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Abstract of the Thesis

Immersed boundary method

for coupled fluid-structure interaction problems

by

Amaury Bannier

Master of Science in Aerospace Engineering

University of California, Los Angeles, 2012

Professor Jeffrey D. Eldredge, Chair

A new fluid-structure interaction approach for bio-inspired regime is presented. In this

method, the incompressible fluid flow is discretized using the fast immersed boundary method

with nullspace approach, previously developed by Colonius and Taira [CT08]. The La-

grangian solid dynamics solver is greatly inspired from the virtual node algorithm by Zhu

et al. [ZWH12]. The two system are coupled to satisfy the physical constraints at their

interface.

A new weak formulation of the immersed boundary method coherently enforces the in-

terface force balance and the no-slip condition. Boundary stresses are treated as Lagrange

multipliers to maintain a strong coupling. Strongly coupled solver are known to handle prob-

lems on which weakly coupled methods encounter stability restrictions (problems including

large density ratio for instance).

Numerical simulations have been conducted to model the vibrations of an initially per-

turbed elastic disk immersed in a fluid. Results have shown an inconsistency in the enforce-

ment of the boundary stress term on the fluid system. Accuracy and convergence of the solid

and the fluid solvers have been evaluated.
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[...] Vous pouvez tourner le dos à demain et vivre hier,

ou vous pouvez être heureux demain parce qu’il y a eu hier [...]

Eileen Cicole, L’ultime adieu
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CHAPTER 1

Introduction

Fluid-structure interaction (FSI) is a key phenomenon in the understanding of numerous

biological systems. A common example is the locomotion of flying and swimming animals:

from insects to birds, from flagellate bacteria to marine mammals. The challenge in those

systems lies in the coupling of highly flexible structure with the surrounding fluid. To

understand and be able to mimic, with engineered devices, those complex systems, one

must be able to efficiently simulate the tight coupling between the fluid and the structure.

Cardiovascular or laryngeal flows are examples of medical applications where modeling FSI

would greatly contribute to the development of pathology treatments.

A suitable solver should be able to deal with two fundamentally different governing equa-

tions on either side of a complex and moving boundary, and solve them simultaneously, such

that both the kinematic and the dynamic boundary conditions are enforced at their interface.

An easy tracking of the moving interface would be possible with a Lagrangian description

of the fluid. However, the mesh distortion often prevents the use of this method. The two

main alternatives are particles methods and Eulerian grid-based methods. A class of particles

methods are the Vortex Methods [Leo80] on which is based the Viscous Vortex Particles

Methods (VVPM) [CK00]. The Navier-stokes equation is solved using Lagrangian particles

of vorticity, advected and diffused by the flow. Gingold and Monaghan introduced the

Smoothed Particle Hydrodynamics [GM77]. By discretizing the velocity-pressure formulation

of the compressible Navier-Stokes equation, they avoid having to solve for the velocity by

an elliptic problem. Those methods have already been used for fluid-body interactions
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problems [Eld08, HK08]. Indeed, they are inherently capable of handling flows past complex

and deforming geometries, since particle attributes describing the flow are advected with it.

However, when particles are diffused, a re-meshing is needed and the interpolation of the old

strength distribution to the new locations leads to inherent leakage errors.

Discretization on an Eulerian frame is another widely used technique for simulating fluid.

In particular, unstructured grids [FL93] such as standard body-fitted meshes offer a straight-

forward way for enforcing accurately boundary conditions if the interface lies along meshlines,

even for complex boundaries. On the other hand, differential equations become more com-

plicated to differentiate and, in the case of moving boundaries, the new grid generation leads

to an expensive computational cost and extra interpolation errors [HPZ01, JH04].

Based on the VVPM introduced by Chorin [Cho73], Peskin developed the pioneering

Immersed Boundary Method (IBM) [Pes72] for simulating FSI of heart valves. In the IBM,

governing equations are discretized on an Eulerian (usually Cartesian) grid. Since the bound-

ary is not conformed by the mesh, its influence is accounted for by a singular forcing term.

The ease for grid generation, for multigrid approaches and for fast Fourier transform tech-

niques are the main advantages of the IBM [CT08]. Diverse variants, such as the Immersed

Interface Methods [LL94, LL97], are described in the review by Mittal and Iaccarino [MI05].

Those variants can be categorized between sharp- and diffuse- interface methods. Sharp

methods are able to accurately solve the flow close to boundary, but the spatial discretiza-

tion scheme has to be modified when the boundary is moving. Diffuse methods, on the

contrary, cannot solve accurately in the immediate vicinity of the boundary, but deal more

easily with the border motions.

Although Finite Element Method (FEM) are also used to describe a fluid within the

general framework of the IBMs [WL04, LLF06], our method is based on the Eulerian finite

volume formulation by Taira and Colonius [TC07] where no-slip condition and incompress-

iblility are enforced through a projection. In this diffuse-interface method [MI05], a singular

boundary force is smeared at the interface location to enforce the boundary constraints, pro-

viding the flexibility to efficiently handle moving boundary. A fast sine transform technique
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[CT08] is employed to boost the solving of the linear system.

On the solid side, the use of a Lagrangian description is advantageous: it greatly simplifies

the treatment of history-dependent material laws. Moreover, the solid boundary location

does not need to be updated, by definition, in the reference state formulation. However, the

Lagrangian approach is not essential: the Reference Map Technique [KRN12] is an example

of such Eulerian treatment for finite-strain elastic solid in large deformation. Nevertheless,

Lagrangian approach for structure modeling appears to be a simpler choice. As we will see,

the coupling of an Eulerian fluid a Lagrangian structure can be handle without too many

difficulties. In fact, the original formulation by Peskin [Pes72] was already one of those

nowadays extensively used [UMR01, LCB06, LMZ08, WB09, GKF11] Eulerian-Lagrangian

FSI methods [Ben92].

As mentioned above with the fluid, the same duality between body-conforming but un-

structured grid on one hand, and structured (Cartesian) grid which does not fit the boundary

on the other hand, exists for the structure discretization. The traditional choice in solid dy-

namics goes for FEM on a structured grid, by virtue of its ease of dealing with complicated

computational domain [BM00]. However, the Immersed Boundary methods defined earlier

has also been applied to the computation of solid dynamics. Sethian and Wiegmann [SW00]

took advantages of it for the optimization of an elastic structure design without generating

expensive body-conforming mesh at each iteration. More recently, Zhu et al. developed a

cut-cell method for static simulations of loaded linear elastic material [ZWH12]. This sharp-

interface method has been the foundation of the dynamics structure solver used in our FSI

method. Virtual nodes on cut uniform Cartesian grid cells provide the geometric flexibility

in the domain boundary shape without sacrificing accuracy. The use of a structured grid

should be also considered as a strong advantage regarding the possible future modification

of the algorithm to be handle by parallel computing.

A key feature of our current method is the strong coupling between the two materials. By
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coupling, one should understand an equating of particular variables at the interface of the

two subsystems: boundary velocity and stress for instance. In numerical implementations,

one can equate these variables by enforcing one subsystem to match the values given by the

other one. Luo et al. [LMZ08] compute the two, fluid and structure, subsystems sequentially:

the flow is computed one time-step ahead with the prescribed velocity boundary condition

imposed by the solid structure. From this computation, new fluid boundary stresses are

applied on the structure to move it one step ahead and update new velocity boundary con-

ditions for the next fluid time-step, and so on. This weak coupling has been shown to give

accurate results [FAM99, Fed02] but suffers from poor stability restrictions (on fluid-solid

density ratios [CGN05] for example). By improving the estimate of the interface values, this

issue can be alleviated, as shown by Liu et al. [LKX06]. Implementation of a strongly cou-

pled system enables us to totally avoid this instability issue. To implicitly match interface

conditions, the variables to equate must be treated as additional interface unknowns and

solved alongside structure-related and fluid-related unknowns. Previous works have been

conducted successfully on FSI problems involving both incompressible [Pes02, RSG08] or

compressible flows [GKF11]. Wang & Belytschko [WB09] treat the FSI coupling terms in a

strong way, evaluating the boundary traction implicitly by a backward Euler method.

Our formulation conveys the physical coupling of the system all along the discretization

process. The fluid will be treated by an Eulerian description taken from [TC07] and [CT08]

while the solid solver is built on a Lagrangian framework greatly inspired from [ZWH12]. By

its Lagrangian nature, the Finite Element structure code does not involve substantial ma-

trix update time-step after time-step to accommodate from the potentially large deformation.

However, the location of the interface is determined accurately by use of a doubly-refined grid

sharp boundary method. On the other side, the Finite Volume fluid method takes advantages

of the incompressibility of the flow through a projection onto the vorticity nullspace, which

drastically reduces the dimension of the linear system. A flow is solved on the whole compu-

tational domain, such that the Fast Fourier Transform techniques can be used to efficiently
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solve Poisson’s equation on a uniform Cartesian grid. Appropriate boundary conditions are

enforced at the interface between the actual flow field and the solid domain (where a fic-

titious flow is also computed). To be consistent with the solid FEM, the enforcement is a

weak formulation of the usual IBMs. Thus, weighted integrations of velocity and stress along

elemental boundary segments are carried out with both the fluid and the solid in order to

enforce their matching. Following the process of numerous diffuse-interface IBMs, a discrete

delta function is used to transfer information from the fluid grid to the boundary locations.

This spatial discretization allows for the writing of a coupled ordinary differential system.

A single Newmark time-marching scheme is applied to the global system, and the resulting

coupled equation is solved with the Fractional Step Method [Per93].

In the following section, the methodology will be explained: the general assumptions are

stated in the part 2.1. The solid and fluid spatial discretization are developed in 2.2 and

2.3 respectively. The time-marching scheme and the solving procedure of the global coupled

system are explained in 2.4 and 2.5. The ability of the method will be demonstrated in

section 3.
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CHAPTER 2

Methodology

Obtaining of versatile code, able to model, in a strongly coupled way, an elastic solid structure

interacting with the surrounding incompressible flow has been the target of this study.

The fluid-structure interaction system is sketched on Figure 2.1. The superscript F refers

to the fluid, while the superscript S refers to the solid structure.

Ω is the global computational domain and ΩF and ΩS are the fluid and the solid domains

respectively. The two latter constitute a partition of Ω and are thus disjointed: ΩF ∩ΩS = ∅.

Nevertheless, due to the immersed boundary method used here, a fluid flow is computed in

the whole domain Ω = ΩF ∪ΩS. Indeed, as will be developed in section 2.3, a fictitious flow

is solved in the structure domain ΩS.

