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Abstract

Background: Motion during data acquisition leads to artifacts in computed tomography (CT) 

reconstructions. In cases such as cardiac imaging, not only is motion unavoidable, but evaluating 

the motion of the object is of clinical interest. Reducing motion artifacts has typically been 

achieved by developing systems with faster gantry rotation or via algorithms which measure 

and/or estimate the displacement. However, these approaches have had limited success due to 

both physical constraints as well as the challenge of estimating non-rigid, temporally varying, and 

patient-specific motion fields.

Purpose: To develop a novel reconstruction method which generates time-resolved, artifact-free 

images without estimation or explicit modeling of the motion.

Methods: We describe an analysis-by-synthesis approach which progressively regresses a 

solution consistent with the acquired sinogram. In our method, we focus on the movement of 

object boundaries. Not only are the boundaries the source of image artifacts, but object boundaries 

can simultaneously be used to represent both the object as well as its motion over time without 

need for an explicit motion model. We represent the object boundaries via a signed distance 

function (SDF) which can be efficiently modeled using neural networks. As a result, optimization 

can be performed under spatial and temporal smoothness constraints without the need for explicit 

motion estimation.

Results: We illustrate the utility of DiFiR-CT in three imaging scenarios with increasing motion 

complexity: translation of a small circle, heart-like change in an ellipse’s diameter, and a complex 

topological deformation. Compared to filtered backprojection, DiFiR-CT provides high quality 

image reconstruction for all three motions without hyperparameter tuning or change to the 

architecture. We also evaluate DiFiR-CT’s robustness to noise in the acquired sinogram and found 

its reconstruction to be accurate across a wide range of noise levels. Lastly, we demonstrate how 
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the approach could be used for multi-intensity scenes and illustrate the importance of the initial 

segmentation providing a realistic initialization. Code and supplemental movies are available at 

https://kunalmgupta.github.io/projects/DiFiR-CT.html.

Conclusions: Projection data can be used to accurately estimate a temporally-evolving scene 

without the need for explicit motion estimation using a neural implicit representation and analysis-

by-synthesis approach.

I. Introduction

X-ray computed tomography (CT) can non-invasively and volumetrically evaluate patient 

anatomy with high spatial resolution, which has led to a widespread clinical use. 

Unfortunately, image quality can be reduced if motion occurs during the acquisition, despite 

fast acquisition of individual projections. This is particularly problematic when imaging 

fast moving structures (e.g., the heart) as current single-source conebeam scanners require 

200–300 ms to perform a full gantry rotation. As a result, while CT is used for the evaluation 

of suspected coronary artery disease1 and acute chest pain2, even small motions (~1.2mm) 

can result in significant blurring of key structures, such as coronary arteries3. Further, 

motion of highly-attenuating structures, such as metallic devices, can further impair clinical 

assessment4. Besides static, single frame imaging, CT is increasingly being used to evaluate 

heart dynamics5,6,7. Various techniques have been developed to avoid, reduce, and/or correct 

motion artifacts. Broadly, approaches aim to either reduce the amount of data needed for 

image reconstruction8,9,10 or correct for the underlying object motion11,12. However, as 

described in Section II., current methods remain limited.

In this work, we propose a new approach for time-resolved reconstruction of CT images of 

moving objects without estimation or explicit correction of the underlying object motion. 

Traditional intensity-based image reconstruction aims to represent each spatial position of 

the scene and therefore becomes suboptimal for scenes with motion as the problem becomes 

ill-posed. Our approach is based on the insight that object boundaries can simultaneously 

be used to represent an object’s shape as well as its motion over time. As shown in the toy 
example in Fig 1, a signed distance function-based representation provides an alternative, 

efficient representation to intensity mapping which we leverage to solve for both the shape 

and motion.

Toy example:

Consider a white 2D ellipse which moves from left to right, over a black background, across 

Y  time frames. We can represent the scene at each time frame by measuring a per-pixel 

quantity f x  where x refers to the coordinate of a certain pixel in the image. Traditionally, 

f x  is the image intensity. In this toy example, f x  would assume a discrete value (white 

or black). Alternatively, f x  can be defined as a signed distance function i.e. SDF(x) which 

is a continuous value equal to the smallest signed distance of x to the object’s boundary 

(shown by the radii of green and blue circles). Note that SDF(x) < 0 if x is inside the object’s 

boundary and SDF(x) > 0 when outside the object. While both definitions of f x  represent 

the object’s state in each of the three frames, the change in f x  as a function of time 

(bottom) is different. The intensity-based representation (bottom left) leads to discontinuous 
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changes over time which are hard to represent by a Lipschitz continuous function. On 

the other hand, the signed distance function (bottom right) yields a smooth curve which 

can be easily fitted. This example highlights how the signed distance may be a superior 
representation of an object’s spatiotemporal state compared to the commonly used image 
intensity.

A discrete voxel grid can be used to represent the SDF of a scene but it leads to 

a huge memory footprint when extended to the temporal domain. This motivates our 

use of neural network-based representations, commonly referred to as neural implicit 

representations (NIRs), as they are capable of efficiently representing complex scenes13. 

Neural representations are highly flexible, can represent arbitrarily complex scenes with 

only a few MB of memory14, and can be easily optimized via gradient descent.

In this work, we use NIRs to map each spatiotemporal position to its corresponding 

signed distance. Each scene is represented as objects-of-interest with temporally-evolving 

boundaries by means of neural implicit SDF representation instead of as scalar-valued 

intensity image or set of images. Via optimization, we estimate the position and 

displacement of object boundaries over time which is most consistent with the acquired 

sinogram. Instead of using data-driven priors, we promote convergence towards low 

frequency solutions (i.e., physically plausible reconstructions) by using Fourier coefficients 

to represent the temporal evolution of the SDF and user-specified spatial and temporal 

smoothness constraints. Therefore, our approach solves for the objects position and 

displacement without assuming a particular type of object motion. It also does not require 

additional data (e.g., extra CT projections, motion field estimates, or physiologic signals 

such as the ECG).

