {g̃(1), . . . , g̃(M)}. Next we use a Markov Chain Monte Carlo (MCMC)

sampling algorithm to optimize the parse graph structure Φ. Given a fixed parse graph

hierarchy, variables within the scene-centric and view-centric parse graphs {g, g̃(1), . . . , g̃(M)}

can be efficiently estimated by a dynamic programming algorithm. These two steps are

performed iteratively until convergence.

3.5.1 Inferring Parse Graph Hierarchy

We use a stochastic algorithm to traverse the solution space of the parse graph hierarchy

Φ. To satisfy the detailed balance condition, we define three reversible operators Θ =

{Θ1,Θ2,Θ3} as follows.

Merging. The merging operator Θ1 groups a view-centric parse graph with an other

view-centric parse graph by creating a scene-centric parse graph that connects the two. The

operator requires the two operands to describe two objects of the same type either from

different views or in the same view but with non-overlapping time intervals.

Splitting. The splitting operator Θ2 splits a scene-centric parse graph into two parse

graphs such that each resulting parse graph only connects to a subset of view-centric parse

graphs.

Swapping. The swapping operator Θ3 swaps two view-centric parse graphs. One can

view the swapping operator as a shortcut of merging and splitting combined.

We define the proposal distribution q(G→ G′) as an uniform distribution. At each itera-

tion, we generate a new structure proposal Φ′ by applying one of the three operators Θi with

respect to probability 0.4, 0.4, and 0.2, respectively. The generated proposal is then accepted
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with respect to an acceptance rate α(·) as in the Metropolis-Hastings algorithm [MRR53]:

α(G→ G′) = min

(
1,
q(G′ → G) · p(G′|I)

q(G→ G′) · p(G|I)

)
, (3.9)

where p(G|I) the posterior is defined in Eqn. (3.1).

3.5.2 Inferring Parse Graph Variables

Given a fixed parse graph hierarchy, we need to estimate the optimal value for each node

within each parse graph. As illustrated in Fig. 3.3, for each frame, the scene-centric node gt

and the corresponding view-centric nodes g̃
(i)
t form a star model, and the whole scene-centric

nodes are regarded as a Markov chain in the temporal order. Therefore the proposed model

is essentially a Directed Acyclic Graph (DAG). To infer the optimal node values, we can

simply apply the standard factor graph belief propagation (sum-product) algorithm.

3.6 Experiments

3.6.1 Setup and Datasets

We evaluate our scene-centric joint-parsing framework in tasks including object detection,

multi-object tracking, action recognition, and human attributes recognition. In object de-

tection and multi-object tracking tasks, we compare with published results. In action recog-

nition and human attributes tasks, we compare the performance of view-centric proposals

without joint parsing and scene-centric predictions after joint parsing as well as additional

baselines. The following datasets are used to cover a variety of tasks.

The CAMPUS dataset [XLL16] 1 contains video sequences from four scenes each cap-

tured by four cameras. Different from other multi-view video datasets focusing solely on

multi-object tracking task, videos in the CAMPUS dataset contains richer human poses and

activities with moderate overlap in the fields of views between cameras. In addition to the

tracking annotation in the CAMPUS dataset, we collect new annotation that includes 5

action categories and 9 attribute categories for evaluating action and attribute recognition.

1bitbucket.org/merayxu/multiview-object-tracking-dataset
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The TUM Kitchen dataset [TBB09]2 is an action recognition dataset that contains

20 video sequences captured by 4 cameras with overlapping views. As we only focusing

on the RGB imagery inputs in our framework, other modalities such as motion capturing,

RFID tag reader signals, magnetic sensor signals are not used as inputs in our experiments.

To evaluate detection and tracking task, we compute human bounding boxes from motion

capturing data by projecting 3D human poses to the image planes of all cameras using the

intrinsic and extrinsic parameters provided in the dataset. To evaluate human attribute

tasks, we annotate 9 human attribute categories for every subject.

In our experiments, both the CAMPUS and the TUM Kitchen datasets are used in all

tasks. In the following subsection, we present isolated evaluations.

3.6.2 Evaluation

Object detection & tracking. We use FasterRCNN [RHG15] to create initial object

proposals on all video frames. The detection scores are used in the likelihood term in

Eqn. (3.2). During joint parsing, objects which are not initially detected on certain views

are projected from object’s scene-centric positions with the camera matrices. After joint

parsing, we extract all bounding boxes that are grounded by object nodes from each view-

centric parse graph to compute multi-object detection accuracy (DA) and precision (DP).

Concretely, the accuracy measures the faction of correctly detected objects among all ground-

truth objects and the precision is computed as fraction of true-positive predictions among

all output predictions. A predicted bounding box is considered a match with a ground-truth

box only if the intersection over union (IoU) score is greater than 0.5. When more than

one prediction overlaps with a ground-truth box, only the one with the maximum overlap is

counted as true positive.

When extracting all bounding boxes on which the view-centric parse graphs are grounded

and grouping them according to the identity correspondence between different views, we

obtain object trajectories with identity matches across multiple videos. In the evaluation,

we compute four major tracking metrics: multi-object tracking accuracy (TA), multi-object

2ias.in.tum.de/software/kitchen-activity-data
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CAMPUS-S1 DA (%) DP (%) TA (%) TP (%) IDSW FRAG
Fleuret et al. 24.52 64.28 22.43 64.17 2269 2233
Berclaz et al. 30.47 62.13 28.10 62.01 2577 2553
Xu et al. 49.30 72.02 56.15 72.97 320 141
Ours 56.00 72.98 55.95 72.77 310 138

CAMPUS-S2 DA (%) DP (%) TA (%) TP (%) IDSW FRAG
Fleuret et al. 16.51 63.92 13.95 63.81 241 214
Berclaz et al. 24.35 61.79 21.87 61.64 268 249
Xu et al. 27.81 71.74 28.74 71.59 1563 443
Ours 28.24 71.49 27.91 71.16 1615 418

CAMPUS-S3 DA (%) DP (%) TA (%) TP (%) IDSW FRAG
Fleuret et al. 17.90 61.19 16.15 61.02 249 235
Berclaz et al. 19.46 59.45 17.63 59.29 264 257
Xu et al. 49.71 67.02 49.68 66.98 219 117
Ours 50.60 67.00 50.55 66.96 212 113

CAMPUS-S4 DA (%) DP (%) TA (%) TP (%) IDSW FRAG
Fleuret et al. 11.68 60.10 11.00 59.98 828 812
Berclaz et al. 14.73 58.51 13.99 58.36 893 880
Xu et al. 24.46 66.41 24.08 68.44 962 200
Ours 24.81 66.59 24.63 68.28 938 194

TUM Kitchen DA (%) DP (%) TA (%) TP (%) IDSW FRAG
Fleuret et al. 69.88 64.54 69.67 64.76 61 57
Berclaz et al. 72.39 63.27 72.20 63.51 48 44
Xu et al. 86.53 72.12 86.18 72.37 9 5
Ours 89.13 72.21 88.77 72.42 12 8

Table 3.1: Quantitative comparisons of multi-object tracking on CAMPUS and TUM Kitchen
datasets.
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Figure 3.4: Confusion matrices of action recognition on view-centric proposals (left) and scene-
centric predictions (right).

track precision (TP), the number of identity switches (IDSW), and the number of fragments

(FRAG). A higher value of TA and TP and a lower value of IDSW and FRAG indicate the

tracking method works better. We report quantitative comparisons with several published

methods [XLL16, BFT11a, FBL08] in Table 3.1. From the results, the performance measured

by tracking metrics are comparable to published results. We conjecture that the appearance

similarity is the main drive for establish cross-view correspondence while additional semantic

attributes proved limited gain to the tracking task.
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Action recognition. View-centric action proposals are obtained from a fully-connected

neural network with 5 hidden layers and 576 neurons which predicts action labels using hu-

man pose. For the CAMPUS dataset, we collect additional annotations for 5 human action

classes: Run, PickUp, PutDown, Throw, and Catch in total of 8,801 examples. For the TUM

Kitchen dataset, we evaluate on the 8 action categories: Reaching, TakingSomething, Low-

ering, Releasing, OpenDoor, CloseDoor, OpenDrawer, and CloseDrawer. We measure both

individual accuracies for each category as well as the overall accuracies across all categories.

