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STATEMENT Open Access

Validated imaging biomarkers as decision-
making tools in clinical trials and routine
practice: current status and
recommendations from the EIBALL*
subcommittee of the European Society of
Radiology (ESR)
Nandita M. deSouza1*, Eric Achten2, Angel Alberich-Bayarri3, Fabian Bamberg4, Ronald Boellaard5, Olivier Clément6,
Laure Fournier6, Ferdia Gallagher7, Xavier Golay8, Claus Peter Heussel9, Edward F. Jackson10,
Rashindra Manniesing11, Marius E. Mayerhofer12, Emanuele Neri13, James O’Connor14, Kader Karli Oguz15,
Anders Persson16, Marion Smits17, Edwin J. R. van Beek18, Christoph J. Zech19 and European Society of Radiology20

Abstract

Observer-driven pattern recognition is the standard for interpretation of medical images. To achieve global parity in
interpretation, semi-quantitative scoring systems have been developed based on observer assessments; these are
widely used in scoring coronary artery disease, the arthritides and neurological conditions and for indicating the
likelihood of malignancy. However, in an era of machine learning and artificial intelligence, it is increasingly desirable
that we extract quantitative biomarkers from medical images that inform on disease detection, characterisation,
monitoring and assessment of response to treatment. Quantitation has the potential to provide objective decision-
support tools in the management pathway of patients. Despite this, the quantitative potential of imaging remains
under-exploited because of variability of the measurement, lack of harmonised systems for data acquisition and
analysis, and crucially, a paucity of evidence on how such quantitation potentially affects clinical decision-making and
patient outcome. This article reviews the current evidence for the use of semi-quantitative and quantitative biomarkers
in clinical settings at various stages of the disease pathway including diagnosis, staging and prognosis, as well as
predicting and detecting treatment response. It critically appraises current practice and sets out recommendations for
using imaging objectively to drive patient management decisions.
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Key points

� Biomarkers derived from medical images inform on
disease detection, characterisation and treatment
response.

� Quantitative imaging biomarkers have potential to
provide objective decision-support tools in the
management pathway of patients.

� Measurement variability needs to be understood and
systems for data acquisition and analysis harmonised
before using quantitative imaging measurements to
drive clinical decisions.

Introduction
Interpretation of medical images relies on visual assess-
ment. Accumulated and learnt knowledge of anatomical
and physiological variations determines recognition of
appearances that are within “normal limits” and allows a
pathological change in appearances outside these limits
to be identified. Observer-driven pattern recognition
dominates the way that imaging data are used in routine
clinical practice (Fig. 1). A semi-quantitative approach to
image analysis has been advocated in various scenarios.
These use observer-based categorical scoring systems to
classify images according to the presence or absence of
certain features. Examples used widely in healthcare for
clinical decision-making include reporting and data sys-
tems (RADS) [1, 2]. Increasingly, however, advancement

in standardisation efforts, applications of analysis tech-
niques to extract quantitative information and machine
and deep learning techniques are transforming how
medical images may be exploited.
In some clinical scenarios, automated quantitation

may be more objective and accurate than manual assess-
ment; thresholds can be applied above or below which a
disease state is recognised and subsequent changes inter-
preted as clinically relevant [3]. Unlike biomaterials, im-
ages potentially can be transferred worldwide easily,
cheaply and quickly for biomarker extraction in an auto-
mated, reproducible and blinded manner. Nevertheless,
despite the substantial advantages of quantitation, very
few quantitative imaging biomarkers are used in clinical
decision-making due to several obstacles. Harmonisation
of data acquisition and analysis is non-trivial. Lack of
international standards without routine quality assur-
ance (QA) and quality control (QC) processes results in
poorly validated quantitative biomarkers that are subject
to errors in interpretation [4–6]. This has profound im-
plications for diagnosis (correct interpretation of the
presence of the disease state) [7] and treatment deci-
sion-making (based on interpretation of response vs
non-response) [8] and reduces the validity of combin-
ation biomarkers derived from hybrid (multi-modality)
imaging systems. The imaging community needs to en-
gage in delivering high-quality data for quantification
and adoption of machine learning to ultimately exploit

Fig. 1 Schematic of questions requiring decisions (red boxes), imaging assessments (grey boxes), the results of the imaging assessments (blue
ovals) and the management decisions they potentially influence (green boxes)
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quantitative imaging information for clinical decision-
making [9]. This manuscript describes the current evi-
dence and future recommendations for using semi-
quantitative or quantitative imaging biomarkers as deci-
sion-support tools in clinical trials and ultimately in rou-
tine clinical practice.

Validated imaging biomarkers currently used to
support clinical decision-making
The need for absolute quantitation (versus semi-quanti-
tative assessment) in decision-making should be clearly
established. Absolute quantitation is demanding and re-
source intensive because hardware and software differ-
ences across centres and instrumentation and their
evolution impact the quality of quantified data. Rigorous
on-going QA and QC are essential to support the valid-
ity and clinically acceptable repeatability of the measure-
ment, and efforts are on-going within RSNA and the
ESR and other academic societies. Critically also, defini-
tive thresholds to confidently separate normal from
pathological tissues based on absolute quantitative met-
rics often do not have wide applicability or acceptance.

