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ABSTRACT 

 

Nanoscale Chemical Interrogation of Surfaces  

using Tip-Enhanced Near-field Optical Microscopy 

by 

Richard James Hermann 

 

As our ability to engineer, design, and modify nanoscale systems continues to advance, 

characterization methods must keep pace. Light-matter interactions, in particular optical 

spectroscopy, provide a wealth of information on the vibrational and electronic structure of 

matter and can be directly related to physical properties such as phase, chemistry, charge 

transport, etc. However, the fundamental wave-like nature of light prevents radiation from 

being focused to arbitrarily small length scales using traditional optics. This is known as the 

diffraction limit, and is on the order of several hundred nanometers for optical wavelengths 

(~λ/2). One method of overcoming diffraction is to couple light to nanostructures (e.g., 

optical antennae) that support resonant oscillations of conduction electrons (plasmons). 

These charge oscillations generate intense optical fields that are spatially controlled by the 

antenna size, rather than the radiation wavelength. The set of related techniques utilizing 

nanoscale optical antennae to interrogate and image surfaces are known as tip-enhanced 

near-field optical microscopy (TENOM). 

 

This work details the design, construction, and experimental validation of a TENOM 

instrument, and demonstrates specific applications in near-field spectroscopy and super-

resolution chemical imaging. A commercial inverted optical microscope was integrated with 
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a custom-built shear-force atomic force microscope (AFM). The inverted microscope 

geometry enables high excitation and collection efficiency of light from the antenna apex, 

while the shear-force AFM ensures the antenna is always positioned at the sample surface, 

allowing analytes to interact with the locally enhanced optical fields. Experimental 

validation of the completed TENOM instrument was accomplished using both copper 

(CuPc) and metal-free phthalocyanine (H2Pc) species. Chemical images of patterned CuPc 

and H2Pc were obtained with lateral spatial resolutions below 50 nm (<λ/10), 

unambiguously demonstrating the super-resolution capabilities of the instrument. Multimode 

imaging of H2Pc was performed with simultaneous collection of spatially correlated 

fluorescence, Raman, and topographic data. The combination of these measurements 

allowed nanoscale mapping of the H2Pc aggregation state across a wide range of surface 

coverages, including isolated molecules, molecular dimers, and continuous films. 

 

Additionally, finite-difference time-domain (FDTD) optical simulations were used to study 

the fundamental physics of plasmonic optical antennae relevant for near-field spectroscopy. 

For TENOM applications, tuning the optical properties of support structures with attached 

plasmonic nanocavities was shown to be critical for either enhancing or quenching local 

electric field strengths. Support structures with low extinction coefficients were found to 

produce the largest field enhancements, with the refractive index of the material being 

further tuned to optimize antenna performance as a function of the specific geometry 

considered. A quantitative comparison of several antenna designs was carried out, which has 

not been possible experimentally due to the low reproducibility of nanostructure fabrication 

procedures and variability in methods of measuring local optical fields. Two promising 

architectures were identified that both involve focused ion-beam milling a groove near the 
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antenna apex. Methods of tuning the resonance energy of these structures over the full 

visible spectrum, using different plasmonic metals (Au/Ag) and by varying the groove 

positions relative to the apex, were also demonstrated. 

 

FDTD simulations were also used to study pairs of plasmonic nanoparticles relevant for 

surface-enhanced Raman spectroscopy applications. Previous work on this system was 

shown to significantly overestimate field enhancements due to numerical effects present at 

nano-gap features. Metal bridging structures were used to halt the field divergence at 

physically relevant lengths scales, allowing accurate study of experimentally relevant 

parameters including the fused contact area and presence of a dielectric encapsulation layer. 

It was found that fused dimer antennae are capable of producing large enhancements at 

infrared energies, but may be challenging to reproducibly fabricate due to the high sensitivity 

of the supported plasmon resonances to changes in local morphology. 

 

Advancements across multiple scientific and engineering disciplines are helping push the 

TENOM technique forward. Improvements in high-intensity broadband laser sources will 

enable flexible measurement of both the electronic and vibrational structure of materials, and 

general improvements in nano-manufacturing are expected to reduce the time and cost of 

producing high-enhancement resonant antennae with well-defined plasmonic structure. The 

future is bright for TENOM to find use as a versatile optical and physical surface 

characterization technique. 
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Chapter I. Introduction to Scanning Near-field Optical Microscopy 

 

Adapted from: R. J. Hermann and M. J. Gordon, “Nanoscale Optical Microscopy and 

Spectroscopy Using Near-Field Probes”, Annual Review of Chemical and Biomolecular 

Engineering, 2018, vol. 9, pgs. 365-387. 

 

 

Abstract 

Light-matter interactions can provide a wealth of detailed information about the structural, 

electronic, optical, and chemical properties of materials through various excitation and 

scattering processes that occur over different length, energy, and timescales. Unfortunately, 

the wavelike nature of light limits the achievable spatial resolution for interrogation and 

imaging of materials to roughly λ/2 because of diffraction. Scanning near-field optical 

microscopy (SNOM) breaks this diffraction limit by coupling light to nanostructures that are 

specifically designed to manipulate, enhance, and/or extract optical signals from very small 

regions of space. Progress in the SNOM field over the past 30 years has led to the 

development of many methods to optically characterize materials at lateral spatial 

resolutions well below 100 nm. We review these exciting developments and demonstrate 

how SNOM is truly extending optical imaging and spectroscopy to the nanoscale. 
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Scanning near-field optical microscopy (SNOM), also commonly permuted as NSOM, is an 

umbrella term for methods and instrumentation that combine high-resolution, submicron-

scale spatial imaging of a material surface with some form of simultaneous optical 

interrogation to extract physicochemical information at a local level. Because light can 

interact with matter over different length, energy, and timescales, there are many ways to 

gather structural, optical, electronic, and chemical information about materials. This 

introduction provides an overview of this task, with specific emphasis on light-matter 

interactions at nanoscale dimensions, types and behaviors of various near-field optical 

probes, SNOM instrument design considerations, and current scattering-type SNOM 

techniques for subdiffraction-limited materials characterization and imaging. 

 

A. Breaking the Diffraction Limit with Optical Antennae 

Diffraction places a fundamental limit on the spatial dimensions to which light can be 

focused using traditional macroscopic lenses (~/2) 1, and therefore the dimensions over 

which small objects can be resolved and ultimately imaged. One method to circumvent this 

limit is to directly couple radiation to an optical antenna, or near-field probe, with 

characteristic dimensions that are much smaller than the optical wavelength of interest. In 

this configuration, optical fields can be manipulated (e.g., created, transduced, scattered, 

confined, concentrated) over very small length scales, with focal characteristics largely 

dictated by the size of the optical antenna rather than the wavelength of light. The SNOM 

methods reviewed here allow subdiffraction-limited interrogation and imaging of surfaces in 

a myriad of ways by manipulating light over spatial distances <, in the so-called near-field 

vicinity of an object or surface (see Figure 1.1). 
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Figure 1.1 Graphical depiction of physical processes important to near-field optical 

microscopy. (a) The near-field encompasses the region of space very close to a radiating 

surface at distances less than the optical wavelength . High–spatial frequency components 

of the electromagnetic fields in this region (evanescent waves) are bound to the surface and 

cannot propagate into free space. (b) A near-field probe couples to local optical processes 

(e.g., scattering, absorption, photoluminescence, Raman) and transduces them to the far-

field. The spatial resolution of this process is controlled by the dimension of the optical 

antenna probe rather than the optical wavelength (diffraction limit). 

 

In the optical near-field regime, the distribution of electric and magnetic fields can be very 

complex, changing rapidly in both magnitude and direction over short distances << 2. The 

near-field can be expressed as a superposition of electromagnetic waves of varying spatial 

frequencies, with high spatial frequencies containing information about the smallest surface 

features. These high-frequency fields are non-propagating or evanescent; that is, they are 

bound to the surface and cannot transport energy away from it 3. The intensity of these 

evanescent fields decays exponentially with distance away from the emitting or scattering 

surface, and fine spatial information about the surface is lost at distances >. For distances 

beyond a few away, only low–spatial frequency fields remain; these fields propagate out 

into space where they can be transduced using traditional, far-field, lens-based optical 

microscopy techniques. Because of the inherent short-range nature of evanescent waves, 

interacting with the near-field of a surface requires placing a probe very close to an emitting 
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structure. Figure 1.1b illustrates this concept, where a near-field probe smaller than  

interacts with a surface. The probe can locally enhance or transduce optical fields via several 

mechanisms discussed below and reviewed in Reference 4, allowing multimodal information 

gathering at the nanoscale. 

 

Electric Field Enhancement 

The main function of a near-field probe is to locally change (enhance) the magnitude of an 

optical field through geometric and/or plasmonic effects. Geometric enhancement, also 

known as the lightning rod effect 5, occurs when the optical antenna probe has high local 

curvature over distances << (e.g., corners, sharp edges, small gaps). In this case, the sharp 

boundaries of the probe restrict the motion of electrons responding to the applied electric 

(optical) field, causing charge concentration along the probe surface 6. In practice, geometric 

enhancement produces fields typically two to ten times larger than their free-space excitation 

sources 7-9. 

 

The second, and often more important, contribution to electric field enhancement with a 

near-field probe comes from the excitation of plasmon resonances. Plasmons are collective 

oscillations of free electrons in a material, typically excited with radiation in the UV-Vis-

NIR wavelength range, that are confined to a metal-dielectric interface, e.g., on flat surfaces 

or nanostructures or within a nanoscale dielectric gap 10, 11. Figure 1.2 shows the charge and 

field distributions associated with basic plasmon resonance modes, known as surface 

plasmon polaritons (SPPs), localized surface plasmons (LSPs), and gap-mode plasmons 

(GMPs), respectively. In all three cases, collective electron oscillations generate local charge 

separation that creates strong electric fields at the surfaces of the plasmonic material. 
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Reference 12 gives an overview of the diverse applications plasmon are now finding use in, 

with spectroscopy being only one of many uses. 

Figure 1.2 Illustrations of the geometries and electric fields associated with common 

plasmon resonance modes. Scanning near-field optical microscopy experiments use light to 

excite these plasma oscillations, which may then decay via radiative or nonradiative 

pathways. For each of the plasmon resonances shown, charge separation at the surface of the 

plasmonic material leads to the formation of intense, localized electric fields, which may be 

used to enhance optical processes. 

 

Probe-Surface Optical Interactions 

The optical interactions with a near-field probe discussed thus far essentially ignore the 

dielectric environment surrounding the probe. As one might imagine, the presence of a 

sample within the near-field of the probe, as well as the complex dielectric response of the 

sample [i.e., the complex refractive index, , or permittivity, 

], can have a dramatic effect on how light couples to, is enhanced by, 

and/or is scattered by the probe and surface. In fact, it is these very interactions that encode 

information about the subwavelength details of the surface and serve as a basis for SNOM-

based interrogation and imaging. Moreover, the intense optical field of the probe can 

influence radiative emission, Rayleigh and Raman scattering processes, and plasmonic 

properties of the sample under interrogation. For example, the amplitude/phase of light 

elastically scattered by a near-field probe contains information about the local refractive 

index of a nearby sample, Raman scattering from molecules or phonons can be enhanced by 

several orders of magnitude 13, and fluorescence can be enhanced or quenched depending on 
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the distance between the fluorophore and metal probe 14. The following sections highlight all 

of these effects in the context of various subdiffraction-limited sample interrogation and 

imaging modalities with near-field probes that provide insight into the local morphology, 

chemistry, and optoelectronic properties of a heterogeneous material. 

 

Chemical Enhancement 

Near-field probes are normally extremely close (less than a few nanometers) to the analytes 

and surfaces they study, sometimes to the point of direct contact. Changes in electronic 

structure and bonding may occur over such short distances, modifying the inherent optical 

properties of the sample under study; these effects are collectively referred to as chemical 

enhancements. Predicting chemical enhancement is a difficult task because it requires a full 

quantum mechanical treatment of the interacting probe-sample system. Some headway has 

been made for extremely simple systems, such as a single molecule near a small metal 

cluster 15, and theoretical results suggest that chemical enhancements can be large (1,000×) 

16, 17. However, Van Duyne et al. 18, 19 have observed chemical enhancements in the range of 

only 10× to 100× using different chemical moieties in contact with Au/Ag surface-enhanced 

Raman scattering substrates. Overall, strong arguments can be made that chemical 

enhancements have so far played a minimal role in near-field spectroscopy when compared 

to the electric field enhancement mechanism 20. 
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B. Components of a Scanning Near-field Optical Microscope 

SNOM instruments are complex systems that combine a scanning probe microscope 

platform [e.g., scanning tunneling microscope (STM), atomic force microscope (AFM), or 

fiber-based hybrid scanning probe microscope] with optical interrogation of a sample using 

lasers or broadband light sources from the UV to infrared (IR) and include collection and 

analysis of transmitted, reflected, and/or scattered light with dispersive or interferometer-

based (Fourier transform) optical spectroscopy. This instrument design space is enormous. 

However, this versatility is one of the strengths of SNOM, as it allows multiple information 

gathering and imaging modalities to be applied to all types of materials and sample 

configurations. Below, we provide an overview of SNOM instrument design considerations 

and then highlight various SNOM characterization and imaging modalities. 

 

(i) Selecting a Near-Field Probe 

As described earlier, the electric field enhancement mechanism is the most important factor 

to consider in near-field probe selection. Because these enhancements depend on excitation 

frequency, probe shape and material, dielectric environment, sample substrate, and analyte, 

selecting an optimal near-field probe is both challenging and often application specific. 

Nevertheless, most researchers use standard designs [i.e., nanoscale apertures or scattering-

type (s-SNOM) probes (Figure 1.3)] that are easy to fabricate and applicable to a broad 

range of experiments. 
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Figure 1.3 Near-field probe designs used in scanning near-field optical microscopy 

experiments. The most common variants are (a) metal-coated tapered optical fibers, (b) 

metal-coated AFM tips, and (c) electrochemically etched metal wires. More complex shapes 

can be formed using focused ion beam (FIB) milling. These include (d) dipole antennas, (e) 

campanile structures, (f) surface plasmon-polariton waveguides, (g) nanohole arrays, and (h) 

flat-cut apertures. Figures were reproduced or adapted from the following with permission: 

(a) Reference 21, Am. Inst. Phys.; (b) Reference 24, Elsevier; (c) Reference 25, Am. Chem. 

Soc.; (d) Reference 27, IOP Publ.; (e) Reference 28, AAAS; (f) Reference 29, Am. Chem. 

Soc.; (g) Reference 30, MacMillan Publ. Ltd.; (h) Reference 31, Am. Inst. Phys. 

Aperture probes 

The most intuitive method to confine light to very small spatial dimensions is through the 

use of subwavelength-sized apertures (Figure 1.3a), such as pulled optical fibers or sub--

diameter holes that are focused ion beam (FIB) milled into monolithic Si AFM tips 21. A 

quantitative description of the interaction of radiation with such apertures is surprisingly 

complicated and is still an area of active research 3, 22. Simple theoretical analysis predicts 

that the optical power density transmitted through a small aperture of diameter d scales as 

(d/)4 22, and that the taper angle of the probe before the aperture should be kept wide to 

achieve higher transmission 23. Increasing the source power can partially make up for probes 

with low transmission, but only up to the point at which the sample or probe itself is 
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damaged by the high intensity. The lateral surface of pulled probes is metallized (usually 

with Al) to confine the light, with the sub--diameter end of the fiber (the aperture) left 

uncoated. This is accomplished by evaporating metal onto a rotating fiber at an oblique angle 

or by purposefully FIB machining the probe end. 

 

Aperture-less (scattering-type) probes 

Most near-field probes used today are of the scattering, or s-SNOM, variety. An advantage 

of s-SNOM probes is that they usually generate local optical fields that are more intense than 

the incident radiation, in stark contrast to aperture-based geometries. Common designs are 

metal-coated AFM tips 24 or electrochemically etched, fine metal wires 25 (Figure 1.3b,c). 

These probes are fast and cheap to make but suffer from poor reproducibility, giving highly 

variable field enhancements. In fact, fabrication of s-SNOM probes with large and 

reproducible field enhancements is a current area of research, and the bane of many 

experimentalists. Another challenge with s-SNOM probes is that they do not filter out 

optical signals originating from sample material outside of the probe near-field region. When 

light is focused onto an s-SNOM probe, a portion of the sample surface around the probe is 

also illuminated. Scattering or emission from this larger area is considered undesired 

background 26. Fortunately, there are instances in which the magnitude of the near-field 

signal can be made larger than the background using plasmonic probes that support 

extremely large local fields and/or lock-in demodulation [e.g., modulating probe-surface 

distance (dithering the probe vertically) and detecting scattered light with a lock-in 

amplifier]. 
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Advanced near-field probes 

More complicated near-field probe designs have also been explored (Figure 1.3d–h) in an 

effort to increase local electric field strength and spatial resolution, as well as bias detection 

to the near-field. These include sub- dipole antennas 27, campanile structures 28, SPP 

waveguides 29, nano-hole arrays 30, and flat-cut apertures 31. As an example, the SPP-

waveguide probe uses a FIB-machined grating-like structure on the probe shaft, some tens of 

microns away from the probe apex, to couple light via SPPs down to the apex; because the 

probe-surface gap is not directly illuminated with the pump laser spot, background signals 

generated away from the apex can be significantly reduced. Unfortunately, FIB machining is 

required to make many of these complex geometries, which is both costly and time 

consuming on an individual probe basis. 

 

Probe longevity 

A final consideration when selecting a near-field probe is how it will interact, both 

physically and chemically, with the sampling environment and substrate under interrogation. 

Thiol-functionalized Au tips have been shown to resist contamination that may be present in 

ambient or liquid environments 32. For tapping- or contact-mode AFM measurements, 

probes can be mechanically damaged from surface forces during use 33, which can be 

circumvented in some cases with hard, transparent oxide coatings 34. Unfortunately, coating 

a near-field probe (i.e., intentionally, from environmental contamination, or via imaging a 

surface) almost always reduces the local field enhancements that can be obtained 35. Optical 

absorption in the probe itself can also lead to large temperature changes that modify probe 

morphology and affect field enhancement 36, 37. All these factors contribute to probe 

degradation; the result is that most near-field probes tend to be highly active for a short time, 
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often lasting for only a single day of experimentation. 

 

(ii) Nano-Positioning Systems 

The near-field probe, sample surface, and illumination/collection optics must all be aligned 

to perform a SNOM experiment. This is easiest with aperture-based SNOM, as the fiber-

based illuminator/collector is usually raster scanned across the surface with probe-surface 

distance regulation provided by a quartz tuning fork sensor. In this case, the aperture (fiber) 

is attached to a tuning fork that is excited mechanically or electrically in shear mode 

(horizontal to the surface) with amplitude, phase, or frequency (phase-locked loop) 

regulation. It is possible to implement sample scanning in this case, but it is rather 

uncommon. For s-SNOM, many instrument configurations are possible, but they generally 

involve coupling an optical microscope with an STM or AFM. For these instruments, 

distance regulation is based on probe-surface current (STM), normal force (AFM contact 

mode), or oscillation amplitude/phase/frequency (AFM tapping mode, tuning fork shear 

force). Most s-SNOM systems are configured for sample (rather than probe) scanning so 

excitation and collection optics only have to be statically aligned with the probe-surface 

junction at the beginning of an experiment. 

 

(iii) Light Sources 

Specific physical processes of interest determine what light source to use in a near-field 

experiment, as with spectroscopy in general. UV and visible sources have energies well 

suited for direct study of electronic structure through absorption, fluorescence, and 

photoluminescence processes. Vibrational excitations can be observed either with inelastic 

Raman scattering or via direct absorption of IR radiation. Many coherent (laser) sources are 
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now available throughout the UV-vis-IR frequency range with pulsed or continuous wave 

operation. The wavelength tunability of these sources continues to increase with advances in 

laser engineering, but the only truly broadband, tunable optical sources remain free-electron 

lasers or optical emission from synchrotron beam lines 38-40. Since the diffraction limit is 

proportional to the incident wavelength (~λ/2), it is reasonable to ask what sets a lower limit 

on wavelengths commonly used. The main factor is that sample damage increases rapidly 

with the use of UV sources, as the energy becomes sufficient to break bonds and cause 

reactions. Additionally, materials with the strongest plasmon responses (Ag/Au), crucial for 

near-field applications, have resonances limited to the visible and NIR ranges. Finally, there 

is the practical reality that it is much easier to work with and align visible light compared to 

UV or IR. 

 

(iv) Photodetectors 

For optical detection, the primary considerations are what energy range will be measured and 

whether single-channel or energy-resolved spectra are needed. For instance, if the total 

intensity of a fluorescence band, or Rayleigh scattering, is being used for near-field imaging, 

a single-channel detector (photomultiplier tube or avalanche photodiode) will be sufficient. 

However, if Raman or IR spectra are being acquired, a dispersive or interferometer-based 

spectrometer is needed to analyze multiple wavelengths simultaneously. In the former case, a 

grating-based spectrometer with a thermoelectrically or liquid nitrogen cooled CCD camera 

is commonly used, allowing a full optical spectrum to be obtained at each spatial imaging 

point on the sample. Temporal studies are also possible with pulsed light sources and time-

correlated photon counting. 
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(v) Putting It All Together 

The aforementioned hardware can be arranged in several different configurations, as shown 

in Figure 1.4. These include side-on, inverted, top-down, and parabolic 41 

illumination/collection geometries. Inverted geometries allow the use of high–numerical 

aperture (>1) oil-immersion objectives that have a large solid angle of light collection, but 

these systems are restricted to transparent samples. Total-internal reflection illumination has 

also been used, enabling direct excitation of SPPs in metal films 42. 

Figure 1.4 Schematic of various scanning near-field optical microscopy instrument 

configurations, including  side-on,  and  inverted,  top-down, and  parabolic 

illumination/collection designs. 

 

 

C. Overview of Current SNOM Techniques 

The following presentation of various SNOM techniques is broadly divided into those using 

aperture versus scattering (s-SNOM) near-field probes. Between these two approaches, s-

SNOM probes are more suitable for a wider range of applications and thus garner the 

majority of the discussion. The reader is referred to Reference 43 for a review on aperture-

based SNOM instrumentation and methods, but we briefly mention them below for 

completeness. 
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Aperture-Based SNOM 

Aperture-based SNOM has been carried out in different illumination-collection 

configurations, as schematically shown in Figure 1.5a. The SNOM fiber (Figure 1.5b) itself 

can be used to deliver and/or collect light to and from a surface or can be combined with a 

microscope objective for illumination or collection. Aperture-SNOM studies have been 

performed using Rayleigh scattering 44-46, fluorescence 47-49, and Raman optical signals 50, 51. 

For Raman studies, the combination of low aperture transmission efficiencies and inherently 

small scattering cross-sections leads to very lengthy collection times that prohibit 2D 

imaging 52, 53. For higher signal scattering experiments, the full spectrum of light transmitted 

through the aperture can be analyzed. As an example, Kuipers and colleagues 54 collected 

and mapped the evanescent light escaping from a laterally excited nanohole waveguide with 

a metallized SNOM tip (Figure 1.5c). In other work, Wang et al. 55 demonstrated excitation 

and focusing of surface plasmons by a specially engineered probe that increased fiber 

transmission by 20–40 times compared with that of traditional aperture probes (Figure 

1.5d). 
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Figure 1.5 Aperture scanning near-field optical microscopy (ASNOM) instruments 

geometrically restrict the spatial dimensions of propagating light waves using a nanoscale 

opening. (a) Various illumination and collection pathways used in aperture SNOM (adapted 

from the research group site of Dr. Hans Hallen at North Carolina State University). (b) 

Aperture probe fabricated from an Al-coated tapered optical fiber. (c) Near-field image of 

evanescent optical fields above a silicon photonic nanocavity and the appearance of a 

transmission minimum caused by coupling between the probe and cavity. (b,c) Reproduced 

with permission from Reference 54, Am. Physical Soc. (d) A plasmonic grating is used to 

concentrate surface plasmons into a single aperture, leading to increased transmission 

efficiencies (reproduced with permission from Reference 55, Am. Chem. Soc.). 