ΓFSI denotes the fluid-structure interaction interface lying between ΩF and ΩS. This

boundary is defined implicitly by a signed distance function. ΓFτ and ΓSτ are the natural

boundaries (subject to Neumann boundary conditions) and ΓFv and ΓSv , the essential bound-

aries (subject to Dirichlet boundary conditions).

Because the structure is treated within the Lagrangian framework, its governing equations

will referred to material coordinates X. As for the fluid, spatial coordinates x are preferred

for an Eulerian approach.

The solid structure is subject to movement and deformation. Hence, material properties

and previously defined domains may be time-dependant. We use a naught subscript to de-

note the reference state, by opposition to the current state: reference solid domain ΩS
0 versus

current domain ΩS(t), initial reference density ρS0 (X) versus current density ρS(X, t), and
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also reference coordinates gradient ∇0 =
∂

∂X
versus current coordinates gradient ∇ =

∂

∂x
.

ΓFSI

ΓF
τ

ΓS
τ

ΓF
v

ΓS
v

ΩF

ΩS

Figure 2.1: General fluid-structure interaction system. The fluid domain ΩF is depicted in

blue, the solid domain ΩS in yellow. Natural boundaries Γτ are represented by a dotted line,

and essential boundaries Γv by a doubled line. The fluid-structure interface is the plain black

line.

2.1 General assumptions and governing equations

The fluid is stated to be Newtonian and incompressible. It is characterized by its density ρF

and its viscosity µF .

Incompressibility is enforced on the velocity field u by equation (2.1) and the Cauchy

stress tensor σ is defined by the Newtonian law (2.2). pF is the pressure field and ∇s refers

to the symmetric part of the gradient operator: ∇su = 1
2

(
∇u+ (∇u)T

)
∇ · u(x, t) = 0 in ΩF (2.1)

σ(x, t) = 2µF ∇su(x, t)− pF (x, t) I in ΩF (2.2)

The solid material is considered as homogeneous, isotropic and elastic. Under the small

deformation hypothesis (i.e. ‖∇0ξ‖ � 1 ) and with no pre-stress, the Piola stress tensor P

is linearly related to the displacement ξ and the pressure pS by the two Lamé’s coefficients
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µS and λS (note that the fluid viscosity µF and the solid shear modulus µS represent totally

different quantities which does not even have the same dimension):

P (X, t) = 2µS ∇s
0 ξ(X, t) − pS(X, t) I in ΩS

0 (2.3)

with pS(X, t) = −λS ∇0 · ξ(X, t) in ΩS
0 (2.4)

The density field, ρS, is linked to the reference density, ρS0 , by: ρSJ = ρS0 , where

J is the Jacobian determinant: J = det (∇0 x) = det
(
I +∇0 ξ

)
. Under the previously

assumed small deformation hypothesis, one can obtain: J = 1 + Tr
(
∇0ξ

)
+ O(‖∇0ξ‖2).

At first order, the incompressibility constraint for the solid (ρS = ρS0 ⇔ J = 1⇔ ∇ · ξ = 0)

can be approximate if necessary by:

∇0 · ξ = 0 ⇔ λS = +∞ in (2.4) (2.5)

The temporal evolution of variables u and ξ is given by the following momentum equa-

tions, where b denotes possible body forces, and Dt represents the material time derivative.

ρF Dtu(x, t) = ∇ · σ + ρF bF in ΩF (2.6)

ρS0 D
2
ttξ(X, t) = ∇0 · P + ρS0 b

S
0 in ΩS

0 (2.7)

Denote by n the unit vector locally normal to the surface. Boundary conditions on the

domain borders are:

σ · n = τFN on ΓFτ (2.8)

P · n0 = τSN0 on ΓS0τ (2.9)

u = uD on ΓFv (2.10)

ξ = ξ
D

on ΓS0v (2.11)

At the fluid-structure interface ΓFSI , the force balance and the no-slip condition state:

σ · nF→S = − τ on ΓFSI (2.12)

σS · nS→F = τ on ΓFSI (2.13)

u(x, t) = ξ̇(X, t) on ΓFSI (2.14)
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2.1.1 Non-dimensionalization

Denote by L the length of the solid, defined as characteristic length to obtain dimensionless

spatial quantities. Suppose a characteristic flow speed U0 is given, such as a prescribed

inlet velocity. The temporal quantity t0 = L/U0 appears to be a natural choice for the

characteristic time.

Structure variables (P , τSN0, pS, µS and λS) are compared to the characteristic quantity

ρS0 U2
0 , while fluid variables, (σ, τFN and pF ) are non-dimensionalized by the fluid density

related quantity ρFU2
0 . For the fluid-structure interaction stress τ , we decide to use ρS0U

2
0

rather than ρFU2
0 . This way, the two sets of equations, fluid and solid, are specified indepen-

dently from one each other. Only the velocity and stress terms at their common boundary

relate the intrinsic coupling.

Define the Reynolds number Re and denote by ρ̃S0 the solid-fluid density ratio. The four

dimensionless parameters of the problem are:

Re =
ρFLU0

µF
ρ̃S0 =

ρS0
ρF

µ̃S =
µS

ρS0 U
2
0

λ̃S =
λS

ρS0 U
2
0

(2.15)

Note that, in the remaining part of the document, all quantities are dimensionless and

tilde signs are dropped unambiguously.

2.1.2 Strong formulation

After non-dimensionalization, we obtain a strong formulation for the governing equations.

• Continuity equations:

∇ · u(x, t) = 0 in ΩF (2.16)

∇0 · ξ(X, t) = −p
S

λS
in ΩS

0 (2.17)
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• Momentum equations:

∂tu+ (u · ∇) u = −∇pF +
1

Re
∇2u+ bF in ΩF (2.18)

ξ̈ = −∇pS + µS
[
∇2

0ξ +∇0(∇0 · ξ)
]

+ bS0 in ΩS
0 (2.19)

• Boundary Conditions:

σ · n = τFN on ΓFτ (2.20)

P · n0 = τSN0 on ΓS0τ (2.21)

u = uD on ΓFv (2.22)

ξ = ξ
D

on ΓS0v (2.23)

σ · nF→S = −ρS0 τ on ΓFSI (2.24)

σS · nS→F = τ on ΓFSI (2.25)

u(x, t) = ξ̇(X, t) on ΓFSI (2.26)

The structure-related and fluid-related systems of equations are coupled only through

the boundary conditions (2.24)-(2.26). The linear discretized system of equations we will

obtain should retain this dependence.
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2.2 Structure modeling: cut-cell finite-element method

A natural choice for the computation of solid equations is the finite element method on a

body-conforming mesh. However, for moving boundary, the difficult and time-consuming

meshing process of complex geometries would have to be repeated extensively.

“Embedded” methods have been developed to solve the solid motion equations on a

non-body-conforming mesh. With the numerical advantages of structured Cartesian grids,

second order accuracy in L∞ has been achieved by Zhu et al. with their virtual node method

[ZWH12] for simulating a statically loaded linear elastic structure. Their approach has

been the foundation of the spatial discretization of the present solid dynamic solver. It

combines piecewise bilinear interpolation of displacement components with the addition of

“virtual”nodes on cut cells.

2.2.1 Weak formulation

From the momentum equation (2.19) and the boundary conditions (2.21) and (2.25), we

obtain the following weak formulation (2.27). The pressure definition equation (2.17), the

Dirichlet boundary condition (2.23), and the no-slip constraint at the FSI interface (2.26)

lead respectively to the weak equations (2.28), (2.29), (2.30).

∀ δξ,
∫∫
ΩS0

δξ · ξ̈ +

∫∫
ΩS0

2µS ∇s
0δξ : ∇s

0ξ

−
∫∫
ΩS0

(∇0 · δξ) pS −
∫

ΓS0v

δξ · τSD0 −
∫

ΓFSI

δξ · τ =

∫∫
ΩS0

δξ · bS0 +

∫
ΓS0τ

δξ · τSN0 (2.27)

∀ δpS, −
∫∫
ΩS0

(∇0 · ξ̇) δpS −
1

λS

∫∫
ΩS0

(ṗS δpS) = 0 (2.28)

∀ δτSD0, −
∫

ΓS0v

ξ̇ · δτSD0 = −
∫

ΓS0v

ξ̇
D
· δτSD0 (2.29)

∀ δτ ,
∫

ΓFSI

u · δτ −
∫

ΓFSI

ξ̇ · δτ = 0 (2.30)
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For (ξ, pS, τSD0, τ) ∈ H1(ΩS
0 )2 × L2(ΩS

0 )× L2(ΓS0v)
2 × L2(ΓFSI)2 and according to Lax-

Milgram theorem, these weak formulations are equivalent to the previously stated strong

forms if they can be satisfied for any arbitrary test functions (δξ, δpS, δτSD0, δτ) ∈ H1
0 (ΩS

0 )2×

L2
0(ΩS

0 )× L2(ΓS0v)
2 × L2(ΓFSI)2.

Note that the last term on the left-hand-side of equation (2.27) has been obtained using

the following identity:∫
ΓFSI0

nS→F0 · P · δξ dΓ0 =

∫
ΓFSI

1

J
nS→F · F · P · δξ dΓ using: n · F dΓ = J n0 dΓ0 (2.31)

=

∫
ΓFSI

nS→F · σS · δξ dΓ using: J σS = F · P (2.32)

=

∫
ΓFSI

τ · δξ dΓ using equation (2.25) (2.33)

Moreover, to obtain equations (2.28) and (2.29), the strong formulation equations (2.17)

and (2.23) have been differentiated in time. Although it does not affect in any way the

validity of those equations, it will latter shift the matrices MP , tPS and tDS at the first

time-derivative level in the space-discretized equation (2.41). The purpose of shifting those

matrices is for the sake of simplifying the final time-discretized system which will be obtained

(see (2.96)). Indeed, as it is going to be shown in section 2.4, the computed unknown vector

is going to be the time-derivative ξ̇ of the displacement. Though, after time-discretization,

the differentiated equations (2.28) and (2.29) will not involve previous time-steps.

Furthermore, the weak formulation for the pressure definition (2.28) has been divided by

the Lamé’s coefficient λS to remain valid even in the limit of an incompressible material, for

which λS tends towards infinity. The limit equation (2.5) would then be obtained. However,

as discussed in section 2.1, incompressibility for the solid is not rigorously enforced, but at

first order in ‖∇0ξ‖ under the small deformation hypothesis.
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Figure 2.2: Staggered grid discretization. The arrows represent the discrete displacement

and velocity locations. Pressure is positioned at the center of each cell and vorticity at their

nodes.