Semi-quantitative scoring systems
Semi-quantitative readouts of scores based on an obser-
ver-recognition process are widely used because visual
interpretation often has proven adequate and is linked
to outcome. For example, MRI scoring systems for grad-
ing hypoxic-ischaemic injury in neonates using a com-
bination of T1-weighted (T1W) imaging, T2-weighted
(T2W) imaging and diffusion-weighted imaging (DWI)
have shown that higher post-natal grades were associ-
ated with poorer neuro-developmental outcome [10]. In
cervical spondylosis, grading of high T2-weighted (T2W)
signal within the spinal cord has been related variably to
disease severity and outcome [11, 12]. In common dis-
eases such as osteoarthritis, where follow-up scans to as-
sess progression are vital in treatment decision-making,
such scoring approaches also are useful [13]; web-based
knowledge transfer tools using the developed scoring
systems indicate good agreement between readers with
both radiological and clinical background specialisms in
interpreting the T2W MRI data [14]. Similar analyses
have been extensively applied in diseases such as mul-
tiple sclerosis [15] and even to delineate the rectal wall
from adjacent fibrosis [16]. In cancer imaging, 18FDG
PET/CT studies use the Deauville scale (liver and medi-
astinum uptake as reference) as the standard for re-
sponse assessment in lymphoma [17]. Semi-quantitative
scoring systems also form the basis of the breast imaging
(BI)-RADS and prostate imaging (PI)-RADS systems in
breast and prostate cancer respectively. Their wide
adoption has led to spawning of similar classification
scores for liver imaging (LI)-RADS [18–20], thyroid

imaging (TI)-RADS [20] and bladder (vesicle imaging,
VI)-RADS [21] tumours. Multiparametric MRI scores
are also used for detection of recurrent gynaecological
malignancy [22] and grading of renal cancer [23]. Man-
ual assessment of lung nodule diameter and volume
doubling time have reached a wide acceptance in the de-
cision-making of incidental detection, screening [24] and
prediction of response [25]. These parameters might be
substituted or improved by artificial intelligence in the
near future [26].

Quantitative measures of size/volume
The simplest quantitative measure used routinely is size.
Size is linked to outcome in both non-malignant and
malignant disease [27]. Ventricular size on echocardiog-
raphy is robust and incorporated into large multicentre
trials [28, 29] and into routine clinical care. Left ven-
tricular ejection fraction (LVEF) is routinely extracted
from both ultrasound and MRI measurements. In in-
flammatory diseases such as rheumatoid arthritis, where
bone erosions are a central feature, assessment of the
volume of disease on high-resolution CT provides a sur-
rogate marker of disease severity [30] and is associated
with the degree of physical impairment and mortality
[31, 32]. Yet these methods remain to be implemented
in a clinical setting because intensive segmentation and
post-processing resources are required. In cancer stud-
ies, unidimensional measurements (RECIST1.0 and 1.1)
[27] are used for response because of the perceived ro-
bustness and simplicity of the measurement, although
reproducibility is variable [33], resulting in uncertainty
[34]. Although numerous studies have linked disease
volume to outcome over decades of research [35–38],
volume is not routinely documented in clinical reports
because of the need for segmentation of irregularly
shaped tumours. Volume is indicative of prognosis and
response, for example in cervix cancer where evidence is
strong [39]. In other cancer types, such as lung, meta-
bolic active tumour volume on PET has a profound link
to survival [40, 41]. Metabolic active tumour volume also
has proven to be a prognostic factor in several lymph-
oma studies [42] and is being explored as a biomarker
for response to treatment [43–45]. The availability of au-
tomated volume segmentation at the point of reporting
is essential for routine adoption.

Extractable quantitative imaging biomarkers with
potential to support clinical decision-making
Quantitative imaging biomarkers that characterise tissue
features (e.g. calcium, fat and iron deposition, cellularity,
perfusion, hypoxia, diffusion, necrosis, metabolism, lung
airspace density, fibrosis) can provide information that
characterises a disease state and reflects histopathology.
Multiple quantitative features can be incorporated into
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algorithms for recognising disease and its change over
time (both natural course and in response to therapy).
This involves an informatics style approach with data
built from atlases derived from validated cases. Curation
of anatomical databases annotated according to disease
presence, phenotype and grade can then be used with
the clinical data to build predictive models that act as
decision-support tools. This has been proposed for brain
data [46] but requires a collection of good quality vali-
dated data sets, carefully archived and curated. Harnes-
sing the quantitative information contained in images
with rigorous processes for acquisition and analysis, to-
gether with deep-learning algorithms such as has been
demonstrated for brain ageing [47] and treatment re-
sponse [48], will provide a valuable decision-support
framework.

Ultrasound
Quantitation in ultrasound imaging has derived parameters
related to cardiac output (left ventricular ejection fraction),
tissue stiffness (elastography) and vascular perfusion (con-
trast-enhanced ultrasound) where parameters are related
to blood flow. Ultrasound elastography is an emerging
field; it has been shown to differentiate liver fibrosis [49],
benign and malignant breast and prostate masses and inva-
sive and intraductal breast cancers [50, 51]. It also has been
explored for quantifying muscle stiffness in Parkinson’s dis-
ease [52], where low interobserver variation and significant
differences in Young’s modulus between mildly symptom-
atic and healthy control limbs make it a useful assessment
tool. Furthermore, it has shown acceptable inter-frame co-
efficient of variation for identifying unstable coronary pla-
ques [53]. Blood flow quantified by power Doppler has
potential as a bedside test for intramuscular blood flow in
the muscular dystrophies [54]. Quantified parameters peak
intensity (PI), mean transit time (MTT) and time to peak
(TTP) are available from contrast-enhanced ultrasound,
but rarely used because of competing studies with CT and
MRI that also capture morphology.