Table 3.2 shows the performance of scene-centric predictions with view-centric proposals, and

two additional fusing strategies as baselines. Concretely, the baseline-vote strategy takes ac-

tion predictions from multiple views and outputs the label with majority voting, while the

baseline-mean strategy assumes equal priors on all cameras and outputs the label with the

highest averaged probability. When evaluating scene-centric predictions, we project scene-

centric labels back to individual bounding boxes and calculate accuracies following the same

procedure as evaluating view-centric proposals. Our joint parsing framework demonstrates

improved results as it aggregates marginalized decisions made on individual views while also

encourages solutions that comply with other tasks. Fig. 3.4 compares the confusion ma-

trix of view-centric proposals and scene-centric predictions after joint parsing for CAMPUS

dataset. To further understand the effect of multiple views, we break down classification

accuracies by the number of cameras where persons are observed (Fig. 3.5). Observing an

entity from more cameras generally leads to better performance, while too many conflicting

observations may also cause degraded performance. Fig. 3.6 shows some success and failure

examples.

Human attribute recognition. We follow the similar procedure as in the action

recognition case above. Additional annotations for 9 different types of human attributes are

collected for both CAMPUS and TUM Kitchen dataset. View-centric proposals and score

are obtained from an attribute grammar model as in [PNZ16]. We measure performance with

average precisions for each attribute categories as well as mean average precision (mAP) as

in human attribute literatures. Scene-centric predictions are projected to bounding boxes

in each views when calculating precisions. Table 3.3 shows quantitative comparisons be-
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Figure 3.5: The breakdown of action recognition accuracy according to the number of camera views
in which each entity is observed.

tween view-centric and scene-centric predictions. The same baseline fusing strategies as in

the action recognition task are used. The scene-centric prediction outperforms the original

proposals in 7 out of 9 categories while remains comparable in others. Notably, the CAM-

PUS dataset is harder than standard human attribute datasets because of occlusions, limited

scales of humans, and irregular illumination conditions.

3.6.3 Runtime

With initial view-centric proposals precomputed, for a 3-minute scene shot by 4 cameras con-

taining round 15 entities, our algorithm performs at 5 frames per second on average. With

further optimization, our proposed method can run in real-time. Note that although the

proposed framework uses a sampling-based method, using view-based proposals as initial-

ization warm-starts the sampling procedure. Therefore, the overall runtime is significantly

less than searching the entire solution space from scratch. For problems of a larger size,

more efficient MCMC algorithms may be adopted. For example, the mini-batch acceptance

testing technique [CSP16] has demonstrated several order-of-magnitude speedups.
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Figure 3.6: Success (1st row) and failure examples (2nd row) of view-centric (labels overlaid on the
images) and scene-centric predictions (labels beneath the images) of action and attribute recognition
tasks. For failure examples, true labels are in the bracket. “Occluded” means that the locations
of objects or parts are projected from scene locations and therefore no view-centric proposals are
generated. Better viewed in color.

3.7 Conclusion

We represent a joint parsing framework that computes a hierarchy of parse graphs which

represents a comprehensive understanding of cross-view videos. We explicitly specify various

constraints that reflect the appearance and geometry correlations among objects across mul-

tiple views and the correlations among different semantic properties of objects. Experiments

show that the joint parsing framework improves view-centric proposals and produces more

accurate scene-centric predictions in various computer vision tasks.

We briefly discuss advantages of our joint parsing framework and potential future direc-

tions from two perspectives.

3.7.0.1 Explicit Parsing

While the end-to-end training paradigm is appealing in many data-rich supervised learning

scenarios, as an extension, leveraging loosely-coupled pre-trained modules and exploring

commonsense constraints can be helpful when large-scale training data is not available or

too expensive to collect in practice. For example, many applications in robotics and human-

robot interaction domains share the same set of underlying perception units such as scene
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understanding, object recognition, etc. Training for every new scenarios entirely could end

up with exponential number of possibilities. Leveraging pre-trained modules and explore

correlation and constraints among them can be treated as a factorization of the problem

space. Therefore, the explicit joint parsing scheme allows practitioners to leverage pre-

trained modules and to build systems with an expanded skill set in a scalable manner.

3.7.0.2 Interpretable Interface.

Our joint parsing framework not only provides a comprehensive scene-centric understanding

of the scene, moreover, the sence-centric spatio-temporal parse graph representation is an

interpretable interface of computer vision models to users. In particular, we consider the

following properties an explainable interface shall have apart from the correctness of answers:

• Relevance: an agent shall recognize the intent of humans and provide information

relevant to humans’ questions and intents.

• Self-explainability : an agent shall provide information that can be interpreted by hu-

mans as how answers are derived. This criterion promotes humans’ trust on an intel-

ligent agent and enables sanity check on the answers.

• Consistency : answers provided by an agents shall be consistent throughout an interac-

tion with humans and across multiple interaction sessions. Random or non-consistent

behaviors cast doubts and confusions regarding the agent’s functionality.

• Capability : an explainable interface shall help humans understand the boundary of

capabilities of an agent and avoid blinded trusts.

Potential future directions include quantifying and evaluating the interpretability and user

satisfaction by conducting user studies.
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CHAPTER 4

Understanding False-Belief by Joint Inference of

Object States, Robot Knowledge, and Human

(False-)Beliefs

4.1 Introduction

Since its publication in 1985, the seminal Sally-Anne [BLF85] study has spawned a vast

research literature in developmental psychology regarding Theory of Mind (ToM); in par-

ticular, human’s social cognition in understanding false-belief —the ability to understand

other’s belief about the world may contrast with the true reality. A cartoon version of the

Sally-Anne test is shown in the left of Figure 4.1: Sally puts her marble in the box and left.

While Sally is out, Anne moves the marble from the box to a basket. The test would ask a

human participant where Sally would look for her marble when she is back. In this experi-

ment, the marble would still be inside the box according to Sally’s false-belief, even though

the marble is actually inside the basket. To answer this question correctly, a subject or an

algorithm should understand and disentangle the object state (observation from the current

frame), the (accumulated) knowledge, the belief of other agents, the ground-truth/reality of

the world, and most importantly, the concept of false-belief.

Previous study suggests that at the age of 4 years old, children start to develop the

capability to understand the concept of false-belief [GA88]. Such abilities to ascribe the

mental belief to the human mind, to differentiate belief from the physical reality, and even

to recognize false-belief and perform psychological reasoning, is a significant milestone in

the acquisition of ToM [Sar14, WP83]. Further research also suggests that the cognitive
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Figure 4.1: Left: Illustration of the classic Sally-Anne test [BLF85]. Middle and Right: Two
different types of false-belief scenarios in our dataset: belief test and helping test.

capability to understand human false-belief plays a vital role in helping to explain and

predict others’ behavior, as well as in motivating human’s pro-social helping and cooperative

behavior since early childhood [BCT09, Tom18, PRG18]. In fact, humans are found to be

ultra-cooperative both cognitively and motivationally stemming from the genetic trait, which

in turn also motivates taking and coordinating different belief perspectives simultaneously for

mental coordination and shared intentionality [Tom18]. Taking together, all these evidence

emerged from developmental psychology in the past few decades call for integrating such

socio-cognitive aspects into a modern anthropomorphic robot [BGB09].