Prior work has demonstrated that projections can be used to identify the position of object 

boundaries15,16,17. However, these efforts did not address the challenges encountered with 

a moving scene. Further, prior work has demonstrated how NIRs can be optimized directly 

from projection images via volumetric differentiable renderers13,18. Reconstruction of CT 

images is analogous to the inverse volumetric object rendering problem dealt with in 

these previous works. As part of our framework DiFiR-CT, we propose an algorithm that 

optimizes the spatiotemporal representation of a moving object in both the image domain 

and neural domain across three stages: Initialization (Section IV.A), Training (Section IV.B) 

and Refinement/Export (Section IV.C). We show that this framework is robust to the choice 

of hyperparameters and performs well despite the presence of noise in the acquired sinogram 

(Section V.) across several different problems (Section VI.).

Therefore, the contributions of this work are as follows:

• We pose CT image reconstruction as an object boundary-based problem and 

show that this enables improved representation and reconstruction of moving 

objects.

• We present a pipeline, DiFiR-CT, which combines neural rendering with an 

implicit representation to reconstruct objects undergoing fast and complex 

deformations.
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• We demonstrate that DiFiR-CT can reconstruct movies of moving objects 

imaged with standard axial CT acquisitions without assuming priors related to 

the motion.

• We highlight that DiFiR-CT performance is robust to the choice of 

hyperparameters, is robust to noise in the acquired sinogram, and can be readily 

used to solve for a wide range of motions.

This paper is organized as follows. Section II. discusses prior works related to DiFiR-

CT. A component-wise description of DiFiR-CT is covered in Section III. followed by 

implementation details in Section IV. Sections V. and VI. respectively detail the experiments 

and results.

II. Background

II.A. Avoidance, Estimation, or Reduction of Motion Artifacts

Image artifacts can be minimized by limiting motion during acquisition of CT data. While 

anatomy of interest can often be held still, this is challenging when imaging the heart 

due to its near-constant motion. Instead, artifacts due to cardiac motion can be reduced by 

imaging during portions of the cardiac cycle with relatively small motion (either the end- 

systole or diastasis periods)19. However, this can be of limited use in patients with high or 

irregular heart rates. Further, avoiding periods of object motion may limit assessment of key 

properties such as joint articulation or cardiac dynamics.

Faster gantry rotation can also be used to reduce motion artifacts. Increasing the rotation 

speed for single-source systems is mechanically challenging and requires an increase in 

x-ray tube power to maintain similar image quality11. Dual-source systems have been shown 

to improve the temporal resolution20,21. Unfortunately, the increased mechanical complexity 

or additional sources has limited design of systems with more than two sources22. While 

non-mechanical, electron beam CT systems, initially introduced in the 1980s, can achieve 

fast acquisition times (~50ms), suboptimal image quality has limited clinical adoption23,24. 

As a result, most current clinical CT systems are of the single-source design and reconstruct 

images with temporal footprints >100ms which can result in significant motion artifacts 

when imaging cardiac structures.

Computer vision approaches have proven beneficial in solving the significantly under-

determined problem of jointly estimating image intensity and motion over time on a per-

pixel basis25,26. For example, partial angle images can be used to estimate and correct 

for temporally-constant but spatially-varying motion12,27,28. One such approach (“SnapShot 

Freeze”, GE Healthcare) has been developed into a clinical solution and been shown to 

improve image quality29 and reduce the presence of artifacts30. More recent work has 

leveraged machine learning to improve motion estimation31. However, the ability of these 

methods correct complex motions remains unclear despite advanced phantoms such as 

XCAT32 being used to improve evaluation33.

Machine learning has also been used to correct motion artifacts in reconstructed images. For 

example, Ko et al. developed a deep convolutional neural network (CNN) to compensate 
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for both rigid and nonrigid motion artifacts34. Similarly, Lossau et al. used three CNNs to 

reduce the metal artifacts created by pacemakers35. The classification of coronary artery 

plaques blurred by motion has also been improved by fine tuning of inception v3 CNN36.

II.B. Neural Implicit Representations and Reconstruction

Neural implicit representations (NIRs) are an efficient approach for storage of high 

resolution information. This can be attributed to the fact that NIRs are continuously 

differentiable, which allows for both theoretically infinite resolution and efficient 

optimization using classic gradient descent techniques37. In contrast, conventional 

representations either require significantly higher memory usage (voxels38,39), make 

compromises regarding topology information (point clouds40) or give unrealistic surfaces 

after optimization (meshes41).

Since classic shape reconstruction works by Park et al. and Mescheder et al.42,43, NIRs have 

been used for novel view synthesis13,44,45,46 and multi-view reconstruction47,48,49. Recently, 

NIRs have been used to improve CT50,51,52,53,54,55 and MR56 imaging. The use of NIRs to 

help solve inverse problem of CT reconstruction was first shown by Sun50. Such techniques 

have since shown to enable super resolution51 and improve sparse CT reconstruction52,53,54 

In most cases, these approaches model the data acquisition process to optimize the NIRs 

for static objects. In contrast, the focus of this paper is to reconstruct objects that move 

during data acquisition. NIRs have been extended to dynamic scenes by warping a learned 

template scene with estimated motion field55. In this work, the scene and motion fields 

are modeled separately. Due to the reliance on a template, this method fails to handle 

complex topology changes. Our approach aims to accurately capture boundary motion 

and enable time-resolved reconstruction by representing the position and motion of object 

boundaries via SDFs, a physically motivated representation. Moreover, we demonstrate that 

our technique can utilize the result of conventional reconstructions (in our case, filtered 

backprojection) as an effective initialization. We refer readers to14 for a survey on NIRs.

III. DiFiR-CT

Here, we describe the core components of our approach, namely the signed distance-based 

neural implicit representation and our differentiable renderer which allows for optimization 

of the representation via analysis-by-synthesis57.