2.2.2 Spatial discretization

Stability and convergence of the mixed finite element method defined on a MAC-staggered

grid (Figure 2.2) have been study by [HW98] with Navier-Stokes equations. This approach

has been generalized in [ZWH12] to nearly incompressible linear elasticity in embedded

domain.

The solid domain, in reference state, is covered by a Lagrangian MAC-staggered square

grid (Figure 2.3). Its dimensions are nS = nSx × nSy and hS is the discrete spacing between

grid points. We will see in the next section, section 2.3, that fluid quantities are defined on

an Eulerian staggered grid whose dimensions may be different.

On the MAC-staggered grid, variables locations are ordered. We equivalently denote them

by their position on the grid (i, j) or by their ordered index I. Solid displacement components

are known on the corresponding cell faces, so we write ξ(i,j),x or ξIx the discretized values

of the x-displacement of the material point initially at the locations X = X(i,j),x = XIx.

The same notation is used for the y-displacement field ξ(i,j),y = ξIy of points initially at

X(i,j),y = XIy. Similarly, the pressure field is known at the centre X(i,j),p (or XIp) of the

cells. We note pS(i,j) or pSI the corresponding variables.

13



Lagrangian Cartesian 
grid: the grid moves 
and deforms with the 
solid

Piecewise constant test function, 
basic component for the approxi-

mation of the pressure field

Piecewise bilinear test function for one 
component of the displacement field. 

Its support is cut down 
by the boundary.

Elementary 
boundary segment on which 

stress and velocity are integrated to 
weakly satisfy the boundary conditions

”Virtual nodes” which, 
although outside     , still characterize 
the discrete solution on a boundary cut cell.

Figure 2.3: Spatial discretization of the solid structure with a Finite Element Method.

Displacement field ξ: The Sobolev space on which the displacement field ξ is defined,(
H1(ΩS

0 )
)2

, is approximated with a finite element subspace. Each displacement component

is represented by a piecewise bilinear scalar function defined on a staggered Cartesian grid.

For i ∈ {x, y} and I ∈ J1, nSK, we define the function N ξ
Ii(X) = N ξ

Ii(X) ei. The unit-

piecewise bilinear interpolating functions N ξ
Ii(X) is equal to zero on every nodes of the

staggered i-grid other than I, on which it takes the value 1. Values Ii for which the support

of N ξ
Ii(X) lies totally outside of ΩS

0 are not useful so not considered. However, some nodes Ii

may lie outside the solid computational domain, while their corresponding functions N ξ
Ii(X)

may have part of their support inside ΩS
0 . Those nodes are called “virtual nodes” and have to

be taken in account. As represented in Figure 2.3, although outside the solid, these virtual

nodes still characterize the discrete solution on the cut-cells close to the solid boundary.

They can be seen as an extrapolation of ξ · ei in the vicinity of the solid.
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The computed displacement field is a linear combination of the N ξ
Ii functions:

ξ(X, t) =
∑

i∈{x,y}

∑
Ii

ξIi(t) N
ξ
Ii(X) (2.34)

=
∑
Ix

ξIx(t) N
ξ
Ix(X) ex +

∑
Iy

ξIy(t) N
ξ
Iy(X) ey (2.35)

Hence, linear coefficients ξIi(t) are the values ξ(XIi, t) · ei of the i-component of the

displacement at time t for the material point initially at the location XIi.

The same space of function is used to approximate the field of body forces bS0 and the

imposed Dirichlet velocity ξ̇
D

.

Pressure field pS: The square-integrable function space L2(ΩS
0 ) on which is defined the

pressure field pS is approximated by the subspace of piecewise constant functions.

For I ∈ J1, nSK, the unit-piecewise constant functions Np
I (X) is equal to zero everywhere

but on the cell I, on which it takes the value 1. Values I for which the cell I lies totally

outside of ΩS
0 are not useful so not considered.

The computed pressure field is a linear combination of the Np
I functions:

pS(X, t) =
∑
I

pSI (t) Np
Ii(X) (2.36)

Hence, linear coefficients pSI (t) are the values of pS at time t at the material point initially

located at the middle of the cell I.

Stress distribution τSD0 and τ : The square-integrable function spaces
(
L2(ΓS0v)

)2
and(

L2(ΓFSI)
)2

, on which the Dirichlet boundary and the fluid-structure interface stresses τSD0

and τ are defined, are approximated by a subspace of piecewise constant functions. Each

stress component is piecewise constant on the corresponding staggered grid.

For i ∈ {x, y} and I ∈ J1, nSK, we define the function N τ
Ii(X) = N τ

Ii(X) ei. The unit-

piecewise constant functions N τ
Ii(X) is equal to zero except on the part of the fluid-structure
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boundary ΓFSI contained within the staggered i-grid cell I. The function is equal to 1 on

this line. Values Ii for which ΓFSI does not run across the cell Ii are not considered.

The computed stress is a linear combination of the N τ
Ii functions:

τ(X, t) =
∑

i∈{x,y}

∑
Ii

τIi(t) N
τ
Ii(X) (2.37)

=
∑
Ix

τIx(t) N
τ
Ix(X) ex +

∑
Iy

τIy(t) N
τ
Iy(X) ey (2.38)

Two similar spaces of function are used to approximate the stresses τSD0 and τSN0 on the

essential boundary ΓS0v and on the natural boundary ΓS0τ respectively.

τSD0(X, t) =
∑

i∈{x,y}

∑
Ii

τD0
Ii (t) N τD0

Ii (X) (2.39)

τSN0(X, t) =
∑

i∈{x,y}

∑
Ii

τN0
Ii (t) N τN0

Ii (X) (2.40)

2.2.3 Ordinary differential system of equation

Using the discretization developed in the previous subsection, the weak formulation (2.27)-

(2.30) becomes:
MS

0

0

0




ξ̈

0

0

0

+


0 DS T S

tPS MP

tDS 0

tT S 0




ξ̇

ṗS

τSD0

τ



+


KS PS

0

0

0




ξ

pS

0

0

 =


MSbS0 +N SτSN0

0

tDS ξ̇SD
− UF



(2.41)
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where the above-mentioned matrices are defined by:

MS
Ii,Jj =

∫∫
ΩS0

N ξ
Ii(X) ·N ξ

Jj(X) dΩ0 (2.42)

KSIi,Jj = 2µS
∫∫
ΩS0

∇sN ξ
Ii(X) : ∇sN ξ

Jj(X) dΩ0 (2.43)

MP
I,J =− 1

λS

∫∫
ΩS0

Np
I (X) ·Np

J (X) dΩ0 (2.44)

PSIi,J = −
∫∫
ΩS0

(
∇ ·N ξ

Ii(X)
)
Np
J (X) dΩ0 (2.45)

DSIi,Jj = −
∫

ΓS0v

N ξ
Ii(X) ·N τD0

Jj (X) dΓ0 (2.46)

N S
IiJj =

∫
ΓS0τ

N ξ
Ii(X) ·N τN0

Jj (X) dΓ0 (2.47)

T SIi,Jj(t) = −
∫

ΓFSI(t)

N ξ
Ii (X(x)) ·N τ

Jj (X(x)) dΓ

= −
∫

ΓFSI0

N ξ
Ii(X) ·N τ

Jj(X)

(
dΓ(t)

dΓ0

)
dΓ0 (2.48)

UFIi(t) =

∫
ΓFSI(t)

u(x, t) ·N τ
Ii (X(x)) dΓ (2.49)

Note that, except for T S and UF , previous matrices are expressed in terms of integrals

on the reference state of functions defined on this same reference state. Hence, they are not

related to the current displacement of the structure, and thus can be computed only once at

the beginning of the algorithm.

However, T S relies on the integral over the current fluid-structure interface location

ΓFSI(t) of reference state-related functions. Hence, this matrix depends on the current

displacement field ξ(t) and has to be computed at each time step.

The calculation for UF is developed in the section 2.3 dealing with the fluid modeling.
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Whatever the time-discretization chosen, ξ and ξ̇ will be linearly related. Though, our

linear discretized system can be seen as symmetric.

Practical details for the computation of those matrices, especially concerning the treat-

ment of cut-cells, are given in Zhu et al. [ZWH12]. The exact same procedure as been use

for the computation of all our matrices.
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2.3 Fluid immersed boundary finite-volume method

On a Cartesian MAC-staggered grid peculiar to the fluid (see Figure 2.2), a new finite-

volume immersed boundary method for incompressible flow has been developed by Taira

and Colonius [TC07, CT08].

While the solid boundaries are moving, the fluid treatment can be view as Eulerian-

Lagrangian. The Eulerian form of the fluid governing equations are solved on a stationary

staggered grid, whereas, the solid interface is tracked in a Lagrangian fashion, as suggested

by the finite-element method described in the previous section 2.2.

Immersed boundary methods with sharp-interface approach succeed to convey the fluid

behavior at the very boundary of the solid [MI05], but are difficult to incorporate to the

general fluid equations. On the contrary, in the diffuse-interface method of [TC07], the solid

boundary acts on the fluid by a continuous forcing approach: the boundary stress is added to

the incompressible Navier-Stokes equation through the introduction of an extra regulariza-

tion term. Moreover, the no-slip condition is enforced by interpolating the fluid velocity on

the fluid-structure boundary. This additional constraint acts like a Lagrange multiplier on

fluid equations. Hence, unlike sharp-interface methods for which the spatial discretization

scheme depends on the boundary location and must be re-computed at each time-step, with

this approach, the general finite-volume scheme remains unchanged and the solving proce-

dure only needs to update the regularization and interpolation operators. Although it does

not capture exactly the fluid behavior at the interface (within few grid cells), this approach

allows a fast treatment of moving boundaries.

We can re-write the governing equations for the fluid (2.16, 2.18, 2.20, 2.22, 2.24, 2.26),

taking advantage of the use of the Dirac delta function δ(x) to incorporate the natural

boundary conditions within the momentum equation:
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∂tu −
1

Re
∇2u + ∇pF

+ ρS0

∫
s∈ΓFSI

τ(s) δ(s− x) dΓ

−
∫

s∈ΓFv

τFD(s) δ(s− x) dΓ = bF − (u · ∇)u

+

∫
s∈ΓFτ

τFN(s) δ(s− x) dΓ

∀x ∈ ΩF

(2.50)

∇ · u(x) = 0 ∀x ∈ ΩF (2.51)

∫∫
x∈ΩF

u(x) δ(s− x) dΩ = uD(s) ∀s ∈ ΓFv (2.52)

∫∫
x∈ΩF

u(x) δ(s− x) dΩ = ξ̇(s) ∀s ∈ ΓFSI (2.53)

Usual immersed boundary methods introduce a set of Lagrangian points to represent

the surface of the immersed structure and applied appropriate constraints to enforce no-slip

along those points [Pes72, MI05]. In our method, in order to combine in a coherent way

the structure finite-element approach and the fluid method, discrete Lagrangian points are

replaced by Lagrangian test functions.