CT
CT biomarkers are dependent on a single biophysical par-
ameter, differential absorption of X-rays due to differences
in tissue density, either on unenhanced scans or following
administration of iodine-based contrast agent, which in-
creases X-ray absorption in highly perfused tissues. Other
developments have utilised tissue density as a parameter
in multicentre trials for quantification of emphysema
(COPDGene and SPIROMICS) [55–57] and interstitial
pulmonary fibrosis (IPF-NET) [58] and for assessment of
obstructive (reversible) airways disease [59, 60]. The stud-
ies have made use of various open source and bespoke re-
search software tools, but generally, these imaging-based
biomarkers have been used to guide treatment [61, 62]

and demonstrated direct correlation with outcomes and
functional parameters [63]. Drawbacks include poor
standardisation of imaging protocols (voltage, slice thick-
ness, respiration, I.V. contrast, kernel size) and post-pro-
cessing software [64], although many of these issues have
been resolved using phantom quality assurance and speci-
fied imaging procedures for every CT system used in these
studies [65, 66]. Standardisation of instrumentation would
simplify comparability between centres and enable long-
term data acquisition consistency even after scanner up-
dates [66]. In cardiac imaging, tissue density biomarkers
using coronary artery calcium scoring have been exten-
sively applied in large studies evaluating cardiac risk [67]
and luminal size on coronary angiography used in out-
come studies [68, 69]. Dual-energy CT quantifies iodine
concentration directly and is being investigated for charac-
terising pulmonary nodules and pleural tumours [70, 71].

MR including multiparametric data
MRI is more versatile than US and CT because it can be
manipulated to derive a number of parameters based on
multiple intrinsic properties of tissue (including T1- and
T2 relaxation times, proton density, diffusion, water-fat
fraction) and how these are altered in the presence of
other macromolecules (e.g. proteins giving rising to
magnetisation transfer and chemical exchange transfer
effects) and externally administered contrast agents
(Gadolinium chelates). Perfusion metrics have also been
derived with arterial spin labelling, which does not re-
quire externally administered agents [72]. The apparent
diffusion coefficient (ADC) is the most widely used
metric in oncology for disease detection [73, 74], prog-
nosis [75] and response evaluation [76, 77]. Post-pro-
cessing methods to derive absolute quantitation are
extensively debated [78, 79], but the technique is robust
with good reproducibility in multicentre, multivendor
trials across tumour types [80]. Refinements to model
intravascular incoherent motion (IVIM) and diffusion
kurtosis are currently research tools. In cardiovascular
MRI, there is a growing interest in quantifying T1 relax-
ation time, rather than just relying on its effect on image
contrast; when combined with the use of contrast agents,
T1 mapping allows investigation of interstitial remodel-
ing in ischaemic and non-ischaemic heart disease [81].
T1 values are useful to distinguish inflammatory pro-
cesses in the heart [82], multiple sclerosis in the central
nervous system [83], iron and fat content in the liver
[84, 85] and adrenal [86], which correlates with fibrosis
scores on histology [87]. Multiparametric MRI bio-
markers (T1 and proton density fat fraction) achieve a >
90% AUC for differentiating patients with significant
liver fibrosis and steatosis on histology [88] and are be-
ing supplemented by measurements of tissue stiffness
(MR elastography) where a measurement repeatability
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Table 1 Imaging biomarkers for disease detection (semi-quantitative and quantitative) with examples of current evidence for their
use that would support decision-making

Disease detection

Biomarker SemiQ/
Q

Disease Question
answered

Utility of biomarker Data from Potential decision

for

Non-
malignant
disease

LVEF-US
LVEF-MRI

Q Cardiac
function
[28, 29]
Cardiac
function

Cardiac
output
Cardiac
output

ICC US 0.72, single centre
sensitivity 69% [29]
ICC MRI 0.86,correlation of
MRI and cineventriculography
0.72 [99]

Single
centre US
Multicentre
MRI [99, 100]

Inotropes
Inotropes

Renal volume-
US, CT, MRI

Q Renal failure Mass of
parenchyma

ICC on US 0.64–0.86 [101]
Correlation of US with CT
0.76–0.8 [102]
Interobserver reproducibility
on MRI 87–88% [103]

Single centre Renal replacement,
safety and toxicity of
other pharmaceuticals

Young’s modulus
on elastography-
US

Q Thyroid [104],
breast [50]
and prostate
cancer [51]
Parkinson’s
disease

Tumour
presence
Muscle
stiffness

Thyroid sensitivity 80%,
specificity 95% [104]
Breast AUC 0.898 for
conventional US, 0.932
for shear wave elastography,
and 0.982 for combined
data [105]
Prostate sensitivity 0.84,
spec 0.84 [51]

Thyroid,
breast:
single
centre
Prostate
meta-analysis

Treatment with
surgery/radiotherapy/
chemotherapy

Lung tissue
density

Q Emphysema
[106, 107] and
fibrosis [58]

Airways
obstruction,
interstitial
lung disease
present

Emphysema (density
assessment) influences
BODE (body mass index,
airflow obstruction, dyspnea
and exercise capacity) index.
Odds ratio of interstitial lung
abnormalities for reduced lung
capacity 2.3

Multicentre
Single centre

Surgery, valve and
drug treatment

Fibrosis and
ground-glass
index on CT
lung

SQ Idiopathic
lung fibrosis

Development of
inflammation
and fibrosis

Mortality predicted by
pulmonary vascular volume
(HR 1.23 (1.08–1.40), p = 0.001)
and honeycombing (HR 1.18
(1.06–1.32), p = 0.002) [108]

Single centre Drug treatment

ADC/pCT SQ Ischaemic
stroke

Presence of
salvageable
tissue versus
infarct core

Measure of infarct core/
penumbra used for patient
stratification for research [109]

Planned
multicentre

Treatment

Malignant
disease

Lung RADS,
PanCan, NCCN
criteria [110, 111]

SQ Lung nodules Risk of
malignancy

AUC for malignancy
0.81–0.87 [110]

Multicentre Time period of
follow-up or surgery

CT blood flow,
perfusion,
permeability
metrics

Q Malignant
neck lymph
nodes
Hepatocellular
cancer

Tumour
presence

Sensitivity 0.73, specificity
0.70 [112]
AUC 0.75, sensitivity 0.79,
specificity 0.75 [113]

Single centre
Single centre

Staging and
management
(surgery, radiotherapy
or chemotherapy)