III.A. Signed distance-based NIR

A signed distance-based implicit representation seeks to store the object’s shape as a zero 

level-set of a higher dimensional function. This can be extended to scenes with multiple 

objects by representing each object with their own signed distance function. In this work, 

we implicitly represent a scene using a vector of signed distance functions (SDF) f : 

ℝN × ℝ  ℝK to map the spatiotemporal coordinate x, t ∈ ℝN × ℝ to the boundaries of 

K objects in spacetime represented by their SDF values f x, t ∈ ℝK where N is the number 

of spatial dimensions and K is the number of objects represented. As discussed in Section 

II.D, fitting a neural network is an efficient and differentiable alternative to defining SDFs 
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on a discrete set of grids. Further, a neural network compactly adapts the spatiotemporal 

resolution of the representation to the complexity of the underlying object.

We approximate the SDF representation f x, t  by a neural network ĝ x, t; w , where w is the 

set of network weights (see Fig. 2). We do this by creating two sub-networks that jointly 

approximate the shape of the SDF ĝE as well as its spatiotemporal displacement ĝV. While 

this was done explicitly via two sub-networks and was intended to ensure the network had 

sufficient expressive capacity, optimization of the MLP for specific tasks is left for future 

work.

EncoderNet—For each location x ∈ ℝN, the stationary component of the object’s SDF 

was represented using a network EncoderNet ĝE x; wE :ℝN ℝK.

VelocityNet—For each location x ∈ ℝN, the temporal evolution of an object’s SDF 

was parameterized using Fourier coefficients Aij, ℬij , i ∈ 1, ⋯, M , j ∈ 1, ⋯, K  which are 

respectively the coefficients for sines and cosines of K objects. The coefficients were fit by a 

network ĝF x, t; wF :ℝN ℝ2MK. Then, ĝV x, t; wF :ℝN ℝK was computed as:

ĝV x, t; wF = 1
M

A11 x ⋯ A1M x ℬ11 x ⋯ ℬ1M x
A21 x ⋯ A2M x ℬ21 x ⋯ ℬ2M x

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
AK1 x ⋯ AKM x ℬK1 x ⋯ ℬKM x

sin 2πω1t
sin 2πω2t

⋮
sin 2πωMt
cos 2πω1t
cos 2πω2t

⋮
cos 2πωMt

(1)

Here, ωi N 0, Fmax  is a random variable sampled from a normal distribution with standard 

deviation Fmax (Hz). We modeled our randomly sampling of Fourier features on work done 

by Rahimi and Recht58. However, we found that sampling from a normal distribution 

(instead of a uniform distribution) led to better optimization. The random sampling is 

performed once, at the beginning of each reconstruction. In practice, we expect physical 

constraints allow for bandlimiting of the Fourier representation and parameterization of the 

network with Fmax. We determined Fmax empirically with the goal of encouraging VelocityNet 

to represent physically-relevant displacement fields and found M=128 frequencies to 

be sufficient for our test cases despite earlier results utilizing M=25659. As shown in 

Equation 1, ĝV x, t; wF  yields a distance value based on the Fourier representation encoded 

by ĝF x, t; wF . In other words, ĝV x, t; wF  recombines the 2MK output of ĝF x, t; wF  into the 

desired K-dimensional SDF displacement values such that they can be summed with the 

result from the EncoderNet.

Implementation SIRENs60 are an efficient framework capable of capturing high frequency 

information and, therefore, were used to implement both EncoderNet and VelocityNet. As a 

result, the overall representation is given by

Gupta et al. Page 6

Med Phys. Author manuscript; available in PMC 2023 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ĝ x, t; w = ĝV x, t; wF + ĝE x; wE (2)

where w is the union of EncoderNet weights wE and VelocityNet weights wF. i.e. w = wE ∪ wF.

III.B. Differentiable Renderer

The differentiable renderer projects a spatiotemporal attenuation intensity I x, t  to the 

sinogram domain r l, θ  using a model of the CT system. This is done by integrating 

attenuation encountered by rays traveling from the source to a specific detector position l at 

a gantry position θ. As the gantry rotates over time t, the spatiotemporal attenuation intensity 

I x, t  is rendered resulting in the sinogram value r l, θ  as defined by the following integral:

r l, θ =
u

I x, t Γ θ t du (3)

where u is the path the ray traverses through the scene and Γ θ t  is the time-varying 

two-dimensional rotation matrix which describes the gantry rotation by an angle θ about the 

center of the scene which varies as a function of time. Note that the the computation for 

r l, θ  can be performed differentiably using appropriate sampling of the above integral. This 

means that the spatiotemporal attenuation intensity I x, t  can be updated based on some 

error functional E r  defined on the rendered sinogram r l, θ  by backpropagating its gradient 
∂E r
∂r l, θ .

In our framework, the attenuation intensity Î x, t  is encoded by means of object-wise 

spatiotemporal SDFs encoded in the network ĝ x, t; w . Note, hat notation ⋅̂ is used to 

distinguish quantities predicted by a neural network from ground truth values. Î x, t  is 

extracted from ĝ x, t; w  in a differentiable manner so that gradients of the error functional 

∂E can be used to directly update the weights w of our implicit representation ĝ x, t; w . As 

shown in Fig 3, the process begins by uniformly querying the SDF representation ĝ x, t; w
over the N-dimensional grid of size d at some time frame t. This results in a unique, albeit 

discrete, SDF representation f̂☐ x, t, k, ĝ  for each of the k objects as separate channels of the 

network’s output volume. Note, the ☐ indicates a discrete representation so f̂☐ x, t, k, ĝ  is the 

estimate of the SDF sampled on a discrete pixel/voxel grid. This discrete representation is 

then converted into an occupancy via ζ y , defined as:

ζ y = min 1, max 0, μ* σ y − 0.5 (4)

where μ is a scaling factor that controls the sharpness of the boundary and σ refers to the 

sigmoid function. The spatiotemporal intensity map Î x, t  can be computed by taking the 

inner product of per-channel occupancy and attenuation intensity a k  (assumed to be known 

apriori).