 

Scattering SNOM  

As mentioned earlier, s-SNOM probes are designed to generate locally enhanced 

(subdiffraction-limited) optical fields via the lightning-rod effect and/or plasmonic coupling. 

However, the probe and sample surfaces are usually bathed in a large laser excitation spot 

(best case is a diffraction-limited spot) that ultimately generates considerable and unwanted 

background 26. In some cases, such as with tip-enhanced Raman scattering (TERS), the near-

field signal (SNF) can be made much larger than the background (SBG) using strongly 

enhancing plasmonic probes. 

 

In many cases, however, SNF ≤ SBG, and more sophisticated methods are necessary. The first 
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strategy devised was to exploit the very short spatial extent of the near-field. If the probe is 

retracted a short distance from the surface, the near-field signal strength will decrease 

significantly, but the background should change very little 56. Fortuitously, this is exactly 

what occurs in tapping-mode AFM operation, wherein the probe oscillates normal to the 

sample surface, usually on the order of tens of nanometers. Hence, by demodulating the 

photodetector signal at some harmonic of the cantilever oscillation frequency, the near-field 

signal can be selectively extracted 57. Demodulating at higher harmonics will provide greater 

selectivity for the near-field signal, but at the cost of decreased signal-to-noise ratio 58. This 

lock-in demodulation scheme has been employed successfully for sample imaging across 

multiple s-SNOM experiments 59-61. 

 

It turns out that lock-in demodulation is not a complete solution to the problem of separating 

near-field and background signals. The demodulated near-field signal will still include a 

constant component of background scattering as interference 62, 63. Circumventing this 

requires what is now referred to as pseudo-heterodyne detection (see section titled Near-

Field Infrared Interferometry), first demonstrated by Hillenbrand & Keilmann 64. The sample 

is positioned in one arm of a Michelson interferometer, with a vibrating mirror placed in the 

other arm (see Figure 1.6a). The combination of lock-in demodulation and changing phase 

of the reference beam allows extraction of the pure near-field signal that contains 

information about the entire probe-sample-substrate system. To remove contributions from 

the probe or substrate, a reference measurement must also be made on a region of bare 

substrate. Dividing out this reference leaves only the sample response, which can then be 

connected to local optical properties using various models. 
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Elastic (Rayleigh) Scattering–Based SNOM Techniques 

We begin our discussion on specific s-SNOM techniques by examining methods based on 

measuring the amplitude, phase, or polarization change of light that is elastically (Rayleigh) 

scattered (in = out) by the probe-sample system. The ultimate goal is to relate changes in 

Rayleigh scattering to local sample properties, such as refractive index, absorbance, film 

thickness, and molecular/crystal orientation. For scattering-based SNOM imaging at a single 

wavelength, the reader is referred to References 65 and 66. We focus instead on more 

advanced and recent methods that can provide morphological and/or chemically specific 

information about a sample. 

 

Scanning near-field ellipsometric microscopy 

In scanning near-field ellipsometric microscopy (SNEM), polarized, monochromatic light 

from a laser is focused onto the end of a metal-coated near-field probe 67, and a portion of 

the scattered light is directed to a single-channel photodetector with polarization analysis. 

The scattered optical signal usually contains three parts: (a) a constant background, (b) the 

desired near-field signal that varies exponentially with probe-surface distance, and (c) a 

sinusoidal-like interference term due to Fabry-Perot effects 68 from the cavity formed by the 

probe/cantilever and sample surface. These signals can be deconvolved by varying the 

probe-surface distance in an approach curve to reveal a near-field optical signal 69. 

Unfortunately, quantitatively connecting this near-field signal to the complex refractive 

index (n and k), thickness, crystal structure, and/or dopant concentration 70 of the sample is 

extremely challenging. Several attempts at this have been made, and Soh and coauthors 71 

have demonstrated that the thickness and optical constants of Au can indeed be accurately 

extracted from SNEM measurements of thin Au films on a transparent substrate. More 
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complex and heterogeneous samples can be imaged with SNEM, but the exact origin of 

image contrast is often unclear. An edited collection of SNEM research articles can be found 

in Reference 72. 

 

Near-field infrared interferometry 

Nano-FTIR, or IR-nanospectroscopy, is a powerful SNOM modality that has seen a burst of 

innovation and development over the past decade. The technique can measure broadband IR 

absorption spectra of surfaces with spatial resolutions as low as 10–20 nm, a truly 

remarkable feat as the excitation wavelengths used are on the order of microns.  Near-field 

probes are typically metal coated, and the sample substrate may also be metal coated to 

further increase scattering intensities. Measurements can be made using a monochromatic or 

broadband optical source, and both configurations employ a pseudo-heterodyne detection 

scheme 73 to isolate near-field optical signals (Figure 1.6a). The amplitude and phase of 

scattered light can be related to the local IR absorption bands of the sample, and the spectra 

obtained agree very well with bulk FTIR data for a wide range of samples 74. 
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Figure 1.6 Nano-FTIR (Fourier transform infrared spectroscopy) uses interferometry-based 

detection to measure changes in local scattering intensity. (a) Pseudo-heterodyne detection 

scheme wherein the probe-sample system is placed in one arm of an asymmetric Michelson 

interferometer. Both the atomic force microscopy (AFM) cantilever and interferometer 

mirror are vibrated (adapted with permission from Reference 73, Am. Inst. Phys.). (b) 

Topography and near-field absorption images of pentacene nanocrystals (reproduced with 

permission from Reference 75, MacMillan Publ. Ltd). (c) Scanning electron microscopy 

(SEM) and p-polarized electric field images of a transmission line structure with a 25-nm 

gap width excited using 9.3-µm incident radiation (adapted with permission from Reference 

76, Am. Chem. Soc.). 

 

The advent of tunable lasers has proven very useful in nano-FTIR experiments, as the 

excitation energy can be exactly matched to specific absorption bands of the sample. For 

instance, the intensity of Rayleigh-scattered light at a specific wavelength can be recorded as 

the probe scans, providing a chemical- or analyte-specific map of the surface. For broadband 

illumination, an interferogram must be collected at each probe location by scanning the 

interferometer mirror position. This process typically takes on the order of 10 min to obtain 

reasonable signal-to-noise with a lab-based, thermionic light source, making nano-FTIR 

imaging with a broadband source time consuming and often unrealistic. This problem can be 
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circumvented using high-intensity broadband IR from a synchrotron beam line, allowing 

interferograms to be taken in only a few seconds 38, 39. 

 

Figure 1.6 presents images from two different applications of the nano-FTIR technique. 

Keilmann and colleagues 75 resolved interpenetrating phases of pentacene by exploiting a 

small vibrational band energy shift (Figure 1.6b). At an energy of 907.1 cm-1, absorption in 

the bulk phase is roughly 3x greater than that in the thin film phase. A nano-FTIR scan at 

this carefully selected energy revealed discrete domains of bulk-phase pentacene that are 

hard to see based on the topography data alone. In addition to measuring local absorption, 

nano-FTIR can also be used to monitor how optical energy is transported along surfaces. For 

example, Hillenbrand et al. successfully imaged a subwavelength transmission line using 

mid-IR radiation (Figure 1.6c) 76. In this experiment, the excitation laser was fixed at the 

location of an input-coupling antenna, with the s-SNOM probe scanned along the top of the 

waveguide. The probe acted as a local transducer of the confined optical fields in the 

waveguide gap, allowing them to be scattered into the far-field and detected. Reference 74 

provides a review of other recent nano-FTIR work; commercial s-SNOM instruments are 

available from both Bruker and neaspec GmbH. 

 

Photothermal-induced resonance microscopy 

Infrared mapping of chemical moieties on a surface at nanoscale spatial dimensions has also 

been accomplished using non-optical detection. Specifically, absorption of light by material 

directly beneath a near-field probe can lead to local heating—and thermal expansion. This 

expansion is detected by observing how the cantilever amplitude rings down after being 

mechanically bumped during the expansion event. The technique is referred to as 
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photothermal-induced resonance (PTIR), or AFM-IR (Figure 1.7). Unlike other SNOM 

methods, in PTIR, both the thermomechanical and optical properties of the sample are 

important. For the technique to work, the sample must efficiently convert light to heat 

through absorption, and this heat must result in expansion of the sample in the direction 

normal to the surface, so as to be detected by the cantilever probe. As such, PTIR is 

inherently more sensitive for the study of materials with high thermal expansion coefficients, 

such as polymers. Both probe sharpness and the thermal diffusion properties of the sample 

determine the lateral spatial resolution of the technique 77. The use of fast pulsed lasers (less 

than a few microseconds, short compared to the AFM cantilever oscillation period) has led 

to spatial resolutions consistently below 50 nm, because heat does not have time to laterally 

diffuse before the expansion is measured 78. Another advance, termed resonance-enhanced 

PTIR, tunes the repetition rate of a pulsed laser to match a harmonic of the tapping-mode 

AFM cantilever (Figure 1.7a) 79, 80, greatly increasing cantilever deflection and leading to 

faster detection. 
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Figure 1.7 Photothermal-induced resonance microscopy (PTIR) detects the local thermal 

expansion of materials caused by optical absorption using tapping-mode atomic force 

microscopy (AFM). (a) Diagram of a standard side-on PTIR instrument, with temporal plots 

(below) showing how the magnitude of cantilever deflection can be greatly increased by 

matching the laser pulse (ωlaser) and AFM cantilever oscillation frequencies ωAFM 

(reproduced with permission from Reference 84, Am. Chem. Soc.). (b) Topography and 

PTIR images of graphene deposited on a 100-nm-thick poly(methyl methacrylate) film 

(reproduced with permission from Reference 81, IOP Publ.). (c) PTIR image of InAs 

micropillars showing plasmonic resonances at the indicated mid-infrared (IR) wavelength 

(reproduced with permission from Reference 82, Am. Inst. Phys.). (d) PTIR imaging at both 

visible and mid-IR wavelengths of dye molecules loaded in a PMMA matrix (reproduced 

with permission from Reference 83, Am. Chem. Soc.). 

 

Although organic samples tend to have the highest thermal expansion coefficients, thermal 

imaging of inorganic samples is also possible. Rosenberger et al. 81 suggested placing a thin 

film with a high thermal expansion coefficient underneath the sample. The authors were then 

able to image both carbon nanotubes and graphene flakes deposited on top of ~100-nm-thick 

polymer films (polystyrene or poly(methyl methacrylate)) (Figure 1.7b). Felts et al. 82 

produced an array of InAs micropillars with surface plasmon resonances in the mid-IR 

range. Thermal expansion of InAs would normally be challenging to detect, but the 
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additional optical energy coupled into the plasmon modes produce enough local heating to 

successfully form a PTIR image of the array (Figure 1.7c). While PTIR has seen the most 

use at mid-IR frequencies, the thermal expansion mechanism is applicable over a wide 

spectral range. For example, Centrone et al. 83 have designed an instrument integrating three 

different optical sources spanning wavelengths from 400 to 9,000 nm. Poly(methyl 

methacrylate) films loaded with dye molecules were then imaged at both visible and mid-IR 

frequencies (Figure 1.7d). This type of broadband instrument provides an extremely flexible 

means of investigating electronic and vibrational structure over a wide range of energies. 

Reference 84 provides a recent review and commercial PTIR instruments are available from 

Anasys Instruments. 

 

Inelastic Scattering-Based SNOM Techniques (Photoluminescence and Raman) 

The previous sections showcased the breadth of information that can be obtained by 

monitoring elastic scattering, absorption, and transmission processes of incident light 

interacting with the probe-sample near-field region. These processes are a limited subset of 

light-matter interactions that can be leveraged to interrogate and image materials. For 

example, numerous inelastic optical processes involving electronic, vibrational, and vibronic 

excitations of molecules and crystals, such as luminescence and Raman scattering, can 

reveal very detailed information about physicochemical properties of materials. The 

following sections highlight SNOM methods based on these types of inelastic optical 

interactions. 

 

Tip-enhanced photoluminescence and fluorescence 

Photoluminescence is a broad term for any process that involves the emission of radiation 
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following optical absorption. Fluorescence is one type of photoluminescence, specifically 

used for radiative emission by individual molecules or small clusters of atoms with distinct 

electronic energy levels. To have fluorescence, there must first be absorption to generate 

excited states. As was shown in the previous sections, near-field probes increase absorption 

through local electric field enhancement. The more challenging piece is to understand how 

the radiative decay of the molecular excited state is influenced by the presence of the near-

field probe. Lakowicz 85 provides an excellent summary on this topic as part of the Radiative 

Decay Engineering series. Any modification of a fluorophore’s spontaneous emission rate 

caused by its local environment is known as the Purcell effect. For a metallized near-field 

probe, this effect is not monotonic, and fluorescence can be either enhanced or quenched 

depending on the fluorophore-probe separation. At short distances, the fluorophore may 

excite plasmon resonances in the metal that cannot decay radiatively. Novotny and 

colleagues 14 clearly observed this effect while scanning a gold particle at the end of an 

optical fiber tip over individual Nile blue dye molecules buried 2 nm beneath an SiO2 

surface (Figure 1.8ai-iii). When the probe was directly over the molecules, the fluorescence 

decreased in agreement with theoretical predictions. Tip-enhanced photoluminescence can 

also be collected for 2D materials and thin films. Roy and colleagues 86 recently reported tip-

enhanced photoluminescence images of an MoS2 flake, in which photoluminescence was 

measured at length scales down to 20 nm (Figure 8bi-iv); using spectral deconvolution, they 

spatially imaged the relative intensities of various exciton decay modes. The full Radiative 

Decay Engineering text can be found in Reference 87; a recent review of work involving 

plasmonic structures and fluorophores is available in Reference 88. 
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Figure 1.8 Both tip-enhanced fluorescence spectroscopy (TEFS) and tip-enhanced 

photoluminescence (TEPL) use near-field probes to increase the radiative decay rate of 

excited states of molecules and materials. (a) Comparison of measured and predicted 

fluorescence enhancements of a single Nile blue molecule buried 2 nm beneath a glass 

surface, interacting with a single Au sphere. Fluorescence intensity was collected both as a 

function of the molecule-sphere separation distance (i) and as images along the surface plane 

(ii–iii) (adapted with permission from Reference 14, Am. Phys. Soc.). (b) 

Photoluminescence mapping of an MoS2 flake. Both the total PL signal (i) and individual 

exciton contributions (ii–iv) deconvoluted from the full image (i) are shown (reproduced 

with permission from Reference 86, Roy. Soc. Chem.). 

In the biological sciences, interest in fluorescence SNOM techniques has now been largely 

surpassed by the success of other subdiffraction-limited fluorophore imaging strategies, such 

as stimulated emission-depletion, stochastic optical reconstruction microscopy, and 

photoactivated localization microscopy 89. These tools allow imaging of fluorescently tagged 

biological structures over wide areas with spatial resolutions on the order of 10 nm. 

 

Tip-enhanced Raman spectroscopy 

The s-SNOM variant that has generated the largest amount of research interest over the past 

two decades is TERS. Using LSP resonances, near-field probes can achieve local field 

enhancements of 10–1,000×, and when coupled with nonlinear plasmonic processes [i.e., 
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Raman ~ fourth power of the field enhancement 13], normally weak, and frequently 

unobservable, Raman signals can be increased many orders of magnitude 90. Another 

consideration is that Raman cross-sections scale with the fourth power of the excitation 

frequency 91, providing a strong incentive to use excitation sources in the UV-vis spectrum, 

as opposed to IR wavelengths. In the visible range, both Ag and Au are plasmonically active 

92. Ag has the stronger plasmon response but forms a surface oxide layer under ambient 

conditions that greatly reduces probe performance and lifetime 93. Aluminum can be used for 

UV plasmonics 94, and in the near-IR range, both TiNx 95 and various doped metal oxides 96 

exhibit plasmon resonances. The overall enhancement values obtained in TERS experiments 

are large enough to allow full spectral imaging of surfaces, where a spectrum is acquired at 

every image pixel with a reasonable dwell time (e.g., 10 ms to a few s/pixel). This optical 

and chemical imaging capability is not currently available with nano-FTIR or PTIR 

instruments owing to prohibitively long collection times. 

 

Examples of common TERS imaging modalities are shown in Figure 1.9. Individual Raman 

spectra can be collected at discrete sample locations and are then directly connected to local 

physical or chemical properties. For example, the local strain in mechanically deformed 

single-walled carbon nanotubes was detected through shifts in Raman modes for linear 

versus bent regions (Figure 1.9a) 97. This illustrates a direct connection between nanoscale 

morphology and vibrational structure that is unique to near-field techniques, as opposed to 

far-field measurements that simultaneously collect signal from a single nanostructure or an 

ensemble. Tip enhancement of phonon scattering was used to make a hyperspectral cross-

section image of an SiGe nanowire (Figure 1.9b) 98. Three distinct phonon peaks associated 

with Ge-Ge, Si-Ge, and Si-Si in the SiGe phase were only seen when the probe was over the 
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35 nm dia. nanowire. If signal levels are high, a full Raman spectrum may be collected at 

every image pixel to form a subdiffraction-limited, chemically specific map of the surface, 

as demonstrated in Figure 1.9c for a 10-nm-thick, patterned copper phthalocyanine film 42. 

Having a complete spectral dataset like this allows researchers to post-process data in 

numerous ways, including localization of specific vibrational band intensities, spatial 

correlation of shifts in peak energies/widths, or deconvolution of spectra composed of 

overlapping emission signals. If there is insufficient signal to efficiently collect full spectra, 

light can instead be focused onto a single-channel photodetector. This provides higher signal 

to noise at the expense of spectral resolution. Raschke and colleagues 99 used this strategy to 

obtain high–spatial resolution near-field images of a BaTiO3 nanorod and were able to 

distinguish ferroelectric domains within the rod itself based on the total phonon scattering 

intensity (Figure 1.9d). 
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Figure 1.9 Tip-enhanced Raman spectroscopy (TERS) uses near-field probes with 

plasmonic resonances to generate extremely large optical enhancements. (a) Point spectra 

collected on a mechanically deformed single-walled carbon nanotube showing strain-

induced changes in G-band scattering at positions with high local curvature (adapted with 

permission from Reference 97, Am. Chem. Soc.). (b) Topography and hyperspectral TERS 

image of various phonon modes in a SiGe nanowire (reproduced with permission from 

Reference 98, Am. Inst. Phys.). (c) Two-dimensional TERS image of a patterned copper 

phthalocyanine film, formed by integrating Raman peaks in the 500–1,650 cm1 range from 

1,681 point spectra (reproduced with permission from Reference 42, John Wiley and Sons 

Ltd). (d) TERS image resolving two distinct ferroelectric domains within a single BaTiO3 

nanocrystal, made by collecting the total phonon scattering intensity (adapted with 

permission from Reference 99, MacMillan Publ. Ltd). 

 

There are often significant differences between far-field Raman and TERS spectra for the 

same molecule or material. This may result from interactions of the surface (analyte) species 

with the probe and/or substrate, as well as the orientation of molecular or lattice dipoles with 

respect to the polarization axis of the near-field, which is typically normal to the sample 

surface 100. Additionally, strong electric field gradients can be generated over molecular 

length scales that tend to relax typical spectroscopy selection rules, allowing TERS spectra 
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to contain both Raman and IR-active vibrational modes 101, 102. TERS spectra may also have 

vibrational peaks superimposed over a broad background signal, which has been attributed 

to radiative decay of local plasmon resonances supported by the probe apex 103. The latter is 

the same mechanism that creates weak photoluminescence observed for other plasmonic 

metal nanostructures 104. Finally, when measuring a small number of molecules, or even a 

single molecule, thermal motion can lead to temporal changes of spectra as molecules 

rearrange 105. 

 

A strategy to achieve extremely large field enhancements is to make TERS measurements 

above a metallic substrate. In this case, the so-called gap-mode plasmon (GMP) resonance of 

the combined probe-substrate structure governs the local field strength. GMP fields tend to 

increase the spatial resolution of TERS by localizing the enhancing region to only a fraction 

of the probe diameter 90, 106. The coupling of external radiation to a GMP can be dynamically 

tuned by adjusting the probe-substrate gap 107, 108. Figure 10a shows how both the intensity 

and peak emission wavelength of a GMP change as a function of the gap distance between 

an Au STM tip and Au (111) surface 56. The field enhancements generated by gap 

geometries are enormous and were believed to be large enough to measure single molecule 

TERS spectra. The problem was that lateral spatial resolutions remained on the order of 

several nanometers, insufficient for resolving individual molecules. Early reports of single 

molecule TERS relied primarily on indirect evidence from the analysis of transient spectra, 

so-called spectral blinking 108. 

 

Then, in 2013, Zhang et al. 110 produced an astonishing result: by carefully tuning the gap-

distance using different tunneling current setpoints in STM, high-quality TERS images of 
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the molecular structure of a single porphyrin molecule were acquired (Figure 10bi–iii). This 

was shocking because no previous efforts utilizing gap plasmons had achieved such high 

resolution. Additionally, the theory of light-matter interactions for gaps <1 nm is not well 

developed, as quantum optical effects become important. These include the finite spatial 

extent and transient polarizability of atomic/molecular electron densities, non-local charge 

screening due to electron-electron interactions and tunneling across the gap region 111. 

Nevertheless, other groups have now also reported TERS experiments achieving spatial 

resolutions of less than 1 nm 112, 113. These results have spurred a renewed theoretical effort 

from the TERS community to examine coupling of radiation fields to molecular and atomic 

systems from a first-principles level using time-dependent density functional theory and 

hydrodynamic models 114. The hope is that this modeling will provide the necessary 

guidance for experimental TERS groups to consistently achieve sub-nanometer resolutions 

and fully open the door to single-molecule optical spectroscopy. 
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Figure 1.10 Gap-mode plasmons are formed in the small regions between two 

nanostructures, with at least one of them supporting plasmons. (a) Series of spectra showing 

that both gap-plasmon emission and Raman spectra of guanine depend on the distance 

between an Au STM probe and Au (111) surface. Both the gap-plasmon peak emission 

wavelength and intensity are seen to shift (reproduced with permission from Reference 107, 

Am. Phys. Soc.). (b) Tip-enhanced Raman scattering (TERS) imaging of a single H2TBPP 

molecule. (i) Image series formed by integrating five different absorption bands (top row) 

and comparison to theoretical scattering signal (bottom). The unexpectedly high spatial 

resolution was achieved when the gap-plasmon resonance was adjusted to match the Qy(0,0) 

vibronic transition in the molecule (ii–iii) (adapted with permission from Reference 110, 

MacMillan Publ. Ltd). 

 

The very high field intensities produced by LSP and GMP resonances of plasmonic probes 

may generate appreciable scattering from various nonlinear optical processes. Novotny and 

colleagues 115 have reported near-field second harmonic generation, localized to the apex of 

a gold probe. Kawata et al. 116 later used this effect to collect hyper-Raman spectra involving 

vibrational scattering from the virtual state formed through absorption of two pump photons. 

These spectra were taken of single-walled carbon nanotubes using a 790-nm pump laser and 
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compared with Stokes-Raman spectra directly excited using a 395-nm source. More recently, 

Raschke and coauthors 117 were even able to show four-wave mixing emission from the apex 

of a grating-coupled near-field probe using a femtosecond pulsed excitation source. It is 

important to emphasize that in all of these nonlinear optical processes, the generation rate 

depends on the second or third power of the local field intensity, meaning that essentially all 

of the nonlinear optical signal originates solely from the probe apex where the fields are 

largest. This is quite advantageous, as it eliminates the troublesome background signals 

previously discussed in linear s-SNOM measurements. Review articles on TERS progress 

are frequent, but several recent examples can be found in References 118–120. Commercial 

TERS instruments are available from Bruker, NT-MDT, and Horiba. 

 

D. Conclusions 

Nanoscale physicochemical characterization and imaging of materials is a grand challenge 

that has seen the development of diverse instrumentation using nanoscale optical antennae 

(near-field probes) of all kinds to manipulate, confine, enhance, and/or transduce light-

matter interactions at subdiffraction-limited (<λ/2) spatial resolutions. The SNOM methods 

and instruments discussed herein provide a glimpse of how the descriptive power and 

forensic capabilities of materials characterization with light, when combined with a scanning 

probe–based platform, allow us to explore heterogeneous materials over different length, 

energy, and timescales. Moreover, the marriage of high spatial resolution with high spectral 

resolution enabled by recent SNOM developments provides an unprecedented opportunity to 

study, understand, and engineer complex materials at or near the level of their intrinsic 

heterogeneity.