In fact, false-belief is not rare in our daily life. Two examples are depicted in Figure 4.1:
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(i) Where does Bob think his cup1 is after Charlie put cup2 (visually identical to cup1) on

the table while Dave took cup1 away? (ii) Which milk box should Alice give to Bob if she

wants to help? The one closer to Bob but empty, or the one further to Bob but full?

Although such false-belief tasks are primal examples for social and cognitive intelligence,

current state-of-the-art intelligent systems are still facing challenges in acquiring such a

capability. One fundamental challenge is the lack of proper representation for modeling the

false-belief from visual input; it has to be able to handle the heterogeneous information of a

system’s current states, its accumulated knowledge, agent’s belief, and the reality/ground-

truth of the world. Without a unified representation, the information across all these domains

cannot be easily interpreted, and the cross-domain reasoning of the events is infeasible.

Largely due to this difficulty, prior work can only solve a sub-problem in understanding

false-belief. For instance, sensor fusion techniques are mainly used to obtain better state

estimation by filtering the measurements from multiple same or different sensors [LHL17].

Similarly, the Multiple View Tracking (MVT) in computer vision is designed to combine the

observations across camera views to better track an object. Visual cognitive reasoning (e.g .,

human intention/attention predictions [QHW17, FCW18, WLS18]) only targets to model

human mental states. These three lines of work are all crucial ingredients but developed

independently; a cross-domain unified representation is still largely missing.

In order to endow such an ability to understand the concept of false-belief to a robot

system, this work proposes to use a graphical model represented by a parse graph (pg) [ZM07]

to serve as the unified representation of a robot’s knowledge structure, fused knowledge across

all robots, and the (false-)beliefs of human agents. A pg is learned from the spatiotemporal

transition of humans and objects in the scene perceived by a robot in a distributed robot

system. A joint pg can be induced by merging and fusing the individual pg from each robot to

support inference for the human beliefs and object states. In particular, our system enables

the following three capabilities with increasing depth in cognition:

1. Tracking small objects with occlusions across different views. The objects in an indoor

environment (e.g ., cups) are usually small and have a similar appearance. Tracking such
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small objects are even more challenging due to frequent occlusions with human interac-

tions. Additionally, each robot’s camera view has minimal overlaps with others. The

proposed method can address such challenging multi-view multi-object tracking problem

by properly maintaining cross-view object states and robot knowledge using the unified

representation.

2. Inferring human beliefs. The state of an object normally does not change unless a human

interacts with it. By identifying the interactions between human and objects, our system

also supports the high-level cognitive capability; e.g ., knowing which object is interacted

with which person, whether a person knows the state of the object has been changed, etc.

3. Helping agents by recognizing false-belief. Giving the above object tracking and cognitive

reasoning of human beliefs, the proposed algorithm can further infer whether and why

the person has false-belief, thereby to better assist the person given a specific context.

4.1.1 Related Work

Multi-view Visual Analysis is widely applied to 3D reconstruction [HWR13b], object de-

tection [LS10b, UB11b], cross-view tracking [BFT11b, XLL16], and joint parsing [QXY18].

Built on top of these modules, Multiple Object Tracking (MOT) usually utilizes tracking-by-

detection techniques [XLL16, WLY14, DTT15, DSY17]. This line of work primarily focuses

on combining different camera views to obtain more comprehensive tracking of parsing re-

sults, lacking the capability of cognitive reasoning and human (false-)belief understanding.

Visual Cognitive Reasoning is an emerging field in computer vision. Related work

includes predicting human activities [QHW17], recovering incomplete trajectories [LZZ18],

learning utility and affordance [ZJZ16, ZZZ15], inferring human intention and attention

[FCW18, WLS18], etc. As to understanding (false-)belief, despite many psychological ex-

periments and theoretical analysis [CT99, WAS18, BBP16], very few attempts have been

made to solve (false-)belief in man-made scenes with visual input; handcrafted constraints

are usually required for specific problems in prior work. In contrast, our work utilizes a uni-

fied representation across different domains with heterogeneous information to model human

mental states.
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Robot ToM, aiming at understanding human beliefs and intents, receives increasing

research attentions in human-robot interaction and collaboration [Sca02, THC16]. Several

false-belief tasks akin to the classic Sally-Anne test were designed. For instance, Warnier

et al . [WGL12] introduced a belief management algorithm, and the reasoning capability is

subsequently endowed to a robot to pass the Sally-Anne test [MWC14] successfully. More so-

phisticated human-robot collaboration is achieved by maintaining a human partner’s mental

state [DA16]. More formally, Dynamic Epistemic Logic is introduced to represent and rea-

son about belief and false-belief [Bol18, LR19]. These successes are, however, limited to the

symbolic-based belief representations, requiring handcrafted variables and structures, mak-

ing the logic-based reasoning approaches brittle in practice to handle noises and errors. To

address this deficiency, our work utilizes a unified representation by pg , a probabilistic graph-

ical model that have been successfully applied to various robotics tasks [EGX17, LZS18]; it

not only can accumulate the observations over time to form a knowledge graph, but also

can account for noises and errors to properly handle visual input during the learning and

inference.

4.1.2 Contribution

Our work makes three contributions:

1. We adopt a unified graphical model pg to represent and maintain heterogeneous knowledge

about object states, robot knowledge, and human beliefs.

2. On top of the unified representation, we propose an inference algorithm to merge individ-

ual pg from different domains across time and views into a joint pg , supporting human

belief inference from multi-view to overcome the noises and errors merely from a single

view.