The fluid-structure interface stress τ has already been discretized using piecewise constant

stest functions N τ
Ii(X) in (2.37). Apply this linear decomposition on the fluid-structure stress

term in (2.50) to obtain:

∫
s∈ΓFSI(t)

τ(s, t) δ(s− x) dΓ =
∑

i∈{x,y}

∑
Ii

τIi(t)

 ∫
s∈ΓFSI(t)

N τ
Ii (X(s)) δ(s− x) dΓ

 (2.54)
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To couple the structure and the fluid systems of equation, the no-slip condition (2.53)

should be expressed coherently with the formulation obtain on the solid side (2.30). Similarly

to what has been done in the previous section, we multiply the no-slip equation (2.53) by

any of the shape functions N τ
Ii (define in subsection 2.2.2) and integrate over the boundary

surface. We end up recovering the previously introduced vector UFIi (cf. formula (2.49)).

UFIi(t) =

∫∫
x∈ΩF

u(x, t) ·

 ∫
s∈ΓFSI(t)

δ(x− s) N τ
Ii

(
X(s)

)
dΓ

 dΩ (2.55)

At this point, the fluid-structure interaction stress τ has been discretized following the

method previously used on the solid side, and the no-slip condition has been expressed in

its weak form, using the same test functions as what has been done for the structure.

We now have to spatially discretize the fluid variables u and pF .

Further investigations needed: The way (2.50) has been obtained by incor-

porating the boundary stress τ as a body force into the Navier-Stokes equation

may need some further study. Indeed, although this method is widely used for

enforcing the no-slip condition on body with prescribed motion or on structure

in rigid-body motion, the computed Lagrange multiplier τ does not correspond

any more to the actual boundary stress defined by (2.24) but much more to the

stress jump across the boundary between the actual and the fictitious flows.

Using this wrong formulation, the coupling is not valid anymore. We are equat-

ing, on both sides of the interface, the velocity (no-slip condition) and two in-

consistent stress terms: one is the actual stress (on the solid side), but the other

one is not physically relevant.

As will be established in the results section, chapter 3, this problem will need

to be address before being able to get any FSI results.
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2.3.1 Spatial discretization

A standard finite-volume discretization is used for the fluid [TC07, CT08]. The following

explains the two key parts of the method. We first detail the finite-volume discretization

process. Then, we explain the choice for the treatment of the Dirac delta function δ.

Finite-volume method. The above system is discretized using a standard staggered

Cartezian grid finite-volume method. Note that the fluid Cartezian grid does not necessarily

coincide with the grid defined for the structure in 2.2.2. The dimensions of the fluid-related

grid are nF = nFx ×nFy and hF is the discrete spacing between points of the square grid. The

locations of the variables on the mesh are similar to the one depicted for the structure in

figure 2.2.

The fluid computational domain is not only restricted to fluid region ΩF since a fictitious

flow is also computed within the solid region ΩF
fictitious = ΩS. Although the virtual flow does

not have any useful physical meaning, it represents a computational asset: the Navier-Stokes

equation remains discretized on the whole domain, independently of the current boundary

location. Hence, matrices and solving methods are left unchanged time-step after time-step.

The fluid-structure boundary condition alone need to be re-adapted to enforce the flow at

the boundary of the solid. We thus simultaneously compute two flows: the actual flow, which

satisfies both the Navier-Stokes equation on the fluid domain ΩF and the relevant boundary

conditions on its boundaries ΓFτ , ΓFv and ΓFSI ; and the fictitious flow, insignificant result of

the Navier-Stokes equation applied on the structure domain ΩS and subject to the no-slip

condition on ΓFSI . Note that, if necessary, the Navier-Stokes equation can be distorted in

the virtual fluid domain, without affecting the validity of the real flow solution (as long as

the equation in ΩF and the boundary conditions on ΓFSI remains unchanged). This prop-

erty will be used later, in section 2.3.3, to compensate for the compressibility of the structure.

In a similar fashion as for the solid, variables locations are ordered and are equivalently

denote by their position (i, j) or by their ordered index I.
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Eulerian Cartesian grid, 
spatially still. Field quan-
tities are computed and 
known only on a finite 
discrete lattice.

While solving 
the problem in the 
fluid area     , a fictitious 
flow is also computed – irrele-
vant solution of Navier-Stokes 
equation in the solid domain

To satisfy 
boundary conditions, 

velocity is (interpolated and) 
integrated on the elementary  
boundary segment, while the 

singular 1D boundary stress is 
diffused to the fluid.

Using a discrete Dirac delta 
function, information can be 
passed between grid and any other 
point (e.g. the yellow cross drawn):

- the velocity can be inter-
polated at the cross.
- a singular stress term can 

be diffused over few 
grid cells.

Figure 2.4: Spatial discretization of the fluid domain with a Finite Volume Method.

Following the method by Taira & Colonius [TC07], define the velocity flux q:

q = hF u (2.56)

We define differential operators as follows, using the standard finite-volume scheme.

hF ∇ pF
(
x(i,j),p

)
−→ (GpF )(i,j) =

pF(i,j) − pF(i−1,j)

pF(i,j) − pF(i,j−1)

 (2.57)

hF ∇ · q
(
x(i,j),p

)
−→ (tGq)(i,j) = q(i+1,j),x − q(i,j),x + q(i,j+1),y − q(i,j),y (2.58)

h2
F ∇2qk

(
x(i,j),k

)
−→ (Lqk)(i,j) = q(i+1,j),k + q(i−1,j),k + q(i,j+1),k

+ q(i,j−1),k − 4q(i+1,j),k

(2.59)

hF (∇×γ)x
(
x(i,j),x

)
hF (∇×γ)y

(
x(i,j),y

)
 −→ (Cγ)(i,j) =

 γ(i,j+1) − γ(i,j)

−
(
γ(i+1,j) − γ(i,j)

)
 (2.60)

hF ∇× q
(
x(i,j),γ

)
−→ (tCq)(i,j) = q(i,j),y − q(i−1,j),y − (q(i,j),x − q(i,j−1),x) (2.61)

Note that the curl operator C is constructed such that its columns are a basis of the
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null-space of the divergence operator tG:

tGC = 0 tCG = 0 (2.62)

This property is going to be the foundation of the null-space approach explained further

below.

Discrete delta function. Before being able to fully discretize the fluid governing equa-

tions (2.50)-(2.53), we have to discretize the remaining terms: the fluid velocity on the

boundary UF expressed in (2.55) and the fluid-structure interaction stress (2.54).

Both of those terms involve the Dirac delta function δ(x− s) with x ∈ ΩF and s ∈ ΓFSI .

After the finite-volume discretization, the discrete fluid points do not span continuously the

Lagrange boundary location. We need to express a discrete version δhF of the Dirac delta

function which connects the Lagrangian boundary location to the Eulerian grid space.

Among the large variety of used discrete delta functions, we use the one developed by

Roma et al. [RPB99]. Designed for staggered grids, it has the computational advantage of

being supported by a small number of cells.

In our 2 dimensional model, the continuous delta function δ is approximated as follows:

δhF (z) =
1

h2
F

φ

(
zx
hF

)
φ

(
zy
hF

)
(2.63)

where: φ(r) =


1

3

(
1 +

√
1− 3|r|2

)
for 0 < |r| < 0.5

1

6

(
5− 3|r| −

√
1− 3(1− |r|)2

)
for 0.5 < |r| < 1.5

0 otherwise

(2.64)

Hence, φ is supported on only 3 cells, and thus δhF on only 9 nodes.

We can now define the two discrete operators, discretized versions of (2.54) and (2.55),

which pass the information from the solid boundary location to the surrounding fluid and

vice versa. An interpolation operator E would interpolate the fluid velocity field from the

staggered grid to the solid boundary Lagrangian shape functions. This operator will enforce
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the no-slip condition (2.55). A regularization operator H would diffuse on the neighboring

fluid cells the boundary stress developed in (2.54). A schematic representation of those

operators are displayed on figure 2.4

The discretization of (2.55) on the staggered-grid gives:

UFIi(t) = h2
F

∑
j∈{x,y}

∑
J

uJj δi,j

 ∫
s∈ΓFSI(t)

δhF (xJj − s) N τ
Ii

(
X(s)

)
dΓ

 (2.65)

= h2
F

∑
j∈{x,y}

∑
J

qJj
hF

δi,j

 ∫
s0∈ΓFSI0

δhF
(
xJj − x(s0, t)

)
N τ
Ii(s0)

(
dΓ(t)

dΓ0

)
dΓ0

 (2.66)

Define the extrapolation operators E(t) so that UF = E q. Note that test function N τ
Ii

has been defined in section 2.2.2 as a piece-wise constant function equal to one on its support

CS
0Ii

(where CS
0Ii

is the Ith i-staggered cell of the solid mesh in reference state).

EIi,Jj(t) = δi,j hF

∫
s0∈ΓFSI0 ∩CS0Ii

δhF
(
xJj − x(s0, t)

) (dΓ(t)

dΓ0

)
dΓ0 (2.67)

Similarly, define the regularization operator H(t) so that H τ can be identified to the

fluid-structure interaction stress term expressed in (2.54) (within a factor hF ).

HJj,Ii(t) = δi,j hF

∫
s0∈ΓFSI0 ∩CS0Ii

δhF
(
x(s0, t)− xJj

) (dΓ(t)

dΓ0

)
dΓ0 (2.68)

According to their definitions, those two operators are transposed from one another:

H = tE (2.69)

To compute the integral defining E , we use the trapezoidal rule. Each edge segment

ΓFSI0 ∩ CS
0Ii

is split in
⋃
k

[sk0Ii , s
k+1
0Ii

], where skIi = x(sk0Ii) are the intersection points between

the edge segments and the doubly-refined fluid grid.