 

 33 

References 

1. Abbe E. 1881. VII.—On the estimation of aperture in the microscope. J. R. Microsc. 

Soc. 1:388–423 

2. Bazylewski P, Ezugwu S, Fanchini G. 2017. A review of three-dimensional scanning 

near-field optical microscopy (3D-SNOM) and its applications in nanoscale light 

management. Appl. Sci. 7:973 

3. Zhang W, Fang Z, Zhu X. 2016. Near-field Raman spectroscopy with aperture tips. 

Chem. Rev. 117:5095–109 

4. Morton SM, Silverstein DW, Jensen L. 2011. Theoretical studies of plasmonics using 

electronic structure methods. Chem. Rev. 111:3962–94 

5. Liao PF, Wokaun A. 1982. Lightning rod effect in surface enhanced Raman scattering. J. 

Chem. Phys. 76:751–52 

6. Crozier KB, Sundaramurthy A, Kino GS, Quate CF. 2003. Optical antennas: resonators 

for local field enhancement. J. Appl. Phys. 94:4632–42 

7. Jersch J, Demming F, Hildenhagen LJ, Dickmann K. 1998. Field enhancement of optical 

radiation in the nearfield of scanning probe microscope tips. Appl. Phys. A 66:29–34 

8. Degtyarev SA, Porfirev AP, Ustinov AV, Khonina SN. 2016. Singular laser beams 

nanofocusing with dielectric nanostructures: theoretical investigation. J. Opt. Soc. Am. B 

33:2480–85 

9. Ermushev AV, Boris VM, Oleĭnikov VA, Petukhov AV. 1993. Surface enhancement of 

local optical fields and the lightning-rod effect. Quantum Electron. 23:435 

10. Gibbons PC, Schnatterly SE, Ritsko JJ, Fields JR. 1976. Line shape of the plasma 

resonance in simple metals. Phys. Rev. B 13:2451–60 

11. Sambles JR, Bradbery GW, Yang F. 1991. Optical excitation of surface plasmons: an 

introduction. Contemp. Phys. 32:173–83 

12. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. 2010. Plasmonics 

for extreme light concentration and manipulation. Nat. Mater. 9:193 

13. Kerker M, Wang D-S, Chew H. 1980. Surface enhanced Raman scattering (SERS) by 

molecules adsorbed at spherical particles. Appl. Opt. 19:3373–88 

14. Anger P, Bharadwaj P, Novotny L. 2006. Enhancement and quenching of single-

molecule fluorescence. Phys. Rev. Lett. 96:113002 

15. Jensen L, Aikens CM, Schatz GC. 2008. Electronic structure methods for studying 

surface-enhanced Raman scattering. Chem. Soc. Rev. 37:1061–73 

16. Wu DY, Liu XM, Duan S, Xu X, Ren B, Lin SH, Tian ZQ. 2008. Chemical enhancement 

effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, 

silver, gold and platinum metals. J. Phys. Chem. C 112:4195–204 

17. Jensen L, Zhao LL, Schatz GC. 2007. Size-dependence of the enhanced Raman 

scattering of pyridine adsorbed on Agn (n = 2−8, 20) clusters. J. Phys. Chem. C 

111:4756–64 

18. Valley N, Greeneltch N, Van Duyne RP, Schatz GC. 2013. A look at the origin and 

magnitude of the chemical contribution to the enhancement mechanism of surface-

enhanced Raman spectroscopy (SERS): theory and experiment. J. Phys. Chem. Lett. 

4:2599–604 

19. Henry A-I, Ueltschi TW, McAnally MO, Van Duyne RP. 2017. Spiers Memorial 

Lecture. Surface enhanced Raman spectroscopy: from single particle/molecule 



 

 34 

spectroscopy to angstrom-scale spatial resolution and femtosecond time resolution. 

Faraday Discuss. 205:9–30 

20. Moskovits M. Persistent misconceptions regarding SERS. 2013. Phys. Chem. Chem. 

Phys. 15:5301–11 

21. Saiki T, Mononobe S, Ohtsu M, Saito N, Kusano J. 1996. Tailoring a high-transmission 

fiber probe for photon scanning tunneling microscope. Appl. Phys. Lett. 68:2612–14 

22. Weiner J. 2009. The physics of light transmission through subwavelength apertures and 

aperture arrays. Rep. Prog. Phys. 72:064401 

23. Novotny L, Hafner C. 1994. Light propagation in a cylindrical waveguide with a 

complex, metallic, dielectric function. Phys. Rev. E 50:4094–106 

24. Hayazawa N, Inouye Y, Sekkat Z, Kawata S. 2001. Near-field Raman scattering 

enhanced by a metallized tip. Chem. Phys. Lett. 335:369–74 

25. Vasconcelos TL, Archanjo BS, Fragneaud B, Oliveira BS, Riikonen J, Li C, Ribeiro DS, 

Rabelo C, Rodrigues WN, Jorio A, Achete CA. 2015. Tuning localized surface plasmon 

resonance in scanning near-field optical microscopy probes. ACS Nano 9:6297–304 

26. Ramos R, Gordon MJ. 2012. Near-field artifacts in tip-enhanced Raman spectroscopy. 

Appl. Phys. Lett. 100:213111 

27. Farahani JN, Eisler HJ, Pohl DW, Pavius M, Flückiger P, Gasser P, Hecht B. 2007. 

Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. 

Nanotechnology 18:125506 

28. Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, Choo H, Ogletree DF, 

Aloni S, Bokor J, Cabrini S. 2012. Mapping local charge recombination heterogeneity by 

multidimensional nanospectroscopic imaging. Science 338:1317–21 

29. Berweger S, Atkin JM, Olmon RL, Raschke MB. 2010. Adiabatic tip-plasmon focusing 

for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1:3427–32 

30. De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov 

I, Liberale C, Andreani LC, Di Fabrizio E. 2010. Nanoscale chemical mapping using 

three-dimensional adiabatic compression of surface plasmon polaritons. Nat. 

Nanotechnol. 5:67–72 

31. Veerman JA, Otter AM, Kuipers L, van Hulst NF. 1998. High definition aperture probes 

for near-field optical microscopy fabricated by focused ion beam milling. Appl. Phys. 

Lett. 72:3115–17 

32. umurcu A, Diaz J, Lindsay ID, de Beer S, Duvigneau J, Schön P, Vancso GJ. 2015. 

Optical imaging beyond the diffraction limit by SNEM: effects of AFM tip modifications 

with thiol monolayers on imaging quality. Ultramicroscopy 150:79–87 

33. Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W. 2009. Tip-enhanced Raman 

spectroscopy—its status, challenges and future directions. Chem. Phys. Lett. 472:1–13 

34. Agapov RL, Sokolov AP, Foster MD. 2013. Protecting TERS probes from degradation: 

extending mechanical and chemical stability. J. Raman Spectrosc. 44:710–16 

35. Kazemi-Zanjani N, Vedraine S, Lagugne-Labarthet F. 2013. Localized enhancement of 

electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized 

light. Opt. Express 21:25271–76 

36. Zhang W, Smith T, Yeo B-S, Zenobi R. 2008. Near-field heating, annealing, and signal 

loss in tip enhanced Raman spectroscopy. J. Phys. Chem. C 112:2104–8 

37. Malkovskiy AV, Malkovsky VI, Kisliuk AM, Barrios CA, Foster MD, Sokolov AP. 

2009. Tip-induced heating in apertureless near-field optics. J. Raman Spectrosc. 

40:1349–54 



 

 35 

38. Bechtel HA, Muller EA, Olmon RL, Martin MC, Raschke MB. 2014. Ultrabroadband 

infrared nanospectroscopic imaging. PNAS 111:7191–96 

39. Hermann P, Kästner B, Hoehl A, Kashcheyevs V, Patoka P, Ulrich G, Feikes J, Ries M, 

Tydecks T, Beckhoff B, Rühl E. 2017. Enhancing the sensitivity of nano-FTIR 

spectroscopy. Opt. Express 25:16574–88 

40. Kehr SC, Cebula M, Mieth O, Härtling T, Seidel J, Grafström S, Eng LM, Winnerl S, 

Stehr D, Helm M. 2008. Anisotropy contrast in phonon-enhanced apertureless near-field 

microscopy using a free-electron laser. Phys. Rev. Lett. 100(25):256403 

41. Zhang D, Wang X, Braun K, Egelhaaf HJ, Fleischer M, Hennemann L, Hintz H, Stanciu 

C, Brabec CJ, Kern DP, Meixner AJ. 2009. Parabolic mirror-assisted tip-enhanced 

spectroscopic imaging for non-transparent materials. J. Raman Spectrosc. 40:1371–76 

42. Hermann R, Gordon MJ. 2016. Subdiffraction-limited chemical imaging of patterned 

phthalocyanine films using tip-enhanced near-field optical microscopy. J. Raman 

Spectrosc. 47:1287–92 

43. Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJ, Pohl DW. 2000. Scanning 

near-field optical microscopy with aperture probes: fundamentals and applications. J. 

Chem. Phys. 112:7761–74 

44. Bozhevolnyi SI, Volkov VS, Søndergaard T, Boltasseva A, Borel PI, Kristensen M. 

2002. Near-field imaging of light propagation in photonic crystal waveguides: explicit 

role of Bloch harmonics. Phys. Rev. B 66:235204 

45. Bourzeix SJ, Moison JM, Mignard F, Barthe F, Boccara AC, Licoppe C, Mersali B, 

Allovon M, Bruno A. 1998. Near-field optical imaging of light propagation in 

semiconductor waveguide structures. Appl. Phys. Lett. 73:1035–37 

46. Koglin J, Fischer UC, Fuchs H. 1997. Material contrast in scanning near-field optical 

microscopy at 1–10 nm resolution. Phys. Rev. B 55:7977–84 

47. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AA. 2003. 

Local detection of electromagnetic energy transport below the diffraction limit in metal 

nanoparticle plasmon waveguides. Nat. Mater. 2:229–32 

48. Nabetani Y, Yamasaki M, Miura A, Tamai N. 2001. Fluorescence dynamics and 

morphology of electroluminescent polymer in small domains by time-resolved SNOM. 

Thin Solid Films 393:329–33 

49. Richards D, Milner RG, Huang F, Festy F. 2003. Tip-enhanced Raman microscopy: 

practicalities and limitations. J. Raman Spectrosc. 34:663–67 

50. Webster S, Batchelder DN, Smith DA. 1998. Submicron resolution measurement of 

stress in silicon by near-field Raman spectroscopy. Appl. Phys. Lett. 72:1478–80 

51. Smith DA, Webster S, Ayad M, Evans SD, Fogherty D, Batchelder D. 1995. 

Development of a scanning near-field optical probe for localised Raman spectroscopy. 

Ultramicroscopy 61:247–52 

52. Goetz M, Drews D, Zahn DRT, Wannemacher R. 1998. Near-field Raman spectroscopy 

of semiconductor heterostructures and CVD-diamond layers. J. Lumin. 76–77:306–9 

53. Jahncke CL, Paesler MA, Hallen HD. 1995. Raman imaging with near-field scanning 

optical microscopy. Appl. Phys. Lett. 67:2483–85 

54. Burresi M, Kampfrath T, Van Oosten D, Prangsma JC, Song BS, Noda S, Kuipers L. 

2010. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. 

Lett. 105:123901 

55. Wang Y, Srituravanich W, Sun C, Zhang X. 2008. Plasmonic nearfield scanning probe 

with high transmission. Nano Lett. 8:3041–45 



 

 36 

56. Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G. 2007. Direct monitoring of 

plasmon resonances in a tip-surface gap of varying width. Phys. Rev. B 76:113409 

57. Knoll B, Keilmann F. 2000. Enhanced dielectric contrast in scattering-type scanning 

near-field optical microscopy. Opt. Commun. 182:321–28 

58. Raschke MB, Lienau C. 2003. Apertureless near-field optical microscopy: tip–sample 

coupling in elastic light scattering. Appl. Phys. Lett. 83:5089–91 

59. Raschke MB, Molina L, Elsaesser T, Kim DH, Knoll W, Hinrichs K. 2005. Apertureless 

near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial 

resolution. Chem Phys Chem 6:2197–203 

60. Gerton JM, Wade LA, Lessard GA, Ma Z, Quake SR. 2004. Tip-enhanced fluorescence 

microscopy at 10 nanometer resolution. Phys. Rev. Lett. 93:180801 

61. Jones AC, Berweger S, Wei J, Cobden D, Raschke MB. 2010. Nano-optical 

investigations of the metal insulator phase behavior of individual VO2 microcrystals. 

Nano Lett. 10:1574–81 

62. Taylor RS, Leopold KE, Wendman M, Gurley G, Elings V. 1998. Scanning probe optical 

microscopy of evanescent fields. Rev. Sci. Instrum. 69:2981–87 

63. Govyadinov AA, Amenabar I, Huth F, Carney PS, Hillenbrand R. 2013. Quantitative 

measurement of local infrared absorption and dielectric function with tip-enhanced near-

field microscopy. J. Phys. Chem. Lett. 4:1526–31 

64. Hillenbrand R, Keilmann F. 2000. Complex optical constants on a subwavelength scale. 

Phys. Rev. Lett. 85:3029–32 

65. Adam P-M, Royer P, Laddada R, Bijeon J-L. 1998. Apertureless near-field optical 

microscopy: influence of the illumination conditions on the image contrast. Appl. Opt. 

37:1814–19 

66. Gesuele F, Pang CX, Leblond G, Blaize S, Bruyant A, Royer P, Deturche R, Maddalena 

P, Lerondel G. 2009. Towards routine near-field optical characterization of silicon-based 

photonic structures: an optical mode analysis in integrated waveguides by transmission 

AFM-based SNOM. Phys. E Low-Dimens. Syst. Nanostruct. 41:1130–34 

67. Cumurcu A, Duvigneau J, Lindsay ID, Schön PM, Vancso GJ. 2013. Multimodal 

imaging of heterogeneous polymers at the nanoscale by AFM and scanning near-field 

ellipsometric microscopy. Eur. Polymer J. 49:1935–42 

68. Hillenbrand R, Keilmann F. 2002. Material-specific mapping of 

metal/semiconductor/dielectric nanosystems at 10 nmresolution by backscattering near-

field optical microscopy. Appl. Phys. Lett. 80:25– 27 

69. Tranchida D, Diaz J, Schon P, Schonherr H, Vancso GJ. 2011. Scanning near-field 

ellipsometry microscopy: imaging nanomaterials with resolution below the diffraction 

limit. Nanoscale 3:233–39 

70. Tompkins HG, Irene EA, eds. 2005. Handbook of Ellipsometry. Norwich, 

NY/Heidelberg, Ger.:William Andrew/Springer 

71. Liu Z, Zhang Y, Kok SW, Ng BP, Soh YC. 2013. Reflection-based near-field 

ellipsometry for thin film characterization. Ultramicroscopy 124:26–34 

72. Losurdo M, Hingerl K, eds. 2013. Ellipsometry at the Nanoscale. Berlin: Springer Verlag 

73. Ocelic N, Huber A, Hillenbrand R. 2006. Pseudoheterodyne detection for background-

free near-field spectroscopy. Appl. Phys. Lett. 89:101124 

74. Muller EA, Pollard B, Raschke MB. 2015. Infrared chemical nano-imaging: accessing 

structure, coupling, and dynamics on molecular length scales. J. Phys. Chem. Lett. 

6:1275–84 



 

 37 

75. Westermeier C, Cernescu A, Amarie S, Liewald C, Keilmann F, Nickel B. 2014. Sub-

micron phase coexistence in small-molecule organic thin films revealed by infrared 

nano-imaging. Nat. Commun. 5:4101 

76. Sarriugarte P, Schnell M, Chuvilin A, Hillenbrand R. 2014. Polarization-resolved near-

field characterization of nanoscale infrared modes in transmission lines fabricated by 

gallium and helium ion beam milling. ACS Photon. 1:604–11 

77. Hammiche A, Pollock HM, Reading M, Claybourn M, Turner PH, Jewkes K. 1999. 

Photothermal FTIR spectroscopy: a step towards FT-IR microscopy at a resolution better 

than the diffraction limit. Appl. Spectrosc. 53:810–15 

78. Dazzi A, Prazeres R, Glotin F, Ortega JM. 2005. Local infrared microspectroscopy with 

subwavelength spatial resolution with an atomic force microscope tip used as a 

photothermal sensor. Opt. Lett. 30:2388– 90 

79. Lu F, Belkin MA. 2011. Infrared absorption nano-spectroscopy using sample 

photoexpansion induced by tunable quantum cascade lasers. Opt. Express 19:19942–47 

80. Lu F, Jin M, Belkin MA. 2014. Tip-enhanced infrared nanospectroscopy via molecular 

expansion force detection. Nat. Photon. 8:307–12 

81. Rosenberger MR, Wang MC, Xie X, Rogers JA, Nam S, King WP. 2017. Measuring 

individual carbon nanotubes and single graphene sheets using atomic force microscope 

infrared spectroscopy. Nanotechnology 28:355707 

82. Felts JR, Law S, Roberts CM, Podolskiy V, Wasserman DM, King WP. 2013. Near-field 

infrared absorption of plasmonic semiconductor microparticles studied using atomic 

force microscope infrared spectroscopy. Appl. Phys. Lett. 102:152110 

83. Centrone A. 2015. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. 

Rev. Anal. Chem. 8:101–26 

84. Dazzi A, Prater CB. 2016. AFM-IR: technology and applications in nanoscale infrared 

spectroscopy and chemical imaging. Chem. Rev. 117:5146–73 

85. Lakowicz JR. 2005. Radiative decay engineering 5: metal-enhanced fluorescence and 

plasmon emission. Anal. Biochem. 337:171–94 

86. Su W, Kumar N, Mignuzzi S, Crain J, Roy D. 2016. Nanoscale mapping of excitonic 

processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. 

Nanoscale 8:10564–69 

87. Geddes CD, Lakowicz JR, eds. 2005. Radiative Decay Engineering. Berlin: Springer 

88. Kochuveedu ST, Kim DH. 2014. Surface plasmon resonance mediated 

photoluminescence properties of nanostructured multicomponent fluorophore systems. 

Nanoscale 6:4966–84 

89. Huang B. 2010. Super-resolution optical microscopy:multiple choices. Curr. Opin. 

Chem. Biol. 14:10–14 

90. Yang Z, Aizpurua J, Xu H. 2009. Electromagnetic field enhancement in TERS 

configurations. J. Raman Spectrosc. 40:1343–48 

91. Albrecht AC, Hutley MC. 1971. On the dependence of vibrational Raman intensity on 

the wavelength of incident light. J. Chem. Phys. 55:4438–43 

92. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. 2002. Shape effects in plasmon 

resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116:6755–59 

93. Barrios CA, Malkovskiy AV, Kisliuk AM, Sokolov AP, Foster MD. 2009. Highly stable, 

protected plasmonic nanostructures for tip enhanced Raman spectroscopy. J. Phys. 

Chem. C 113:8158–61 



 

 38 

94. Park KD, Kim YH, Park JH, Park JS, Lee HS, Yim SY, Lee YH, Jeong MS. 2012. 

Ultraviolet tip-enhanced nanoscale Raman imaging. J. Raman Spectrosc. 43:1931–34 

95. Scherger JD, Foster MD. 2017. Tunable, liquid resistant tip enhanced Raman 

spectroscopy probes: toward label-free nano-resolved imaging of biological systems. 

Langmuir 33:7818–25 

96. Johns RW, Bechtel HA, Runnerstrom EL, Agrawal A, Lounis SD, Milliron DJ. 2016. 

Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide 

nanocrystals. Nat. Commun. 7:11583 

97. Liao M, Jiang S, Hu C, Zhang R, Kuang Y, Zhu J, Zhang Y, Dong Z. 2016. Tip-

enhanced Raman spectroscopic imaging of individual carbon nanotubes with sub-

nanometer resolution. Nano Lett. 16:4040–46 

98. Ramos R, Gordon MJ. 2012. Reflection-mode, confocal, tip-enhanced Raman 

spectroscopy system for scanning chemical microscopy of surfaces. Rev. Sci. Instrum. 

83:093706 

99. Berweger S, Neacsu CC, Mao Y, Zhou H, Wong SS, Raschke MB. 2009. Optical 

nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol. 

4:496–99 

100. Ossikovski R, Nguyen Q, Picardi G. 2007. Simple model for the polarization effects 

in tip-enhanced Raman spectroscopy. Phys. Rev. B 75:045412 

101. Sun M, Zhang Z, Chen L, Sheng S, Xu H. 2014. Plasmonic gradient effects on high 

vacuum tip-enhanced Raman spectroscopy. Adv. Opt. Mater. 2:74–80 

102. Zhang Z, Sun M, Ruan P, Zheng H, Xu H. 2013. Electric field gradient quadrupole 

Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS. 

Nanoscale 5:4151–55 

103. Neacsu CC, Berweger S, Raschke MB. 2007. Tip-enhanced Raman imaging and 

nanospectroscopy: sensitivity, symmetry, and selection rules. NanoBiotechnology 

3:172–96 

104. Eustis S, El-Sayed MA. 2005. Why gold nanoparticles are more precious than gold. 

Chem. Soc. Rev. 35:209–17 

105. Park KD, Muller EA, Kravtsov V, Sass PM, Dreyer J, Atkin JM, Raschke MB. 2016. 

Variable-temperature tip-enhanced Raman spectroscopy of single-molecule 

fluctuations and dynamics. Nano Lett. 16:479–87 

106. Becker SF, Esmann M, Yoo K, Gross P, Vogelgesang R, Park N, Lienau C. 2016. 

Gap-plasmon-enhanced nanofocusing near-field microscopy. ACS Photon. 3:223–32 

107. Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R. 2009. Tip-enhanced Raman 

scattering: influence of the tip-surface geometry on optical resonance and 

enhancement. Surf. Sci. 603:1335–41 

108. Heilman AL, Gordon MJ. 2016. Tip-enhanced near-field optical microscope with 

side-on and ATR mode sample excitation for super-resolution Raman imaging of 

surfaces. J. Appl. Phys. 119:223103 

109. Pettinger B. 2010. Single-molecule surface- and tip-enhanced Raman spectroscopy. 

Mol. Phys. 108:2039– 59 

110. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, 

Aizpurua J, Luo YE, Yang JL. 2013. Chemical mapping of a single molecule by 

plasmon-enhanced Raman scattering. Nature 498:82–86 



 

 39 

111. Zhu W, Esteban R, Borisov AG, Baumberg JJ, Nordlander P, Lezec HJ, Aizpurua J, 

Crozier KB. 2016. Quantum mechanical effects in plasmonic structures with 

subnanometre gaps. Nat. Commun. 7:11495 

112. Chen C, Hayazawa N, Kawata S. 2014. A 1.7 nm resolution chemical analysis of 

carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 

5:3312 

113. Chiang N, Chen X, Goubert G, Chulhai DV, Chen X, Pozzi EA, Jiang N, Hersam 

MC, Seideman T, Jensen L, Van Duyne RP. 2016. Conformational contrast of surface 

mediated molecular switches yields angstrom-scale spatial resolution in ultrahigh 

vacuum tip-enhanced Raman spectroscopy. Nano Lett. 16:7774–78 

114. Richard-Lacroix M, Zhang Y, Dong Z, Deckert V. 2017. Mastering high resolution 

tip-enhanced Raman spectroscopy: towards a shift of perception. Chem. Soc. Rev. 