Î x, t = a k ζ f̂◻ x, t, k, ĝ (5)
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In order to perform accurate rendering and model the spatially-integrating detectors used 

for CT, the derived occupancy grid f̂ x, t; w , was upsampled ksamp times using bilinear 

interpolation before performing the rendering operation. Subsequently, the projected 

sinogram r̂ l, θ  was downsampled via average pooling. These steps describe a differentiable 

rendering operator R ⋅ ; θ :ℝdN
× ℝ ℝdN − 1

 which can map an SDF representation 

ĝ x, t; w  to the projection domain r̂ l, θ  via appropriate discretization. This procedure is 

end-to-end differentiable and allows for backpropagating gradients of a functional E such as 

the L1 distance between r l, θ  and r̂ l, θ  to the network weights w.

IV. Reconstruction using DiFiR-CT

DiFiR-CT leverages the fact that the spatiotemporal attenuation map of a moving object 

can be represented both explicitly in the image domain as well as implictly in the neural 

domain. That is, as weights of a neural network. As outlined in Figure 4, DiFiR-CT 

performs optimization in both of these domains across three stages: Initialization, Training, 

Refinement/Export.

Briefly, Initialization is intended to obtain well-behaved gradients. One way we do this is by 

leveraging the fact that the norm of the gradient of the signed distance field is always unity 

(i.e., the Eikonal constraint60). Further, instead of using a random initialization for the neural 

SDF representation, we utilize the filtered back projection result. Algorithm 1 identifies 

objects of interest in an image reconstructed via filtered back projection (FBP) using 

a simple intensity-based segmentation. Algorithm 2 encodes the resulting segmentation 

(binary background-foreground) image as signed distance functions and Algorithm 3 

performs the explicit-to-implicit representation conversion.

The training portion begins with Algorithm 4 which is responsible for updating (a.k.a. 

training) the neural SDF representation to match the sinogram data. Subsequently, 

Algorithm 5 performs the implicit-to-explicit conversion and Algorithm 6 creates the 

occupancy image for the discretized SDF map.

Results improved when DiFiR-CT was re-initialized using the result of it’s first prediction. 

Therefore, Refinement/Export consists of applying Algorithms 2 – 6 on the initial result of 

DiFiR-CT.

IV.A. Initialization

The SDF of K foreground objects of interest is initialized using the filtered back projection 

(FBP) reconstruction images IFBP x, t . Here, the number of objects of interest K is defined 

apriori. Defining both a background class as well as several additional classes κ such that 

K′ = K + κ + 1 improved initialization.

Algorithm 1 performs intensity-based segmentation using a Gaussian Mixture Model61 

GMM IFBP x, t , k′  to create segmentation images G x, t . This results in binary classification 

images C x, t, k′ . From these binary images, the mass ℳ k′  of each foreground class was 
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calculated. After removal of the background cbackground, defined as the class with the largest 

mass, the binary images C x, t, k  for the K largest classes were kept.

Binary class images C x, t, k  representing pixels of each label across time were then 

converted into SDF images f̂ x, t, k  using Algorithm 2. Our approach uses total variation 

minimization62 to smooth the images and then performs the distance transform over the 

entire domain to obtain SDF images f̂ x, t, k .

To create neural implicit representations from the explicit SDF images f̂ x, t, k , we 

performed optimization as described in Algorithm 3. A randomly initialized neural network 

g x, t; w  is optimized into a network ĝo x, t; w  which best approximates the explicit SDF 

image ĝ x, t; w ≈ f̂ x, t, k . The optimization is directly supervised and aims to minimize the 

SDF differences ℒSDF and satisfy the Eikonal constraint ℒEikonal. The optimization ends when 

the maximum number of iterations maxIterations have been reached.

IV.B. Training

At this point, the SDF representation ĝo x, t; w  includes motion artifacts present in IFBP. 

Algorithm 4 optimizes the neural network SDF representation ĝ x, t; w  to best explain the 

acquired sinogram r l, θ  with the minimum total variation in space ∥ ∇xĝ x, t; w ∥1 and time 

∥ ∇tĝ x, t; w ∥1.

The current neural implicit SDF prediction ĝ x, t; w  can be converted to a spatiotemporal 

intensity map Î x, t  and projected to the sinogram domain via previously described renderer 

(Section III.) R Î x, t , θ . This results in a sinogram estimate r̂ l, θ  used to calculate the 

sinogram loss ℒSinogram — the difference between the current estimate and the acquired 

sinogram r l, θ . This loss is combined with the Eikonal constraint ℒEikonal  and spatial ℒTV S

and temporal TV ℒTV T loss terms to improve optimization. The optimization was performed 

until the projection loss ℒSinogram  decreased below a certain threshold minLoss or maximum 

number of iterations maxIterations was reached.
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IV.C. Refinement/Exporting

To generate spatiotemporal intensity images from the neural SDF representation, we first 

convert the neural SDF into a set of explicit SDF images f̂☐ x, t, k . This is achieved by 

sampling the neural SDF ĝ x, t; w  over a n-dimensional grid at a desired spatial resolution 

(Algorithm 5). The resulting SDF image is then binarized B̂ x, t, k = ζ f̂☐ x, t, k  (Algorithm 

6). Binarized images B̂ x, t, k; w  are then used for Refinement, a second pass through 

the algorithm (starting with Algorithm 2). After Refinement, images were exported and 

analyzed.