3. With the inferred pgs, our system can keep track of the state and location of each object,

infer human beliefs, and further discover false-belief to assist human better.
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pg
<latexit sha1_base64="rOzm19DKqRwZP+/O3Q4F7tdhnUk=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF49RzAOSJcxOZpMhszPLTK8QlvyBFw+KePVH/AZv/o2Tx0ETCxqKqm66u6JUCou+/+0V1tY3NreK26Wd3b39g/LhUdPqzDDeYFpq046o5VIo3kCBkrdTw2kSSd6KRjdTv/XIjRVaPeA45WFCB0rEglF00n066JUrftWfgaySYEEqsEC9V/7q9jXLEq6QSWptJ/BTDHNqUDDJJ6VuZnlK2YgOeMdRRRNuw3x26YScOaVPYm1cKSQz9fdEThNrx0nkOhOKQ7vsTcX/vE6G8XWYC5VmyBWbL4ozSVCT6dukLwxnKMeOUGaEu5WwITWUoQun5EIIll9eJc2LauBXg7vLSi36nMdRhBM4hXMI4ApqcAt1aACDGJ7gBV69kffsvXnv89aCt4jwGP7A+/gB3jiORQ==</latexit><latexit sha1_base64="rOzm19DKqRwZP+/O3Q4F7tdhnUk=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF49RzAOSJcxOZpMhszPLTK8QlvyBFw+KePVH/AZv/o2Tx0ETCxqKqm66u6JUCou+/+0V1tY3NreK26Wd3b39g/LhUdPqzDDeYFpq046o5VIo3kCBkrdTw2kSSd6KRjdTv/XIjRVaPeA45WFCB0rEglF00n066JUrftWfgaySYEEqsEC9V/7q9jXLEq6QSWptJ/BTDHNqUDDJJ6VuZnlK2YgOeMdRRRNuw3x26YScOaVPYm1cKSQz9fdEThNrx0nkOhOKQ7vsTcX/vE6G8XWYC5VmyBWbL4ozSVCT6dukLwxnKMeOUGaEu5WwITWUoQun5EIIll9eJc2LauBXg7vLSi36nMdRhBM4hXMI4ApqcAt1aACDGJ7gBV69kffsvXnv89aCt4jwGP7A+/gB3jiORQ==</latexit><latexit sha1_base64="rOzm19DKqRwZP+/O3Q4F7tdhnUk=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF49RzAOSJcxOZpMhszPLTK8QlvyBFw+KePVH/AZv/o2Tx0ETCxqKqm66u6JUCou+/+0V1tY3NreK26Wd3b39g/LhUdPqzDDeYFpq046o5VIo3kCBkrdTw2kSSd6KRjdTv/XIjRVaPeA45WFCB0rEglF00n066JUrftWfgaySYEEqsEC9V/7q9jXLEq6QSWptJ/BTDHNqUDDJJ6VuZnlK2YgOeMdRRRNuw3x26YScOaVPYm1cKSQz9fdEThNrx0nkOhOKQ7vsTcX/vE6G8XWYC5VmyBWbL4ozSVCT6dukLwxnKMeOUGaEu5WwITWUoQun5EIIll9eJc2LauBXg7vLSi36nMdRhBM4hXMI4ApqcAt1aACDGJ7gBV69kffsvXnv89aCt4jwGP7A+/gB3jiORQ==</latexit><latexit sha1_base64="rOzm19DKqRwZP+/O3Q4F7tdhnUk=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF49RzAOSJcxOZpMhszPLTK8QlvyBFw+KePVH/AZv/o2Tx0ETCxqKqm66u6JUCou+/+0V1tY3NreK26Wd3b39g/LhUdPqzDDeYFpq046o5VIo3kCBkrdTw2kSSd6KRjdTv/XIjRVaPeA45WFCB0rEglF00n066JUrftWfgaySYEEqsEC9V/7q9jXLEq6QSWptJ/BTDHNqUDDJJ6VuZnlK2YgOeMdRRRNuw3x26YScOaVPYm1cKSQz9fdEThNrx0nkOhOKQ7vsTcX/vE6G8XWYC5VmyBWbL4ozSVCT6dukLwxnKMeOUGaEu5WwITWUoQun5EIIll9eJc2LauBXg7vLSi36nMdRhBM4hXMI4ApqcAt1aACDGJ7gBV69kffsvXnv89aCt4jwGP7A+/gB3jiORQ==</latexit>
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<latexit sha1_base64="oH/EAHGG4uFs13fhPi6EZLoX4fw=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eKxgP7ANZbOZtks3m7A7EUrov/DiQRGv/htv/hu3bQ7a+mDg8d4MM/PCVApDnvftrK1vbG5tl3bKu3v7B4eVo+OWSTLNsckTmehOyAxKobBJgiR2Uo0sDiW2w/HtzG8/oTYiUQ80STGI2VCJgeCMrPTYIyEjzNPhtF+pejVvDneV+AWpQoFGv/LVixKexaiIS2ZM1/dSCnKmSXCJ03IvM5gyPmZD7FqqWIwmyOcXT91zq0TuING2FLlz9fdEzmJjJnFoO2NGI7PszcT/vG5Gg5sgFyrNCBVfLBpk0qXEnb3vRkIjJzmxhHEt7K0uHzHNONmQyjYEf/nlVdK6rPlezb+/qtY7RRwlOIUzuAAfrqEOd9CAJnBQ8Ayv8OYY58V5dz4WrWtOMXMCf+B8/gACspEx</latexit><latexit sha1_base64="oH/EAHGG4uFs13fhPi6EZLoX4fw=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eKxgP7ANZbOZtks3m7A7EUrov/DiQRGv/htv/hu3bQ7a+mDg8d4MM/PCVApDnvftrK1vbG5tl3bKu3v7B4eVo+OWSTLNsckTmehOyAxKobBJgiR2Uo0sDiW2w/HtzG8/oTYiUQ80STGI2VCJgeCMrPTYIyEjzNPhtF+pejVvDneV+AWpQoFGv/LVixKexaiIS2ZM1/dSCnKmSXCJ03IvM5gyPmZD7FqqWIwmyOcXT91zq0TuING2FLlz9fdEzmJjJnFoO2NGI7PszcT/vG5Gg5sgFyrNCBVfLBpk0qXEnb3vRkIjJzmxhHEt7K0uHzHNONmQyjYEf/nlVdK6rPlezb+/qtY7RRwlOIUzuAAfrqEOd9CAJnBQ8Ayv8OYY58V5dz4WrWtOMXMCf+B8/gACspEx</latexit><latexit sha1_base64="oH/EAHGG4uFs13fhPi6EZLoX4fw=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eKxgP7ANZbOZtks3m7A7EUrov/DiQRGv/htv/hu3bQ7a+mDg8d4MM/PCVApDnvftrK1vbG5tl3bKu3v7B4eVo+OWSTLNsckTmehOyAxKobBJgiR2Uo0sDiW2w/HtzG8/oTYiUQ80STGI2VCJgeCMrPTYIyEjzNPhtF+pejVvDneV+AWpQoFGv/LVixKexaiIS2ZM1/dSCnKmSXCJ03IvM5gyPmZD7FqqWIwmyOcXT91zq0TuING2FLlz9fdEzmJjJnFoO2NGI7PszcT/vG5Gg5sgFyrNCBVfLBpk0qXEnb3vRkIjJzmxhHEt7K0uHzHNONmQyjYEf/nlVdK6rPlezb+/qtY7RRwlOIUzuAAfrqEOd9CAJnBQ8Ayv8OYY58V5dz4WrWtOMXMCf+B8/gACspEx</latexit><latexit sha1_base64="oH/EAHGG4uFs13fhPi6EZLoX4fw=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eKxgP7ANZbOZtks3m7A7EUrov/DiQRGv/htv/hu3bQ7a+mDg8d4MM/PCVApDnvftrK1vbG5tl3bKu3v7B4eVo+OWSTLNsckTmehOyAxKobBJgiR2Uo0sDiW2w/HtzG8/oTYiUQ80STGI2VCJgeCMrPTYIyEjzNPhtF+pejVvDneV+AWpQoFGv/LVixKexaiIS2ZM1/dSCnKmSXCJ03IvM5gyPmZD7FqqWIwmyOcXT91zq0TuING2FLlz9fdEzmJjJnFoO2NGI7PszcT/vG5Gg5sgFyrNCBVfLBpk0qXEnb3vRkIjJzmxhHEt7K0uHzHNONmQyjYEf/nlVdK6rPlezb+/qtY7RRwlOIUzuAAfrqEOd9CAJnBQ8Ayv8OYY58V5dz4WrWtOMXMCf+B8/gACspEx</latexit>