46:3922–44 

115. Bouhelier A, Beversluis M, Hartschuh A, Novotny L. 2003. Near-field second-

harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90:013903 

116. Ikeda K, Saito Y, Hayazawa N, Kawata S, Uosaki K. 2007. Resonant hyper-Raman 

scattering from carbon nanotubes. Chem. Phys. Lett. 438:109–12 

117. Kravtsov V, Ulbricht R, Atkin JM, Raschke MB. 2016. Plasmonic nanofocused four-

wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11:459–64 

118. Kumar N, Mignuzzi S, Su W, Roy D. 2015. Tip-enhanced Raman spectroscopy: 

principles and applications. EPJ Tech. Instrum. 2:9 

119. Verma P. 2017. Tip-enhanced Raman spectroscopy: technique and recent advances. 

Chem. Rev. 117:6447–66 

120. Zhang Z, Sheng S, Wang R, Sun M. 2016. Tip-enhanced Raman spectroscopy. Anal. 

Chem. 88:9328–46 

 



 

 40 

Chapter II. Construction and Validation of a Custom-built Near-field 

Optical Microscope 
 

 

Adapted from: R. J. Hermann and M. J. Gordon, “Sub-diffraction limited chemical imaging 

of patterned phthalocyanine films using tip-enhanced near-field optical microscopy”, 

Journal of Raman Spectroscopy, 2016, vol. 47, pgs. 1287–1292. 

 

 

 

Abstract 
 

A tip-enhanced near-field optical microscope, based on a shear-force atomic force 

microscope with plasmonic tip coupled to an inverted, confocal optical microscope, has been 

constructed for nanoscale chemical (Raman) imaging of surfaces. The design and validation 

of the instrument, along with its application to near-field Raman mapping of patterned 

organic thin films (coumarin-6 and Cu(II) phthalocyanine), are described. Lateral resolution 

of the instrument is estimated at 50 nm (better than λ/10), which is roughly dictated by the 

size of the plasmonic tip apex. Additional measurements include the distance scaling of 

Raman enhancement and the inelastic scattering background generated by the plasmonic tip.
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A. Introduction 

This work discusses the design of a tip-enhanced near-field optical microscope capable of 

reproducible chemical- and structure-specific vibrational imaging of surfaces at the 

nanoscale. The instrument is built from the combination of a commercial optical microscope 

and custom-built shear-force atomic force microscope (AFM). Design choices intended to 

maximize the signal-to-noise ratio of near vs. far-field optical signals, such as the conversion 

of excitation light to a radially-polarized state, are explained in detail. Unambiguous 

evidence   for the instrument’s ability to generate and collect near-field optical signals is 

provided by chemical hyperspectral Raman imaging of a patterned Cu(II) phthalocyanine 

film at spatial resolutions below 50 nm (/10). Quantitative measurements of near-field 

enhancement factors, near-field tip-sample distance scaling, background spectral 

contributions, and instrument stability are also reported. 

 

B. Designing a near-field microscope 

The foundation of the tip-enhanced near-field optical microscope (TENOM) developed 

consists of a custom-built shear-force AFM mounted onto a Nikon Epiphot 300 

metallurgical microscope. The microscope follows an inverted geometry with a 1.25 

numerical aperture (NA) oil-immersion objective being used to focus light onto and collect 

light from the sample surface. The cost of an inverted geometry is that sample substrates 

must be transparent, but this is offset by an increase in the optical efficiency of the system. 

For example, the solid angle of collection of the 1.25 NA lens being used is nearly 120°, 

ensuring collection of a majority of light scattered into the substrate. Another advantage of 

an oil lens is that the size of the minimum diffraction spot is inversely proportional to the 
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NA. For near-field experiments it is critical to minimize this spot size in order to reduce the 

magnitude of scattering by analytes that are not in the vicinity of the tip. This optical 

configuration achieves a diffraction limited, focused laser spot at the sample with a size of 

~250x250 nm2, as demonstrated in Figure 2.2(a) by scanning a 100 nm fluorescent 

polystyrene bead through the laser focus 

 

A radial polarizer (Altechna S-waveplate), center beam stop, and adjustable iris on the pump 

path are used to inject a ring-shaped beam of radially polarized light into the back of the 

objective. Radial polarization and high angle light injection from the objective are used to 

maximize the axial-to-lateral polarization intensity ratio at the tip; axial polarization 

contributes to the main dipole mode of the tip, while lateral polarization does not 1-2. as 

shown schematically in Figure 2.1. Pump light (647 nm from a Kr+ laser) is delivered to the 

rear of the microscope via a single mode fiber, where it is expanded, filtered, polarized and 

then reflected off a dichroic mirror into the rear of the objective lens.  

 

The objective lens is mounted on a piezoelectric element for vertical focus control that fully 

replaces the original microscope coarse/fine manual focusing equipment. The piezoelectric 

mount is compatible with automated control via LabView and offers spatial precisions <100 

nm. Light generated by the sample is collected with the same microscope objective, passes 

through the dichroic (650 nm high pass) beamsplitter and high pass Raman filter, and is 

focused on a 100 µm core collection fiber that acts as a confocal aperture [see Fig. 2.2(b)], 

spatially filtering out light that is not generated directly at the focal plane of the objective 

lens (i.e. the sample surface). The collected light is passed to a 320mm f/4.1 Horiba JY 

monochromator with TE-cooled CCD and PMT detectors. 
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Monochromator

 

Figure 2.1 Schematic of the tip-enhanced near-field optical microscope developed in this 

work. TG=transmission grating; M=mirror; FC=fiber couple; LLF=laser line filter; 

RP=radial polarizer; AP=aperture; RF=Raman filter. 
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Figure 2.2 (a) Integrated fluorescence image of a 170 nm bead being raster scanned through 

the focused laser. The average FWHM value of the slightly oblong spot is 250 nm. (b) 

Integrated fluorescence intensity as the sample is scanned vertically through the microscope 

objective focal plane. Note, the microscope was made confocal using a 100 µm dia. 

collection fiber as a pinhole. 

 

The custom-built SPM atop the optical microscope is based on an electrically excited quartz 

tuning fork oscillator (~215 Hz) with phase-locked loop (PLL) controller (Zurich Instruments 
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HF2). Shifts in the amplitude and phase response of the tuning fork occur as a function of 

tip-surface forces. In particular, a constant phase setpoint is maintained during surface 

regulation using a PID control loop with the vertical piezotube voltage the tuning fork is 

mounted to as the output value. The noise floor of the AFM has been measured to be on the 

order of 1 nm across many sample surfaces. For additional details on the operation and 

physics behind shear-force AFM, refer to Appendix A2.3. 

 

Au tips (apex diameter = 40-60 nm) were formed by electrochemically etching fine Au wires 

in ethanol/HCl using a constant voltage supply 3, and were then glued to the free tine of a 

quartz tuning fork. Forks were attached to an XYZ piezo tube scanner (35x35x5 m3) and 

coarse XY positioner. Shear-force feedback, where the tip oscillates parallel to the sample 

surface, was used for imaging. Coarse Z positioning of the tip for sample approach was 

provided by a gear-reduced stepper motor. After visual alignment of the tip with the 

microscope focus using the backscattered laser light pattern, the sample was raster scanned 

using a closed loop piezo XY stage to form an image. Acquisition of spatially correlated 

topography and spectroscopy data were synchronized using Labview control of the PLL, 

piezo scan stages, monochromator, and CCD camera. 

 

C. Experimental validation of TENOM instrument 

(i) Inelastic scattering from plasmonic Au tips 

Optical interrogation of surfaces using metallic (plasmonic) SPM tips can result in large 

fluorescence backgrounds that are thought to be due to inelastic scattering from the tip itself 

4. Evidence for this comes from inelastic scattering (i.e., radiative plasmon decay) 
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measurements on metallic nanoparticles, where the quantum efficiency is typically in the 10-

4-10-6 range 5. Although this emission rate is low, these broad signals can still overwhelm the 

relatively weak Raman scattering coming from the surface. As such, it was important to 

characterize how tip-related photoluminescence affected our near-field optical experiments. 

To this end, PL spectra [Fig. 2.3(a)] were acquired by raster scanning the TENOM tip, 

engaged on a glass cover slip, in XY through the laser focus. An image was then formed by 

integrating the PL signal (250-2200 cm-1 shift from the pump line) at each pixel [Fig. 

2.3(b)]. A consistent background signal was observed with a magnitude that strongly 

depended on the relative position of the tip in the laser spot, implying that the signal was 

generated by the tip. Once this background was identified, it could be subtracted from near-

field spectra and image data. 
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Figure 2.3 (a) Inelastic scattering spectrum from an Au tip illuminated with 647 nm light. 

The spectrum is primarily attributed to radiative decay from a distribution of supported 

surface plasmon modes. (b) Integrated scattering intensity as the tip is raster scanned through 

the laser spot. A maximum is observed when the tip apex is aligned with the center of the 

focused laser spot. 

 

 



 

 46 

(ii) Near-field spectroscopy of coumarin-6 films 

The distance dependence and enhancement of Raman, Rayleigh, and tip-related PL signals 

were evaluated using an Au tip and 5 nm thick film of coumarin-6 on glass [Fig. 2.4]. 

Coumarin-6 was chosen because of its lack of absorption at 647 nm 6 to specifically avoid 

any resonant Raman effects on signal levels. When the tip was regulated on the surface 

[nominally z=0, see Appendix A2.3 for an estimate of the real tip-surface distance], distinct 

Raman peaks from the organic were seen above the broad tip-generated PL background [Fig. 

2.4(a)]. When the tip was fully retracted, no Raman peaks were observed using the same 1 s 

collection time [z=2 µm, Fig. 2.4(a)]. Increasing the collection time to 30 s allowed some 

peaks to again be resolved, and from this the near-field enhancement factor was estimated to 

lie between 103-104 [calculation details given in Appendix A2.2]. Another important data 

point was obtained when the tip was retracted only 10 nm from the dye-coated surface. The 

intensity of the observed Raman peaks decreased by nearly 60%, which is strong evidence 

for the existence of intense, localized optical fields at the tip apex. This is further supported 

by examining multiple spectra collected as the tip was further retracted from the surface in 

10 nm increments [Fig. 2.4(b)]. The near-field Raman signal decreased much more rapidly 

than the back-scattered Rayleigh or tip PL signals, both of which can be understood as far-

field effects caused by the tip moving out of the microscope focal plane. 
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Figure 2.4 (a) Near-field spectra of a 5 nm thick coumarin-6 film on a glass coverslip taken 

when the tip is regulated on the sample surface (z=0 nm), slightly retracted (z=10 nm), and 

fully retracted (z=2 µm). (b) Integrated optical signals as a function of tip-surface distance; 

Raman=685 cm-1 peak only, Rayleigh=laser line, tip background=200-2400 cm-1. 

 

Using the same coumarin-6 sample, large variations in Raman peak intensities were 

observed at different positions along the film. For example, Figure 2.5 shows several tip-

enhanced coumarin-6 Raman spectra taken along a single scan line at 50 nm pitch, where the 

magnitudes of multiple peaks change dramatically from spectrum to spectrum. In fact, 

spectra 1-2 and 3-4 are each separated by only a single 50 nm step. Partial peak assignments 

have been made using published spectra for benzothiazole and coumarine-152 to 

approximate the 2-benzothiazolyl and 7-(diethylamino)coumarin moieties of the coumarin-6 

molecule, as detailed in Appendix A2.1. Several peaks in the spectra could not be identified, 

and as such, partial decomposition of coumarin-6 cannot be ruled out. Either the thermal 

evaporation process or local heating caused by the Au probe could be responsible for the 

formation of decomposition products. This highly localized spectroscopic data is insightful 

(i.e., relative Raman peak intensities can provide information about local molecular 
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orientation, contamination, etc.), but it can also make direct 'pixel-by-pixel' chemical 

identification and/or quantification of heterogeneous surfaces more challenging. 
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Figure 2.5 Tip-enhanced Raman spectra collected at various locations during a line scan of a 

coumarin-6 film. Spectra 1-2 and 3-4 were separated by a single 50 nm step. # and * denote 

Raman peaks associated with the 2-benzothiazolyl and 7-(diethylamino)coumarin moieties 

of the coumarin-6 molecule, respectively [details in Appendix A2.1]. 

 

 

(iii) Nanoscale optical imaging of patterned phthalocyanine films 

One of the primary design goals for our TENOM was to collect full two-dimensional, 

chemically-specific spectral images of a surface with sub-diffraction limited spatial 

resolution. To test this capability, model surfaces covered with Cu(II) phthalocyanine (CuPc) 

nanotriangles (5 nm high x 200 nm on a side) were created using colloidal lithography (1 m 

silica spheres) and thermal evaporation [Fig. 2.6(a)]. Nanopatterned thin films of CuPc 

(Sigma-Aldrich) were formed on glass via thermal evaporation (10-5 torr) using a colloidal 

crystal masking process (1 m silica spheres) that has been described elsewhere 7. Since the 

strength of the optical near-field formed at the tip apex decays rapidly with distance 8, the 

evaporated films were intentionally made only 5 nm thick. Two benefits of this are that 
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absorption in the film is kept to a minimum, and the ratio of near to far-field scattering is 

high. After evaporation of the organic, the colloidal mask was selectively removed by 

sonicating the sample in water. 

 

A collected far-field Raman spectrum from this sample [Fig. 2.6(b)] agrees well with 

published data 6, indicating the dye has not been damaged during evaporation. When the tip 

is engaged on a nanotriangle, a subset of the far-field CuPc spectrum peaks are observed to 

be strongly enhanced. Chemical and vibrational mode-specific images of the surface can 

then be obtained by raster-scanning the sample through the tip-laser focus and recording a 

full Raman spectrum at every pixel. For example, Figure 2.6(d-f) shows tip-enhanced near-

field Raman maps of the surface created by integrating all Raman peaks from 500-1650 cm-

1, the strong 1540 cm-1 peak due to the isoindole stretch, and the weaker 625-800 cm-1 ring 

breathing modes of the CuPc macrocycle. Note that the tip PL background has been 

subtracted when forming these images, and that a correction for small drifts in the tip-laser 

alignment has been made by normalizing each pixel intensity value by its corresponding 

backscattered Rayleigh signal. In each TENOM Raman image, the underlying triangular 

array structure seen in the topography scan is present, demonstrating that chemically-

specific, super resolution optical imaging of a heterogeneous organic thin film is feasible. 

Moreover, TENOM allows optical imaging of a single Raman mode using modest 

acquisition times (500 ms/pixel) and sample pump powers (500µW). 
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Figure 2.6 (a) Topography image of a 5 nm thick CuPc pattern after mask removal. (b) The 

associated far-field Raman spectrum showing the dye has not been damaged during the 

evaporation process and a representative tip-enhanced Raman spectrum collected over a 

CuPc triangle. Three spectral images were formed using different integration ranges: (c) all 

observed vibrational peaks, (d) isoindole group stretching, and (e) macrocycle breathing 

modes 6. Note that the broad tip PL background has been subtracted from these images. 

 

Looking at linecut profiles from the TENOM Raman image, the lateral resolution is 

estimated at 50 nm (< λ/10), or approximately the size of the tip apex. If wavenumber is 

plotted against relative position for one such linecut [Fig. 2.7(b)], a hyperspectral image can 

be created that shows the distinct pattern of Raman peaks for CuPc turning on and off as the 

tip passes over a surface feature. This latter image illustrates the type of pattern recognition 

that may be possible for analysis of a multi-component sample. For example, each pixel 

would be scored according to the similarity of its spectra to those of various known patterns; 
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pixels with a sufficiently high score could then be classified as a particular material, 

allowing multi-component 'chemical' maps of a surface to be created in one imaging pass. 
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Figure 2.7 (a) TENOM Raman image of CuPc nanotriangles (500-1650 cm-1). (b) 

Hyperspectral image showing wavenumber vs. position data taken from the indicated linecut 

in (a). A distinct pattern of Raman peaks (c) becomes visible only when the tip passes over 

regions of CuPc. 

 

D. Conclusions 

In this work, we presented the design, validation, and application of a tip-enhanced near-

field optical microscope for all-optical, chemically-specific imaging of surfaces at super 

resolutions. The microscope was built around a tuning fork-based shear force AFM attached 

to an inverted optical microscope with confocal pumping and collection. Non-resonant 

Raman enhancement factors with the plasmonic Au tip were estimated in the 103-104 range 

using a coumarin-6 film. Raman signals from the surface, in contrast to Rayleigh and 

inelastic scattering from the tip, were seen to quickly decay as the tip was removed from the 

surface. Reproducible 2D spectral and hyperspectral imaging of nanopatterned Cu(II) 

phthalocyanine thin films was also demonstrated at lateral resolutions of 50 nm (better than 

/10). Moreover, given the SNR of tip-enhanced Raman signals, efforts will now be made to 
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collect vibrational Raman images of more complex, multi-component surfaces with both 

chemical and structural heterogeneity at super resolutions. 
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Appendix (A2) 

 

A2.1 Peak identification for coumarin-6 spectra 

Several of the Raman peaks seen in the tip-enhanced, near-field spectra of a coumarin-6 film 

(Fig. 2.5 in the main text) can be attributed to the 2-benzothiazolyl (Bt) and 7-

(diethylamino)coumarin (C) moieties of the coumarin-6 molecule as outlined below. We 

have attempted to assign these peaks using Raman data for benzothiazole 1 and coumarin-

152 (i.e., 7-(dimethylamino)-4-(trifluoromethyl)-2H-chromen-2-one) 2 in Table A2.1. The 

peaks in Figure 2.5 annotated with # or * are not directly assignable to specific vibrations of 

Bt or C. This analysis does not rule out the possibility that some level of coumarin-6 

decomposition could have occurred, either during thermal evaporation or from local heating 

during TENOM measurements, and that any decomposition products may account for these 

unassigned peaks. 

 

Table A2.1. Raman peak assignments for coumarin-6 spectra in Fig. 5 of the main text. The 

letters B and L in the assignment descriptions refer to the benzene and lactone ring 

substituents of 7-(diethylamino)coumarin. 
Peak Location [cm-1] Moiety Assignment 

   

1598 C combination 8a modes of B and L rings 

1562 Bt C-H in plane bending 

1476 Bt C-H in plane bending 

1412 C C7-N & C4a-C4 stretch +  CH3 in phase sym. bend 

1320 Bt C-C stretching 

1291 Bt C-C stretching 

1272 C C8a-O & C2-C3 stretch + N-(CH3) asym. stretch + B ring 
deformation 

1210 Bt C-H in plane bending 

783 C 12(L) + 6a(B) + (CH3)2>N-C7 sym. stretch 

706 Bt C-C-C ring breathing 

482 C skeletal deform along (C=O)-C8a axis 

400-405 C (CH3)2-N bend + C=O rock + skeletal in plane deformation  

360 Bt ring stretching 
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A2.2 Coumarin-6 enhancement factor calculation 

The enhancement factor was estimated by estimating the far-field to near-field probe area 

ratio at 25:1, corresponding to 2502:502 nm2. These values come from a point spread 

function map using a fluorescent bead [Fig. 2.3b] and an SEM image [not shown] of the 

particular Au tip used in this experiment with an apex diameter of roughly 50 nm. An area 

ratio, instead of a volume ratio, is adequate in this case as the film is very thin (<10 nm) such 

that all molecules in the z-direction were assumed to be probed in both cases. A 5x ratio of 

Raman signal intensities was computed using characteristic near-field [Fig. A2.1 (a)] and 

far-field spectra [Fig. A2.1(b)]. Since several peaks were present in only the near or far-field 

spectra, but not both, all peaks in the 400 cm-1 to 1800 cm-1 range were integrated for this 

calculation. The background fluorescence or Au tip photoluminescence was subtracted out in 

both cases. Finally, the far-field collection time was 30 s compared to 1 s for the near-field, 

resulting in an additional 30x factor. The total enhancement factor (EF) was thus computed 

as follows: EF = 25 * 5 * 30 = 3750. Due to the very approximate nature of this calculation, 

the reported EF value was placed between the two nearest order of magnitude values, 103-

104. 

 

Figure A2.1 Coumarin-6 spectra used when estimating the enhancement factor. (a) Tip 

engaged on film; 1 s collection. (b) Tip retracted by 100+ µm; 30 s collection. The laser 

power was the same for both measurements. 
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A2.3 Estimating the tip-surface distance using shear-force AFM 

In shear-force AFM, there is no simple method for measuring the real distance between the 

tip and surface at a given feedback set point (e.g., phase, amplitude, or resonance frequency 

shift). In the case of TENOM, this is problematic as the fields generated at the tip apex vary 

over short length scales, and hence the signal enhancement could be sensitive to the set point 

value chosen. We have performed a relatively simple experiment that gives an upper limit on 

the tip-sample distance when the tip is "engaged" on the surface. The procedure involves 

slowly lowering the tip onto the surface while recording changes in the phase/amplitude of 

the tuning fork-tip oscillator when it is excited at constant frequency. We will refer to this 

procedure as a “tip run-in”. The analysis presented here uses the oscillator phase data only, 

although a very similar procedure could be performed using amplitude data. Figure A2.2 

shows the phase values recorded during one run-in experiment in which a tip was lowered 

onto a glass coverslip surface. 

 

 

 

Figure A2.2 

Phase of an oscillating tip-tuning 

fork system as it is slowly 

lowered onto a glass coverslip. A 

transition between no surface 

interaction (free-space) and hard 

surface contact is observed. The 

red line is an inverse tangent 

function that has been fit to the 

data. 



 

 56 

The data above show two regions in which phase is nearly constant and a transition region 

between them. This is interpreted as observing the change between the tip not touching the 

surface at all (free-space limit) and making hard surface contact. We believe the noise 

present in the transition region of the dataset is due to real variations in the tip-surface 

distance caused by vibrations in the laboratory environment. 

 

The observed phase shift of the tip-tuning fork oscillator upon surface contact can be 

understood as a shift in frequency space of the resonance mode. In fact, the resonance can be 

directly measured and compared for each limiting case. Figure A2.3 shows how the 

resonance frequency, corresponding to the amplitude maximum or central phase inflection 

point, is found to increase by 90 Hz upon surface contact. This data agrees well with an 

earlier study by Ruiter et al. 3, in which the same type of run-in experiment was performed. 

 

Figure A2.3 Frequency sweeps showing a shift in the (a) phase and (b) oscillation amplitude 

of the tip-tuning fork oscillator upon surface contact. 

 

We now make an assumption that will allow us to connect the phase vs. distance data in 

Figure A2.2 to the phase vs. frequency data in Figure A2.3(a). The assumption is that 
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changes in the phase resonance can be approximated as a simple shift of the free-space 

resonance along the frequency axis, i.e., the so-called linear regime. It is clear from Figure 

A2.3(a) that this is only a first order approximation, as both the slope and magnitude of the 

phase resonance change to some degree during surface contact. We proceed to convolute 

Figure A2.2 and Figure A2.3(a) along their shared phase axis to obtain a new frequency shift 

vs. distance curve [Fig. A2.4], where frequency shift is the difference between the local and 

free-space resonance frequencies. There are two marked positions: (1) the 2.5 Hz set point 

that was used for TENOM experiments in this work, and (2) the position where the 

frequency shift is 90% of its maximum value in this range. The distance between these 

positions is 3 nm, which can be taken as an upper bound on the tip-surface distance under 

experimental conditions. 
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Figure A2.4 

Approximate model of frequency shift vs. 

distance obtained by convoluting the data 

in Fig. A2.2 with the free-space phase 

resonance [Fig. A2.3(a)]. The distance 

between positions (1) and (2) represents a 

conservative estimate of the real tip-

surface distance at the experimental 

frequency shift set point of 2.5 Hz. 
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Chapter III. Imaging Intermolecular Exciton Coupling in Metal-free 

Phthalocyanine Nanofilms 
 

Adapted from: R. J. Hermann and M. J. Gordon, “Imaging intermolecular exciton coupling 

in metal-free phthalocyanine nanofilms using tip-enhanced near-field optical microscopy”, 

Journal of Physical Chemistry C, 2018, vol. 122, pgs. 14796-14804. 

 

Abstract 
 

Spatially correlated topography, fluorescence, and Raman scattering signals of metal-free 

phthalocyanine (H2Pc) nanofilms were imaged using confocal and tip-enhanced 

(fluorescence and Raman) near-field optical microscopy at lateral spatial resolutions of 500 

nm and ∼25 nm, respectively. The far-field fluorescence intensity was found to vary 

inversely with film thickness up to 10 nm, with the strongest emission coming from isolated 

H2Pc molecules on samples with submonolayer coverage. Changes in the fluorescence 

energy distribution were imaged and were consistent with exciton coupling predictions for 

H2Pc molecules lying edge-to-edge on the surface. Thicker H2Pc films (>10 nm) were found 

to consist entirely of nonfluorescing aggregates and crystal domains. Tip-enhanced near-field 

measurements were carried out with W and Au (plasmonic) tips to investigate the local 

optical properties of H2Pc films and nanostructures. In general, fluorescence increased by a 

factor of 2−3× compared to the far-field when the tip was engaged; these signal levels 

suggest a local enhancement factor of 500×. However, the fluorescence was seen to increase 

by ∼50% when the tip was lifted 10 nm above the surface, indicating strong coupling of 

molecular emissions to the metal probe over short distances (i.e., fluorescence quenching). 