V. Experiments

V.A. Implementation Details

The image resolution used during training was set to n = 128 with upsampling factor 

ksamp = 2. For optimal performance, we used Fmax = 3.0 and μ = 50. In Algorithm 1, we 

sampled τ such that τ = 0.02* T  and set κ = 3. For Algorithms 3 & 4 the learning rate was 

α = 1 × 10−5 and decayed by a factor of 0.95 every 200 steps. The optimization procedures 

was run with maxIterations = 5000, minLoss = 0.08, and λ = 0.1 and performed 5 times, 

each with a different random seed for the neural network. For best results, we trained with 

minibatch t = 20. As described below, we observed optimal results with λ1 = 0.1, λ2 = 0.5, 

and λ3 = 0.5. All experiments were performed using a 2D parallel beam CT geometry of a 

single foreground class (i.e. K = 1 ) except for the multi-object study. Optimizing DiFiR-CT 

takes ~ 30 mins on a single NVIDIA 1080Ti GPU.

V.B. Evaluation of DiFiR-CT Parameters

First, we simulated a simple cause of motion corruption: translation of a circle during 

imaging. This was intended to mimic motion of a coronary artery3. A circle with a diameter 
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25% of the size of the image was placed that same distance (25% of the image) from 

the center and angularly translated during the acquisition. We used this toy problem to 

explore the impact of λ1, λ2, and Fmax on the ability of DiFiR-CT to faithfully reconstruct a 

moving object. λ1 and λ2 are the weight of spatial and temporal total variation in the cost 

function used to supervise learning and Fmax is the maximum Fourier coefficient available for 

representation of the temporal changes.

The impact of these parameters on DiFiR-CT was evaluated via parameter sweeps. First, λ1

and λ2 were varied (0, 0.05, 0.1, 0.15, 0.3, 0.5, 0.9, 1.5, 3.0, 5.0, 10.0) with Fmax set to 3.0. 

Then, Fmax was varied from 0 to 10.0 with λ1 = 0.5 and λ2 = 0.5,

We evaluated a range of angular displacements per gantry rotation (0, 1, 5, 10, 20, 40, 70, 

100, 120, 150, and 200 degrees per gantry rotation). DiFiR-CT results were compared to 

both the ground-truth vessel image as well as the FBP result using the metrics described 

below.

V.C. Evaluation of Noise on DiFiR-CT

The impact of noise in the acquired sinogram on the quality of DiFiR-CT reconstruction was 

evaluated using imaging data obtained of a circle undergoing an angular displacement of 100 

degrees. Poisson-distributed quanta-counting noise63 was added to the acquired sinogram 

and the incident x-ray beam intensity was modulated to create images with a range of 

contrast-to-noise ratios (from 3 to 40). Five different noise realizations were created and 

DiFiR-CT and FBP results were compared to the ground-truth using the metrics described 

below.

V.D. Multi-object DiFiR-CT and Impact of Initial Segmentation

As outlined above, a key step in the DiFiR-CT framework is the initialization of the SDF 

map of scene. Above, we described a Gaussian Mixture Model (GMM) approach that is 

solely based on the intensity histogram in IFBP x, t . However, when applied to a scene with 

multiple moving objects, each with different attenuations, the GMM may fail to differentiate 

objects based solely on the intensity distribution. Figure 5 shows a failure of the GMM 

approach when analyzing the FBP reconstruction of two moving dots with two different 

attenuations (top = 0.7, bottom = 0.2). GMM identifies two intensity values of interest by 

evaluating the distribution of pixel intensities. However, the second object identified is the 

motion artifact of the brighter dot. Therefore, we refined the segmentation by providing 

some spatial information. A second approach, SegSI, uses a Region-Of-Interest (ROI) 

to guide thresholding-based segmentation. A bounding box was defined to only contain 

one moving dot such that we assigned one individual class to each box. In the box, we 

defined an intensity threshold = γ × Imax where Imax is the maximum intensity in the scene 

in each box to capture the real object. γ = 0.7 was set empirically. In all other respects, 

DiFiR-CT remained the same such that we could illustrate the improvement associated with 

an improved initialization.
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V.E. Imaging of Nonrigid, Heart-like Motion

To evaluate the utility of DiFiR-CT during non-rigid motion, we modeled heart-like motion 

using an ellipse with time-varying axes. In addition to static imaging, cine CT imaging 

can be used to evaluate heart size and dynamics. Therefore, we evaluated two imaging 

approaches: 1) Single-gantry rotation imaging where a sinogram spanning 360 degrees is 

acquired during which the ellipse diameter changes. 2) Full heart cycle imaging where 

multiple (typically 4–5) gantry rotations were obtained spanning the entire period of the 

heart-like motion. Of note, DiFiR-CT readily incorporate multiple rotation data into the 

reconstruction framework without modification. In this scenario, DiFiR-CT results were 

compared to FBP reconstructions centered at the same temporal position.

V.F. Imaging of Complex Deformations

Lastly, we demonstrate the ability of DiFiR-CT to reconstruct scenes with complex 

topological change. To do so, we created a complex scene where the letter “A” transforms 

into “B”, then into “C’, then back to “B’ and “A”. Without changes to any DiFiR-CT 

parameters (spatial/temporal weighting and Fourier coefficients), DiFiR-CT results were 

compared to FBP imaging.

V.G. Metrics to Evaluate Image Quality

DiFiR-CT was compared to conventional FBP images using mean-square error (MSE) and 

the foreground’s Dice coefficient where FBP images were thresholded using half of the 

foreground intensity. We did not compare DiFiR-CT to motion correction methods. This was 

motivated by the fact that the improvement obtained via correction depends on the suitability 

of the motion model in the correction scheme to the motion present in the acquired data. 

Given that current correction methods have been designed for clinical scenarios, our motion 

scenarios are not expected to represent realistic use cases. For DiFiR-CT, we report the 

median accuracy of 5 independent optimizations, where each optimization is initialized with 

a different random seed.

VI. Results

VI.A. Moving Coronary Vessel Imaging

As shown by the images and metrics in Figure 6, DiFiR-CT accurately reconstructed 

images of a small circle while FBP images showed significant artifacts λ1 = 0.5, λ2 = 0.5, and 

Fmax = 3.0 . Low MSE and high (>0.9) Dice was maintained for angular displacements of up 

to 150° during data acquisition. Figure 6 also illustrates how the DiFiR-CT reconstruction 

is impacted by displacements >150°. While the shape of the circle is preserved, increased 

MSE and decreased Dice occur primarily due to reconstruction of the circle at the incorrect 

temporal position.