p̃g
<latexit sha1_base64="oH/EAHGG4uFs13fhPi6EZLoX4fw=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eKxgP7ANZbOZtks3m7A7EUrov/DiQRGv/htv/hu3bQ7a+mDg8d4MM/PCVApDnvftrK1vbG5tl3bKu3v7B4eVo+OWSTLNsckTmehOyAxKobBJgiR2Uo0sDiW2w/HtzG8/oTYiUQ80STGI2VCJgeCMrPTYIyEjzNPhtF+pejVvDneV+AWpQoFGv/LVixKexaiIS2ZM1/dSCnKmSXCJ03IvM5gyPmZD7FqqWIwmyOcXT91zq0TuING2FLlz9fdEzmJjJnFoO2NGI7PszcT/vG5Gg5sgFyrNCBVfLBpk0qXEnb3vRkIjJzmxhHEt7K0uHzHNONmQyjYEf/nlVdK6rPlezb+/qtY7RRwlOIUzuAAfrqEOd9CAJnBQ8Ayv8OYY58V5dz4WrWtOMXMCf+B8/gACspEx</latexit><latexit sha1_base64="oH/EAHGG4uFs13fhPi6EZLoX4fw=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eKxgP7ANZbOZtks3m7A7EUrov/DiQRGv/htv/hu3bQ7a+mDg8d4MM/PCVApDnvftrK1vbG5tl3bKu3v7B4eVo+OWSTLNsckTmehOyAxKobBJgiR2Uo0sDiW2w/HtzG8/oTYiUQ80STGI2VCJgeCMrPTYIyEjzNPhtF+pejVvDneV+AWpQoFGv/LVixKexaiIS2ZM1/dSCnKmSXCJ03IvM5gyPmZD7FqqWIwmyOcXT91zq0TuING2FLlz9fdEzmJjJnFoO2NGI7PszcT/vG5Gg5sgFyrNCBVfLBpk0qXEnb3vRkIjJzmxhHEt7K0uHzHNONmQyjYEf/nlVdK6rPlezb+/qtY7RRwlOIUzuAAfrqEOd9CAJnBQ8Ayv8OYY58V5dz4WrWtOMXMCf+B8/gACspEx</latexit><latexit sha1_base64="oH/EAHGG4uFs13fhPi6EZLoX4fw=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eKxgP7ANZbOZtks3m7A7EUrov/DiQRGv/htv/hu3bQ7a+mDg8d4MM/PCVApDnvftrK1vbG5tl3bKu3v7B4eVo+OWSTLNsckTmehOyAxKobBJgiR2Uo0sDiW2w/HtzG8/oTYiUQ80STGI2VCJgeCMrPTYIyEjzNPhtF+pejVvDneV+AWpQoFGv/LVixKexaiIS2ZM1/dSCnKmSXCJ03IvM5gyPmZD7FqqWIwmyOcXT91zq0TuING2FLlz9fdEzmJjJnFoO2NGI7PszcT/vG5Gg5sgFyrNCBVfLBpk0qXEnb3vRkIjJzmxhHEt7K0uHzHNONmQyjYEf/nlVdK6rPlezb+/qtY7RRwlOIUzuAAfrqEOd9CAJnBQ8Ayv8OYY58V5dz4WrWtOMXMCf+B8/gACspEx</latexit><latexit sha1_base64="oH/EAHGG4uFs13fhPi6EZLoX4fw=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eKxgP7ANZbOZtks3m7A7EUrov/DiQRGv/htv/hu3bQ7a+mDg8d4MM/PCVApDnvftrK1vbG5tl3bKu3v7B4eVo+OWSTLNsckTmehOyAxKobBJgiR2Uo0sDiW2w/HtzG8/oTYiUQ80STGI2VCJgeCMrPTYIyEjzNPhtF+pejVvDneV+AWpQoFGv/LVixKexaiIS2ZM1/dSCnKmSXCJ03IvM5gyPmZD7FqqWIwmyOcXT91zq0TuING2FLlz9fdEzmJjJnFoO2NGI7PszcT/vG5Gg5sgFyrNCBVfLBpk0qXEnb3vRkIjJzmxhHEt7K0uHzHNONmQyjYEf/nlVdK6rPlezb+/qtY7RRwlOIUzuAAfrqEOd9CAJnBQ8Ayv8OYY58V5dz4WrWtOMXMCf+B8/gACspEx</latexit>

Figure 4.2: System overview. The robot pgs are obtained from each individual robot’s view. The
joint pg can be obtained by fusing all robots’ pgs. The belief pgs can be inferred from the joint pg .
All the pgs are optimized simultaneously under the proposed joint parsing framework to enable the
queries about the object states and human beliefs.

4.1.3 Overview

The remainder of the chapter is organized as follows. section 4.2 and section 4.3 describes

the representation and the detailed probabilistic formulation, respectively. We demonstrate

the efficacy of the proposed method in section 4.4 and conclude the chapter with discussions

in section 4.5.

4.2 Representation

In this work, we use the parse graph (pg)—a unified graphical model [ZM07]—to represent

(i) the location of each human and object, (ii) the interaction between human and object,

(iii) the beliefs of human, and (iv) the attributes and states of objects; see Figure 4.2 for an

example. Specifically, three different types of pgs are utilized:

• Robot pg shown as blue circles maintains the knowledge structure of an individual robot,

which is extracted from its visual observation, i.e., an image. Notice that it also contains

attributes that are grounded to the observed agents and objects.

• Belief pg shown as red diamonds represents the inferred human knowledge by each robot.

Each robot maintains the parse graph for each agent it observed.

• Joint pg fuses all the information and views across a set of distributed robots.
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Notations and Definitions The input of our system can be represented by M synchro-

nized video sequences I = {Ik=1..M
t=1..T } with length T captured from M robots. Formally, a

scene R is expressed as

R = {(Ot, Ht) : t = 1, 2, . . . , T},

Ot = {oit : i = 1, 2, . . . , No},

Ht = {hjt : j = 1, 2, . . . , Nh},

(4.1)

where Ot and Ht denote the set of all the tracked objects (No objects in total) and the set

of all the tracked agents (Nh agents in total) at time t, respectively.

Object oit is represented by its bounding box location bit, appearance feature φi
t, states sit,

and attributes ait as a tuple,

oit = (bit, φ
i
t, s

i
t, a

i
t), (4.2)

where sit is an index function: sit = j, j 6= 0 indicates the object oi is held by the agent hj at

time t, and sit = 0 means it is not held by any agent at time t.

The agent hjt is represented by its body key points position pit and appearance feature φj
t

hjt = (pit, φ
j
t). (4.3)

Robot Parse Graph is formally expressed as

p̃gkt = {(oit, h
j
t) : oit, h

j
t ∈ Ikt }, (4.4)

where Ikt is the area where kth robot can observe at time t.

Belief Parse Graph is formally expressed as

p̄gk,jt = {oit′ : oit′ ∈ Ikt′}, (4.5)

where a p̄gk,jt represents the inferred belief of agent hj under robot k’s view; t′ is the last

time that the robot k observes the human hj. We assume that the agent hj only keeps the

objects s/he observed last time in this area in mind, which satisfies the Principle of Inertia:
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an agent’s belief is preserved over time unless the agent gets information to the contrary.

Joint Parse Graph keeps track of all the information across a set of distributed robots,

formally expressed as

pgt = {(oit, h
j
t : i = 1, 2, ..., No; j = 1, 2, ..., Nh)}. (4.6)

Objective The objective of the system is to jointly infer all the parse graphs PG =

{pg, p̃g, p̄g} so that it can (i) track all the agents and objects across scenes at any time by

fusing the information collected by a distributed system, and (ii) infer human (false-)beliefs

to provide assistance.

4.3 Probabilistic Formulation

We formulate the joint parsing problem as a MAP inference problem

PG∗ = arg max
PG

p(PG|I)

= arg max
PG

p(I|PG) · p(PG),
(4.7)

where p(PG) is the prior, and p(I|PG) is the likelihood.

4.3.1 Prior

The prior term p(PG) models the compatibility of the robot pgs and the joint pg , and the

compatibility of the joint pg over time. Formally, we can decompose the prior as

p(PG) = p(pg1)
T−1∏
t=1

p(pgt+1|pgt)
M∏
k=1

T∏
t=1

p(p̃gkt |pgt), (4.8)

where the first term p(pgt+1|pgt) is the transition probability of the joint pg over time, further

decomposed as

p(pgt+1|pgt) =
1

Z
exp{−E(pgt+1|pgt)}, (4.9)
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E(pgt+1|pgt) =
No∑
i=1

ELo(b
i
t+1, b

i
t, s

i
t) + EST (sit+1, s

i
t)

+

Nh∑
j=1

ELh
(pjt+1, p

j
t).