BI-RADS [114]
PI-RADS [115]
LI-RADS [116]

SQ Cancer Risk of
malignancy

PPV: BI-RADS0 14.1 %,
BI-RADS4 39.1 % and
BI-RADS5 92.9 %
PI-RADS2 pooled
sensitivity 0.85,
pooled specificity 0.71
Pooled sensitivity for
malignancy 0.93

Dutch breast
cancer
screening
programme
Meta-analysis
Systematic
review

Staging and
management
stratification
(surgery,
radiotherapy,
chemotherapy,
combination)

ADC Q Cancer [117]

Liver lesions
[118]
Prostate
cancer [119]

Tumour
presence

Liver AUC 0.82–0.95
Prostate AUC 0.84

Single centre
Single centre

Staging and
management
stratification
(surgery,
radiotherapy,
chemotherapy,
combination)
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coefficient of 22% has been demonstrated in a metaana-
lysis [89]. Chemical exchange saturation transfer (CEST)
MRI interrogates endogenous biomolecules with amide,
amine and hydroxyl groups; exogenous CEST agents
such as glucose provide quantitative imaging biomarkers
of metabolism and perfusion. Quantitative CEST im-
aging shows promise in assessing cerebral ischaemia
[90], lymphedema [91], osteoarthritis [92] and metabol-
ism/pH of solid tumours [93]. However, the small signal
requires higher field strength acquisition and substantial
post-processing.

Positron emission tomography (PET)-SUV metrics
Quantitation of 18FDG PET/CT studies is mainly per-
formed by standardised uptake values (SUVs), although
other metrics such as metabolic active tumour volume
(MATV) and total lesion glycolysis are being introduced
in studies and the clinic [94, 95]. The most frequently
used metric to assess the intensity of FDG accumulation
in cancer lesions is, however, still the maximum SUV.
SUV represents the tumour tracer uptake normalised for
injected activity per kilogram body weight. SUV and any
of the other PET quantitative metrics are affected by
technical (calibration of systems, synchronisation of

clocks and accurate assessment of injected 18FDG activ-
ity), physical (procedure, methods and settings used for
image acquisition, image reconstruction and quantitative
image analysis) and physiological factors (FDG kinetics
and patient biology/physiology) [96]. To mitigate these
factors, guidelines have been developed in order to stand-
ardise imaging procedures [96, 97] and to harmonise
PET/CT system performance at a European level [97, 98].
Newer targeted PET agents are only assessed qualitatively
on their distribution (Table 1).

Radiomic signature biomarkers
Radiomics describes the extraction and analysis of quan-
titative features from radiological images. The assump-
tion is that radiomic features reflect pathophysiological
processes expressed by other “omics”, such as genomics,
transcriptomics, metabolomics and proteomics [128].
Hundreds to thousands of radiomic features (mathemat-
ical descriptors of texture, heterogeneity or shape) can
be extracted from a region or volume of interest (ROI/
VOI), derived manually or semi-automatically by a hu-
man operator, or automatically by a computer algorithm.
The radiomic “signature” (summary of all features) is ex-
pected to be specific for a given patient, patient group,

Table 1 Imaging biomarkers for disease detection (semi-quantitative and quantitative) with examples of current evidence for their
use that would support decision-making (Continued)

Disease detection

Biomarker SemiQ/
Q

Disease Question
answered

Utility of biomarker Data from Potential decision

for

Dynamic contrast
enhanced metrics
(Ktrans, Kep, blood
flow, Ve)

Q Liver tumour
Recurrent
glioblastoma

Hepatocellular cancer
AUC 0.85, sensitivity 0.85,
specificity 0.81 [113]
Brain- KtransAccuracy
86% [120]

Single centre
Single centre

Further treatment

18FDG SUV Q Cancer
Sarcoma [121]
Lung cancer
[105]

Tumour
presence

Sarcoma—sensitivity
0.91, specificity 0.85,
accuracy 0.88
Lung—sensitivity 0.68
to 0.95 depending on
histology

Meta-analysis
Meta-analysis

Staging and
management
stratification
(surgery,
radiotherapy,
chemotherapy,
combination)

Targeted radionuclides
[122]In-octreotide
[123]
[68]Ga DOTATOC and
[68]Ga DOTATATE
[124, 125] [68]Ga
PSMA [4]

Non-Q Cancer Tumour
presence

Sensitivity 97% and
specificity 92% for
octreotide [126]
Sensitivity 100% and
specificity 100% for
PSMA [127]

Single centre
Single centre

Validation remains
difficult because of
biopsying multiple
positive sites.

Biomarkers used visually in the clinic are given in italics, and those that are used quantitatively are in bold
Abbreviations: ADC apparent diffusion coefficient, APT amide proton transfer, AUC area under curve, BI-RADS breast imaging reporting and data systems, CBV
cerebral blood volume, CoV coefficient of variation, CR complete response, CT computerised tomography, DCE dynamic contrast enhanced, DFS disease-free
survival, DOTATOC DOTA octreotitide, DOTATATE DOTA octreotate, DSC dynamic susceptibility contrast, ECG electro cardiogram, FDG fluorodeoxyglucose, FLT
fluoro thymidine, HR hazard ratio, HU Hounsfield unit, ICC intraclass correlation, IQR interquartile range, LVEF left ventricular ejection fraction, MRF magnetic
resonance fingerprinting, MRI magnetic resonance imaging, MTR magnetisation transfer ratio, NCCN National Comprehensive Cancer Network, OS overall survival,
pCT perfusion computerised tomography, PERCIST positron emission tomography response criteria in solid tumours, PD progressive disease, PFS progression-free
survival, PPV positive predictive value, PI-RADS prostate imaging reporting and data systems, PR partial response, PSMA prostate-specific membrane antigen, RECIL
response evaluation in lymphoma, RECIST response evaluation criteria in solid tumours, ROC receiver operating characteristic, SD stable disease, SUV standardised
uptake value, SWE shear wave elastography, US ultrasound
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Table 2 Imaging biomarkers for disease characterisation (semi-quantitative and quantitative) with examples of current evidence for
their use that would support decision-making