EIi,Jj(t) ≈ δi,j hF
∑
k

δhF
(
xJj − skIi(t)

)
+ δhF

(
xJj − sk+1

Ii (t)
)

2
‖sk+1

Ii (t)− skIi(t)‖ (2.70)
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We are now able to fully discretize our sytem of equations (2.50)-(2.53). Define the

constant scalar β as:

β =
1

h2
F Re

(2.71)

We obtain the following discretized system.

q̇ − β L q + G pF − tED τFD + ρS0
tE τ = hF bF − N F (q) + tEN τFN + bc1 (2.72)

tG q = 0 − bc2 (2.73)

ED q = ED (hF uD) (2.74)

E q = − tT S ξ̇ (2.75)

where ED and EN are two matrices similar to E in (2.67) but defined on the essential and

natural boundaries respectively. Note that they are defined in reference state, so the formula

must be changed accordingly. Matrix T S has been defined in the previous structure-related

section in (2.48). N F represents the convective operator, defined by:

N F (q) =
1

hF
(
q · ∇

)
q = hF (u · ∇)u (2.76)

Finally, bc1 and bc2 are boundary terms arising from the discretization of the differential

operator. Each equation with differential operators involves those kinds of boundary cor-

rections. From now on, we do not explicitly write them, but one must keep in mind that a

correction should be done to enforce the relevant boundary condition at the border of the

computational domain.

This system of equations (2.72)-(2.75) has to be satisfied at any node I lying within

the fluid domain ΩF . For computing efficiency, we want to avoid modifying the involved

operators at each time-step. Only E is intrinsically time dependent because it has to adapt

to the interface motion. Other operators are defined regardless of the belonging of the nodes

to ΩF or ΩS. Hence, by solving this system, we also compute a virtual flow overlapping
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the solid. This is the solution obtained by applying Navier-Stokes equation in ΩS. We will

see in section 2.3.3 that the incompressible Navier-Stokes equations may need to be relaxed

in the virtual flow domain to consistently satisfy the no-slip boundary condition with the

compressible solid.

2.3.2 Fast method vorticity approach

The flow solver strategy is based on the null-space method with fast Fourier transform devel-

oped by Colonius & Taira [CT08]. In this method, benefit is taken from the incompressible

nature of the flow to drop the pressure contribution. The computed variable is the discrete

vorticity, from which one can obtain the desired velocity and pressure field u and pF .

According to the incompressibility constraint (2.73), the solution q we are looking for

should belong to the null-space of tG. Since the curl operator C is a basis of this null-space

(see (2.62)), we can define s the discrete streamfunction as:

q = C s (2.77)

With this definition for q, the incompressibility equation (2.73) is automatically satisfied.

We also defined the local circulation field γ as follows. γ can be thought as the vorticity

times the cell area h2
F .

γ = tC q = tC C s = − L s (2.78)

Note that, according to the discrete differential operators definition:

L s = − tC C s ∀s, scalar field (2.79)

L q = − C tC q ∀q, vector field if D q = 0 (2.80)

By left-multiplying the momentum equation (2.72) with tC, we can remove the pressure

gradient term, GpF . Using the definition of the circulation γ, we obtain a new momentum

equation:

γ̇ − β L γ − t(EDC) τFD + ρS0
t(EC) τ = tC

(
hF bF − N F (q) + tEN τFN

)
(2.81)
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The discrete Laplacian L is diagonalized by a sine transform. As in [CT08], denote by S

the sine transform operator, normalized to be equal to its own inverse:

γ̂ = S γ ←→ γ = S γ̂ (2.82)

Thus, we symbolically denote by Λ the diagonal matrix of eigenvalues of tCC = −L. Ac-

cording to the definitions of s and γ, (2.77) and (2.78), q can be recovered from γ within a

constant quniform. Boundary conditions have to be used to fix its value.

Λ = S tCC S = − S L S ←→ L = − tCC = − S Λ S (2.83)

q = C SΛ−1S γ + quniform (2.84)

γ can thus substitute q in the governing equations (2.81),(2.73)-(2.75). This is the com-

putationally interesting advantage of the null-space approach since the number of variables

has been dropped significantly: in 2 dimensions, the scalar field γ contains half the number

of degree of freedom in the vector field q. We obtain the system of equations related to the

fluid, which can be expressed as follows in matrix notation:
I

·

·



γ̇

·

·

+


βSΛS − t(EDC) ρS0

t(EC)

EDCSΛ−1S ·

E CSΛ−1S ·



γ

τFD

τ

 =


tC
(
hF bF −N F (q) + tENτFN

)
hF EDuD − EDquniform

− tT S ξ̇ − E quniform


(2.85)

We will see in section 2.5 how we can fully take benefit of the sine Fourier transform to

efficiently solve this system.

Possible optimization: The use of the Fast Fourier transform to solve the

vorticity Poisson equation restrict the choice of boundary conditions to Neu-

mann, Dirichlet or periodic. To limit the effect of the wall on the computation,

one needs to use extensively large domain. The use of the multigrid method

developed by Colonius and Taira [CT08] appears to be the suitable solution.
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2.3.3 Compressibility correction

As it has already been explained at the end of section 2.3.1, the system of equations (2.85)

must be satisfied at any nodes I of the fluid domain ΩF . However, this system is defined

on the whole computational domain Ω = ΩF ∪ ΩS. Hence, by solving 2.3.1, we solve both

for the wanted flow field and for the irrelevant solution of the incompressible Navier-Stokes

equation subject to the same no-slip and stress boundary conditions.

The fluid-structure interface delimits simultaneously two close domains: the compressible

structure and the incompressible virtual flow. An obvious contradiction arises when the

volume of the compressible structure is brought to change, due to an overall dilatation or

shrinkage.

To overcome this issue, the incompressibility equation (2.73) valid in the actual flow

domain must be relaxed for the fictitious flow in ΩS: a source or sink term must be added.

This modification does not affect the validity of the equations in ΩF since incompressibility

must still be satisfied in this region. Further details and remarks regarding the way of

implementing this correction are given in Appendix A.
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2.4 Time discretization

Over the last two sections 2.2 and 2.3, we went through the spatial discretization of our

system. Even if different approaches have been used for the solid and for the fluid, care has

been taken to couple them rigorously: no-slip condition and boundary stresses have been set

coherently with both the structure finite-element and the fluid finite-volume methods.

We can now bring together the coupled systems (2.41) and (A.14) into one ordinary differ-

ential matrix equation. To lighten the problem, Dirichlet boundary conditions are dropped

in the remaining part of the text. The procedure to solve those boundary constraints can be

strongly inspired from the method used to enforce the fluid-structure boundary conditions.

In the obtained ordinary differential equation (2.86) displayed below, the composite un-

known vector, whose first and second time-derivatives are also involved, results from the

gathering of solid (ξ and pS), fluid (γ) and interaction (τ) variables. This system attests

that the physical coupling has been properly conveyed through the discretized equation.


MS

·

I

·




ξ̈

·

γ̇

·

+


· · T S

tPS MP

βSΛS ρS0
t(EC)

tT S ECSΛ−1S ·




ξ̇

ṗS

γ

τ



+


KS PS

·

·

·




ξ

pS

·

·

 =


MSbS0 +N SτSN0

·
tC
(
hF bF −N F (q) + tENτFN

)
−Equniform

 (2.86)

One must note that, except for T S and E , no matrix involved in (2.86) is time-dependent.

Their computation will have to be done once, at the beginning of the algorithm. The

two remaining matrices are intrinsically time-dependent since they characterize the current

position of the moving fluid-structure boundary.
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Possible optimization: If τ is defined as the boundary stress expressed in

the solid reference state coordinates rather than in the current state coordinates,

the matrix T S would be constant in time and would not need to be computed at

each time step. Indeed, the

(
dΓ(t)

dΓ0

)
term in both matrices T S and E definitions

(2.48) and (2.67) would be dropped, so that ‖sk+1
Ii (t) − skIi(t)‖ in (2.70) would have

to be changed into ‖sk+1
0Ii
− sk0Ii‖. Hence, only E would be time-dependent.

2.4.1 The Newmark scheme

To discretize in time the previous differential equation, the Newmark scheme has been used.

Through two tunable parameters δ and θ, this scheme allows an efficient discretization of

3-stage differential equation.

The Newmark scheme relates, as follows, any time-dependent variable X(t) and its first

and second time derivative [All07] . The subscripts n and n + 1 refer to the approximation

of any variable X at time n∆t and (n+ 1)∆t respectively.

Ẋn+1 − Ẋn

∆t
= δ Ẍn+1 + (1− δ) Ẍn (2.87)(

Xn+1 −Xn

∆t

)
− Ẋn

∆t/2
= 2θẌn+1 + (1− 2θ)Ẍn (2.88)

The parameter δ ∈ [0, 1] is known to induce the following behaviors in terms of stability,

convergence and accuracy [CMP02]:

• δ < 1

2
leads to an unstable system

• δ =
1

2
leads to the accurate 2nd order θ-scheme

• δ > 1

2
leads to a robust, but dissipative, 1st order scheme

Our system does not need the introduction of numerical dissipation, we set the value

of δ to
1

2
in order to reach the highest order of accuracy. With this set-up, the parameter

θ ∈ [0, 1/2] influences the system in the following way:
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• θ < δ

2
=

1

4
leads to a conditionally stable system

– θ = 0 is the explicit scheme

– θ = 1/12 leads to the 4th order Fox-Goodwin scheme

– θ = 1/6 leads to the linear-acceleration scheme

• θ ≥ δ

2
=

1

4
leads to an unconditionally stable system

– θ = 1/4 is the constant-average-acceleration or trapezoidal scheme

2.4.2 Current choice of discretization

We discretize in time our system of equation setting the Newmark coefficients δ and γ as

follows to obtain an unconditionally stable 2nd order scheme.

δ =
1

2
β =

1

4
(2.89)

All the unknowns in the differential equation (2.86), evaluates at time (n+ 1)∆t, can be

expressed using the previous time-step and the components of the unknown velocity vector

at time-step (n+ 1) (ξ̇n+1, ṗS
n+1
, γn+1, τn+1):

ξn+1 =

[
θ (∆t)

δ

]
ξ̇n+1 +

[
ξn + (∆t)

(
1− θ

δ

)
ξ̇n +

∆t2

2

(
1− 2

θ

δ

)
ξ̈n
]

(2.90)

ξ̈n+1 =

[
1

δ (∆t)

]
ξ̇n+1 − 1

δ (∆t)

[
ξ̇n + (∆t)(1− δ) ξ̈n

]
(2.91)

pn+1 =

[
θ (∆t)

δ

]
ṗn+1 +

[
pn + (∆t)

(
1− θ

δ

)
ṗn +

∆t2

2

(
1− 2

θ

δ

)
p̈n
]

(2.92)

γ̇n+1 =

[
1

δ (∆t)

]
γn+1 − 1

δ (∆t)

[
γn + (∆t)

(
1− δ

)
γ̇n
]

(2.93)

Before obtaining a fully discretized system, we still have to deal with the non-linear

advective term N F (q) defined by (2.76) and the time-dependent matrices T S(t) and E(t)

defined in (2.48) and (2.70).
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• The commonly used 2nd order Adams-Bashforth method is applied to express N F (q)

at time-step n+ 1:(
N F (q)

)n+1

= 2N F (qn)−N F (qn−1) (2.94)

=
2

hF
(
qn · ∇

)
qn − 1

hF
(
qn−1 · ∇

)
qn−1 (2.95)

• An initial guess of the boundary location at time-step n + 1 is used to approximate

T S(t) and E(t) at time-step n+ 1. We assume constant velocity between time-steps n

and n+ 1 to obtain our approximation ξ̃ of ξn+1. An iterative sub-loop can be used to

refine this guess. The corresponding approximated matrices are denoted by T̃ S and Ẽ .