VI.B. Evaluation of DiFiR-CT Parameters

DiFiR-CT reconstruction of a circle with translation = 100° per gantry rotation was used to 

evaluated the robustness of DiFiR-CT to changes in λ1, λ2, and Fmax. Figure 7 (top) illustrates 

the minor impact of changing the strength of spatial λ1  and temporal λ2  regularization 
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while maintaining Fmax = 3.0. Accurate reconstruction was achieved over a wide range of 

regularization strength. Figure 7 (bottom) illustrates the performance of DiFiR-CT with 

λ1 = 0.5 and λ2 = 0.5 when varying Fmax. Decreasing Fmax limits the temporal evolution that 

can be represented by the neural implicit approach. However, we observed robust DiFiR-CT 

reconstruction performance even at low Fmax values. Reconstruction accuracy decreased 

at high Fmax. This suggests that introduction of high frequency coefficients can result in 

overfitting.

VI.C. DiFiR-CT Reconstruction of Motion and Noise

Without modification of the parameters identified above λ1 = 0.5, λ2 = 0.5, and Fmax = 3.0), 

DiFiR-CT successfully reconstructed images across a range of contrast-to-noise values in 

the acquired sinogram. Figure 8 illustrates the high image quality of DiFiR-CT as well as 

the loss of image quality using the FBP approach. Despite significant object motion and low 

(≤ 5) CNR, DiFiR-CT maintained MSE ≤ 0.0031 and Dice ≥ 0.91 while FBP results were 

significantly worse in this scenario (MSE ≥ 0.02, Dice ≤ 0.05).

VI.D. Multi-object DiFiR-CT and Impact of Initial Segmentation

Reconstruction with DiFiR-CT-SegGMM was limited when Δθ > 60 degrees (Figure 9). In 

contrast, DiFiR-CT-SegSI maintained high-quality motion-corrected reconstructions for all 

Δθ and achieved low RSME (<0.028) and high (>0.89) DICE for Δθ up to 160 degrees. 

This illustrates several key features of the DiFiR-CT framework. First, solving for two 

intensities illustrates the ability of DiFiR-CT to be extended to multi-intensity scenes. 

Second, a spatially-naive segmentation can lead to limited performance. However, simple 

modifications such as the use of a ROI can significantly improve the result. For example, 

one potential use of DiFiR-CT could be to correct motion artifacts of a particular object that 

the user selects via an ROI.

VI.E. Imaging Nonrigid, Heart-like Motion with DiFiR-CT

Without modification of the parameters identified above λ1 = 0.5, λ2 = 0.5, and Fmax = 3.0 , 

DiFiR-CT successfully reconstructed images of the heart-like motion for both single gantry 

and full heart cycle imaging. Relative to FBP, DiFiR-CT improved imaging metrics when 

imaging an ellipse with changing dimensions. Figure 10 illustrates these differences.

The change in axes dimension is shown by the left two columns (temporal reformats 

along the x- and y-direction). Metrics of image quality (MSE and Dice) are shown on 

the right. For full heart cycle imaging with beating velocity = 3.0, DiFiR-CT decreased 

MSE (FBP: median 0.005, IQR 0.003–0.009, DiFiR-CT: median 0.001, IQR 0.001–0.002). 

Further, DiFiR-CT increased the percentage of frames with MSE < 0.005 from 46% (FBP) 

to 100%. DiFiR-CT also improved Dice (FBP: median 0.84, IQR 0.73–0.88 to DiFiR-CT: 

median 0.96, IQR 0.95–0.97). Supplemental Movie 1 illustrates the ground truth motion and 

improvement of DiFiR-CT reconstruction, relative to FBP.

Gupta et al. Page 13

Med Phys. Author manuscript; available in PMC 2023 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VI.F. Imaging Complex Topology Changes with DiFiR-CT

Without modification of the DiFiR-CT framework or parameters λ1 = 0.5, λ2 = 0.5, and 

Fmax = 3.0 , DiFiR-CT successfully reconstructed data acquired during a complex letter 

warping scene. Figure 11 shows five frames of the deformation with the groundtruth (top) 

as well as FBP (middle) and DiFiR-CT (bottom) reconstructions. DiFiR-CT significantly 

reduced the severity of artifacts created when using FBP. The plot of MSE and Dice scores 

as a function of time further illustrate the improvement. DiFiR-CT decreased error as 

measured via MSE (FBP: median 0.011, IR 0.008–0.019 to DiFiR-CT: median 0.007, IQR 

0.004–0.013). Further, DiFiR-CT increased the percentage of the frames with MSE< 0.005 

from 15.2% to 34%. DICE scores also improved with DiFiR-CT (FBP: median 0.78, IQR 

0.66–0.85, DiFiR-CT: median 0.86, (IQR 0.80–0.91). The percentage of frames with Dice 

> 0.85 increased from 25.8% for FBP to 58.8% with DiFiR-CT. Supplemental Movie 2 

illustrates the ground truth and FBP and DiFiR-CT reconstruction of the complex scene.

VII. Discussion

DiFiR-CT combines implicit representation of an object by a signed distance function 

(SDF) with differentiable rendering to successfully enable time-resolved imaging free 

from motion artifacts despite data acquisition occurring during motion. DiFiR-CT takes 

advantage of several important features of SDFs – namely, that they represent movement 

of a boundary as a spatially and temporally smooth evolution. DiFiR-CT represents the 

scene as SDFs which evolve over time using an implicit representation; in this case, a 

neural network. Differentiable rendering is used to improve the estimate of the scene by 

comparing the observed CT data with the SDF-based representation in the sinogram domain. 

The framework also enables additional regularization such as penalizing deviations from 

the Eikonal constraint and minimizing spatial and temporal variations. We demonstrated the 

utility of DiFiR-CT in three different imaging scenarios without changes to the architecture. 