Biomarker SemiQ/
Q

Disease Question answered Utility of biomarker Data from Potential decision
for

Non-
malignant
disease

Young’s
modulus

Q Coronary
plaques [53]

Risk of rupture Reproducibility CoV 22% vessel wall,
19% in plaque. AUC for focal neurology
Youngs modulus + degree = 0.78

Single
centre

Stenting, coronary
bypass surgery

Plaque
density,
vessel
luminal
diameter

Q Coronary
artery
stenosis

Risk of plaque
rupture; risk of
significant cardiac
ischaemia, infarction,
death

No luminal narrowing but with
coronary artery calcium (CAC) score > 0
had a 5-year mortality HR 1.8
compared with those whose CACS = 0.
No luminal narrowing but CAC ≥ 100
had mortality risks similar to individuals
with non-obstructive coronary artery
disease [138]
CT angiography significantly better at
predicting events than stress echo/ECG
[68]
Coronary death/non-fatal myocardial
infarction was lower in patients with
stable angina receiving CT angiography
than in the standard-care group (HR =
0.59) [69]

Multicentre
Multicentre
Multicentre

Statins, stenting,
coronary bypass
surgery

18F-Na SQ Aortic valve
disease

Coronary
plaque [139]
Acute events
from abdominal
aortic aneurysm

Valve stenosis
present
Likelihood of plaque
rupture
Likelihood of
aneurysm rupture

Reproducibility NaF uptake 10% [140]
Baseline 18F-NaF uptake correlated
closely with the change in calcium
score at 1 year [141]
18F-NaF uptake (maximum tissue-to-
background ratio 1·90 [IQR 1.61–2.17])
associated with ruptured plaques and
those with high-risk features [142]
Aneurysms in the highest tertile of 18F-
NaF uptake expanded 2.5× more
rapidly than those in the lowest tertile
and were 3× more likely to rupture
[143]

Single
Multicentre

Coronary stenting,
aneurysm stenting

MTR Q Multiple
sclerosis

Disease progression MTR significantly correlates with T2
lesion volume [144]
Grey matter MTR histogram peak
height and average lesion MTR
percentage change after 12 months
independent predictors of disability
worsening at 8 years [145]
Change in brain MTR specificity 76.9%
and PPV 59.1% for Expanded Disability
Status Scale score deterioration [146]

Multicentre
Single
centre
Single
centre

Timing of
therapeutic
intervention

Malignant
disease

18FDG-SUV Q Cancer

Oesophageal
cancer

Good or poor
prognosis tumour in
terms of PFS and OS

Wide variation between individuals and
tumours [147]
Oesophageal cancer HR 1.86 for OS,
2.52 for DFS [148]

Meta-
analysis

Neoadjuvant or
adjuvant therapy
or treatment
modality
combinations

18FLT-SUV Q Cancer High proliferative
activity present

Sizeable overlap in values with normal
proliferating tissues [75]

Review of
data from
single
centre
studies

Neoadjuvant or
adjuvant therapy
or treatment
modality
combinations

ADC
MRF (ADC,
T1 and T2)

Q
Q
Q

Cancer,
correlates
with tumour
grade

Risk of recurrence or
metastasis

Area under ROC, sensitivity and
specificity of nADCmean for G3
intrahepatic cholangiocarcinoma versus
G1+G2 were 0.71, 89.5% and 55.5%
[149]
“Unfavourable” ADC in cervix cancer
predictive of disease-free survival (HR
1.55) [150]
ADC and T2 together give AUC of 0.83
for separating high- or intermediate-
grade from low-grade prostate cancer

Single
centre
Meta-
analysis
Single
centre

Need of biopsy or
other invasive
diagnosis
Neoadjuvant or
adjuvant therapy
Decision for
radical treatment
or active
surveillance
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tissue or disease [129, 130]: it depends on the type of
imaging data (CT, MRI, PET) and is influenced by image
acquisition parameters (e.g. resolution, reconstruction
algorithm, repetition/echo times for MRI), hardware
(e.g. scanner model, coils), VOI/ROI segmentation [131]
and image artifacts.
Unlike biopsies, radiomic analyses, although not tissue

specific, capture heterogeneity across the entire volume
[132], potentially making them more indicative of ther-
apy response, resistance and survival. They may be
therefore better suited to decision support in terms of
treatment selection and risk stratification. Current radio-
mics research in X-ray mammography [133] and cross-

sectional imaging (lung, head and neck, prostate, GI
tract, brain) has shown promising results [134], leading
to extrapolation in non-malignant disease. Image quality
optimisation and standardisation of data acquisition are
mandatory for widespread application. At present, indi-
vidual research groups derive differing versions of a
similar signature and there is a tendency to change the
signature from study to study. Since radiomic signatures
are typically multi-dimensional data, they are an ideal in-
put for advanced machine learning techniques, such as
artificial neural networks, especially when big multi-
centric datasets are available. Early reports from multi-
centre trials indicate that reproducibility of feature

Table 2 Imaging biomarkers for disease characterisation (semi-quantitative and quantitative) with examples of current evidence for
their use that would support decision-making (Continued)

Biomarker SemiQ/
Q

Disease Question answered Utility of biomarker Data from Potential decision
for

[151]

DSC-MRI SQ
(rCBV)

Brain cancer Grading glioma AUC = 0.77 for discriminating glioma
grades II and III [152]

Meta-
analysis

Type and time of
intervention/
treatment

APT Q Glioma Proliferation APT correlates with tumour grade and
Ki67 index [153]