(4.10)

The second term p(p̃gkt |pgt) is the probability models the compatibility of individual pgs

and the joint pg . Its energy can be decomposed into three energy terms

p(p̃gkt |pgt) =
1

Z
exp{−E(pgt, p̃g

k
t )}

=
1

Z
exp{−EA(pgt, p̃g

k
t )− ES(pgt, p̃g

k
t )

− EAttr(pgt, p̃g
k
t )}.

(4.11)

Below, we detail the above six energy terms in Equation 4.10 and Equation 4.11.

Motion Consistency The term EL measures the motion consistency of objects across

time and is defined as

ELo(b
i
t+1, b

i
t, s

i
t) =


δ(D(bit+1, b

i
t) > τ)) if sit = 0

δ(D(pjt+1, p
j
t) > τ)) if sit = j

ELh
(pjt+1, p

j
t) = δ(D(pjt+1, p

j
t) > τ)),

(4.12)

where D is the distance between two bounding boxes or human poses, τ is the speed thresh-

old, and δ is the indicator function. If an object i is held by human j, we use the human’s

location to calculate EL of the object.

State Transition Consistency The term EST is the state transition energy and is defined

as

EST (sit+1, s
i
t) = − log p(δ(sit+1 = 0)|δ(sit = 0)), (4.13)

where the state transition probability p(δ(sit+1 = 0)|δ(sit = 0)) is learned from the training

data.
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Appearance Consistency EA measures appearance consistency. In robot pgs, the ap-

pearance feature vector φ is extract by a deep person re-identification network [ZYC19]. In

the joint pg , the feature vector is calculated by the mean pooling of all features for the same

entity from all robot pgs

EA(pgt, p̃gt) =
∑

e∈Ot∪Ht

||φe
t − φẽ

t ||2. (4.14)

Spatial Consistency Each object and agent in robot’s view should also have a corre-

sponding location in the real-world coordinate system; i.e., the bounding box of the object

or key points position of the agent should remain consistent when projected from robot

image plane back to the real-world coordinate. ES captures such a spatial consistency

ES(pgt, p̃gt) =
∑

e∈Ot∪Ht

||pet − f(pẽt )||2, (4.15)

where p represents the real-world coordinate of s, and f is the project function from the

robot’s view to the real world, obtained by the intrinsic and extrinsic camera parameters of

the robot’s camera.

Attribute Consistency Attributes of each entity should remain the same across different

time and views. The term EAttr models such an attribute consistency of all the objects

EAttr(pgt, p̃gt) =
No∑
i=1

δ(ait 6= ãit). (4.16)

4.3.2 Likelihood

The likelihood term p(I|PG) models how well each robot can ground the knowledge in its

pg to the visual data it captures. Formally, the likelihood is defined as

p(I|PG) =
M∏
k=1

T∏
t=1

p(Ikt |p̃gkt ). (4.17)
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Robots
Ti
m
e

Figure 4.3: Illustration of the inference process. The maximizing a posterior (MAP) estimate can
be transformed as an assignment problem that links initial proposals over time and different views.

(a) Put down a cup (b) Pick up a cup (c) Move a cup

(d) Carry a cup to another room (e) Swap two cups

Figure 4.4: Examples of human-object interactions in the cross-view subset of the proposed dataset.
Each scenario contains at least one kind of false-belief test or helping test recorded with four robot
camera views.

The energy of term p(Ikt |p̃gkt ) can be further decomposed as

p(Ikt |p̃gkt ) =
1

Z
exp{−E(Ikt |p̃gkt )}, (4.18)

E(Ikt |p̃gkt ) =
No∑
i=1

ED(bit, φ
i
t) + ECA(bit, φ

i
t, a

i
t)

+

Nh∑
j=1

ED(pjt , φ
j
t),

(4.19)

where ED can be calculated by the score of object detection or human pose estimation, and

ECA can be obtained by the object attributes classification scores.
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4.3.3 Inference

Given the above probabilistic formulation, we can infer the best {pg∗, p̃g∗} by an MAP

estimate. It can be solved by two steps: (i) Each robot individually processes the frame

image it received with vision modules, such as object detection and human pose estimation;

the raw results can be used as the proposals for the second step. (ii) The MAP estimate can

be transformed to an assignment problem given the proposals; see Figure 4.3. We can solve

this assignment problem using the Kuhn-Munkres algorithm [Kuh55, Kuh56] in polynomial

time.

Based on Equation 4.5, after we have the robot parse graphs p̃gk for robot k, we can

generate belief parse graphs p̄gk,j for human j in robot k’s view.

4.4 Experiment

We evaluate the proposed method in cross-view object tracking and human (false-)belief

understanding with two experiments. The first experiment evaluates the accuracy of object

localization by the inference algorithms using the robot parse graphs p̃g and the joint parse

graph pg. The second experiment evaluates the inference of the belief parse graphs p̄g, i.e.,

human beliefs regard the object states (e.g ., locations) in both single-view and multi-view

settings.

4.4.1 Dataset

The dataset includes two subsets, a multi-view subset and a single-view subset.

• The single-view subset includes 5 different false-belief scenarios with 12532 frames. Each

scenario contains at least one kind of false-belief test or helping test. In this subset, objects

are not limited to the cups.

• The multi-view subset consists of 8 scenes, each shot with 4 robot camera views, making a

total number of 72720 frames. Each scenario contains at least one kind of false-belief test.

The objects in each scene are, however, limited to the cups: 12-16 different cups made

with 3 different materials (plastic, paper, and ceramic) and 4 colors (red, blue, white, and
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(a) Observation t0 (b) Observation t1 (c) Observation t2 (d) Observation t3 (e) Observation t4

Figure 4.5: An example of tracking multiple objects across multiple views with human interactions
in Experiment 1. Two rows shows sample synchronized visual inputs from two different rooms:
(Top) Room 1, and (Bottom) Room 2. Here, for better interpretations, we only highlight two red
cups marked by green and yellow bounding boxes. At time t0, agent H00 put a red cup C00 in Room
1. At time t1, agent H01 put another red cup C01 in Room 1. At time t3, human H02 took away
cup C00 and put it in Room 2 at time t4. Our system can not only robustly perform such complex
multi-room multi-view tracking, but also is able to reason about agent’s belief. For instance, at
time t4, the tracking system knows that the cup C00 appear at time t0 is in Room 2 and infers that
human H00 thinks the cup is still in Room 1.

black). In each scene, three agents interact with cups by performing following actions (not

necessarily in this specific action sequence): (i) picking up a cup, (ii) putting down a cup

on the table, (iii) moving a cup, (iv) carrying a cup to another room, and (v) swapping

a cup in hand and a cup on the table; see Figure 4.4 for some examples. Ground-truth

tracking results of cups and agents, states of cups, and attributes of cups are all annotated

in this dataset.

4.4.2 Implementation Details

Below, we provide some details about the specific implementations of the system.