Raman signals were strongly enhanced (>2−5×) over tip−surface distances <20 nm. X-ray 

diffraction and UV−vis absorption data were also acquired to help further elucidate changes 

in H2Pc packing and electronic structure during the transition from submonolayer coverage 

to continuous films. Overall, this work provides emission based measurements of 

bimolecular exciton coupling in solid-state H2Pc films, before the onset of complete 

fluorescence quenching, which has only been previously observed for select phthalocyanine 

species in solution. 
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A. Introduction 

Phthalocyanines (Pcs), already widely used as commercial dyes and in optical recording 

media 1, are of interest to the research community for a myriad of applications 2-3, including 

organic electronics such as photovoltaics, LEDs, and transistors 4-7; redox catalysis 8; and as 

photosensitizers in optical-based cancer treatments 9. Their popularity is due in large part to 

their tunability, i.e., the Pc macrocycle can be functionalized with a variety of chemical 

moieties (e.g., halogens, -CN, -SO3-, -COOH, -NH2, esters) and metal cation centers that 

modify their chemical, optical and electrical behavior. Pcs are also chemically and thermally 

stable 10, making them amenable to a wide range of processing techniques and potentially 

imparting long operational lifetimes to 'organic-based' devices 11-12.  

 

The majority of work on solid-phase Pcs has focused on the structure and optical behavior of 

50 nm to several micron thick films, especially for H2Pc 13-15. Scanning tunneling 

microscopy has also been used to study molecular packing of H2Pc at sub-monolayer and 

monolayer coverages on a variety of surfaces 16-18. Precise deposition of monolayer to few-

layer phthalocyanine films has been achieved on a variety of substrates using Langmuir-

Blodgett deposition 19-21. The films produced are highly ordered with significant 

intermolecular π-electron overlap, leading to relatively high conductivities and photovoltaic 

currents. In this work, we combine tip-enhanced near-field microscopy (TENOM) with a 

variety of traditional characterization techniques (AFM, XRD, UV-Vis, confocal 

microscopy) to monitor the optical and structural behavior of H2Pc molecules over the 

complete film thickness range, spanning sub-monolayer surface coverages to continuous 

films with crystalline domains. TENOM provides both optical and physical measurements 
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on individual H2Pc nanostructures, as well as spatially-correlated 2D images of topography, 

fluorescence, and Raman scattering. 

 

B. Experimental Methods 

(i) Tip-enhanced near-field optical microscopy (TENOM) 

A custom-built tip-enhanced near-field optical microscope, previously described in detail 22, 

was used for simultaneous spectroscopic interrogation and imaging of fluorescence, Raman 

scattering, and topography of H2Pc thin films and nanoscale patterns. The instrument 

combines an inverted optical microscope (Nikon Epiphot 300) coupled with a tuning fork-

based, shear-force atomic force microscope (AFM). The 647 nm line of a Kr+ laser is 

coupled to the microscope via single mode fiber, expanded to a plane wave, radially 

polarized, and focused using a 1.25 NA, 100X oil immersion objective lens onto the sample. 

The same objective collects emitted/scattered light and transmits it via a 50 m core fiber 

(acting as a confocal pinhole) to a 320 mm focal length monochromator (JY iHR320) with 

TE-cooled CCD detector. The shear-force AFM consists of a quartz tuning fork (f0 ~ 215 

Hz), with electrochemically-etched Au-wire probe (apex diameter ~20-50 nm) attached to a 

z-piezo tube scanner. The probe is engaged on the surface with phase feedback using a 1° set 

point offset from the fork's free space resonance. 

 

(ii) Deposition of nanoscale H2Pc films 

H2Pc (Sigma-Aldrich) was thermally evaporated onto glass coverslip substrates; thickness 

was monitored using a quartz crystal microbalance (QCM) that was calibrated by scanning 

several H2Pc step edges with a profilometer. Patterned H2Pc films were produced using a 
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colloidal lithography process described elsewhere 23; briefly, silica colloids (dia. = 310 or 

1000 nm, Bangs Laboratories) were functionalized with allyltrimethoxysiloxane, dip-coated 

onto glass coverslips using the Langmuir-Blodgett method, and subsequently used as a 

shadow mask for H2Pc evaporation, followed by removal of the colloidal mask via 

sonication in water. Nanorod-like surface structures were also formed on some samples by 

annealing α-phase H2Pc films (1-5 ML coverage) at 150-300 °C for 2 hrs. under high 

vacuum (P < 5*10-5 Torr).  

 

(iii) Additional characterization 

UV-Vis absorption spectra of thin and patterned H2Pc films and solutions were collected 

using a Jasco V-630 spectrophotometer; absorbance values were calculated after subtraction 

of a reference spectrum (a bare glass coverslip for thin film samples and pure 

tetrahydrofuran (THF) solvent for H2Pc solutions). Solution fluorescence data for H2Pc in 

THF were obtained using a Varian Cary Eclipse spectrophotometer. XRD data (Appendix 

A3.1) were collected using a PANalytical Empyrean diffractometer over Bragg angles of 5-

20°. High resolution AFM topography images were collected with a Veeco Nanoscope IIIa 

(Figs. 3.1 and 3.5) and Asylum MFP-3D AFM (Fig. 3.5). To maximize the achievable 

lateral resolution in Figure 3.1, a cantilever with an apex diameter <5 nm was used 

(NanoSensors SuperSharpSilicon probe series). 
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C. Results and Discussion 

(i) Visualizing the structure of thin H2Pc films 

AFM topography scans were collected for H2Pc films of varying thickness deposited on 

clean glass coverslips [Figs. 3.1(a-f)]. The bare glass substrate was found to be relatively flat 

[Fig. 3.1(a)], with several small pits being the only notable surface features. As small 

amounts of H2Pc were added, aggregates with a height of 1-2 nm appear uniformly 

distributed across the surface [Figs. 3.1(b-c)]. These aggregates are believed to form via 

coalescence of H2Pc molecules on the surface, driven by the self-interaction potential of 

H2Pc exceeding that of H2Pc-SiO2. This explanation is supported by previous STM studies 

that have shown significant thermal motion of surface phthalocyanine species at ambient 

temperatures on glass and HOPG substrates 18. When ~1 monolayer of H2Pc was deposited 

[Fig. 3.1(d)], aggregates began to coalesce and form a continuous layer. Additional H2Pc 

deposition resulted in a more film-like deposit, composed of increasingly larger crystallites 

[Fig. 3.1(e-f)]. XRD data was obtained from these latter films, showing that the thicker films 

adopt a highly ordered, α-phase crystal structure13 (see Appendix A3.1). 
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Figure 3.1 AFM topography data for various amounts of H2Pc thermally evaporated onto 

glass coverslip substrates. The frequency shift of the evaporator quartz crystal microbalance 

was used to estimate the amount of H2Pc deposited in each case. A calibration between film 

thickness and frequency shift was obtained by measuring the height of several films 

deposited and gave a value of roughly 10 Hz/nm. Estimates of the # of equivalent 

monolayers (ML) were then made using the α-phase H2Pc crystal density and lateral area of 

an H2Pc molecule lying flat on the surface. The result was 0.26 ML deposited per 1 Hz QCM 

shift. The lateral dimensions of each image are 400x400 nm. 

 

(ii) Far-field optical absorption and emission data 

Comprehensive studies of the optical properties of H2Pc solutions and films have been 

carried out previously 13, 24-28. In the visible portion of the spectrum, a pair of electronic 

excitations, referred to as the Q-band, are responsible for absorption and emission in the 

molecule. Figure 3.2(a) shows absorption measurements for both a dilute solution of H2Pc 

in THF and a 40 nm thick H2Pc film. The solution spectrum has two distinct absorption 

peaks at 1.80 eV (689 nm) and 1.90  eV (653 nm), which correspond to the π→π* Qx and Qy 

transitions 2. The absorption profile changes significantly for the 40 nm film, with the Q-

band now broadened, spanning the entire 500-800 nm range. This broadening is due to 

Davydov splitting between interacting H2Pc molecules that make up the α-phase crystal 
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structure and is an expected behavior for condensed phases of many optically-active organic 

molecules. Such broadening occurs even in the case of two-dimensional packing, as seen in 

the absorption spectrum of a single CuPc monolayer on an Al surface formed using 

Langmuir-Blodgett deposition 21. Absorption data could not be resolved for samples with 

thicknesses less than 40 nm due to the signal-to-noise limit of the spectrophotometer. 
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Figure 3.2 (a) Optical absorption spectra for a dilute solution of H2Pc in THF and a 40 nm 

thick H2Pc film. The full UV-Vis spectrum of the film is also included (inset) to show the 

broadening of both the Q- and B-bands. (b) Comparison of the optical emission from the 

same H2Pc in THF solution and H2Pc films of varying thickness. Fluorescence from the 

samples disappears rapidly as the film thickness increases, and Raman peaks (*) become 

visible for the 2, 4, and 10 nm thick films. The spectra are offset for clarity, but the intensity 

values have not been re-scaled except for the THF solution sample which measured on a 

separate UV-Vis instrument. 

 

For very thin H2Pc films (<10 nm), optical emission measurements were found to be a 

sensitive probe of the local film structure. Emission data from several H2Pc samples, 

primarily collected using the confocal microscope component of the TENOM system, are 

shown in Figure 3.2(b). For the dilute solution of H2Pc in THF, a single fluorescence band 

is seen, corresponding to emission from the 1.80 eV lower energy excited state, in 
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accordance with Kasha’s rule 29. As fluorescence disappears in the thicker films, weak 

Raman vibrational peaks become discernible between 660-720 nm. These peaks agree well 

with past results measured for H2Pc films 13, 30 (Appendix A3.2). This indicates that H2Pc 

molecules were not modified, nor decomposed, during thermal evaporation. 

 

It is clear from the emission data that the film thickness and fluorescence intensity are 

inversely related in some manner. Fluorescence and photoluminescence quenching are 

known to occur in films due to an increase in the availability of efficient, non-radiative 

relaxation pathways caused by charge exchange between nearby molecules (Dexter and 

Förster mechanisms) 31. Fluorescence quantum yields from H2Pc films were previously 

reported to be on the order of 0.01% 25, and only a small number of Pc dimers with 

appreciable fluorescence yields have been reported 32-33.  These quenching effects imply that 

the intense fluorescence observed in very thin films originates from “isolated” H2Pc 

molecules. For the < 1 nm thick sample in Figure 3.2(b), coverage is estimated at ~ 0.25 

monolayer for a 1 Hz QCM shift using the density of α-phase H2Pc (1.7 molecules/nm3), 

QCM calibration constant of the evaporator (10 Hz/nm), and the area of a single H2Pc 

molecule lying flat on a surface being 1.55 nm2. This coverage level is consistent with the 

theory that single, isolated H2Pc molecules present on the glass surface are responsible for 

the strong fluorescence emission observed. 

  

In addition to decreased intensity, another effect of direct coupling between H2Pc molecules 

is that fluorescence energies are modified. The theory of molecular exciton coupling, first 

proposed by Kasha in 1965 34, has been successful at explaining the optical properties of 

phthalocyanines as dimers or repeating structures such as crystals 35-38. The theory considers 
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the orientation, magnitude, and separation distance of the transition dipole moments between 

molecules. For H2Pc, the Qx and Qy excitations have transition dipole moments that lie in the 

plane of the molecule 39. The theory predicts that the Q-band of cofacially arranged Pc 

dimers will blue-shift, and that of edge-to-edge dimers should red-shift 2. Experiments have 

found these predictions to be reasonably accurate for dimer phthalocyanine species in 

solution, as characterized by their absorption spectra 27, 35, 40. In Figure 3.2(b), there may be 

a red-shift in the fluorescence of the higher coverage films (1-4 nm), but it is hard to tell 

from these data alone. 

 

To better quantify any changes in the fluorescence intensity or distribution as a function of 

film thickness, large 2D datasets were collected by laterally raster-scanning samples and 

collecting confocal fluorescence data at each location. The scans covered a 10x10 µm2 area 

with 1681 individual spectra being collected (41x41 pixels, 250 nm pixel size). Figure 3 

presents results from three of these scans on samples ranging from roughly 0.1 to 1 

monolayer coverage, which was the range over which the fluorescence characteristics 

changed most rapidly. Looking first at images of total fluorescence intensity [Figs. 3.3(a-c)], 

lower coverage samples display higher intensities, but also large lateral spatial variations. 

These variations are believed to be caused by regions of the inhomogeneous glass surface 

affecting to what extent H2Pc molecules can aggregate. Areas with relatively little 

aggregation appear as high intensity bright spots in the fluorescence image. 
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Figure 3.3 Confocal microscope images with data on the intensity and shape of H2Pc 

fluorescence from samples of varying surface coverage. The top row of images (a-c) shows 

the total integrated fluorescence intensity over the 680-725 nm range. The bottom row (d-f) 

are the same datasets, now demonstrating that the fluorescence can be spatially deconvolved 

into single molecule vs. aggregate emission profiles (spectra below panels) using a peak area 

ratio metric (A1/A2), see Appendix A3.3 and A3.4 for details. In brief, the emission at each 

pixel was fit to a linear combination of H2Pc single-molecule fluorescence (A1) and a red-

shifted Gaussian profile (A2) that represents the average emission from H2Pc dimers and 

small aggregates. 

 

The lower set of panels [Figs. 3.3(d-f)] describe the shape of the fluorescence emission 

using a metric (A1/A2 ratio) that is explained below. The fluorescence signal at each pixel 

was fit to a linear combination of two distributions: A1 represents emission from isolated 



 

 68 

H2Pc molecules (whose reference was collected from very low coverage samples), and A2 

represents the “average” of the red-shifted fluorescence observed in higher coverage samples 

(modeled with a simple Gaussian function). Exciton coupling theory provides a physical 

basis for assuming the film fluorescence spectra can be approximately fit in this manner. 

Figure 3.3(d-f) are plots of the ratio of the integrated peak areas of each fluorescence 

component. A more detailed explanation of the development and testing of the fit procedure 

is provided in Appendix A3.3 and A3.4. The main takeaway is that the emission evolves 

from single molecule-like fluorescence [Fig. 3.3(d)] to red-shifted fluorescence [Fig. 3.3(f)] 

over the range of 0.09 to 1.3 monolayer (ML) coverage. For example, the A1/A2 ratio for the 

brightest regions of the 0.09 ML sample is >100, and the mean value over the full image is 

20. Conversely, the average ratio for the 1.3 ML sample falls to 0.3, a decrease of nearly two 

orders of magnitude. It is important to note that this ratio is based solely on fluorescence 

counts and does not correspond to the number of monomer vs. dimer+ species. Determining 

the fraction of monomer vs. dimers+ requires a quantitative value for the relative 

fluorescence intensity of isolated molecules compared to aggregated species. 

 

(iii) Intentionally damaging H2Pc films to produce fluorescence 

The discussion thus far has shown that fluorescence is rapidly quenched as H2Pc films 

exceed a coverage of roughly 1 monolayer. This observation can also be turned around to 

use fluorescence as an indicator of irregularities or damaged areas in thicker films. To 

demonstrate this idea, Fig. 4 shows a far-field optical image of a 10 nm thick H2Pc film that 

was intentionally perturbed using a tungsten AFM probe. Hard surface contact was initiated 

by disabling the shear-force feedback, and then manually lowering the probe (20 nm) onto 

the H2Pc film. The probe was dragged across the surface in a straight line and then retracted. 
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The fluorescence image shown was formed by raster scanning the damaged region through 

the focused laser spot [Fig. 3.4(a)], with the bright feature clearly following the line traced 

by the probe. Example spectra are shown from regions with and without fluorescence [Fig. 

3.4(b)]. The exact structure of the damaged film region is not known, but a likely 

explanation is that the probe has scraped most of the H2Pc away, leaving roughly a 

monolayer of molecules on the glass substrate. This is supported by the observation that the 

shape and intensity of the fluorescence seen here is close to that of the 1.3 ML sample 

measured previously [Figs. 3.3(c) and (f)]. 
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Figure 3.4 Fluorescence from areas of an H2Pc film intentionally damaged using AFM 

probes. (a) A scratch in the film was created by dragging a W probe across the film for 

several microns. Pixel intensities correspond to the integrated fluorescence over the 680-725 

nm range. (b) Example point spectra from both an undamaged (1) and damaged (2) region of 

the film. Fluorescence (F) and Raman (R) peaks are annotated. (c) Fluorescence data from an 

Au probe being retracted from a damaged film region. The initial 10 nm retraction causes a 

significant signal increase, indicating some amount of fluorescence quenching occurs when 

the probe is in direct contact with the H2Pc surface molecules. 

 

Similar film damage experiments were conducted with an Au probe. In this case, the 

frequency shift set-point of the AFM was increased significantly to force hard surface 

contact between the probe and film at a single location. Afterwards, the probe was retracted 

in a series of 10 nm steps, with spectral data being acquired at each step. Figure 3.4(c) 

shows the dependence of the total fluorescence intensity as a function of the probe-substrate 
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separation, with 0 nm corresponding to measurement at the initially large AFM force set-

point. The most striking feature of this plot is the >50% signal increase after the first 10 nm 

step. This appears to be a clear case of fluorescence quenching, in which the H2Pc excited 

state decays non-radiatively via energy transfer to the metal probe. Quenching is most severe 

when fluorophores are directly adsorbed onto metal particles or surfaces, as seen when Au 

nanoparticles are functionalized with a metal-free phthalocyanine species 41, but energy 

transfer can occur over distances of several nanometers 42. We have previously calculated an 

upper limit on the probe-surface distance of the near-field instrument’s shear-force AFM to 

be 3 nm 22, making quenching feasible anytime the probe is engaged on the surface. It is also 

noteworthy that, even with quenching, the presence of the probe leads to a net increase in 

fluorescence compared to distances >100 nm. This increase was observed for all the Au 

probes used, indicating that the quantitative effect of local field enhancements tends to 

exceed any quenching effects in a scanning probe geometry, in good agreement with the data 

collected by Anger, Bharadwaj, and Novotny for coupling between nile blue molecules and a 

Au-nanoparticle functionalized AFM probe 43. This net enhancement is leveraged in 

subsequent experiments to produce sub-diffraction limited images of H2Pc surface structures 

using near-field fluorescence scattering. 

 

(iv) Near-field optical microscopy of patterned H2Pc films 

Using the high spatial resolution of TENOM, it should be possible to measure connections 

between film thickness, morphology, and optical properties for individual H2Pc 

nanostructures. A monolayer of silica colloids was used to produce patterned H2Pc films 

with triangular surface features [see details in Methods section]. The masking colloids were 

spheres that only made direct contact with the glass substrate over a small area. It was thus 
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expected that some undercutting of the mask edges would occur during thermal evaporation, 

i.e., a small amount of H2Pc should be deposited on the glass substrate directly below the 

edges of the masking spheres. The goal was to measure changes in the H2Pc properties 

moving across this undercut region. 

 

Figure 3.5 presents topography and spectral images obtained from a 10 nm thick, patterned 

H2Pc film, made using 1 µm dia. colloid mask. The larger area topography data [Fig. 3.5(a)] 

was collected on a separate AFM and shows how variations in the colloid packing quality 

lead to connected or separated interstitial H2Pc features. TENOM fluorescence images [Figs. 

3.5(b-c)] were formed by integrating the spectra from 680-725 nm at each collection 

location. Regions with good mask packing show ordered triangular features with uniform 

fluorescence intensity [Fig. 3.5(b)]. In regions where the packing was poor [Fig. 3.5(c)], the 

larger surface features formed show a dark central region with bright fluorescence boundary 

that should correspond to the part of the surface that experienced a greatly reduced H2Pc flux 

due to mask undercutting. 
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Figure 3.5 Physical and optical characterization of a 10 nm thick, patterned H2Pc film on 

glass formed using a layer of 1 µm dia. close-packed silica particles as an evaporation mask. 

(a) Topography collected on a separate commercial AFM and (b-c) near-field fluorescence 

images collected with the TENOM instrument. The outlined feature in panel (c) shows an 

H2Pc surface feature with a dark center region and bright fluorescent boundary. This strongly 

suggests that the particle mask creates spatial regions with widely varying H2Pc coverage 

amounts that should produce fluorescence emission shifts similar to those characterized in 

Figure 3 for non-patterned H2Pc samples. 

 

To better resolve the undercutting region, a new sample was made using a 2 µm dia. 

colloidal mask, still with 10 nm of H2Pc deposited through it. TENOM measurements on 

this sample yielded spatially correlated and simultaneously collected topography, Raman, 

and fluorescence data [Fig. 3.6]. Starting with the topography image, a transition region 

between the continuous H2Pc film and the bare glass substrate can be seen, having a width of 

100-200 nm. The green lines overlaid on the images show the two edges of this transition 

region based solely on the topography data. The left overlay line lines up very well with the 

maximum observed in the fluorescence signal. The Raman image shows the strongest 

signals on the lower-right section of the continuous film where the thickness is greatest and 

the number of H2Pc molecules within the tip-enhanced volume is maximized. 
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Figure 3.6 TENOM images showing correlated topography, fluorescence, and Raman data 

from a patterned 10 nm H2Pc film made using 2 μm mask particles. The fluorescence is 

deconvolved (see Appendix A3.5 for details) into contributions from single H2Pc molecules 

(A1) vs. dimers and small aggregates (A2). The edges of the H2Pc surface feature display 

strong fluorescence while the interior region has much weaker emission. This difference is 

attributed to a rapid change in surface coverage at the boundaries created by undercutting of 

the mask particles during evaporation. 

 

 

Due to some overlap between the fluorescence and Raman signals in these spectra, the 

procedure for fitting the fluorescence shape needed to be modified slightly. This involved 

restricting the data used in the fit to select wavelength bands without appreciable Raman 

peaks (see Appendix A3.5 for details). The fit of the fluorescence distribution shows a mix 

of emission from isolated molecules and small aggregates. Specifically, the A1/A2 ratio is 

0.2-0.5 over the transition region, which corresponds most closely to values seen in the 1.3 

ML studied earlier [Figs. 3.3(c) and 3.3(f)]. 
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(v) Formation of H2Pc nanocrystals via annealing 

Previous literature studies have shown that thermal annealing of α-phase H2Pc leads to the 

formation of the thermodynamically favored β-phase, which has a herringbone structure with 

increased tilt angle 2. β-phase phthalocyanine structures can also be formed directly via 

evaporation onto a heated substrate 13, and phthalocyanine nanowires have even been 

produced via sublimation using a tube furnace 44-45. To investigate these some of these 

effects and the resulting optical behavior of H2Pc nanostructures, we carried out topography 

and TENOM fluorescence and Raman measurements on α-phase films that were vacuum-

annealed at 150-300°C. 

 

Annealed samples were first characterized using AFM topography to check for changes in 

surface morphology. At temperatures below 200°C, no changes were observed, with the 

surface remaining isotropically covered with small particles, as shown previously in Figure 

3.1. However, for temperatures in the 225-250°C range, larger, anisotropic nanocrystals 

became visible [Fig. 3.7(a)]. The density of these nanocrystals could be controlled by 

varying the initial surface coverage. Crystals were seen to adopt a rod-like geometry, with 

heights of ~10 nm and lengths up to several hundred nanometers. These structures are 

believed to consist of β-phase H2Pc, as the morphology is similar to needles previously 

observed in annealed, continuous films of that structure 13, 46. 