Possible optimization: The choice of the Adams-Bashforth method has

been made following the example of numerous publications. Besides, the con-

stant velocity assumption for the boundary location has been a choice towards

simplicity. Best results might be achieved using more efficient methods.

2.4.3 Time-discretized linear system

Apply the time-discretization scheme mentioned above on the ordinary differential equation

(2.86) to get the following coupled system of equation:


MS PS RS

tPS MP

MF RF

TS TF




ξ̇n+1

ṗSn+1

γn+1

τn+1

 =


ξ-RHS

·

γ-RHS

τ -RHS

 (2.96)
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where we have defined:

MS =
θ

δ
(∆t) KS +

1

δ (∆t)
MS (2.97)

MP =
θ

δ
(∆t) MP (2.98)

PS =
θ

δ
(∆t) PS (2.99)

RS = T̃ S (2.100)

TS = tT̃ S +
(
ẼGΦ

)
QS (2.101)

MF = S
( =D, diagonal︷ ︸︸ ︷

I
δ (∆t)

+ βΛ
)
S = SDS (2.102)

RF = ρS0
t(Ẽ C) (2.103)

TF = (Ẽ C) S Λ−1S (2.104)

ξ-RHS = MS bS0
n+1

+N S τSN0

n+1

+MS 1

δ (∆t)

[
ξ̇n + (∆t)(1− δ) ξ̈n

]
−KS

[
ξn + (∆t)

(
1− θ

δ

)
ξ̇n +

∆t2

2

(
1− 2

θ

δ

)
ξ̈n
]

− PS
[
pn + (∆t)

(
1− θ

δ

)
ṗn +

∆t2

2

(
1− 2

θ

δ

)
p̈n
]

(2.105)

γ-RHS = tC
(
hF bF

n+1 −
(
2N F (qn)−N F (qn−1)

)
+ tẼNτFN

n+1
)

+
1

δ (∆t)
[γn + (∆t)(1− δ) γ̇n] (2.106)

τ -RHS = − Ẽ quniform (2.107)

On this system, one can notice that the first 2×2 block-submatrix constitutes the system

one would have obtained with the structure taken alone, without any fluid to interact with.
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This matrix is sparse and symmetric, but unfortunately non-positive definite [ZWH12].

The matrix MF , particularly easy to invert knowing it can be expressed as the discrete sine

transpose of a diagonal matrix, would be the matrix resulting from the fluid system taken

alone [CT08].

The coupling is expressed through the remaining four submatrices: the interpolation ma-

trices TS and TF and the regularization matrices RS and RF . The bottom block-row enforces

the no-slip condition at time-step n+ 1. The two sub-matrices in the right block-column, on

which acts the same unknown τn+1, enforces the stress balance through the boundary. The

stress vector τn+1 can be viewed as a Lagrange multiplier. Its role is similar to the effect

the pressure has on the momentum Navier-Stokes equation to satisfy the divergence-free

constraint. In this way, the current fluid-structure interaction method removes slip through

a projection, by enforcing the proper stress on either side of the boundary.

The boundary force is determined “implicitly” allowing the use of larger CFL numbers

compared to some past methods. This enforcement is not properly implicit since no-slip

conditions and stress balance are actually enforced at the location the boundary is explicitly

guessed to be: matrices T̃ S and Ẽ are used instead of T Sn+1
and En+1.
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2.5 System solving procedure: Fractional step method

In earlier sections, we have conducted spatial and time discretizations of our coupled problem

and reached the coupled linear system of equation (2.96). Its structure properties have been

discussed in the previous section. We now present a rather efficient solving procedure, the

fractional step method (or projection method), which takes benefits of those features.

Our global equation can be viewed, like any system of the form [ A B
C · ] [Xλ ] = [ αβ ], as

a constrained system. In our particular case, the no-slip condition constitutes the generic

constraint CX = β. According to [Per93], those systems can be solved with the three

following steps:

• A X∗ = α Solution X∗ of the non-constrained system (2.108)

• CA−1B λ = CX∗ − β Projection step: λ solved to satisfy the constraint (2.109)

• A(X −X∗) = −Bλ Correction step (2.110)

The first and last steps (2.108) and (2.110) consist, in our particular case, in solving

the block diagonal matrix where solid and fluid equations are uncoupled. Efficient solving

procedures of those system have been developed in [ZWH12] and [CT08] respectively. For the

structure, GMRES or LDL algorithm can be used to solve the sparse symmetric non-positive

definite system. For the fluid, the discrete Fourier transform is efficiently used.

The second step (2.109) is more subtle. Using the notation in (2.96), this step becomes: [
TS ·

]MS PS

tPS MP

−1 RS

·

 + TF (MF )−1 RF

 τn+1 = · · · (2.111)

The right-hand-side term in the brackets does not raise any particular issue. Indeed, ac-

cording to its definition (2.102), MF inverse is simply SD−1S where D is diagonal. However,

the left-hand side term is computationally expensive since it involves nτ solving of a NS×NS

linear systems, where nτ is the (small) number of boundary segments (number of columns in

RS) and NS is the (big) number of solid unknowns (displacement and pressure). Although

all the involved matrices are sparse, the resulting nτ × nτ term is dense.
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Possible optimization: A GMRES algorithm is expected to be suitable (in

terms of speed and storage) to solve the structure-related equations, both for

the step 1,3 and for the step 2 of the fractional step method. A first attempt as

been made but was particularly slower than the direct solving with the Matlab

LDL-solver for symmetric sparse matrix. This should be improved significantly

using an appropriated tuning.
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CHAPTER 3

Application: Vibrating immersed elastic disk

In the previous chapter, the methodology to solve a fluid-structure interaction problem has

been explained. We investigate here the performance of the algorithm through its application

to a numerical example.

3.1 Problem description

A circular two-dimensional circular elastic structure of radius R0 is surrounded by an incom-

pressible fluid. Incompressibility is also imposed to the solid for well-posedness. At initial

time, the system is perturbed from its equilibrium by prescribed displacement and velocities:

ξ(t = 0), ξ̇(t = 0) and u(t = 0).

ΩS

ΩF

ΓS
0

ΓS(t = 0)

r

θ

x = (r, θ)

R0

Figure 3.1: Initially perturbed circular structure surrounded by incompressible fluid.
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3.1.1 Nondimensionalization

According to the nondimensionalization process explained in section 2.1.1, we denote by

L = 2R0 the diameter, at equilibrium, of the circular 2D-structure.

Since there is no given characteristic velocity in our system, U0 is chosen to be the speed

of transverse waves in the solid, defined from its density ρS0 and its shear modulus µS.

U0 =

√
µS

ρS0
(3.1)

The two remaining dimensionless parameters are:

Re =
ρFLU0

µF
=
ρFL

µF

√
µS

ρS0
ρ̃S0 =

ρS0
ρF

(3.2)

The parameter µ̃S in (2.15) has been used to define the reference velocity U0 so its value

is now 1. λ̃S is not taken in account anymore since its value has to be fixed to infinity to

satisfy solid incompressibility. The newly defined “Reynolds number” Re is based on the

waves velocity in the solid, due to elasticity, rather than to a characteristic fluid velocity. It

characterizes the importance of structure elasticity with regards to fluid viscosity. Although

it is not a Reynolds number anymore, the notation Re is kept for consistency with the earlier

chapters.

With this dimensionalization in mind, the governing equations of our present problem are

the ones in 2.1.2 where µS is fixed to 1, no body forces bS0 and bF are applied, and boundaries

for the solid are exclusively fluid-structure interfaces ΓFSI , while the fluid domain is also

limited by essential boundaries ΓFv .

3.1.2 Theoretical solution

Consider the system disturbed from equilibrium by a perturbation small enough (initial

condition) so that the advective term in the Navier-Stokes equation (2.18) can be neglected

at first order. All remaining terms in the equations governing the fluid-structure coupled

system are now linear.
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We can solve for the eigenfunctions and obtain the vibrational modes of the system. The

algebra has been carried out in Appendix B with the appropriate assumptions.

It has been shown that, for any parameters Re and ρ̃S0 , a solution of the form:

f(r, θ, t) = <
[
f̂(r)eiσt

] cos(mθ)

sin(mθ)

 (3.3)

may exist to described any variables of the system. The particular values m and σ such that

a solution exists are the eigenvalues. σ would be the complex pulsation (its real part is the

current pulsation and its imaginary part characterizes the dumping) and m would be the

angular mode. < stands for the real part operator.

For the case of m = 2, one can observe that the free motion of the coupled system is a

specific combination (Re and ρ̃S0 dependant) of the two vibrational modes of each uncoupled

subsystem. Those two distinct sets of modes are as shown in Figure 3.2.

3.1.3 Computed results

At initial time, the fluid-solid system is disturbed along its vibrational mode: all the fields

variables are set to be consistent with the oscillatory solution found theoretically.

The solver should then predict the evolution of all solid and fluid quantities, and this

evolution should be along the natural vibrational mode.

However, as it has been explained in chapter 2.3 in the Further investigations needed

paragraph, the boundary stress term on the fluid side has not been inconsistently defined.

The FSI solver defined as such is not able to predict the accurate evolution of the coupled

system, since the traction balance at the interface is altered.

Since the theoretical solution is known at all time, it is possible to test separately each

subsystems by enforcing proper kinematic or dynamic boundary conditions. In this way, all

field variables can be solved and the behavior of the two separate subsystems can be further

investigated. A reconstructed representation of the results obtained by running separately

the solid and the fluid solvers (Figure 3.5) gives a sense of what the coupled FSI code should
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Figure 3.2: Vibrational modes of uncoupled subsystems. On the top: characteristic motion of

the boundary. At the middle: streamlines of the fluid flow field. At the bottom: streamlines

of the solid displacement field. On each side: one of the two distinct modes of vibration of

the uncoupled subsystems (considered as alone).
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be able to compute. In figure 3.3 are plotted the results of a particular simulation of the

fluid solver ( Re = 200, ρ̃S0 = 10, R0 = 0.5, t =
17

16
T =

17

16

2π

<[σ]
) with imposed velocity at

the boundary, compared to the expected theoretical solution. The two curves are overlaying

in the fluid domain. Similarly, on figure 3.4 are displayed the results for the structure code

run with imposed traction at the boundary are plotted. The curve representing the solution

of the solid test case subject to imposed velocity at the interface is the exact same: in both

case, the computed velocity is closed enough to the solution.