Single
centre

Therapeutic
strategies

DCE-CT
parameters
Blood flow,
permeability

Q Rectal cancer
Lung cancer

Blood flow 75% accuracy for detecting
rectal tumours with lymph node
metastases [154]
CT permeability predicted survival
independent of treatment in lung
cancer [155]

Single
centre
Single
centre

Surgical
dissection,
adjuvant
radiotherapy
Adjuvant therapy

DCE-MRI
parameters

Q Cervix cancer
Endometrial
cancer
Rectal cancer
Breast cancer

Risk of recurrence or
metastasis, survival

Tumour volume with increasing signal
is a strong independent prognostic
factor for DFS and OS in cervical cancer
[156]
Low tumour blood flow and low rate
constant for contrast agent
intravasation (kep) associated with high-
risk histological subtype in endometrial
cancer [157]
Ktrans, Kep and Ve significantly higher in
rectal cancers with distant metastasis
[158]
Ktrans, iAUCqualitative and ADC predict
low-risk breast tumors (AUC of
combined parameters 0.78)

Single
centre
Single
centre
Single
centre
Single
centre

Neoadjuvant,
adjuvant or
multimodality
treatment
strategies

Radiomic
signature
[159]

Q Multiple
tumour types
[160, 161]

Tumour with good
or poor prognosis

Data endpoints, feature selection
techniques and classifiers were
significant factors in affecting predictive
accuracy in lung cancer [162]
Radiomic signature (24 selected
features) is significantly associated with
LN status in colorectal cancer [163]

Single
centre
Single
centre

Neoadjuvant or
adjuvant
treatment,
immunotherapy
Lymph node
dissection,
adjuvant
treatment

Biomarkers used visually in the clinic are given in italics, and those that are used quantitatively are in bold
Abbreviations: ADC apparent diffusion coefficient, APT amide proton transfer, AUC area under curve, BI-RADS breast imaging reporting and data systems, CBV
cerebral blood volume, CoV coefficient of variation, CR complete response, CT computerised tomography, DCE dynamic contrast enhanced, DFS disease-free
survival, DOTATOC DOTA octreotitide, DOTATATE DOTA octreotate, DSC dynamic susceptibility contrast, ECG electro cardiogram, FDG fluorodeoxyglucose, FLT
fluoro thymidine, HR hazard ratio, HU Hounsfield unit, ICC intraclass correlation, IQR interquartile range, LVEF left ventricular ejection fraction, MRF magnetic
resonance fingerprinting, MRI magnetic resonance imaging, MTR magnetisation transfer ratio, NCCN National Comprehensive Cancer Network, OS overall survival,
pCT perfusion computerised tomography, PERCIST positron emission tomography response criteria in solid tumours, PD progressive disease, PFS progression-free
survival, PPV positive predictive value, PI-RADS prostate imaging reporting and data systems, PR partial response, PSMA prostate-specific membrane antigen, RECIL
response evaluation in lymphoma, RECIST response evaluation criteria in solid tumours, ROC receiver operating characteristic, SD stable disease, SUV standardised
uptake value, SWE shear wave elastography, US ultrasound
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Table 3 Imaging biomarkers for disease response assessment (semi-quantitative and quantitative) with examples of current
evidence for their use that would support decision-making

Biomarker SemiQ/
Q

Disease Question answered Utility of biomarker Data from Potential
decision for

Non-
malignant
disease

Volumetric high
resolution CT density
(quantitative interstitial
lung disease, QILD)

Q Scleroderma Response to
cyclophosphamide

24-month changes in QILD
scores in the whole lung
correlated significantly
24-month changes in
forced vital capacity
(ρ = − 0.37), diffusing
capacity (ρ = − 0.22)
and breathlessness
(ρ = − 0.26) [164]

Single
centre

Continue,
change or
stop treatment

Left Ventricular
ejection fraction LVEF

Q Pulmonary
hypertension
Myocardial
ischaemia/
infarction

Right and left
cardiac sufficiency
Improvement in
cardiac function

Increases in 6-min walk
distance were significant
correlated with change in
right ventricular ejection
fraction and left ventricular
end-diastolic volume [165]
Monitoring cardiac
function [166]

Multicentre
Multicentre

Continue,
change or
stop treatment

Malignant
disease

RECIST/morphological
volume

Q Cancer Response Current guidelines for
response assessment [167]

Multicentre Continue,
change or
stop treatment

PERCIST/metabolic
volume [168]

Q Cancer Response Current guidelines for
response assessment

Multicentre Continue,
change or
stop treatment

Scoring systems for
disease burden

SQ Multiple
sclerosis
Rheumatoid
arthritis

Reduction in
disease burden

Effects on MRI lesions over
6–9 months predict the
effects on relapses at
12–24 months) [169]
International consensus on
scoring system [170]

Meta-
analysis
Review

Continue,
change or
stop therapy

DSC-MRI SQ
(rCBV)

Brain cancer Differentiation of
treatment effects
and tumour
progression

In 2 meta-analyses MRI had
high pooled sensitivities and
specificities: 87% (95% CI,
0.82–0.91) to 90% (95% CI,
0.85-0.94) sensitivity and 86%
(95% CI, 0.77–0.91) to 88%
(95% CI, 0.83-0.92) specificity
[171, 172]

Meta-
analysis

Decision to
treat

18F FDG-SUVmax [173] Q Multiple
cancer types

Response
to therapy

Rectal cancer-pooled
sensitivity, 73%; pooled
specificity, 77%; pooled
AUC, 0.83 [174]
Intratreatment low SUVmax

(persistent low or decrease
of 18F-FDG uptake) predictive
of loco-regional control in
head and neck cancer [175]