 

Nanocrystal samples were then transferred to the TENOM instrument for additional optical 

and structural characterization. First, a large area optical scan was performed by measuring 

far-field confocal spectra at 100 points (1 m pitch) over a 10x10 μm2 grid. A reasonably 

uniform ‘background’ fluorescence signal with < 50% intensity variation was seen across all 
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points, giving spectra similar to that shown in Figure 3.7(b). We attribute this background, 

red-shifted fluorescence to a monolayer of H2Pc molecules that remain fixed to the glass 

substrate during annealing; no emission from isolated H2Pc molecules was detected. 

Additionally, when the annealing temperature was increased to 300°C, the uniform 

fluorescence remained, despite the complete disappearance of any crystals on the surface, as 

evidenced by AFM topography. The latter implies that H2Pc molecules not directly 

deposited on the glass substrate evaporated during annealing. 

 

When the Au TENOM probe was engaged on the same nanocrystal sample, both the 

fluorescence and Raman scattering increased significantly [Fig. 3.7(b)]. The far-field 

spectrum, for comparison, was collected immediately after the near-field, with a 2 sec. pause 

between measurements to wait for the piezotube to fully retract the probe. The near-field 

integrated fluorescence was ~5X larger, and assuming a far-field/near-field area ratio of 100, 

the enhancement factor can be estimated at a moderate value of 500. A Raman enhancement 

factor was not attainable, as no Raman peaks could be resolved in the far-field spectrum. 

However, the appearance of multiple Raman bands in the near-field data implies that the 

relative enhancement of Raman scattering exceeds that of the fluorescence. This makes 

sense in light of the earlier discussion of fluorescence quenching induced by the Au probe 

[Fig. 3.4(c)]. As Raman scattering is not susceptible to quenching, enhancement is expected 

to increase monotonically with the local field strength, as seen experimentally. 

 



 

 76 

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

  

 

660 680 700 720 740

 

 

 

 

250 nm

ΔZ ~ 10 nm

(a) Probe
on surface

Retracted

(b)

In
te

n
si

ty
 [

au
]

Rayleigh

Raman

Fluorescence

N
o

rm
. I

n
te

n
si

ty

(d)

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

  

 

Position [nm]

 

 

Far-field fluor.

Near-field 
fluor.

In
te

n
si

ty
 [

cp
s]

(c)

R
e

l. H
e

igh
t [n

m
]

ΔZ

Wavelength [nm]

Probe-surface distance [nm]

 

Figure 3.7 Physical and optical characterization of an annealed H2Pc sample (5 ML initial 

film thickness, 225°C for 2 h). (a) High resolution topography image showing a distribution 

of rod-like nanocrystals on the glass surface. (b) Near-field (probe on surface) and far-field 

(retracted) optical spectra of the same sample. (c) Probe-surface distance dependence of 

normalized Rayleigh, Raman, and fluorescence scattering signals. The rapid decrease of the 

Raman and fluorescence signals within the first 20 nm, while the Rayleigh laser line remains 

constant, is consistent with near-field enhancement. The very rapid fluorescence decrease is 

believed to be caused by photobleaching induced by the more intense optical fields at the 

probe apex. (d) Near-field fluorescence and topography data were simultaneously collected 

while scanning over a single nanocrystal. The probe was then retracted and the confocal 

microscope (far-field) scan over the same area was unable to resolve any sign of the 

nanocrystal. 

 

 

Raman and fluorescence signals were recorded during probe retraction from the surface to 

evaluate the distance scaling of enhancement phenomena. As the probe was lifted away from 

the surface, a rapid decrease in both the Raman and fluorescence signals occurred within the 

first 20 nm, while the Rayleigh (back-reflection) signal remained constant [Fig. 3.7(c)]. 
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Moreover, the fluorescence signal decreased by 60% within the first 2 nm of separation. This 

is believed to be the result of photobleaching caused by intense local optical fields generated 

by the probe. Unlike the blunt Au probe used to damage the surface in Figure 3.4(c), the 

probe had an apex radius of ~20 nm and was expected to generate more intense near-field 

interactions. The far-field photobleaching rate alone cannot explain such a rapid loss of 

fluorescence, with an equivalent exposure time of 2 s at equal excitation power producing a 

signal decrease <20% [see A3.6]. 

 

A series of linear spatial scans were also performed with the Au probe engaged on the 

nanocrystal covered surface. Figure 3.7(d) shows spatially-correlated near-field fluorescence 

and topography data extracted from one such scan; an H2Pc nanocrystal feature ~8 nm tall 

and <100 nm wide can be seen in the topography trace. The fluorescence spikes with the 

probe positioned on either edge of the crystal and is minimized with the probe centered on 

the feature. The fact that the crystals themselves do no fluoresce is expected on the basis of 

intermolecular quenching, analogous to the complete disappearance of fluorescence in 

phthalocyanine nanoparticles 47. The increased fluorescence at the crystal boundaries was 

unexpected. It is possible that during the annealing process, the re-organization of H2Pc 

molecules on the surface leads to regions of increased coverage around the nanocrystals. It is 

also possible that the probe, being oscillated laterally to the sample surface, is scraping the 

edges of the crystal and generating local fluorescence through that interaction, in similar 

fashion to Figure 3.4(a). Immediately after collection of the near-field data, the probe was 

retracted, and the same area was again scanned (far-field fluorescence). In this case, no 

significant variation in fluorescence intensity was discernible at the nanocrystal location.  
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D. Conclusions 

The optical and physical properties of metal-free phthalocyanine (H2Pc) nanofilms, ranging 

from sub-monolayer coverage to thicknesses exceeding 10 nm, have been characterized on 

glass substrates using confocal microscopy and TENOM. At surface coverages much less 

than one monolayer, most H2Pc molecules are isolated from one another on the surface and 

emit intense fluorescence. For coverages of roughly 0.25-1.0 ML, an increasing fraction of 

molecules end up in an edge-to-edge dimer configuration, and exciton coupling between 

them leads to a red-shifted and less intense fluorescence. Finally, at coverages exceeding a 

monolayer, molecular aggregates and eventually α-phase crystals are formed wherein 

fluorescence is almost entirely quenched by efficient non-radiative decay pathways due to 

intermolecular energy transfer. Near-field measurements with a plasmonic Au probe showed 

that both enhancement of fluorescence and Raman, as well as quenching of fluorescence, can 

occur at probe-surface distance <50 nm. The enhancement factors responsible were 

estimated at ~500X compared to the far-field. Simultaneous collection of topography and 

near-field fluorescence / Raman spectra were acquired for nanopatterned H2Pc films with a 

lateral spatial resolution of 25 nm to assess local variations in molecular packing and surface 

coverage. Overall, this work provides the first emission-based measurements of bimolecular 

exciton coupling in solid-state H2Pc films before the onset of complete fluorescence 

quenching.   
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Appendix (A3) 

 

A3.1 XRD measurements of H2Pc film crystal structure 

XRD measurements were performed on H2Pc films of varying thickness to determine the 

packing arrangement adopted by the structures revealed in the AFM images. There are three 

known and fully characterized crystal structures of H2Pc, termed the α, β, and X phases 1-2. 

Thermal evaporation or organic molecular beam epitaxy of H2Pc usually results in films in 

the α or β phases 3, which are both herringbone structures that differ in their molecular tilt 

angles (28° and 46°, respectively). Past literature results suggested that for the growth 

conditions used in this study, the α-phase should be formed. In Figure A3.1, the 20, 40, and 

100 nm thick films display two diffraction peaks having d-spacings that agree with those 

previously reported for α-phase H2Pc. Significant peak broadening in the 20 and 40 nm film 

data is believed to be a result of decreasing average crystallite size, in accordance with the 

Sherrer equation. For films ≤10 nm thick, there were no detectable diffraction peaks. We 

believe this is due to very small crystal domains that offer an insufficient number of 

diffracting planes to yield constructive interference. The AFM images of these samples show 

a smooth transition between individual nanocrystals on a glass surface and the formation of a 

continuous film (Fig. 3.1 main text). It cannot be determined from the available AFM and 

XRD data if the packing structure of these nanocrystals differs significantly from the α-H2Pc 

formed in thicker films. 
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Figure A3.1 X-ray diffraction data from H2Pc films of varying thickness grown on glass 

coverslips via thermal evaporation. The observed peaks at 7.1° and 13.9° are close to the 

reported literature values of 6.8° and 13.6° for α-phase H2Pc 1. The small 0.3° difference is 

likely due to small errors in the planarity of the sample holder or substrate. Peak broadening 

is observed for thinner films as the average crystallite size decreases. 

 

A3.2 Far-field resonant Raman spectrum of metal-free phthalocyanine 

The Raman spectrum shown below (Fig. A3.2) was collected from a 10 nm thick H2Pc film 

using the confocal microscope mode of the TENOM instrument with 647 nm illumination. 

The spectrum agrees well with previous H2Pc Raman spectra collected at excitation 

wavelengths of 633 and 623 nm 1, 4. This measurement is taken as evidence that H2Pc is not 

reacting or decomposing during the thermal evaporation process. The excitation energy 

should be accounted for when comparing H2Pc Raman spectra, as the molecule has strong 

absorption in the red portion of the visible spectrum [Fig. 3.2(a) main text]. Hence, the peak 

intensity ratios obtained will be a strong function of excitation energy within the resonance 

Raman regime. At higher wavenumbers, the start of a broad photoluminescence band can 

also be seen. This emission was seen out to roughly 1 µm, at which point the CCD camera 

sensitivity drops off.  This photoluminescence was only observed for films ≥2-4 nm thick. 
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Similar photoluminescence in α-phase H2Pc films has been noted previously, with the effect 

being attributed to the radiative decay of excitons at defect sites in the films 1. 

 

Figure A3.2 Far-field Raman spectrum of a 10 nm thick H2Pc film thermally evaporated 

onto a glass coverslip. Collection time = 30 s, 647.1 nm excitation with ~1 mW at sample. 

 

 

 

A3.3 Spectra fitting procedure for H2Pc fluorescence 

When examining far-field fluorescence spectra collected from H2Pc nanofilms of varying 

thickness, it was immediately apparent that both the intensity and shape of the emission 

varied widely. The belief was that the observed differences were due to different H2Pc 

structures distributed heterogeneously on the glass surface. These could include “isolated” 

H2Pc molecules (those with no other H2Pc molecules immediately adjacent), as well as small 

aggregates (dimers or several molecules). At the surface coverages measured here (0.1-0.4 

ML), the lateral size of the laser spot (500 nm dia.) can be used to estimate that roughly 104 

H2Pc molecules are contributing to each spectrum. An effort was then made (details below) 

to decompose the observed fluorescence spectra into a linear combination of characteristic 

emission profiles from isolated H2Pc molecules and red-shifted emission from H2Pc 

aggregates. 
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(i) Isolated H2Pc fluorescence spectrum 

High intensity fluorescence emission was only observed in samples with very small amounts 

of H2Pc (< 0.4 ML). Additionally, the shape of this emission was found to be identical 

across multiple samples and measurement locations. The combination of high intensity, low 

surface coverage, and a uniform emission profile all point to the source of this signal being 

isolated H2Pc molecules. A single spectrum with very high signal intensity (to minimize 

detector noise) was selected to represent this emission, and a smooth interpolating function 

was fit to the data (Fig. A3.3). A baseline subtraction was also performed to adjust the 

interpolating function baseline to zero. This function is labelled “IsolatedH2Pc[λ]” in the 

fitting equation (Eq. A3.1) presented later in this appendix. 
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Figure A3.3 Experimental fluorescence spectrum of isolated H2Pc molecules on a glass 

surface and the interpolating function “IsolatedH2Pc[λ]” used to represent this emission in 

Equation A3.1. 

 

(ii) Red-shifted fluorescence from H2Pc dimers and small aggregates 

A common feature of the lower intensity fluorescence spectra was they were always red-

shifted (peak λ = 696-702 nm) when compared to the isolated H2Pc data (peak λ = 693 nm). 

This red-shift was attributed to intermolecular exciton coupling between adjacent H2Pc 

molecules on the glass surface (see main text for details). The shape of the distribution also 
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changed from that of isolated H2Pc, becoming roughly symmetric about a peak wavelength. 

However, both the peak wavelength and width were found to vary between samples and 

locations. These variations were rationalized as a distribution of coupling geometries 

between H2Pc molecules that are all present on the glass surface. The choice was made to 

represent this range of behavior using a single, characteristic profile. A Gaussian function 

with adjustable center wavelength (λ) and width (σ) was fit, using a sum-of-squares error 

minimization criterion, to a sample of 20 red-shifted fluorescence spectra picked at random 

from various samples (Fig. A3.4). Averaging the fit results yielded a characteristic Gaussian 

function with λ=699 nm and σ=6 nm. This single function was then used to fit the red-

shifted fluorescence component in all the experimental data collected. 
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Figure A3.4 Four representative spectra showing red-shifted fluorescence from H2Pc dimers 

and small aggregates. Both the peak intensity and peak width are observed to vary between 

spectra. This is attributed to a distribution of H2Pc aggregates being present on the surface. 

These spectra are a subset of the 20 spectra averaged to produce the characteristic Gaussian 

function used for peak fitting. 

 

After determining the two representative emission profiles, the fluorescence spectrum at 

each spatial location in three 2D datasets was fit to a linear combination of these functions 

scaled by the adjustable amplitudes A1 and A2. The fit was done using the built-in 

“NonlinearModelFit” algorithm in Mathematica. An example of the fit process is shown in 

Figure A3.5 for a fluorescence signal of intermediate intensity. Qualitatively, the fits were 
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found to work well across all the datasets analyzed. Appendix A3.4 provides a quantitative 

evaluation of the fit quality. 

              (Equation A3.1) 
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Figure A3.5 Example of the fitting procedure applied to a single fluorescence spectrum 

from a 0.53 ML coverage H2Pc sample. The solid green line is the sum of the A1 (blue) and 

A2 (red) curves and can be seen to closely capture the shape of the experimental data (gray). 

 

A final point on the fit procedure is that the reported values for A1/A2 in the main text (Figs. 

3.3 and 3.6) are actually the ratio of areas, not amplitudes, for each fluorescence component. 

The area under each curve is proportional to the total fluorescent counts detected. For equal 

amplitudes, the area ratio of the isolated H2Pc spectrum over the Gaussian function is 0.89. 

Adjustment by this factor is also why the text refers to the A1/A2 values as the “integral 

ratio”. 

 

A3.4 Assessing the quality of the spectra fitting procedure 

The metric used by Mathematica for the spectra fitting was a sum-of-squares (SOS) error 

minimization. Plots of the SOS errors are reported on the subsequent page (Fig. A3.6) under 
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the title “Absolute fit error”. When examining these plots, it is immediately apparent that 

there is a strong correlation between fluorescence intensity and error magnitude. This makes 

sense as even small deviations in the fit shape for high intensity spectra can produce local 

differences of hundreds of counts between the data and fit curve. 

 

A more effective basis for comparison is thus to normalize each spectrum by its mean 

intensity value before computing the error. This metric compares the fits on an equal 

intensity basis and is shown in the “Normalized fit error” images. The normalized plots 

reveal that large relative fit error values are actually encountered in locations where the 

fluorescence intensity is low. This includes only certain parts of the 0.09 ML and 0.53 ML 

datasets but encompasses most of the 1.3 ML image. This trend is due to the fluorescence 

intensity at these locations approaching the noise level of the CCD detector. However, the 

fact that uniformly low relative errors are obtained for all the locations with medium to high 

fluorescence intensities is a strong indication that the fit procedure is effective at describing 

the spectra. 
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Figure A3.6 Assessing the quality of the fluorescence spectra fitting procedure for each of 

the three H2Pc samples analyzed. The “Absolute fit error” images show the total sum-of-

squares difference between the fit model and experimental data (calculated from 680-720 

nm). The “Normalized fit error” images use the same sum-of-squares calculation, but first 

normalize each individual spectrum by its average signal intensity (average counts). The 

anomalous bright spot seen near the center of the normalized fit error image for the 0.53 ML 

sample is due to a cosmic ray artifact. 



 

 90 

A3.5 Separating fluorescence and Raman signals in TENOM spectra 

Figure 3.6 in the main text presents simultaneously collected TENOM fluorescence and 

TENOM Raman images from a patterned H2Pc film. The energies of these two emission 

processes overlap, and correctly quantifying them required a means of separating their 

respective signals. This was accomplished by slightly modifying the A1/A2 fit procedure 

described above. Instead of fitting the fluorescence emission over the entire spectral region, 

the fit was restricted to consider only a pair of spectral regions that were relatively free of 

Raman peaks (Fig. A3.7). The integral of the A1/A2 fluorescence peaks found from this fit 

procedure was then used to create the near-field TENOM fluorescence image (Fig. 3.6 lower 

left panel). The near-field TENOM Raman image (Fig. 3.6 upper right panel) was 

subsequently formed by subtracting the A1/A2 fluorescence fit from the full spectrum and 

integrating the remaining signal over the range 716-720 nm. This integration range includes 

only the highest intensity Raman peak, which happens to also have the least overlap with the 

underlying fluorescence emission. 

Fluorescence > Raman Fluorescence = Raman Fluorescence < Raman

fit region #1
data points = 264
fit weight = 1

fit region #2
data points = 22
fit weight = 12

To give equal influence to each of the two highlighted 
regions, the relative fitting weight per data point in fit

region #2 was increased by a factor of 12.
 

Figure A3.7 Examples of the modified fit procedure used when overlapping Raman and 

fluorescence optical signals were present. The two red shaded regions indicate the data 

points that were used to fit the fluorescence profile. These portions of the spectrum were 

chosen specifically to avoid contributions from Raman peaks. The three spectra show the 

modified fit procedure works well over a wide range of Raman-fluorescence intensity ratios. 
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A3.6 Photobleaching rate of H2Pc fluorescence 

For both as-deposited and annealed films of H2Pc, photobleaching of the fluorescence 

emission as a function of the excitation laser power and exposure time was observed. A 

quantitative example of this effect is given below for a 5 ML annealed sample. The 

measurement was made with the confocal microscope portion of the TENOM instrument, 

with successive fluorescence spectra being collected over the same sample area. The laser 

power at the sample is roughly 100 μW and the collection time per pixel is 1 s. 
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Figure A3.8 Photobleaching of fluorescence from an annealed H2Pc sample. The intensity decays to 
50% of the initial value by 30 s. The dashed line at 2 s indicates the equivalent exposure time for the 
2 nm retraction point cited in the discussion of Figure 3.7(c) in the main text. 
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Chapter IV: Quantitative comparison of plasmon resonances and field 

enhancements of near-field optical antennae using FDTD simulations 

 

 

Abstract 

Plasmon resonances and electric field enhancements of different near-field optical antenna 

probes with engineered plasmonic nanostructures at their apexes were quantitatively 

compared using finite difference time domain (FDTD) optical simulations. Although many 

probe designs have been tested experimentally, systematic comparison of the field 

enhancement characteristics of different probes has not been addressed in the literature, due 

to differences in instrument configuration (STM vs. AFM vs. SNOM), optical system design 

and readout mechanism (probe excitation and light collection schemes, Raman vs. 

photoluminescence), and probe material and geometry. In the present study, we find that the 

refractive index and extinction coefficient of the probe support material, e.g., for the case of 

an AFM tip functionalized with a (plasmonic) nanoparticle, are critical in controlling the 

overall plasmonic behavior of the optical antenna. Support materials with strong absorption 

at optical energies (Pt, W) dampen plasmon resonances and lead to lower enhancements, 

while those with low absorption (SiO2, Si3N4, Si) increase enhancements by modifying the 

extinction cross-section of the nanostructure. Using a set of physically realistic constraints, 

probe structures were optimized for peak plasmonic enhancement at common near-field 

optical wavelengths (633-647 nm). Probes with focused ion-beam milled grooves near the 

probe apex gave the largest local field enhancements (~30x). Moreover, when compared to 

an unstructured metal cone of similar size, grooved probes gave 300% improvement in field 

strength, which can boost tip-enhanced Raman spectroscopy signals by 1-2 orders of 

magnitude. Moreover, the resonance of these high-enhancement structures can be easily 

tuned to cover visible and near-infrared energies by varying the plasmonic metal (Ag or Au) 

and groove position relative to the apex. Overall, grooved probes may be very useful in near-

field optical experiments where signal levels are particularly low, such as those encountered 

when analyzing non-metallic substrates where gap-mode plasmons cannot be leveraged. 
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A. Introduction 

The production of plasmonic nano-antennae with reproducible large field enhancements has 

remained a persistent challenge in the fields of tip-enhanced near-field optical microscopy 

(TENOM) and tip-enhanced Raman spectroscopy (TERS). The most common methods of 

probe fabrication, namely metal-coating of AFM cantilevers 1 and electrochemical etching of 

metal wires 2, are known to produce structures with highly variable enhancements, largely 

caused by nano-structural differences 3-4. One strategy that has partially mitigated issues with 

probe variability is the use of metallic or plasmonic substrates to operate instruments in a so-

called “gap-mode” configuration 5-8, where intense (100x enhancement) and spatially 

localized fields are generated between the probe and substrate. Although gap-mode optical 

signal levels are high enough to meet the requirements of many near-field experiments, there 

are a wide range of dielectric, semiconductor, and organic surfaces of interest that cannot 

make use of this mechanism. For these substrates, maximizing probe enhancement is critical, 

especially for 2D near-field imaging where collection times per pixel must be small (<1 s). 

 

In addition to increasing the magnitude of electromagnetic fields, there is also a desire to 

control the spatial distribution, polarization, and resonant energy of the near-field optical 

antenna probe. The polarization and near-field spatial distribution are known to strongly 

alter Raman scattering processes compared to far-field measurements 9-10. Modeling and 

reproducibly controlling these effects is a prerequisite for quantitative analysis of near-field 

Raman spectra. Additionally, a few TERS experiments have demonstrated that extremely 

high spatial field confinements (<1 nm) are possible, allowing chemical images of individual 

molecules to be obtained 11-13. Although the full mechanism of this confinement is still an 
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active area of research, it is clear that tuning the local plasmon resonance of the probe to 

match the energy of molecular transitions is a necessary component in the process. 

 

All the aforementioned applications would benefit from reproducible fabrication of near-

field probes with precisely controlled nanostructures. Several means of accomplishing this 

have been proposed, including focused ion-beam milling (FIB) to create arbitrary 3D 

antenna shapes 14 or attachment of a plasmonic nanoparticle to the probe apex 15-16. The 

common trait between these structures is that they possess localized surface plasmon (LSP) 

resonances that can be tuned as a function of material and geometric parameters. Direct 

comparison of the achievable enhancements from these designs has not been possible 

experimentally due to variability in the design wavelengths, instrument geometries, probe 

dimensions, and reporter molecules. 

 

In the present work, finite difference time domain (FDTD) simulations were used to 

quantitatively assess of the performance of four different resonant probe designs that have 

been proposed and fabricated by groups in the near-field research community. The probe 

designs were then geometrically optimized to have localized surface plasmon (LSP) 

resonances in the 633-647 nm spectral range using a set of physically relevant constraints. 

The lessons learned from our analysis are intended to assist experimentalists in choosing 

physical parameters that maximize enhancements achievable for a given probe design. 
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B. Modeling methods 

FDTD calculations were performed using Lumerical software. For the majority of 

simulations, a scalar Gaussian beam source, with 11-pt. multifrequency beam correction and 

1 μm beam waist (1/e field points), was used in a 45° inverted illumination geometry. For 

the Au-coated Si cones in Figure 4.2 and tests using optimized structures from Figure 4.7 

with varying substrate materials, a 45° side-on illumination source (i.e., above the glass 

substrate) was used instead, with all other source and simulation settings held constant. The 

advantage of a Gaussian beam source over a standard plane wave is that for optical 

excitation at non-normal angles, relative to the Cartesian simulation axes, the broadband 

frequency response can be accurately extracted from a single simulation. For probe-substrate 

simulations, a 1 nm gap was left between the lowest point of the probe apex and the 

substrate surface. Field values were recorded along a line at the center of the gap region (0.5 

nm below the probe) that spanned the width of the entire probe apex. Plots that report E or 

Egap values refer to the maximum field recorded along this line field monitor. This procedure 

was necessary to account for small changes in the maximum field position that occur when 

using angled optical sources. The same procedure with a 0.5 nm probe offset was used for 

simulations without a substrate [Fig. 4.1]. In all cases, the field values were normalized by 

those produced at the same spatial location under identical simulation settings, but with the 

probe structure entirely removed (labelled E0). An advantage of reporting results in this 

manner is that the influence of source type and excitation geometry are minimized, allowing 

a more direct focus on the physics of the near-field probes being studied. 