. . . . . . .
↩





uθ/uFSI
max

ur/uFSI
max

. . . . . . .
↩





Actual fluid

Actual fluid

Fictitious fluid

Fictitious fluid

r/R

r/R

Figure 3.3: Theoretical and computed fluid velocity profiles (kinematic boundary conditions).

Re = 200, ρ̃S0 = 10, R0 = 0.5, t =
17

16
T =

17

16

2π

<[σ]
. At the top: radial velocity profile

along θ = 0. At the bottom: circumferential velocity profile along θ = π/2. Green solid line:

theoretical solution. Red crosses: computed solution
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-1

0
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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0

1

ξ̇r/uFSI
max

ξ̇θ/uFSI
max

r/2R0

r/2R0

Figure 3.4: Theoretical and computed solid velocity profiles (dynamic boundary conditions).

Re = 200, ρ̃S0 = 10, R0 = 0.5, t =
17

16
T =

17

16

2π

<[σ]
. At the top: radial velocity profile

along θ = 0. At the bottom: circumferential velocity profile along θ = π/2. Green solid line:

theoretical solution. Red crosses: computed solution

Tables 3.1 and B.1 demonstrate the order of convergence obtained. The wide discrepancy

between the different values is not explained, but it can nevertheless be concluded that the

code is between first and second order accurate. Results for the properly coupled system

should confirm the robustness of the solver to deal with large or small values for the density

ratio ρ̃S0 and the elasticity-based Reynolds Re.
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kinematic/dynamics BCs ρ̃S0 = 0.1 ρ̃S0 = 1.0 ρ̃S0 = 10

Re = 40 1.75 / 1.78

Re = 200 1.71 / 1.90 1.91 / 1.57 1.18 / 1.00

Re = 1000 1.34 / 1.09

Table 3.1: Order of convergence of the uncoupled solid subsystem (kinematic or dynamic

boundary conditions).The rate has been calculated with the 2-norm on simulations of differ-

ent grid refinements. The first number is the rate of convergence for kinematic boundary

conditions (imposed velocity), the second correspond to dynamic conditions (imposed trac-

tion)

kinematic BCs ρ̃S0 = 0.1 ρ̃S0 = 1.0 ρ̃S0 = 10

Re = 40 1.71

Re = 200 2.38 2.11 2.39

Re = 1000 2.03

Table 3.2: Order of convergence of the uncoupled fluid subsystem (kinematic boundary con-

ditions).The rate has been calculated with the 2-norm on simulations of different grid refine-

ments

Further investigation needed: We have thus shown the accuracy of our method.

The 2nd order convergence rate reached by Zhu et al. [ZWH12] has not been

conserved through the passage from a static to a dynamic code with weakly

enforced IBM. However, the method is still better than first order. Regarding

the fluid code, the high rate of convergence (above 2) is quite surprising, and

has not been explained. Further study will have to clarify the reason for such

results, and consider the global coupled system once the fluid boundary stress

issue will have been addressed.
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Velocity field in the
solid and in the fluid

Streamlines in the
solid and in the fluid

Vorticity in the actual 
and fictitious fluid domains

Solid and fluid
pressure field

Figure 3.5: Example of solution fields to be obtained with the current FSI method. Re = 40,

ρ̃S0 = 1
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CHAPTER 4

Conclusion

We have described a Fluid-Structure Interaction algorithm which brings together attractive

features. Based on Eulerian-Lagrangian framework – Eulerian description of the fluid, La-

grangian treatment of the solid – the technique applies a coherent coupling at the interface

of the two systems. The solid code, inspired by the work of Zhu et al. [ZWH12], combines

a FEM on a uniform Cartesian grid and a corresponding weak-formulation of a sharp IBM.

Versatility is gained without sacrificing accuracy [ZWH12]. On the other side, the extremely

efficient combination of the null-space approach and the Fast Fourier Transform established

by Colonius and Taira [TC07, CT08] has been merged consistently to the solid code. The

overall coupled system is then time-discretized and solved as a whole. This should lead to a

stable and robust algorithm.

Several implementation works have to be done before reaching the above-mentioned ex-

pected algorithm. The main issue remains in the currently inaccurate boundary stress for-

mulation. Slight changes in the system of equation should bring the issue to a close. A

proper convergence study will then point out the possible weakness. There is also room for

progress in terms of optimization. As mentioned throughout the text, different points can

be improved to boost or refine the algorithm.

Future works will head towards the handling of three-dimensional flows, which is going to

raise the issue of the solid compressibility. Although the structure has to be incompressible

in 2D for well-posedness, the way to account for a volume change in the solid has already

been explored. Nevertheless, some questions remain unclear and new ones will certainly be

raised!
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APPENDIX A

Compressibility correction term

In this appendix are developed the thoughts that have been made regarding the implemen-

tation of a corrector to allow the structure to be globally non-divergence-free. Indeed, as it

has been explained in section 2.3.3, with the current implementation, we are solving for a

fictitious solution of the incompressible Navier-Stokes equations in the solid domains, sub-

ject to the no-slip boundary condition. However, if the structure is compressible, its borders

do not have any reason to define a volume preserving domain. And this leads to a trivial

contradiction.

The solution is to modify the rule governing the fictitious fluid in order to let it tolerate a

global dilatation or shrinkage. We thus change the divergence free constraint equation (2.73)

into:

tGq = 0 + h2
F SF with, ∀I ∈ ΩF , SFI = 0 (A.1)

SF is a source (or sink) term whose support lies exclusively into the virtual domain.

The flux field q cannot be written any more as q = Cs like in (2.77), since it does not

belong to the null-space of tG. To satisfy the continuity equation, we define a new component

qirr of the field q which is not divergence-free in ΩS (but must be in ΩF to maintain the

incompressibility enforcement of the physical flow). We also impose to this component to be

irrotational.

tCqirr = 0 (A.2)

The discrete stream-function s and the local circulation γ, previously defined in (2.77)
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and (2.78), must now satisfy the following relations:

q = Cs+ qirr (A.3)

γ = tCq = tCCs = SΛS s (A.4)

Note that thanks to (A.2), the definition of γ has not been modified: the vorticity does not

feel the presence of this additional irrotational component of the flow. Using those two last

equations, we obtain the relation where q is expressed in terms of γ. The constant component

quniform of the vector field, which can be part of both the irrotational and of the potential

components of q, is added separately. Boundary conditions for s and for qirr have to be set

accordingly.

q = CSΛ−1S γ + qirr + quniform (A.5)

The new system of equations governing the fluid motion is written below.
I

·

·



γ̇

·

·

+


βSΛS − t(EDC) ρS0

t(EC)

EDCSΛ−1S ·

E CSΛ−1S ·




γ

τFD

τ · · ·

 =


tC
(
hF bF−N F (q) +tENτFN

)
ED (hFuD − qirr − qunif )

− tT S ξ̇ − E (qirr + qunif )


(A.6)

qirr is irrotational, and so it can be written as the gradient of a scalar potential φ (using

null-space properties in (2.62)). Since qirr must also satisfy the continuity equation (A.1), φ

is solution of Poisson’s equation:

qirr = Gφ with Lφ = h2
F SF (A.7)

Boundary conditions: The Poisson’s equation (A.7) need the prescription of boundary

conditions to be solved.

A problem involving a dilating structure in an incompressible flow must be a 3-dimensional

AND infinite problem to be well-posed. Thus, imposing the potential φ to be zero at the

border of the domain is not physically relevant, even for the domain is large.
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We decide to solve the equation (A.7) subject to Neumann boundary condition at infinity.

The discrete solution can be computed using a lattice Green’s function (discrete version of the

usual continuous Green’s function). Denote g the lattice Green’s function, unique solution

(up to a constant) of the equation:

Lg = δ(i,j),(0,0) (A.8)

Denote ∗ the convolution product. Then the solution φ of the Laplace equation (A.7) is

given by:

φI = h2
F

[
g ∗ SF

]
I

= h2
F

∑
J

gI−J SFJ (A.9)

Position and distribution of the source SFI : Some computational tests exhibit that

the source distribution within the fictitious flow domains does not impact the actual flow

solution. Only the global flux does. It seems that any change of source location can be

accounted for by a distribution of vorticity inside the solid domain. This statement needs

to be mathematically confirmed.

Thus, we decide to place the source at the center x = x (Xcenter, t) of the structure

domain. We use the discrete delta function δhF defined in (2.63) to regularize, to smear, the

source term on the fluid grid. Hence, SF is equal to zero everywhere but on the currently

neighboring nodes of the solid center. If the volume flow rate is denoted S0, then:

SF(i,j) = S0 δhF

(
x (Xcenter, t)− x(i,j),p

)
(A.10)

Strenght S0 of the source term: The volume flow rate S0 must be maintain such that

the pressure of the incompressible fluid decays toward zero at infinity. However, the pressure

is not yet accessible at the stage of the calculation S0 needs to be determined. A solution

will have to be found to implicitly constrain p at infinity through the use of the Lagrange

multiplier-like coefficient S0.
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Corrector for 2D flow: In 2D, as mentioned earlier, problem with compressible solid are

ill-posed. Moreover, when considering the solid as incompressible within the small deforma-

tion hypothesis (cf. section 2.1), the enforced continuity equation is ∇0 · ξ =
∂ξi
∂Xi

= 0. The

proper incompressibility equation ∇ · ξ =
∂ξi
∂xi

= 0 is only approximately satisfied, at first

order in ‖∇0ξ‖.

On the same domain ΩS, we are trying to enforce, through the same no-slip boundary

condition, two different “incompressibility”constraints: the solid incompressibility expressed

with the reference state derivative and the fictitious fluid incompressibility constraint. We

thus need to take in account the slight compressibility of the solid in order to strictly satisfy

the no-slip condition. We need to add, within the virtual flow, a source term whose flow rate

corresponds to the expansion of the structure.

In both the fluid and the solid, the pressure is now defined within an arbitrary constant.