• Object detection: we use the RetinaNet model [LGG17] pre-trained on the MS COCO

dataset [LMB14]. We keep all the bounding boxes with a score higher than the threshold

0.2; these bounding boxes serve as the proposals for object detection. For the single-view

subset, which includes more categories than the multi-view subset, we further fine-tuned

the pre-trained model on the training set since some object categories are not included in

MS COCO dataset.
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(a) Observation t0 (b) Observation t1 (c) Observation t2 (d) Observation t3 (e) Prediction

Figure 4.6: Two sample results of the Sally-Anne false-belief task in Experiment 2. (Top) with
false-belief. (Bottom) without false-belief. (a) The first person (H00) puts their cup noodle (C00)
into the microwave and leaves. (b) The second person (H01) takes out the cup noodle (C00) of
the first person from the microwave. (c) The second person puts their own cup noodle (C01) in
the microwave and leaves. (d) The first person (H00) returns to the room. Question: where does
the first person (H00) think their cup noodle (C00) is? (e) Our system can successfully predict the
person in the bottom row will not have the false-belief due to the different color attributes of the
cups.

• Human pose estimation: we apply the AlphaPose [FXT17].

• Object attribute classification: A VGG16 network was trained to classify the color and

the material of the objects.

• Appearance feature: A deep person re-id model [ZYC19] was fine-tuned on the training

set.

• Due to the lack of multi-view in the single-view setting, we locate the object that an agent

plan to interact by simply finding the object closest to the direction the agent points at

according to the keypoints on the arm.

4.4.3 Experiment 1: Cross-view Object Localization

To test the overall cross-view tracking performance, 2000 queries are randomly sampled from

the ground-truth tracks. Each query q can be formally described as

q = (k, t, b, tq), (4.20)

where the first three terms (k, t, b) indicate the cup shown in robot k’s view located in

bounding box b at time t. Such a form of the query can be very flexible. For instance, if

we ask about the location of that cup at time tq, the system should return an answer in the
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(a) Observation t0 (b) Observation t1 (c) Prediction (d) Ground-truth

Figure 4.7: Two sample results of the helping task in Experiment 2. (Top) with false-belief.
(Bottom) without false-belief. (a) The second person (H01) enters the room and finds one box
(C01) is empty and then leaves. (b) Later, the third person (H02) wants to get a box. Question:
which box should the first person (H00) give to the third person (H02) if the first person (H00)
wants to help? (c) Answer returned by the system that correctly infers the third person (H02)
on the top row has false-belief, thus the first person (H00) should not give the empty box (C01)
that the third person (H02) is pointing to; rather, the first person (H00) should give another box
(C00). Conversely, since the person (H02) observes the entire process in the bottom row, there is
no false-belief; in this case, the person (H02) is trying to throw away the empty box (C01).

form of (ka, ba), meaning that the system predicts the cup is shown in robot ka’s view at ba.

The system generates the answer in two steps. It firstly locates the query of the object

by searching the object i in p̃gkt with the smallest distance to the bounding box b. Then it

returns the location bitq from p̃gk
′

tq . The accuracy of model M can be calculated as

acc(M) =
1

Nq

Nq∑
i=1

δ(IoU(bigt, b
i
a) > ξ) · δ(kgt = ka), (4.21)

where Nq is the number of queries, bgt is the ground-truth bounding box, and ba is the

inferred bounding box returned by model M . We calculate the Intersection over Union

(IoU) between the answer and the ground-truth bounding boxes; the answer is correct if and

only if the answer predicts the right view and the IoU is larger than ξ = 0.5.

Table 4.1 shows the ablative study by turning on and off the joint parsing component that

models human interactions, i.e., whether the model parses and tracks objects by reasoning

about the interaction with agents. #interactions means how many times the object was

interacted by agents. The result shows that our system achieves an overall 88% accuracy.
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Table 4.1: Accuracy of cross-view object tracking

# interactions 0 1 2 3 Overall
Parsing w/o humans acc. 0.98 0.82 0.78 0.75 0.82

Joint parsing acc. 0.98 0.86 0.85 0.82 0.88

Table 4.2: Accuracy of belief queries on single view subset

True Belief False-Belief Overall
Joint parsing acc. 0.94 0.93 0.94

Random guessing acc. 0.45 0.53 0.46

Even without parsing humans, our system still possesses the ability to reason about object

location by maintaining other consistencies, such as spatial consistency and appearance

consistency. However, its performance drops significantly if the object was moved to different

rooms. Figure 4.5 shows some qualitative results.

4.4.4 Experiment 2: (False-)Belief Inference

In this experiment, we evaluate the performance of belief and false-belief inference, i.e.,

whether an agent’s belief pg is the same as the true object states. The evaluations were

conducted on both single-view and multi-view scenarios.

Multi-view For the multi-view setting, we collect 200 queries by annotators focused on

the Sally-Anne false belief task in the form

q = (ko, to, bo, kh, th, bh, tq). (4.22)

The first three terms (ko, to, bo) define the objects in robot ko’s view located at bo at time to.

Similarly, another three terms (kh, th, bh) define an agent in robot kh’s view located at bh at

time th. The question is: where does the agent (kh, th, bh) think the object (ko, to, bo) is at

time tq?

For this task, our system generates the answer in three step. The first step is to search

the object i and the agent j in robot parse graphs p̃gkoto and p̃gkhth . In the second step, it

retrieves all the belief parse graphs p̄gk
′,j

tq at time tq to find the object i’s location b̄itq in

human j’s belief. In the last step, the system finds an object i′ in robot parse graph which
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has the same attributes as i’s and has smallest distance to b̄itq ; the system finally returns i′’s

location bi
′
tq as the answer.

Since there is no publicly available code on this task, we compare our inference algorithm

with a random baseline model as the reference for future benchmark; it simply returns an

object with the same attributes as the query object at tq. The result shows that our system

achieves 81% accuracy while the baseline model only has 39% accuracy.

Single-view For the single-view setting, We collect 100 queries in total, including two

types of belief inference task: the Sally-Anne false-belief task and the helping task as shown

in Figure 4.1. The queries have two forms

q = (to, bo, bh, tq), (4.23)

q = (bh, tq), (4.24)

indicating two different types of questions: (i) where does the agent bh think the object

(to, bo) is at time tq? and (ii) which object will you give to the agent (tq, bh) at time tq

if you would like to help? For the first type of questions, i.e., the Sally-Anne false-belief

task, similar to the multi-view setting, the system should return the object bounding box as

the answer. For the second types of questions, i.e., the helping task, the system first infers

whether the agent has false-belief. If not, the system returns the object the person wants to

interact based on their current pose; otherwise, the system returns another suitable object

closest to them. Qualitative results are shown in Figure 4.6 and Figure 4.7, and quantitative

results are provided in Table 4.2.

4.5 Conclusion and Discussions

In this work, we describe the idea of using pg as a unified representation for tracking object

states, accumulating robot knowledge, and reasoning about human (false-)beliefs. From the

spatiotemporal information observed from multiple camera views of one or more robots,

robot pg and belief pg are induced and can be merged to a joint pg to facilitate more

advanced reasoning and inference. Based on this representation, a joint inference algorithm is
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proposed, which has the capabilities of tracking small occluded objects across different views

and infer human beliefs and false-beliefs. In experiments, we first demonstrate that the joint

inference over the merged pg produced better tracking accuracy. We further evaluate the

inference on human true and false-belief regarding objects’ locations by jointly parsing the

pgs. The high recognition accuracy demonstrates that our system is capable of modeling and

understanding human (false-)beliefs, with the potential of helping capability as demonstrated

in developmental psychology.