Specifically, DiFiR-CT was readily applied to objects with different motions as well as 

data spanning one or more than one gantry rotation. These cases highlight how DiFiR-CT 

can be used to accurately reconstruct objects undergoing 1) translation, 2) heartbeat-like 

affine changes in diameter, and 3) complex topological changes (warping of letters). This 

flexibility was facilitated by the fact that DiFiR-CT does not utilize an explicit motion 

model.

In our evaluation of DiFiR-CT, we observed that accurate reconstructions were possible even 

with a fairly limited set of Fourier coefficients. This is likely due to the beneficial fact that 

SDFs used to parameterize the reconstruction problem evolve smoothly over space and time. 

We also observed reconstruction performance decreased if Fmax increased. This highlights 

the benefit of limiting the complexity of the solution via Fmax. An added advantage is that 

this hyperparameter has a simple physical interpretation, the bandwidth of the motion, which 

could facilitate its selection when applying DiFiR-CT to novel applications. It is likely 

that additional constraints such as preservation of mass could improve imaging in certain 

scenarios but this is left for future work targeting specific clinical applications.
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Further, in our examples, we show how this approach can be used to image one or two 

foreground objects with an empty background. However, in practice, the background class 

could be used to represent the position and intensity of static objects. Future work aims to 

extend this framework to resolve scenes with more complex background intensity.

We illustrate DiFiR-CT results without modification of parameters λ1, λ2, and Fmax . However, 

the optimal choice of these parameters is expected to vary depending on the specific imaging 

scenarios. Further, the rotation speed of CT systems can depend on both the design of the 

system and the clinical protocol. Evaluating the optimal combination of parameters is left for 

future work where specific scenarios are evaluated.

We illustrate how DiFiR-CT can seamlessly reconstruct data acquired using two common 

CT acquisition approaches (single and multiple gantry rotation imaging). Specifically, 

DiFiR-CT reconstructed imaging data spanning multiple gantry rotations simultaneously 

without explicit labeling of timepoints or the need for specific, complementary images. 

This is significantly different than approaches such as FBP which reconstruct each frame 

independently. As a result, in addition to improving single gantry reconstruction, DiFiR-CT 

also has the potential to improve reconstruction quality of each frame acquired during a 

multiple gantry acquisition by leveraging additional temporal information. While acquiring 

additional temporal information (beyond the typical half- or single gantry rotation) increases 

the dose delivered to the patient, it may enable DiFiR-CT to resolve the dynamics of objects 

that have been significantly hampered by imaging artifacts.

We believe our findings are noteworthy and novel but our study had several limitations. 

First, we quantified DiFiR-CT image quality relative to the groundtruth and conventional 

FBP reconstruction instead of direct comparison to previously-reported motion-correction 

approaches. We chose not to compare DiFiR-CT to techniques specially crafted for certain 

imaging scenarios such as translation of a coronary artery. We did so because we expect 

performance of motion correction approaches to depend significantly on the specifics of the 

application. For example, we expect motion-correction approaches to accurately reconstruct 

scenes when the object motion agrees with the method’s motion model. However, limited 

performance may occur if the object motion is different from the motion model. While our 

approach does not require an a priori motion model, it is difficult to ensure that our examples 

adhere to the constraints incorporated into current approaches. Comparison to current 

motion-correction algorithms is planned for future work in specific clinical scenarios.

Second, we demonstrated the use of DiFiR-CT using a single-source 2D parallel beam 

geometry. This was done to simplify interpretability of our findings. However, the 4D 

problem is a major motivation behind our use of a neural representation for the distance 

field. By storing the representation as a neural network, our approach does not need to 

represent the number of pixels/voxels in the final reconstructed image. For example, in 

our 2D examples, we reconstruct 720 128×128 images (11.8 million pixels) using neural 

representations with 200k weights. Practically speaking, our approach has the advantage 

that encoding a 3D field simply involves adding one more channel/input dimension to our 

neural representation. Future work is needed to determine the exact architecture needed to 
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accurately represent a 3D distance field but we expect our method will not suffer from the 

same scalability challenges faced by voxel-based representations.

Third, while our algorithm has been designed to solve for multiple foreground classes, it 

currently assumes an object has a uniformity intensity which does not change over time. 

While non-uniform intensities could be incorporated into our framework, how such a system 

is optimized is left for future work.

DiFiR-CT could complement previously described motion correction methods that operate 

on intensity values by providing accurate boundary position information. When solving 

for multiple moving objects, we observed that accurate optimization begins to depend, 

to a greater extent, on the initial segmentation of the filtered backprojection image and 

initialization of the algorithm. The use of a bounding box may be limited in certain 

clinical applications and was selected as a simple refinement to our process. We expect 

that more advanced initializations, such as semantic segmentations provided by experts or 

automated methods, could serve as robust initializations. However, the availability of such 

segmentations will depend on the clinical application. Therefore, while we demonstrate 

the possibility of imaging multiple objects, further work is needed to further optimize the 

initialization, particularly for more complex scenes.

Fourth, we utilized SIRENs as the neural network representation for the spatiotemporal SDF. 

However, certain networks may provide a better representation, especially when used for 

specific imaging applications/motion fields. This is left for future work.

Finally, dual-source systems and fan- or cone-beam geometries are expected to change the 

relationship between object motion and acquired CT data. While we expect DiFiR-CT to 

improve image quality in these scenarios, we leave these extensions as future work.

VIII. Conclusions

A novel reconstruction framework, DiFiR-CT, can be used to reconstruct CT imaging 

data acquired during object motion in a time-resolved manner free from motion artifacts. 