So, the pressure at infinity cannot be used as a criterion any more. Moreover, in our case, we

do not need any additional criteria: S0 must be fixed so that the two incompressibility rules

can be both simultaneously satisfied. Hence, we want to find S0 such that the flux through

the boundary is the same for the fluid and for the solid:∫
ΓFSI

u · nS→F =

∫
ΓFSI

ξ̇ · nS→F (A.11)

Using Gauss’s theorem, the left hand side is shown to be simply S0. The right hand side can

be evaluated using the finite element discretization of ξ:

S0 = QS ξ̇ with QSIi =

∫
ΓFSI(t)

N ξ
Ii · n

S→FdΓ (A.12)

=

∫
ΓFSI0

N ξ
Ii n

S→F
i

(
dΓ(t)

dΓ0

)
dΓ0

Hence, using previous results (A.7), (A.9), (A.10) and (A.12), we obtain the formulation

to express qirr:

qirr =
(
QS ξ̇

)
G Φ with Φ(t) = h2

F

[
g ∗ δhF

(
xcenter(t)− x

)]
(A.13)
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System (A.6) can then be re-written:
I

·

·



γ̇

·

·

+


βSΛS − t(EDC) ρS0

t(EC)

EDCSΛ−1S ·

E CSΛ−1S ·



γ

τFD

τ



=


tC
(
hF bF −N F (q) + tENτFN

)
hF EDuD −

(
QS ξ̇

)
EDGΦ− EDquniform

− tT S ξ̇ −
(
QS ξ̇

)
E GΦ− E quniform

 (A.14)

This system is a modified formulation of (2.85). The additional terms, linearly dependant

of ξ̇ can easily be treated implicitly in the global coupled system.
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APPENDIX B

Theoretical solution for vibrational modes of immersed

circular disk

We describe in this appendix the derivation of the theoretical natural modes of vibration of

the coupled system.

The solid reference state domain is defined in polar coordinates by |x| < R0.

The fluid is, at rest, defined on the remaining part of the plan: |x| > R0.

Consider our system disturbed from equilibrium by a small perturbation (initial condi-

tion).

At first order, the advective term in the Navier-Stokes equation (2.18) can be neglected.

Thus, we have to solved the following linear system, where ω and s are the vorticity and the

streamfunction of the 2D incompressible flow:(
∂t −

1

Re
∇2

)
ω(x, t) = 0 ∀x : |x| > R0 (B.1)

∇2 s(x, t) = −ω(x, t) ∀x : |x| > R0 (B.2)

u(x, t) = ∇× s(x, t) ∀x : |x| > R0 (B.3)

∇pF (x, t) = −∇×
(
ṡ+

1

Re
ω

)
∀x : |x| > R0 (B.4)

Similarly for the 2D incompressible solid, define a vorticity-like and a streamfunction-like
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fields ν and c such that the structure is subject to:

(
∂2
tt − µs ∇2

)
ν(x, t) = 0 ∀x : |x| < R0 (B.5)

∇2 c(x, t) = −ν(x, t) ∀x : |x| < R0 (B.6)

ξ(x, t) = ∇× c(x, t) ∀x : |x| < R0 (B.7)

∇pS(x, t) = −∇×
(
c̈+ µSν

)
∀x : |x| < R0 (B.8)

At first order, current and reference coordinates can be identified in the expression of

any solid perturbation field f ∈ {ξ, pS, c, ν}:

f(x, t) = f
(
X + ξ(X, t), t

)
≈ f(X, t) (B.9)

∇0f =
∂f

∂X
=

∂x

∂X

∂f

∂x
=

(
I +

∂ξ

∂X

)
∇f ≈ ∇f (B.10)

Solutions of the form ω(r, θ, t) = < [ω̂(r) eiσt] sin(mθ) and ν(r, θ, t) = < [ν̂(r) eiσt] sin(mθ)

are investigated. < stands for the real part operator. σ is the complex pulsation (its real

part is the current pulsation and its imaginary part characterizes the dumping) and m is the

angular mode. σ and m are the two eigenvalues. In solutions below, we denotes by J the

Bessel functions of the first kind and by K the modified Bessel functions of the second kind.

∃(B,D) ∈ C2 :



ω(r, θ, t) = <
[

B Km(κr) eiσt
]

sin(mθ)

s(r, θ, t) = <
[(

−B
κ2
Km(κr) + D r−m

)
eiσt
]

sin(mθ)

ur(r, θ, t) = <
[(
−m B

κ2r
Km(κr) + m D r−m−1

)
eiσt
]

cos(mθ)

uθ(r, θ, t)= <
[( B

κ
K ′m(κr) + m D r−m−1

)
eiσt
]

sin(mθ)

pF (r, θ, t)= <
[(

iσ D r−m
)
eiσt
]

cos(mθ)

(B.11)

with κ =
√
iσRe (B.12)
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∃(A,C) ∈ C2 :



ν(r, θ, t) = <
[

A Jm(λr) eiσt
]

sin(mθ)

c(r, θ, t) = <
[( A

λ2
Jm(λr) + C rm

)
eiσt
]

sin(mθ)

ξr(r, θ, t) = <
[(
m

A

λ2r
Jm(λr) + m C rm−1

)
eiσt
]

cos(mθ)

ξθ(r, θ, t) = <
[(

−A
λ
J ′m(λr) − m C rm−1

)
eiσt
]

sin(mθ)

pS(r, θ, t)= <
[(

σ2 C rm
)
eiσt
]

cos(mθ)

(B.13)

with λ =

√
σ2

µS
(B.14)

The boundary conditions between fluid and solid are the following, where ρS0 stands for

the solid-over-fluid density ratio:

ξ̇(R0, θ, t) = u(R0, θ, t) ∀(θ, t) (B.15)

ρS0 P (R0, θ, t) · er = σ(R0, θ, t) · er ∀(θ, t) (B.16)

Thanks to the two no-slip (scalar) equations (B.15), the four complex coefficients A,B,C

and D can be expressed in terms of the two independent parameters γ and δ, defined as

follows:  ξ̇r(R0, θ, t) = ur(R0, θ, t) = <
[
(δ + γ)eiσt

]
cos(mθ)

ξ̇θ(R0, θ, t) = uθ(R0, θ, t) = <
[
(δ − γ)eiσt

]
sin(mθ)

(B.17)

A =
1

iσ

2 λ

Jm+1(λR0)
δ C =

1

iσ

1

mRm−1
0

(
γ − Jm−1(λR0)

Jm+1(λR0)
δ

)
(B.18)

B =
2 κ

Km−1(κR0)
γ D =

Rm+1
0

m

(
δ +

Km+1(κR0)

Km−1(κR0)
γ

)
(B.19)

The formula obtained by Zhang & Eldredge [ZE09] is recovered by fixing m = 2, σ = Ω,

γ = 0 and δ = a0Ω. Note that the coefficient κ has not been defined similarly.
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We also want to satisfy the stress balance (B.16). Stresses in the fluid and in the solid

domains are given below.

σrr(r, θ, t) = 2
iσ

κ2
∂rur − pF

= <

iσ
r

m




2m(m+ 1)

κ2r2
Km+1(κr)

+
2m(m− 1)

κ2r2
Km−1(κr)

 B

2κ

−
(2m(m+ 1)

κ2r2
+ 1
) mD
rm+1

 eiσt

 cos(mθ) (B.20)

σrθ(r, θ, t) =
iσ

κ2

(
∂ruθ +

1

r
(∂θur − uθ)

)

= <

iσ
r

m




(

1 +
2m(m+ 1)

κ2r2

)
Km+1(κr)

−
(

1 +
2m(m− 1)

κ2r2

)
Km−1(κr)

 B

2κ

−2m(m+ 1)

κ2r2

mD

rm+1

 eiσt

 sin(mθ)

(B.21)

Prr(r, θ, t) = 2
σ2

λ2
∂rξr − pS

= <

σ2 r

m




2m(m− 1)

λ2r2
Jm−1(λr)

− 2m(m+ 1)

λ2r2
Jm+1(λr)

 A

2λ

+
(2m(m− 1)

λ2r2
− 1
)
mCrm−1

 eiσt

 cos(mθ) (B.22)

Prθ(r, θ, t) =
σ2

λ2

(
∂rξθ +

1

r
(∂θξr − ξθ)

)

= <

σ
2 r

m




(

1− 2m(m− 1)

λ2r2

)
Jm−1(λr)

+

(
1− 2m(m+ 1)

λ2r2

)
Jm+1(λr)

 A

2λ

−2m(m− 1)

λ2r2
mCrm−1

 eiσt

 sin(mθ) (B.23)
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Substitute with the values (B.18)-(B.19) of A,B,C and D that match the no-slip condi-

tions, and evaluate at the boundary location r = R0:

σrr(R0, θ, t) = <

iσR0

m


(

2m(m− 1)

κ2R2
0

− Km+1(κR0)

Km−1(κR0)

)
γ

−
(

2m(m+ 1)

κ2R2
0

+ 1

)
δ

 eiσt

 cos(mθ) (B.24)

σrθ(R0, θ, t) = <

iσR0

m


(
Km+1(κR0)

Km−1(κR0)
− 2m(m− 1)

κ2R2
0

− 1

)
γ

−
(

2m(m+ 1)

κ2R2
0

)
δ

 eiσt

 sin(mθ) (B.25)

Prr(R0, θ, t) = <

iσR0

m


(

2m(m+ 1)

λ2R2
0

− Jm−1(λR0)

Jm+1(λR0)

)
δ

−
(

2m(m− 1)

λ2R2
0

− 1

)
γ

 eiσt

 cos(mθ) (B.26)

Prθ(R0, θ, t) = <

iσR0

m


(
Jm−1(λR0)

Jm+1(λR0)
− 2m(m+ 1)

λ2R2
0

+ 1

)
δ

+

(
2m(m− 1)

λ2R2
0

)
γ

 eiσt

 sin(mθ) (B.27)

For given m, R0 and ρS0 , we have to find the values of δ, γ and σ (also involved in the

definitions (B.12)-(B.14) of κ and λ) such that the stress balance (B.16) is satisfied.

Re ρS0 δ/γ σ

200 0.1 1.3851 e−2.8403i 2.6649× (1 + 1.0335 10+0 i)

200 1.0 27.233 e−1.5373i 8.4294× (1 + 2.1195 10−2 i)

200 10 0.4486 e+3.1147i 4.6130× (1 + 2.0585 10−3 i)

40 1.0 5.8967 e−1.4111i 8.7866× (1 + 1.0629 10−1 i)

1000 1.0 135.43 e−1.5645i 8.4045× (1 + 3.9968 10−3 i)

Table B.1: Eigenvalues m and σ for some particular entries Re and ρS0 .
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