 

To minimize computation times while maintaining accuracy, adaptive meshing was utilized. 

A 1 nm mesh was applied over the first 100-200 nm of the probe apex, with a finer 0.25 nm 
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mesh present only along the center of the probe-substrate gap. Perfectly matched layer 

boundary conditions were used in all simulations to minimize reflected light. Rigorous 

convergence testing was performed for all simulation parameters, including the size of 

custom mesh regions, minimum mesh sizes, and optical source settings. Parameters were 

deemed converged when subsequent refinements produced relative changes in local fields 

values of <5%. Experimental permittivity data for Au, Si, W, and Pt were taken from The 

Handbook of Optical Constants of Solids by E. Palik 17 and Si3N4 refractive index values 

from the work of Luke et al.18 

 

C. A general model for the optical response of near-field probes 

Extensive simulation work has been carried out using finite difference time domain (FDTD), 

finite element (FEM), and boundary element (BEM) methods to investigate the optical 

response of near-field probes as a function of their physical properties (apex radius, cone 

angle, probe/substrate materials) and illumination geometry 19-23. A fundamental question 

when performing such work is how to accurately represent the probe, which in reality, is a 

spatially extended structure such as a metallized AFM tip or electrochemically etched metal 

wire, within a computationally feasible, microscopic simulation volume. Most studies use a 

metal cone to represent the general shape of a near-field probe, and investigate its optical 

behavior as a function of cone length, excitation source (beam or plane wave), and 

simulation boundary conditions 24-26. A similar procedure was followed in the present work, 

with a generalized summary of the results presented in Figure 4.1. 
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Figure 4.1 Example of how LSP modes of Au cones are very sensitive to cone length, 

optical excitation source, and simulation boundary conditions. (a) When using a focused 

beam source of finite width (1 μm), the apex fields converge to the infinite cone limit when 

the cone length >6 μm. (b) Field convergence is much slower when using a planewave 

source spanning the entire simulation cross-section, due to the launching of surface plasmon-

polaritons (SPPs) along the cone lateral surface. (c) Combining a Gaussian beam source and 

perfectly matched layer (PML) boundary conditions along the cone’s upper boundary allows 

a 2 μm structure to accurately reflect the infinite cone limit. 

 

Au cones of varying length (L) were optically pumped using either a Gaussian beam source 

[Fig. 4.1(a); FWHM=833 nm at λcenter=576 nm] or a planewave spanning the entire 

simulation cross-section [Fig. 4.1(b)]. The enhancement spectra of shorter cones (L = 500-

2000 nm) contain peaks and oscillations that correspond to LSP resonances supported by the 

finite metal surface between the apex and upper cone boundary. The intensity of these 

oscillations decreases for longer cones, and by L = 6 μm, they are completely absent for the 
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beam source, resulting in a smooth enhancement spectrum that does not change with further 

increase in cone length. This transition occurs as the cone length exceeds the attenuation 

length of surface plasmon-polaritons (SPPs) confined to the Au-air interface, which is <5 μm 

for optical wavelengths 27. SPPs launched at the apex will be almost fully attenuated before 

reflecting off the upper cone boundary and returning to the apex, thus making the 6+ m 

cones respond equivalently to those of infinite length. In contrast, convergence to the infinite 

cone limit is slower for a planewave source, which fills the entire simulation space, because 

SPPs are launched all along the cone. As shown in Figure 4.1(c), the simulation volume can 

be significantly reduced (i.e., 2 m cone, converging to the 6 m and infinite cone limit with 

< 1% error across all λ) using a beam source and perfectly-matched layer (PML) placed 

along the upper cone surface. The PML acts as a nearly perfect absorber, eliminating 

reflection of SPPs from the upper boundary for the Gaussian case, but only partially for 

planewave excitation. 

 

There are numerous literature examples of cones with L ~ 100-1000 nm being used as 

models of scanning near-field probes 28-33. As observed for the shorter cones in Figure 4.1, 

this causes the plasmonic response of the structure to be dominated by LSP modes and SPP 

reflections. In our work, we are specifically interested in characterizing the optical physics of 

probes with resonant apex nanostructures, and the presence of any plasmon resonances 

supported by the larger probe structure will tend to obscure those effects. For this reason, all 

subsequent results presented use the 2 μm cone + PML model. This ensures the baseline 

probe optical response is relatively flat and smooth, making it straightforward to identify the 

appearance of new LSPs created by apex nanostructuring. 
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The results presented in Figure 4.1 are exclusively for solid Au cones, but near-field probes 

are also commonly made by metallizing an AFM tip. Simulations of Si probes with apex 

radii between 5-50 nm and uniform Au coatings of varying thickness were performed to 

determine if significant differences existed in the physics of these two probe models. The 

metal coating thickness and underlying support radius were varied while keeping the total 

radius (support+coating) constant. Enhancement spectra were examined to determine what 

coating thickness was necessary to completely mask the presence of the Si support. Figure 

4.2(a) gives an example of results for a fixed probe radius of 25 nm, where a 20 nm Au 

coating on 5 nm Si probe is required to produce field enhancement within 10% of the solid 

Au probe. It is also seen that thinner Au coatings have large enhancement variations across 

the visible spectrum, likely due to interference effects from reflections within the cavity 

formed by the Au-coated Si probe apex. This interference phenomenon may be constructive 

(= 500 nm) or destructive (= 650 nm), and depends on the coating thickness, excitation 

wavelength, and optical pumping configuration. In practice, such interference is challenging 

to rationally incorporate into a probe design, as it is highly dependent on the local 

morphology of the probe and the excitation geometry of the optical source. No experimental 

demonstration in the literature could be found where metal coating thickness was used to 

tune interference resonances of this type. 
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Figure 4.2 Plasmonic response of Au-coated Si probes of varying size in comparison to 

solid Au probes. (a) Enhancement spectra of Au-coated Si probes with a constant total radius 

(Si base + Au coating) of 25 nm and a cone angle of 15°. The 5 nm Si + 20 nm Au probe 

produces an optical response nearly identical to that of the 25 nm solid Au cone. (b) The 

minimum Au coating thickness required to optically mask the presence of the Si substrate as 

a function of apex radius. The excitation source was a 45° Gaussian beam with side-on 

illumination geometry with the probes placed 1 nm above a glass substrate. 

 

The same process of varying Au/Si thickness was repeated systematically for probes with 

different total radius values until the minimum required Au coating thickness across a range 

of common near-field probe sizes could be determined [Fig. 4.2(b)]. A 60 nm Au coating 

was found to fully mask the presence of the Si support, regardless of the size of the Si 

structure. This is caused by the Au coating becoming essentially opaque, due strong 

absorption at optical frequencies, which prevents light from reaching the Si core. The 

transmission through a 60 nm Au film at normal incidence is <10% over the full visible 

spectrum. For smaller Si probes, the amount of Au deposited can be reduced significantly, 

e.g., a 5 nm Si probe requires only 15 nm of Au. The minimum amount of metal possible 

should be deposited to minimize the size of the probe apex, as sharper probes yield larger 

enhancements due to geometric field concentration (i.e., the lightning rod effect 34), while 

also avoiding interference effects present for thin coatings. The general conclusion of our 



 

 101 

simulation benchmarking work is that a single model, namely the solid metal probe, can 

capture the important plasmon physics involved, even for metal-coated probes that would be 

used in practice. When combined with the local field normalization procedure used to reduce 

the influence of excitation geometry and optical source [see Numerical Methods], along with 

the 2 μm cone + PML model [Fig. 4.1] removing resonance contributions from the larger 

probe structure, a simulation procedure has been developed that allows the apex optical 

physics of near-field probes to be studied in a very general manner. 

 

D. Engineering and optimizing resonant optical antennae 

A quantitative comparison of several probes with specifically designed plasmonic 

resonances was made using the general FDTD framework developed in the previous section. 

The purpose in doing so is to provide the first quantitative comparison of the achievable 

enhancements from these structures, which is experimentally difficult due to differences in 

instrumentation, design wavelengths, and reporter molecules used to generate near-field 

scattering signals. A secondary goal is to understand how different material and geometric 

parameters influence the plasmonic behavior of probes, and to provide guidance on how to 

optimize the performance of these structures. 

 

A straightforward means of producing a resonant near-field probe is the addition of a 

plasmonic nanoparticle/structure to the apex of a larger probe ‘support’ or tip. Attaching 

particles with diameters less than several hundred nanometers is challenging, but can be 

done by functionalizing the probe and/or nanoparticle with an organic linker (e.g., epoxy, 

sticky polymers, biotin-streptavadin, complementary DNA) 15-16 and then picking up a single 

particle by scanning the probe over a surface. Alternatively, plasmonic nanoparticles can be 
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selectively grown at the probe apex via electrochemical reduction of metal ions in solution 

35-36. Regardless of the specific fabrication process used, the presence of the probe support 

material will modify the plasmon resonance of the attached nanoparticle. To characterize this 

effect, simulations were performed on a 50 nm dia. Au sphere with a 10 nm wide connecting 

junction of varying material [Fig. 4.3]. Six different junction materials were tested, three 

with very low extinction coefficients (SiO2, Si3N4, Si) and three that strongly absorb at 

visible energies (Au, W, Pt). All of the high absorption materials were found to decrease 

local field enhancements relative to those of the isolated Au nanoparticle, due to the dipolar 

LSP of the sphere losing energy via absorption in the connection junction during each 

optical cycle. This damping contribution adds to the damping inherent to the nanoparticle 

and decreases the amplitude of charge oscillations in the nanoparticle when an optical field 

is applied. 
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Figure 4.3 Perturbations to the dipolar LSP mode of an Au nanoparticle (dia.= 50 nm) 

caused by the addition of a 10 nm wide connecting junction. Materials that strongly absorb 

at optical energies (Au, W, Pt) cause damping of the plasmon resonance and lead to lower 

field enhancements, while those with small extinction coefficients (Si, Si3N4, SiO2) increase 

the coupling of far-field radiation into the dipolar plasmon mode of the nanoparticle. 
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The observation that low extinction coefficient materials actually increase enhancements 

above those of the isolated sphere was unexpected. Justification for this effect can be found 

in the Mie solution for the extinction cross-section of a metal sphere in the quasistatic limit 

(size << λ) 37. In this case, extinction is proportional to the polarizability of the sphere. The 

support material, with a refractive index greater than unity, increases the polarizability of the 

combined sphere-support structure, leading to a larger cross-section for coupling far-field 

radiation into the dipolar plasmon mode. This explanation is supported by the observation 

that absorption cross-sections for the apex spheres increased by ~100% for the Si junction 

compared to the isolated nanoparticle. Higher refractive index supports (Si) are more 

polarizable than low refractive index materials (SiO2), which increases the magnitude of this 

effect and produces larger relative field enhancements. 

 

The conclusion from Figure 4.3 would appear to be that a high refractive index support 

material with low absorption, such as Si, is the ideal support for a nanoparticle-based near-

field probe. Surprisingly, simulation and experimental data on Ag-coated conical supports 

show a different behavior, with low index materials yielding the largest optical fields 38-39. 

This apparent contradiction was resolved when two additional resonant probe geometries 

were studied, namely a cone with an Au-coated apex and an Au-hemisphere on a post [Fig. 

4.4]. The support materials that maximized enhancement were found to vary for both of 

these structures, as well as the nanoparticle functionalized probe discussed earlier, with 

refractive index values ranging from 2-4. From these data, it is clear that the idea of a 

universally superior support material is not correct. Instead, the support refractive index 

should be viewed as a parameter that can be optimized for a particular apex geometry. In 

general, higher index materials work well for solid plasmonic structures, where the support 
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is connected at the surface, while low index supports are superior when the plasmonic metal 

is a thin film coating. Note that in all cases, the lossy Au and Pt substrates still produce 

weaker enhancements, consistent with the conclusions from Figure 4.3. 
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Figure 4.4 Enhancement spectra (Egap/E0) of near-field probes with resonant Au-apex 

nanostructures can be maximized by varying the refractive index of the support material. 

Probes were placed 1 nm above a glass surface with a 45° inverted beam source, and the 

support structures were extended to the simulation boundary, places 2 μm above the surface. 

The approximate refractive indices of the low absorption materials studied are: n = 1.5 

(glass), 2 (Si3N4), 3 (a generic dielectric), and 4 (Si). Au and Pt were included as examples 

of lossy support materials and produced lower field enhancements for all three geometries 

simulated. 

 

A resonant probe design with large potential enhancement that makes use of the 

aforementioned results can be constructed by FIB-milling a circular groove into a metallized 

commercial AFM probe a short distance above the probe apex 39-40, forming a nano-cone on 

the end of a dielectric post [Fig. 4.5]. A possible issue when applying the metal coating prior 

to FIB processing is that ion implantation from the FIB beam may degrade the plasmonic 

properties of the metal. This can be avoided by first making FIB cuts on the bare probe, and 

then evaporating metal normal to the probe axis so that the apex cone acts as a shadow mask 
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39. The position and size of the FIB cuts determine the apex length, post length, and post 

width of the final structure. 
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Figure 4.5 Effects of different geometric parameters on the field enhancement (Egap/E0) 

produced by a metal-coated SiO2 probe with FIB structuring near the apex. (a) The LSP 

wavelength can be tuned by the apex length, with longer apexes producing larger 

enhancements. (b) A cut length of roughly 100 nm is necessary to optically decouple the 

metal apex from the coating on the rest of the probe surface. (c) The cone angle of the 

underlying support shows a weak positive correlation with enhancement. The default values 

of parameters not being varied in each series were: apex length = 75 nm, cut length = 100 

nm, and cone angle = 15°. In all cases the SiO2 apex radius was 5 nm with a 20 nm thick Au 

coating. 

 

Simulations were used to estimate the enhancements produced by this structure as a function 

of the apex length, cut length, and cone angle. The apex length is the parameter used to 

primarily control the LSP wavelength, with longer lengths leading to red-shifting of the 

resonance [Fig. 4.5(a)]. The additional length of the dielectric support post also increases the 

total polarizability of the apex, providing stronger coupling with far-field excitation and 
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hence larger enhancements. The cut length controls the optical coupling between the apex 

and support Au coatings [Fig. 4.5(b)]. Enhancement was found to increase with longer 

posts, with distances ≥100 nm being sufficient to optically isolate the apex metal layer from 

the rest of the probe tip. The cone angle is determined by the shape of the original probe 

being coated, but larger angles showing a weak positive correlation with enhancement [Fig. 

4.5(c)]. A variation on the Figure 4.5 structure, where FIB milling was performed parallel to 

the probe central axis instead of perpendicular to it, was proposed by Zou et al. 41. In this 

design, the apex metal layer is tapered, and our simulations show that dipolar LSP modes are 

relatively weak; as such, this probe design was not considered in subsequent simulation 

studies.  

 

Near-field probes that do not require a separate support, but instead involve direct 

structuring of a plasmonic material, have also been proposed. One design is a structure very 

similar to Figure 4.5, except that FIB cuts are now made in an etched, solid metal probe 42 

[Fig. 4.6(a)]. Simulations of an Au probe of this type were run, and the trends for apex 

length, cut length, and cone angle were found to be similar to those given in Figure 4.5. A 

new observation was the dependence of LSP strength on the FIB cut depth. The magnitude 

of peak enhancement increased with cut depths up to 20-30 nm, beyond which, deeper cuts 

only altered the LSP peak energy. Making the cuts too deep raises concerns about the 

mechanical stability of the probe. For this reason, it is recommended that a probe with a 

wide cone angle be used, and the cut depth not exceed 20-30 nm. The original study by 

Vasconelos et al. reported a TERS signal increase of 5x, before and after the FIB process, 

for a probe with a relatively narrow cut length (Lc ~ 25 nm) 42. Our simulations suggest that 

if the cut length were increased to 100 nm, while maintaining the same 20-30 nm cut depth, 
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the apex electric field strength could be further doubled, and the TERS signal enhancement 

would be increased by an order of magnitude. 
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Figure 4.6 Important geometric parameters to control field enhancement of FIB-milled, 

solid Au near-field probes. (a) Field enhancement at the resonance peak (Emax) for a 35° Au 

cone as a function of the FIB cut depth. A minimum cut depth of approximately 20 nm is 

required to maximize the LSP resonance supported by the apex. (b) The apex radius of 

curvature is the primary LSP tuning parameter for probes with a sphere and cone geometry. 

This type of structure can be produced by metal coating a commercial AFM cantilever with 

an electron-beam deposited apex structure 36. 

 

Another fully metallized probe design that has been proposed is to create a sphere at the end 

of a conical support and then apply a plasmonic metal coating [Fig. 4.6(b) inset]. Spherical 

structures can be grown on the apex of commercial AFM tips using electron-beam 

deposition of carbonaceous material 36, 43. In this case, the LSP energy is primarily controlled 

by the radius of the apex sphere, with the connection width between the sphere and cone 

acting as a secondary tuning parameter. Enhancements were maximized using a sphere 

radius of R = 75 nm, with radii >100 nm showing a rapid decrease in field strength, 

corresponding to a loss of geometric field concentration (i.e., the probe is no longer sharp 

enough for a strong lightning rod effect). Even for spheres of moderate size, there will be 

some reduction in the lateral spatial localization of the enhanced fields. For example, the 
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FWHM of the |E|4 profile along the probe-substrate gap nearly doubles from 12 nm to 22 nm 

for radius values of 35 nm and 75 nm, respectively. 

 

The important physical parameters of several probe designs have now been described, and at 

this point, it is useful to ask which of these structures can produce the largest enhancements. 

To help answer this question, an effort was made to optimize the enhancements of each 

probe over a commonly used wavelength range (633-647 nm, for HeNe and Kr+ laser lines) 

and subject to a similar set of design constraints [Fig. 4.7(a)]. The designs included were 

conical apex structures with FIB cuts in a metallized SiO2 support (Probe 1) and solid Au 

etched wire (Probe 2), an Si support functionalized with an Au nanoparticle (Probe 3), a 

metallized sphere-cone structure (Probe 4), and a smooth semi-infinite cone (Probe 5) as a 

point of reference. Final values of the geometric parameters for each optimized probe are 

provided in Table 4.1, along with the constraints enforced on these parameters to maintain 

physically realistic structures. To eliminate the influence of probe sharpness on 

enhancement, the apex radius of curvature of all probes was intentionally fixed at 25 nm, 

except in the case of Probe 4, where increasing this value was necessary to tune the LSP 

energy. 
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Figure 4.7 Comparison of several near-field probe designs that have been optimized for 

operation in the 633-647 nm wavelength range. (a) The Au-coated dielectric and solid Au 

designs with FIB cuts made near the apex were predicted to produce the largest apex field 

enhancements (Egap/E0). (b) Example of tuning the LSP energy of a metal-coated SiO2 probe 

over the full visible spectrum by varying the coating metal (Ag vs. Au) and apex length. All 

other parameters are the same as the Probe 1 structure in panel (a). Points represent the 

wavelength of maximum field enhancement. 

 

Probe #
Apex 

radius [nm]

Cone 

angle 

[deg.]

Apex 

length 

[nm]

Cut 

length 

[nm]

Cut 

depth 

[nm]

Conn. 

width 

[nm]

1 25 15 100 100 20 -

2 25 35 115 100 30 -

3 25 15 - - - 50

4 75 15 - - - 40

5 25 35 - - - -

Constraints ≥ 25 15-35 None ≤ 100 ≤ 30 ≥ 40
Apex radius

Conn. 
widthCut 

length

Cut 
depth

Apex length

Cone angle

 

Table 4.1 Geometric parameters of the optimized probe structures presented in Fig. 7. Cone 

angles in the range of 15-35° capture the apex profiles of commonly used commercial AFM 

tips and electrochemically etched wires. Constraints were placed on the allowed values of 

the cut length, cut depth, and connection width to maintain reasonable mechanical stability 

of the structures. Geometric constraints were imposed using conservative estimates from 

available experimental data on similar probes that have been fabricated and used in various 

scanning probe instruments. 
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Of the designs considered, maximum field enhancements (~30x) were achieved using probes 

with FIB-milled apex grooves (Probes 1 and 2). This corresponds to a 300% increase when 

compared to the unstructured metal cone (Probe 5), which may yield an improvement in 

TERS signal of two orders of magnitude, based on the typical |E|4 estimation. Moreover, the 

resonance energy for maximum enhancement can be easily tuned by varying the chosen 

plasmonic material and apex length [Fig. 4.7(b)]. Au coatings are effective above 600 nm, 

where absorption from interband transitions is avoided; Ag coatings are expected to be 

effective over the entire visible spectrum. Experimental measurements using EELS, dark-

field scattering, and TERS have verified the red-shifting of the LSP energy with increasing 

apex length 39-40, 42. Although not simulated here, experiments using Au probes have also 

shown that the LSP dipole mode can be further extended into the near infrared range 42. 

 

Nanoparticle functionalized structures (Probe 3) produced broadband enhancement of 

moderate intensity when a high refractive index support material (e.g., Si) was used. The use 

of metallic supports (Pt, W) led to much lower enhancements, while the use of another 

plasmonic material (Au) gave intermediate results, similar to the Probe 4 design. This 

suggests that dielectric probes with attached plasmonic nanoparticles are more effective than 

conductive probes with plasmonic structures selectively grown at the apex using 

electrochemistry. Enhancements were found to depend strongly on the nanoparticle 

attachment position (data not shown), with particles located on the side of probes yielding 

lower enhancements than attachments directly beneath the apex. This is because the 

nanoparticle dipolar LSP has two field nodes oriented nearly perpendicular to the sample 

surface, and the support more strongly influences the LSP when the support is placed 

directly at the position of the upper field node. It is expected that the enhancements of these 
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probes could be further increased by 2-3x via attachment of more asymmetric nanoparticles 

(e.g. nanorods) with the long axis aligned perpendicular to the sample surface. The sphere 

and cone geometry (Probe 4) gave relatively low enhancements, as the LSP energy could not 

be adjusted without increasing the apex radius of curvature, thereby reducing the effect of 

geometric field concentration. 

 

It should also be noted that the results presented in this work were obtained with the probes 

positioned 1 nm above an SiO2 substrate. A limited set of simulations were also performed 

using a 45° inclined, side-on excitation geometry in which the substrate material was varied 

(SiO2, Si, Pt, Au). The purpose of this study was to determine if the enhancement ratio of the 

resonant groove designs (Probes 1 and 2) compared to the unstructured cone (Probe 5) was a 

function of the substrate optical properties. For SiO2 and Si substrates, the on-resonance 

enhancement ratio was ~3, while for Au substrates the ratio decreased to 1.5. The lower 

relative improvement for Au substrates is caused by the existence of a strong gap-mode 

plasmon that is supported even in the case of the unstructured cone. This situation lessens 

the importance of the additional apex LSP mode. A Pt substrate was also tested as an 

example of a metal without optical plasmonic behavior, and an intermediate enhancement 

ratio of 2 was obtained. Thus, resonant probes are not as critical for improving signal levels 

when metallic substrates are used, but they may still provide increases in electric fields of 

50-100%. 

 

E. Conclusions 

FDTD simulations were used to evaluate the efficacy of several near-field probe designs 

with engineered localized surface plasmon modes supported at their apices. For probes with 
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a support material separate from the plasmonic metal used for primary optical field 

enhancement, such as plasmonic nanoparticle functionalized AFM tips, the refractive index 

and extinction coefficient of the support were found to be critical in controlling the 

plasmonic properties. Support materials with strong absorption at optical energies (Pt, W) 

were found to damp plasmon resonances and lead to lower enhancements, while those with 

relatively low absorption (SiO2, Si3N4, Si) could actually be used to increase enhancements 

by boosting the extinction cross-section of the nanostructure. These results imply that 

nanoparticle functionalized probes will yield greater enhancements than conductive 

structures created via electrodeposition of a plasmonic metal at the apex.  