Our approach leverages a neural implicit scheme and does not require a prior motion 

models or explicit motion estimation. Representing moving boundaries using a signed 

distance metric and neural implicit framework enables ‘analysis-by-synthesis’ to identify 

a solution consistent with the observed sinogram as well as spatial and temporal consistency 

constraints.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Illustration of the Benefit of a Signed Distance Function (SDF)-based Object 
Representation.
The SDF of a moving object boundary is a smooth function of time. In this scene, a white 

ellipse moves from left to right over a black background, across 3 frames. The per-pixel 

image intensity (observed at the blue and green locations) changes over time in a step-like 

fashion. However, the signed distance value changes smoothly which makes it amenable for 

fitting a Lipschitz continuous function.
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Figure 2: Neural implicit representation of the SDF.
The SDF is approximated using a neural network ĝ x, t; w  comprising two sub-networks 

which estimate the shape of the SDF ĝE as well as its spatiotemporal displacement ĝV. Neural 

networks are implement as SIREN60 MLPs.
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Figure 3: Differentiable rendering of signed distance based NIR.
Panel A: Given the object-wise spatiotemporal SDF representation ĝ x, t; w , we query 

the network at each point x on the N-dimensional grid of size d at some time frame t. 
Panel B: This results in an object-wise discrete signed distance function for each of the k
objects. Panel C and D: SDFs are then converted into object-wise occupancy values and 

subsequently combined to form the final scene by taking the dot product with the attenuation 

intensity a k . In this illustration, a 0 = 0.2, a 1 = 0.8, a 2 = 0.5 and a 3 = 0.6. Panel E: 

This scene is rendered using R that results in a sinogram r̂ which can then be compared 

with ground truth sinogram r giving rise to an error functional E. Panel F: The entire 

computation graph is shown in which highlights that gradients from the functional E can be 

backpropagated through the renderer to the network weights w. This is crucial for optimizing 

the SDF representation ĝ x, t; w  using only the projected sinogram data.
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Figure 4: DiFiR-CT algorithm overview.
DiFiR-CT represents the spatiotemporal attenuation map of a moving object both explicitly 

in the image domain as well as implictly in the neural domain and performs optimization 

in both of these domains across three stages: Initialization, Training, Refinement/

Export. Initialization obtains well-behaved SDF representations based on filtered back 

projection (FBP) reconstructed images using an intensity-based segmentation, encodes the 

resulting segmentation as signed distance functions, and performs the explicit-to-implicit 

representation conversion. Training aims to update neural SDF representation to match 

the sinogram data. Refinement/Merge includes the implicit-to-explicit conversion, creation 

of occupancy images, and scaling and combination of binary images. DiFiR-CT results 

improved when it was repeated using the results of the first prediction.
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Figure 5: Intensity-only and spatially-aware object segmentation approaches used in DiFiR-CT.
The first image shows the ground truth motion of two dots (top intensity = 0.7, moving 

from left to right, bottom intensity = 0.2 , moving from right to left). Δθ is the angular 

displacement per gantry rotation. SegGMM: Gaussian mixture model incorrectly assigned 

the motion artifacts and the bottom dot as the same class. SegSI: Spatially aware 

segmentation utilized both spatial info (by setting bounding box in this example) and 

intensity info (thresholding) and led to correct detection of both top and bottom dots.
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Figure 6: DiFiR-CT accurately depicts the position of a circle, despite high motion during 
acquisition.
FBP images are degraded with increasing motion during data acquisition. DiFiR-CT 

improves delineation of the translating circle. Error bars represent the standard deviation 

observed from 5 DiFiR-CT results using different random initialization of the networks. All 

images are reconstructions using 360-degrees of projections. Displacement was imparted as 

an angular translation (in degrees) as indicated by the legend.
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Figure 7: DiFiR-CT reconstruction of an object with angular displacement = 100° with varying 
spatial and temporal regularization (top) and Fmax (bottom).

DiFiR-CT yields accurate image reconstruction over a range of spatial TV regularization. 

However, DiFiR-CT reconstruct can become inaccurate if temporal regularization is too 

highly penalized (e.g., λ1 = 20). This corresponds to making the solution more stationary. 

DiFiR-CT results are also robust for a wide-range of Fmax. At Fmax > 10, the increased 

parameterization can lead to overfitting and robust results can be achieved with lower Fmax.
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Figure 8: DiFiR-CT reconstruction with varying noise.
DiFiR-CT yields accurate image reconstruction over a range of contrast-to-noise ratios 

for a circle with angular displacement = 100°. However, FBP shows a decrease in image 

reconstruction accuracy as the noise increase (CNR decreases). Median values of five noise 

realizations are shown for both FBP and DiFiR-CT results.
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Figure 9: DiFiR-CT-SegSI accurately depicts the moving dots with two attenuations and high 
angular displacements.
DiFiR-CT-SegGMM failed to accurately reconstruct two circles when Δθ > 60. DiFiR-CT-

SegSI maintained high-quality motion-corrected reconstruction for all Δθ with higher DICE 

and lower MSE when compared with FBP and DiFiR-CT-GMM. Δθ = angular displacement 

per gantry rotation. FBP suffers from motion artifacts for all Δθ.
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Figure 10: DiFiR-CT improves single (top) and multiple (bottom) gantry rotation imaging of 
a ”beating” circle.
Top: DiFiR-CT improves image quality, relative to FBP for both cases. The change in 

diameter of the circle along the x (blue) and y (green) axes are shown to illustrate how 

FBP blurring is improved by DiFiR-CT. Images reconstructed at the middle of the data 

acquisition (red line) are shown in the middle panel. DiFiR-CT reduces the noticeable 

motion artifacts along the edges. Bottom: DiFiR-CT can readily leverage additional 

temporal information available when multiple gantry rotations are acquired and improves 

image quality, over FBP, without modification.

Gupta et al. Page 30

Med Phys. Author manuscript; available in PMC 2023 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11: DiFiR-CT improves imaging of a complex change in topology.
Without modification of the framework or tuning of parameters, DiFiR-CT improved 

imaging of a complex scene. Further, the approach did so without estimation of motion 

or a prior information. The temporal location of the 5 frames is shown on the MSE and Dice 

plots as vertical dotted lines.
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