ToM and Sally-Anne test are interesting and difficult problems in the area of social

robotics. For a service robot to interact with humans in an intuitive manner, it must be

able to maintain a model of the belief states of the agents it interacts with. We hope the

proposed method using a graphical model has demonstrated a different perspective compared

to prior methods in terms of the flexibility and generalization. In future, a more interactive

and active set up would be more practical and compelling. For instance, by integrating

activity recognition modules, our system should be able to perceive, recognize, and extract

richer semantic information from the observed visual input, thereby providing more subtle

(false-)belief applications. Communication, gazes, and gestures are also crucial in intention

expression and perception in collaborative interactions. By incorporating these essential

ingredients and taking the advantage of the flexibility and generalization of the model, our

system should be able to go from the current passive query to active response and helping

in real-time.
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CHAPTER 5

Conclusion

In this dissertation, we propose a cognition platform for joint inference of 3D Geometry,

Object States, and Human Belief under single-view or multi-view scenarios.

At the engineering level, we build a hierarchical container-based system that can process

image sequences from various types of devices. With the isolation, compatibility, and scal-

ability of the system, it supports rapid development and can be dynamically deployed on

different machines according to compute resources and requests. The web-based visualization

module can show the results realtime on user browsers.

We jointly solve the 3D scene reconstruction and 3D human pose estimation for holis-

tic++ scene understanding. Human-object interaction and physical commonsense are incor-

porated in the algorithm. And our MCMC inference algorithm can effectively optimize the

scene configuration. The performance of the two tasks gets significantly improved on several

datasets.

Under the cross-view setting, we propose the scene-centric parsing framework to utilize

the appearance and geometry correlations. Experiments show that the joint parsing frame-

work can produce more accurate results in various computer vision tasks. With the parse

graphs, our system can also provide an interpretable interface to users.

We also describe the idea of using parse graphs as a unified representation for tracking

object states, accumulating robot knowledge, and reasoning about human belief. Based on

the representation, a joint inference algorithm is proposed. The experiments demonstrate

that our system is capable of modeling and understanding human belief.

In the future, we hope more and more cognition functions can be integrated into the
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platform by taking advantage of the flexibility and generalization of our platform. So that

our platform can extract richer semantic information form the visual input, and support

more complex applications with the flexibility and generalization of our algorithms.
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[BBP16] Torben Braüner, Patrick Blackburn, and Irina Polyanskaya. “Second-order false-
belief tasks: Analysis and formalization.” In International Workshop on Logic,
Language, Information, and Computation, 2016.

[BCT09] David Buttelmann, Malinda Carpenter, and Michael Tomasello. “Eighteen-
month-old infants show false belief understanding in an active helping paradigm.”
Cognition, 112(2):337–342, 2009.

[BFT11a] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. “multiple object tracking using
K-Shortest Paths optimization.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(9):1806–1819, 2011.

[BFT11b] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua. “Multiple
object tracking using k-shortest paths optimization.” Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 33(9):1806–1819, 2011.

[BGB09] Cynthia Breazeal, Jesse Gray, and Matt Berlin. “An embodied cognition ap-
proach to mindreading skills for socially intelligent robots.” International Jour-
nal of Robotics Research, 28(5):656–680, 2009.

[BLF85] Simon Baron-Cohen, Alan M Leslie, and Uta Frith. “Does the autistic child have
a “theory of mind”?” Cognition, 21(1):37–46, 1985.

[BM14] Or Biran and Kathleen McKeown. “Justification narratives for individual classi-
fications.” In IEEE International Conference on Machine Learning Workshops,
2014.

[Bol18] Thomas Bolander. “Seeing Is Believing: Formalising False-Belief Tasks in
Dynamic Epistemic Logic.” In Jaakko Hintikka on Knowledge and Game-
Theoretical Semantics, pp. 207–236. Springer, 2018.

[BRG16] Aayush Bansal, Bryan Russell, and Abhinav Gupta. “Marr revisited: 2d-3d
alignment via surface normal prediction.” In Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

68



[BSW85] Renee Baillargeon, Elizabeth S Spelke, and Stanley Wasserman. “Object per-
manence in five-month-old infants.” Cognition, 20(3):191–208, 1985.

[CCP13] Wongun Choi, Yu-Wei Chao, Caroline Pantofaru, and Silvio Savarese. “Under-
standing indoor scenes using 3d geometric phrases.” In Conference on Computer
Vision and Pattern Recognition (CVPR), 2013.

[CLL18] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia Deng. “Learning
to detect human-object interactions.” 2018.

[CLO16] Jungchan Cho, Minsik Lee, and Songhwai Oh. “Complex non-rigid 3d shape
recovery using a procrustean normal distribution mixture model.” International
Journal of Computer Vision (IJCV), 117(3):226–246, 2016.

[CLV06] Mark G Core, H Chad Lane, Michael Van Lent, Dave Gomboc, Steve Solomon,
and Milton Rosenberg. “Building explainable artificial intelligence systems.” In
AAAI Conference on Artificial Intelligence, 2006.

[CSP16] Haoyu Chen, Daniel Seita, Xinlei Pan, and John Canny. “An Efficient Minibatch
Acceptance Test for Metropolis-Hastings.” arXiv preprint arXiv:1610.06848,
2016.

[CSW17] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. “Realtime Multi-Person
2D Pose Estimation Using Part Affinity Fields.” In Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[CT99] Josep Call and Michael Tomasello. “A nonverbal false belief task: The perfor-
mance of children and great apes.” Child development, 70(2):381–395, 1999.

[DA16] Sandra Devin and Rachid Alami. “An implemented theory of mind to improve
human-robot shared plans execution.” In ACM/IEEE International Conference
on Human-Robot Interaction (HRI), 2016.

[DLB18] Yilun Du, Zhijian Liu, Hector Basevi, Ales Leonardis, Bill Freeman, Josh Tenen-
baum, and Jiajun Wu. “Learning to Exploit Stability for 3D Scene Parsing.” In
Advances in Neural Information Processing Systems (NeurIPS), 2018.

[DSY17] Xingping Dong, Jianbing Shen, Dajiang Yu, Wenguan Wang, Jianhong Liu, and
Hua Huang. “Occlusion-aware real-time object tracking.” IEEE Transactions
on Multimedia, 19(4):763–771, 2017.

[DTT15] Afshin Dehghan, Yicong Tian, Philip HS Torr, and Mubarak Shah. “Target
identity-aware network flow for online multiple target tracking.” In Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

[EGX17] Mark Edmonds, Feng Gao, Xu Xie, Hangxin Liu, Siyuan Qi, Yixin Zhu, Brandon
Rothrock, and Song-Chun Zhu. “Feeling the force: Integrating force and pose
for fluent discovery through imitation learning to open medicine bottles.” In
International Conference on Intelligent Robots and Systems (IROS), 2017.

69



[FBL08] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. “Multi-camera people tracking
with a probabilistic occupancy map.” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(2):267–282, 2008.

[FC03] Lisa Feigenson and Susan Carey. “Tracking individuals via object-files: evidence
from infants’ manual search.” Developmental Science, 6(5):568–584, 2003.

[FCW18] Lifeng Fan, Yixin Chen, Ping Wei, Wenguan Wang, and Song-Chun Zhu. “In-
ferring Shared Attention in Social Scene Videos.” In Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[FXT17] Haoshu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. “Rmpe: Regional
multi-person pose estimation.” In International Conference on Computer Vi-
sion (ICCV), 2017.

[FXW18] Hao-Shu Fang, Yuanlu Xu, Wenguan Wang, Xiaobai Liu, and Song-Chun Zhu.
“Learning pose grammar to encode human body configuration for 3D pose esti-
mation.” In AAAI Conference on Artificial Intelligence (AAAI), 2018.

[GA88] Alison Gopnik and Janet W Astington. “Children’s understanding of repre-
sentational change and its relation to the understanding of false belief and the
appearance-reality distinction.” Child development, pp. 26–37, 1988.

[GBK02] György Gergely, Harold Bekkering, and Ildikó Király. “Developmental psychol-
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