Meta-
analysis
Meta-
analysis

Continue,
change or
stop therapy

Deauville or RECIL score
on 18F-FDG-PET

SQ Lymphoma CR, PR, SD or
PD [176]

Assessment of tumour burden
in lymphoma clinical trials can
use the sum of longest diameters
of a maximum of three target
lesions [177]

Multicentre Continue,
change or
stop therapy

Targeted agents
HER2
PSMA

SQ Breast cancer
[178]
Prostate cancer
[179]

Reduction in
tumour cells
expressing
these antigens

Tumour receptor specific
Effects of treatment on
receptor expression

Single
centre
studies,
review

Continue,
change or
stop therapy

ADC [117] SQ
Q

Rectal cancer
Breast cancer

Response to
neoadjuvant
chemotherapy
Response to
neoadjuvant
chemotherapy

Additional value in both the
prediction and detection of
(complete) response to therapy
compared with conventional
sequences alone [180]
After 12 weeks of therapy,

Review
Multicentre

Continue,
change or
stop therapy,
proceed to
surgery
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Table 3 Imaging biomarkers for disease response assessment (semi-quantitative and quantitative) with examples of current
evidence for their use that would support decision-making (Continued)

Biomarker SemiQ/
Q

Disease Question answered Utility of biomarker Data from Potential
decision for

change in ADC predicts
complete pathologic
response to neoadjuvant
chemotherapy (AUC = 0.61,
p = 0.013) [181]

CT perfusion/blood
flow

Q Oesophageal
cancer

Response to
chemoradiotherapy

Multivariate analysis
identified blood flow
as a significant
independent predictor
of response [182]

Single
centre

Further
treatment

DCE-MR parameters Q Multiple
cancer types

Response to
therapy

Particular benefit in
assessing therapy
response to
antiangiogenic
agents [183]

Review Change
therapeutic
strategy

CT density HU Q Gastrointestinal
stromal tumours

Response to
chemotherapy

Decrease in tumour
density of > 15% on
CT had a sensitivity
of 97% and a specificity
of 100% in identifying
PET responders versus
52% and 100% by
RECIST [184]

Continue,
change or
stop therapy

Biomarkers used visually in the clinic are given in italics, and those that are used quantitatively are in bold
Abbreviations: ADC apparent diffusion coefficient, APT amide proton transfer, AUC area under curve, BI-RADS breast imaging reporting and data systems, CBV cerebral
blood volume, CoV coefficient of variation, CR complete response, CT computerised tomography, DCE dynamic contrast enhanced, DFS disease-free survival, DOTATOC
DOTA octreotitide, DOTATATE DOTA octreotate, DSC dynamic susceptibility contrast, ECG electro cardiogram, FDG fluorodeoxyglucose, FLT fluoro thymidine, HR hazard
ratio, HU Hounsfield unit, ICC intraclass correlation, IQR interquartile range, LVEF left ventricular ejection fraction, MRF magnetic resonance fingerprinting, MRI magnetic
resonance imaging, MTR magnetisation transfer ratio, NCCN National Comprehensive Cancer Network, OS overall survival, pCT perfusion computerised tomography,
PERCIST positron emission tomography response criteria in solid tumours, PD progressive disease, PFS progression-free survival, PPV positive predictive value, PI-RADS
prostate imaging reporting and data systems, PR partial response, PSMA prostate-specific membrane antigen, RECIL response evaluation in lymphoma, RECIST response
evaluation criteria in solid tumours, ROC receiver operating characteristic, SD stable disease, SUV standardised uptake value, SWE shear wave elastography, US ultrasound

Table 4 Recommendations for the use of quantitative imaging biomarkers as decision-support tools

Recommendation Current evidence Action needed

Consider need for quantitation
in relation to the decision being
made

Semi-quantitative imaging biomarkers are
successfully used in many clinical pathways.

• Classification systems retain a subjective element
that could benefit from standardisation and refinement.

• Development of automated and thresholding would
enable more quantitative assessments

Use validated IB methodology for
semi-quantitative and quantitative
measures

Many single and multicentre trials validating
quantitative imaging biomarkers with clinical
outcome now exist.

• Harmonisation of methodology
• Standardised reporting systems

Establish evidence on the use of
quantitation by inclusion into
clinical trials

Clinical trials are usually planned by non-imagers.
Integration of imaging biomarkers into trials is
dependent on what is available routinely to
non-imagers in the clinic, rather than exploiting
an imaging technique to its optimal potential.

• Inventory of imaging biomarkers accessible through
a web-based portal would inform the inclusion and
utilisation of imaging biomarkers within trials (The
European Imaging Biomarkers Alliance initiative).

• Certified biomarkers conforming to set standards
(Quantitative Imaging Biomarkers Alliance initiative)

Validate against pathology or
clinical outcomes to make
imaging a “virtual biopsy”

Several major databanks hold imaging and
clinical or pathology data
• CaBIG (USA)
• UK MRC Biobank (UK)
• German National Cohort Study (Germany)

• Large data collection for validation of imaging
and pathology

• Curation in imaging biobanks

Select appropriate quality
assured quantitative IB

Trials with embedded QA/QC procedures have
indicated good reproducibility of quantitative
imaging biomarkers (e.g. EU iMi QuIC:ConCePT
project)

• Ensure curation and archiving of longitudinal imaging
data with outcomes within trials

Open-source interchange kernel Low comparability between image-derived
biomarkers if hardware and software of
different manufacturers are used.

• Harmonisation of image acquisition and post-processing
over manufacturers
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selection is good when extracted from CT [135] as well
as MRI [136] data.

Selecting and translating appropriate imaging
biomarkers to support clinical decision-making
Automated quantitative assessments rather than scoring
systems are easier to incorporate into artificial
intelligence systems. For this, threshold values need to
be established and a probability function of the likeli-
hood of disease vs. no disease derived from the absolute
quantitation (e.g. bone density measurements) [137]. Al-
ternatively, ratios of values to adjacent healthy tissue can
be used to recognise disease. Similarly, for prognostic in-
formation, thresholds established from large databases
will define action limits for altering management based
on the likelihood of a good or poor outcome predicted
by imaging data. This will enable the clinical community
to move towards using imaging as a “virtual biopsy”.
The current evidence for use of quantitative imaging
biomarkers for diagnostic and prognostic purposes is
given in Tables 1 and 2 respectively.
For assessing treatment response (Table 3), the key

element in biomarker selection relates to the type of
treatment and expected pathological response. For non-
targeted therapies, tissue necrosis to cytotoxic agents is
expected, so biomarkers that read-out on increased free
water (CT Hounsfield units) or reduced cell density
(ADC) are most useful. With specific targeted agents
(e.g. antiangiogenics), specific biomarker read-outs (per-
fusion metrics by US, CT or MRI) are more appropriate
[185]. Both non-targeted and targeted agents shut down
tumour metabolism, so that in glycolytic tumours, FDG
metrics are exquisitely sensitive [186]. Distortion and
changes following surgery, or changes in the adjacent
normal tissue following radiotherapy [122], reduce quan-
titative differences between irradiated non-malignant
and residual malignant tissue, so must be taken into ac-
count [187]. In multicentre trials, it is also crucial to es-
tablish the repeatability of the quantitative biomarker
across multiple sites and vendor platforms for response
interpretation [4].

Advancing new quantitative imaging biomarkers
as decision-support tools to clinical practice
To become clinically useful, biomarkers must be rigorously
evaluated for their technical performance, reproducibility,
biological and clinical validity, and cost-effectiveness [6].
Table 4 gives current recommendations for use of quantita-
tive biomarkers as decision support tools.
Technical validation establishes whether a biomarker

can be derived reliably in different institutions (compar-
ability) and on widely available platforms. Provision
must be made if specialist hardware or software is re-
quired, or if a key tracer or contrast agent is not licensed

for clinical use. Reproducibility, a mandatory require-
ment, is very rarely demonstrated in practice [188] be-
cause inclusion of a repeat baseline study is resource
and time intensive for both patients and researchers.
Multicentre technical validation using standardised pro-
tocols may occur after initial biological validation (evi-
dence that known perturbations in biology alter the
imaging biomarker signal in a way that supports the
measurement characteristics assigned to the biomarker).
Subsequent clinical validation, showing that the same re-
lationships are observed in patients, may then occur in
parallel to multicentre technical validation.
Once a biomarker is shown to have acceptable tech-

nical, biological and clinical validation, a decision must
be made to qualify the biomarker for a specific purpose
or use. Increasingly, the role of imaging in the context of
other non-imaging biomarkers needs to be considered as
part of a multiparametric healthcare assessment. For ex-
ample, circulating biomarkers such as circulating tumour
DNA are often more specific at detecting disease but do
not localise or stage tumours. The integration of imaging
biomarkers with tissue and liquid biomarkers is likely to
replace many traditional and more simplistic approaches
to decision-support systems that are used currently.
The cost-effectiveness of a biomarker is increasingly im-

portant in financially restricted healthcare systems where
value-based care is increasingly considered [189]. How-
ever, the information may be derived from scans done as
part of the patients’ clinical work-up. Nevertheless, add-
itional imaging/image processing is expensive compared
to liquid- and tissue-based biomarkers. Costs can be off-
set against the cost saving from the unnecessary use of ex-
pensive but ineffective novel and targeted drugs. Health
economic assessment is therefore an important part of
translating a new biomarker into routine clinical practice.
In an era of artificial intelligence, where radiologists are
faced with an ever-increasing volume of digital data, it
makes sense to increase our efforts at utilising validated,
quantified imaging biomarkers as key elements in sup-
porting management decisions for patients.

Abbreviations
ADC: Apparent diffusion coefficient; APT: Amide proton transfer; AUC: Area
under curve; CBV: Cerebral blood volume; CEST: Chemical exchange
saturation transfer; CoV: Coefficient of variation; CR: Complete response;
CT: Computerised tomography; DCE: Dynamic contrast enhanced;
DFS: Disease-free survival; DOTATOC: DOTA octreotitide; DOTATATE: DOTA-
octreotate; DSC: Dynamic susceptibility contrast; DWI: Diffusion-weighted
imaging; ECG: Electrocardiogram; ESR: European Society of Radiology;
FDG: Fluorodeoxyglucose; FLT: Fluorothymidine; HR: Hazard ratio;
HU: Hounsfield unit; ICC: Intraclass correlation; IPF: Interstitial pulmonary
fibrosis; IQR: Interquartile range; LVEF: Left ventricular ejection fraction;
MATV: Metabolic active tumour volume; MRF: Magnetic resonance
fingerprinting; MRI: Magnetic resonance imaging; MTR: Magnetisation
transfer ratio; MTT: Mean transit time; NCCN: National Comprehensive Cancer
Network; OS: Overall survival; pCT: Perfusion computerised tomography;
PERCIST: Positron emission tomography response criteria in solid tumours;
PD: Progressive disease; PFS: Progression free survival; PPV: Positive predictive
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value; PI: Peak intensity; PR: Partial response; PSMA: Prostate specific
membrane antigen; QA: Quality assurance; QC: Quality control;
RADS: Reporting and data systems (BI, breast imaging; LI, liver imaging; PI,
prostate imaging; TI, thyroid imaging; VI, vesicle imaging); RECIL: Response
evaluation in lymphoma; RECIST: Response evaluation criteria in solid
tumours; ROC: Receiver operating characteristic; ROI: Region of interest;
RSNA: Radiological Society of North America; SD: Stable disease;
SUV: Standardised uptake value; SWE: Shear wave elastography; TTP: Time to
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