 

Probe designs predicted to give the largest local field enhancement (~30x) were those with 

grooves near the probe apex, made using focused ion-beam milling. Compared to an 

unstructured metal cone of similar size, FIB-milled probes provide a 300% improvement in 

field strength, and a potential boost in TERS signals of 1-2 orders of magnitude. Moreover, 

the resonance energy of these high-enhancement structures can also be tuned to cover visible 

and near-infrared energies by varying the plasmonic metal (Ag or Au) and the groove 

position relative to the apex. A barrier to more widespread use of these designs is the 

production cost associated with milling individual probes. However, they should be viewed 

as a useful option for experiments where signal levels are low, particularly for non-metallic 

substrates where gap-mode plasmons cannot be leveraged, or for resonant spectroscopy 

applications where the probe plasmon energy must be precisely tuned to match molecular 

transitions. 
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Chapter V. Importance of Physically Relevant Length Scales in Predicting 

Field Enhancements of Plasmonic Nanoparticle Dimers 
 

Abstract 
 

The optical properties of two Au spheres with varying inter-particle distance were 

characterized using finite-difference time-domain simulations, with an emphasis on 

geometries where the particles are fused along a common boundary. Previous modeling 

efforts on this system predicted that fused geometries would produce very large surface-

enhanced Raman scattering (SERS) enhancements, significantly greater than those of the 

corresponding separated spheres. We demonstrate that these large enhancements are a 

numerical artifact caused by divergence of fields at the point of sphere surface intersection. 

The use of sub-nanometer spatial discretization within this region leads to the generation of 

arbitrarily large, highly-confined optical fields. Our own simulations, using a metal bridging 

structure to enforce physically relevant minimum gap distances on the order of 5-20 Å, yield 

much smaller field enhancements that are comparable to those estimated using more 

extensive non-local and quantum optical models. The effects of experimentally relevant 

geometric parameters, such as the inter-sphere contact area, surface intersection angle, and 

dielectric coating thickness, on the plasmon resonances of the separated and fused dimer 

structures are also examined. Fused sphere dimers are predicted to produce strong, tunable 

enhancements throughout the near-infrared spectrum, but the extreme sensitivity of these 

plasmon modes to small structural variations may hinder the reproducible fabrication of such 

optical antennae. 
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A. Introduction 

Near-field optical simulations are crucial for the rational design of structures that control and 

manipulate light over sub-λ length scales.  This is critical for both surface and tip-enhanced 

near-field optical spectroscopies, such as SERS, TERS, and SNOM. Numerical solutions of 

Maxwell’s equations provide a general framework for modeling electromagnetic fields in 

complex geometries, but appropriate physical models must be chosen to represent the system 

of interest. We will define classical optical models as those with locally defined permittivity 

values and discontinuous transitions between materials at interfaces. When using such 

models, there are several geometries known to produce divergent (infinite) electromagnetic 

fields. These include “sharp” features, such as spikes, corners, or edges with zero radius of 

curvature, as well as small gaps between structures. In the present work, we focus on the 

modeling of a particular plasmonic antenna geometry in which two spheres are joined along 

a common boundary [Fig. 5.1]. When treated classically, these structures produce divergent 

optical fields at the intersection of surface boundaries. Previous studies have not identified 

the singular nature of fields in this region, which has led to predictions of very large local 

electric fields 1-4. Our own classical optical simulations of fused Au spheres circumvent this 

issue by incorporating a cylindrical metal bridge that allows the minimum gap distance 

between sphere surfaces to be directly controlled. When physically relevant gaps in the range 

of 5-20 Å were tested, the resulting fields decreased significantly, on par with predictions 

from more detailed non-local and quantum optical models 5-7. 

 

Figure 5.1 illustrates the joined sphere geometry with and without a metal bridging structure 

present. Pairs of joined spheres will be referred to as fused dimers, while the more 

commonly studied system, spheres with a finite gap between them, will be separated dimers. 
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Although only a two-sphere model is discussed, the results obtained are generally relevant 

for understanding the optical transitions that occur during the joining of any two plasmonic 

nanostructures. The bridge is an Au cylinder with a radius that can be adjusted to determine 

the minimum gap length scale (Lmin). Previous work incorporating bridges into the 

simulation of sphere dimers has included distance-dependent conduction channels 7-8 and 

rounded metal toroids 9. Our contribution to this discussion is the first calculation of the 

electromagnetic enhancement factors using physically relevant minimum gap distances. 

Some important questions about dimer antennae may then be answered, including: Do 

separated or fused dimer structures offer the largest electromagnetic enhancements? How 

does the wavelength dependence of enhancement differ between these structures? What are 

the dominant geometric parameters that control resonant phenomena? We provide answers 

to all these questions in the subsequent sections. 
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Figure 5.1 Diagram of a fused sphere dimer geometry in which two Au spheres are joined 

along a common interface. The expanded views illustrate the difference between classical 

and bridged optical models at the point of surface intersection between the spheres. Several 

geometric parameters (Lc, θ, Lmin) are introduced that will subsequently be used to describe 

different structures under investigation. 

 

Several physical justifications exist for the use of a conductive bridge to help model very 

small gap distances. A direct argument is that transmission electron microscopy (TEM) 

images of fused nanoparticles display rounded points of intersection between particle 

surfaces, with a minimum gap width of roughly 1 nm 2, 10. This rounding is caused by atomic 
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rearrangements that occur during the fusing process. Even if some dimers do contain sub-

nanometer gaps, the physical size of analyte molecules may still limit the accessibility of 

these regions. For example, the size of a rhodamine 6G molecule, one of the most widely 

studied analytes in near-field Raman experiments, is on the order of 1 nm 11. 

 

Another argument for the use of metallic bridges is that they emulate certain features of 

more advanced optical models. Some of these latter techniques construct non-local 

permittivity functions that attempt to mimic the electron dynamics of real materials 12-16. 

Maxwell’s equations are then solved simultaneously with the constitutive permittivity 

equation. In the context of small gaps, most non-local models predict significant spatially 

spreading of charge at material boundaries, in contrast to the highly localized surface 

charging of classical models. At the smallest length scales, quantum optical calculations 

using time-dependent density functional theory are feasible. Fully atomistic studies are 

limited to nanoscale systems with relatively few electrons 17-18, but Jellium models, those 

that explicitly consider only valence electrons, can increase this size limit into the range of 

larger plasmonic nanoparticles 5-6. Quantum models also predict electron tunneling over sub-

nanometer gaps, allowing charge to be exchanged between structures. Both non-local and 

quantum models predict the emergence of novel charge-transfer plasmon (CTP) modes near 

the point of surface contact (fusing). Solid metal bridging structures partially imitate these 

effects by creating an artificial direct conduction pathway, the length scale of which is 

controlled solely by the inter-particle size of the bridge. 

 

It is important to note that there are variations in field predictions with different non-local 

and quantum optical models, but the plurality of the results can be summarized using two 
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guidelines. The first is that, for gaps in the 5-20 Å range, quantitative differences between 

classical and non-local/quantum models become significant (>50%), with classical models 

universally overpredicting local field strengths. The second is that at separations <5 Å, 

classical models give qualitatively incorrect results, showing increasing fields strengths, 

while non-local/quantum predictions show decreasing fields and a smooth emergence of 

CTP modes. Optical and electrical measurements on metal nanogaps have universally 

supported the non-local and quantum predictions 10, 19-24. Thus, it can be asserted that 

classical optical simulations of gaps below ~5Å do not produce physically meaningful 

results. It is still common to find literature examples of classical optical solvers applied to 

gaps on this length scale 9, 25-29. In some cases, qualifiers are included stating that the results 

for such small gaps may be unreliable. These can be easy to miss, and it is ultimately up to 

researchers to be well-informed on the subject and actively discern whether the results of 

optical simulations correspond to reality. 

 

B. Modeling Methods 

Finite-difference time-domain (FDTD) optical simulations using the Lumerical software 

package were used to characterize the optical response of plasmonic dimer geometries. The 

simulations consisted of a cubic volume (0.5 x 0.5 x 0.5 μm3) with perfectly matched layer 

boundary conditions and the dimer structures centered at the origin. A total-field scattered 

field broadband optical source, which is equivalent to a planewave, with linear polarization 

along the interparticle axis was placed 50 nm away from the dimer. Adaptive meshing was 

used to define a 0.25 nm mesh region over the volume of the dimers, with an additional fine 

mesh region equal to ¼ the gap distance being implemented for geometries with gaps less 
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than 1 nm. Extensive convergence testing was performed on all simulation parameters to 

confirm that results were free of numerical artifacts. Optical data for Au at visible and near-

infrared energies was obtained from The Handbook of Optical Solids 30. 

 

Calculating the electromagnetic enhancement factor (EM-EF) of a dimer antenna requires 

integration of the electric field over the full surface of the structure. In three dimensions, this 

can generate excessively large data files that are cumbersome to store and analyze. A 

simplified procedure was developed in which field data from a single plane monitor, or two 

plane monitors in the case of fused dimers, was sufficient to approximate the full surface 

field integrals with errors below 1%. This was possible because the antenna sizes were small 

(<10%) compared to the optical excitation wavelengths, and the polarization was along a 

symmetry plane of the dimer structure. The full details of this procedure are provided in 

Appendix A5.1. 

 

C. Demonstration of field divergence in classical optical models 

Before presenting results on dimer systems, it is useful to examine a quantitative example of 

what field divergence looks like in classical optical simulations. The effect has been well-

characterized for separated dimers as the inter-sphere distance approaches zero 9, 31. In this 

case, the sphere surfaces undergo transient charging in the presence of an applied oscillatory 

electric field (light). Classical models do not allow charge transfer to occur between the 

surfaces over any gap distance. Thus, as the surfaces are brought together, the field 

magnitude between them will increase in an unbounded manner, with the divergence scaling 

approximately as |E| ~ 1/(gap-width)n 3, 32-33. The exact exponent (n) is usually close to 1 but 

depends on the specific geometry and materials involved in the gap formation. 
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The situation changes in the case of fused dimers, as there is now a direct conduction 

pathway between the spheres (the fused segment). In light of this, it is not obvious that 

divergent fields would persist. To show this is in fact the case, a simple 2D model using a 

triangular notch in a planar substrate was studied [Fig. 5.2]. A broadband plane wave (450-

800 nm) was directed at normal incidence onto the 10 nm deep notch. For the first set of 

tests, the notch angle was held constant at 80° while the simulation mesh size was reduced 

over two orders of magnitude (10 to 0.1 Å). The maximum electric field, selected over the 

entire visible spectrum, was recorded at the base of the notch for each mesh size [Fig. 

5.2(a)]. The field values were found to monotonically increase and were well-described by a 

power law relation. The divergence was strongest for visible light active plasmonic 

materials, both Au and Ag, with scaling exponents around 0.9. In contrast, the scaling for a 

non-plasmonic metal like Ti was only 0.35, and that of SiO2 was <0.1. The exponents were 

also found to depend on the notch angle; for example, the Au exponent decreased to 0.64 

with a 60° notch angle. These results show that the predicted field values can be varied over 

several orders of magnitude simply by changing the discretization used at the singular 

simulation region, with arbitrarily small meshes producing arbitrarily large local fields. 
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Figure 5.2 Classical 2D FDTD simulation results for a notch in a uniform substrate under 

plane wave illumination; λ=450-800 nm. (a) For surfaces intersecting at a common point, the 

maximum E-fields increase monotonically as the mesh size is reduced. The divergence is 

most pronounced for plasmonic materials (Au/Ag). The angle is held constant at 80°. (b) E-

field values at the base of a notch with 1 nm min. width at varying sidewall angles. This 

geometry is similar to the crevices between fused plasmonic structures with a min. length 

scale enforced. The inset shows a large red-shift in resonance as the notch angle is changed 

from 60° to 90°. Connecting lines are only intended to guide the eye.  

 

The field response of the notch with a bridging structure of 1 nm included was also 

evaluated [Fig. 5.2(b)] for different notch angles. These simulations mimic the point of 

surface intersection in bridged sphere dimers that will be subsequently discussed. A mesh 

size of 1Å gave fully converged results. The sidewall angle was varied between the limits of 

a flat substrate (0°) and a 1 nm x 10 nm vertical, rectangular channel (90°). The electric field 

at the base of the notch was found to be a strong function of this angle, with a maximum 

enhancement of 35 times the free-space value being achieved at 90°. The wavelength of peak 

enhancement was also observed to red-shift significantly at higher angles, similar to the 

effect observed for decreasing the gap distance of separated dimers 31. Overall, the notch 

results indicate that field divergence should be expected when modeling fused spheres of 
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plasmonic materials, with parameters such as the mesh size, bridge distance (Lmin), and 

surface contact angle (θ) all affecting the rate at which divergence occurs. 

 

D. Optical field enhancements of separated and fused dimers 

(i) Varying separation and overlap length 

In near-field optical spectroscopy, the net increase in scattering signal (e.g., Rayleigh, 

Raman, photoluminescence) generated by a structure is more important than the local field 

strength itself. This is referred to as an enhancement factor (EF). Both local and global EF 

values can be defined. A local EF is the ratio of the scattering signal produced by an analyte 

placed at a single point in space, with and without an enhancing structure present. A global 

EF is a 2D or 3D spatial average of local EFs. For surface-enhanced Raman scattering 

(SERS) structures, this is frequently the entire surface of the structure. Global EFs can be 

experimentally accessed by measuring the signal ratio between an enhancing surface and an 

appropriate blank, normally a bare substrate. 

 

We will exclusively focus our subsequent discussion on enhancements of Raman optical 

scattering, where the dominant enhancement contribution is the electromagnetic 

concentration and amplification of light. The global enhancement of a structure via this 

mechanism will be referred to as the electromagnetic enhancement factor (EM-EF). 

Secondary effects, such as chemical enhancement, remain challenging to predict and 

quantify, but are known to play a much smaller role in enhancement for the vast majority of 

systems 34-35. The standard method for estimating EM-EF values of Raman scattering is to 

compute the spatial average of the fourth-power of the local electric fields (<E4>). The 

fourth power comes from both the focusing of incident radiation and amplification of 
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scattered light from an analyte 36. If dipole re-radiation of analyte molecules is included in 

the analysis, the scattering enhancement can change significantly for certain geometries 37. 

Nevertheless, computing <E4>, with no analyte present, has become the standard metric to 

gauge enhancement of near-field antennae, and allows quick comparisons to be made 

between different structures and simulation methods. 

 

Figure 5.3 presents EM-EF values for a series of separated and fused dimer structures with 

varying gap and Lmin distances. The dimers consist of two 50 nm dia. Au spheres. The 

separated dimers have gaps of 0.5, 1, and 2 nm, while the fused dimers all have a 0 nm gap, 

but varying Lmin values of 0.5, 1, and 2 nm. EM-EFs were calculated by averaging the field 

values 1 nm above the dimer surface, except in the smallest gap regions where the mid-point 

between surfaces was used. A detailed description of the EM-EF calculation is given in 

Appendix A5.1, with the procedure designed to replicate that used by McMahon et al. 1. 



 

 126 

450 600 750 900 1050
0

1

2

3

4

5

6

7

8

9

10

 

 

L
o

g
1
0
(<

E
4
>

)

Wavelength (nm)

450 600 750 900 1050 1200 1350 1500
0

1

2

3

4

5

6

7

8

9

10

 

 

Wavelength (nm)

Gap = 2 nm

1 nm

Separated dimers Fused dimers

0.5 nm

Lmin = 2 nm

1 nm

0.5 nm

Maximum predicted   

SERS enhancement

Isolated spheres (gap = ∞)

CTP-1
CTP-2

BDP(a) (b)

 

Figure 5.3 Estimates of electromagnetic Raman enhancements for separated (a) and fused 

(b) Au spheres. The supported plasmon modes of each structure are labeled as either a 

bonding dipole plasmon (BDP) or charge-transfer plasmon (CTP-1 and CTP-2). The electric 

fields were integrated at a distance 1 nm above the metal surface, except for small gap 

regions where the field values at the center of the gap were always used. See Appendix A5.1 

for the full details of this calculation.  

 

The separated dimers have a single peak in the visible spectrum that is attributed to the 

bonding dipole plasmon (BDP) mode, while the fused dimers display two peaks across the 

vis-to-NIR range attributed to charge-transfer plasmon (CTP) modes. It is clear that, for both 

separated and fused dimers, smaller gap distances produce increasingly larger EM-EF 

values. As discussed previously, this is caused by singular fields formed in small gaps 

between plasmonic materials. The EM-EFs are expected to increase further with a continued 

reduction the gap and Lmin lengths, but this becomes computationally expensive in three 

dimensions. Instead, the analogous 2D geometry, corresponding to fused cylinders instead of 

spheres, was examined for gaps spanning 20 to 1.25 Å (see Appendix A5.2). The 2D fused 

cylinder EM-EFs increase by nearly 6 orders of magnitude over this range, a clear 

demonstration of continued field divergence. It should be noted that the volume of space 

containing the largest electric fields is always decreasing as the gap and Lmin lengths are 
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made smaller. The EM-EF increases, despite this volume decrease, because of the non-linear 

E4 relation. 

 

Figure 5.4 presents images of the electric field distributions associated with both BDP and 

CTP modes excited at their respective resonance energies. The BDP mode has a single field 

node centered between the spheres, while the CTP modes have a pair of nodes on each side 

of the connecting junction. A plot of the cumulative <E4> (EM-EF) signal fraction as a 

function of the integration distance along the surface contour of the dimers is also provided. 

A position of 0 nm corresponds to the start of the gap region where the integration is 

initialized. The cumulative signal plot shows that all of the modes have fields that are highly 

localized to the gap volume. Specifically, 90% of the EM-EF for the BDP and CTP-2 modes 

is generated within the first 3.5 nm, and within 5.5 nm for the CTP-1 mode. The lower 

spatial confinement of the CTP-1 mode is clear when comparing the images of each 

resonance, with enhanced fields being noticeably more spread out over the entire dimer 

surface. 
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Figure 5.4 Electric field plots for the BDP and CTP modes of dimer structures excited on-

resonance. For visual clarity, the fields are displayed using a logarithmic scale with equal 

limits. A cumulative plot of the fractional contribution to the total <E4> values (EM-EF) of 

both structures are also given to measure the spatial confinement of the modes. A surface 

contour distance of 0 nm corresponds to the position at the start of the gap region, with 

positive values corresponding to integration over the sphere surfaces at an offset distance of 

1 nm. 

 

At gap and Lmin values of 0.5 nm, the maximum EM-EF value of the separated dimer is 

more than an order of magnitude larger than that of the fused structure [Fig. 5.3]. This is in 

stark contrast to previous reports on fused dimers that assign them EM-EF values 1-4 orders 

of magnitude larger than the comparable separated dimers 1-3. Other authors do not report 

EM-EF, but, based on stated local field strengths 9 or scattering spectra 4, the results are 

indicative of gaps well below 1 nm being simulated. The field values in all these studies 

differ somewhat, due to varying sphere sizes and materials, but there is no indication that the 

presence and importance of singular behavior for fused dimers was considered. Romero et 

al. identified this effect, but did not mention that singularities are present for all overlap 

distances, not only at small overlaps where divergence is strongest 9. In the absence of a 

clearly defined minimum gap distance, preferably related to real physical constraints, the 
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calculation of maximum electric field strengths around fused structures (dimers or larger) 

can vary over many orders of magnitude, simply by manipulating the mesh size implemented 

at the point of intersection. Only one example of fused dimer simulations with clearly 

defined gap discretizations could be found. Pendry et al. used a 1 nm mesh to calculate EM-

EF values for a periodic array of fused Ag half-cylinders along a substrate surface. In this 

case, the mesh was coarse enough to keep enhancements <50 * E0
 39. 

 

It would be useful to also examine EM-EF values of fused dimers given by non-local or 

quantum models. Unfortunately, such calculations have not been included in reports using 

these methods. Both absorption 5 and scattering spectra 8 are available, but these are not 

directly correlated with enhancement. The best available comparison may be the local field 

values reported for CTP modes of SiO2/Au core-shell NPs with a variable conductive bridge 

between them 7. Local fields in the gap region were 160-250 * E0, which compares well to 

the max field value of 180 for the Lmin= 0.5 nm dimer we consider here. Both values are 

significantly less than previously reported fields exceeding 1000 * E0 1. The Lumerical 

FDTD software does not allow incorporation of non-local material models, but researchers 

with expertise in this area may be interested in carrying out such calculations on dimer 

antennae. 

 

Comparisons can also be made between theoretical predictions and experiments performed 

on dimer geometries. The body of work on separated dimers is particularly extensive, with 

ongoing efforts targeting quantum effects for sub-nanometer gaps 17-18, 20, 40. The discussion 

here will be restricted only to experiments with measurements on individual separated or 

fused dimer nanostructures. Such studies are the most direct way of connecting optical 
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properties to specific geometries. Broadband detection of individual dimer plasmonic 

resonances has been carried out via optical scattering 2, 24, 41-42 and electron energy loss 

spectroscopy 10, 43. These results all show red-shifting BDP modes as gap distances are 

reduced, and the emergence of lower energy CTP modes near the onset of fusing. 

Unfortunately, the signals from these techniques for a particular plasmonic mode are not 

correlated to the EM-EF of that mode. They can be used to identify the presence of plasmon 

resonances and their energies, but not the associated local field strengths. The disconnect 

between far-field scattering and near-field enhancement has been well-established through 

both theory and experiment in the SERS community 44-48. 

 

The only way to definitively quantify enhancement is by measuring it directly using Raman 

reporter molecules deposited onto nanostructures of interest. Wustholtz et al. collected 

SERS spectra of Au NP dimers and larger aggregates using monochromatic excitation at 

632.8 nm 2. Enhancements were found to vary over roughly two orders of magnitude, but the 

TEM images of specific dimers were not correlated with optical measurements. Thus, it was 

impossible to associate the measured enhancements to individual separated or fused 

structures. Broadband SERS experiments are even more challenging, although a recent 

example using a supercontinuum source and custom set of tunable filters was provided by 

Lombardi et al. 49. The best alternative is to measure enhancement at several discrete 

wavelengths on the same instrument. Only a single experiment of this type has been 

performed on dimer structures 48, but the resolution of the SEM images was insufficient to 

discern if individual nanostructures should be categorized as separated or fused. Thus, 

present experimental data are inconclusive on quantifying the general enhancement of 

separated vs. fused dimers.  
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(ii) Varying the surface contact area 

When making real plasmonic dimers, the particles will not consist of perfect spheres of 

uniform size, and electron microscopy images of colloidally grown Au/Ag nanoparticles 

typically display faceted surfaces 50-53. When these particles aggregate, the length of the gap 

or fused segment will vary based on the two particles faces that join 2, 10, 22. To our 

knowledge, no previous studies exist on the sensitivity of the dimer plasmon resonances to 

changes in this surface contact area. Simulations characterizing this effect were performed in 

terms of a single geometric parameter: the contact length (Lc). Figures 5.5 and 5.6 provide 

diagrams defining Lc for both separated and fused dimers. For the separated case, the spheres 

have one face flattened over a circle of radius Lc, turning the gap region into a thin disc of 

uniform width. For fused dimers, the flattened sphere surfaces are directly joined. 
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Figure 5.5 Enhancement properties of separated Au dimers as a function of the contact 

length (Lc). The sphere radii are 25 nm and the gap width is held at a constant value of 1 nm. 

(a) Broadband EM-EF plots of structures with contact lengths of 0, 2, 5, and 10 nm. The 

resonant frequency and maximum enhancement values change relatively little. (b) Plots of 

the electric field strength through the center of the gap region at the BDP resonant λ. Other 

than an initial uptick between the 0 to 2 nm cases, increasing Lc causes the gap mode volume 

to expand and the maximum field strength to decrease. These effects partially cancel in the 

EM-EF calculation, causing the peak values to remain within a factor of 3. 
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Figure 5.6 Enhancement (EM-EF) and maximum field values for fused dimers as a function 

of contact length (Lc). Large Lc values correspond to steeper sidewall angles. (a) Decreasing 

contact length produces larger EM-EF values and CTP modes that are red-shifted into the 

infrared. (b) Maximum electric field values in the gap region increase with steeper sidewall 

angles (smaller Lc). Simulation parameters: 50 nm dia. Au spheres with a constant Lmin value 

of 1 nm. For reference, the Lmin = 1 nm fused dimer in Fig. 3 had a sidewall angle of 78° and 

Lc = 10 nm. 

 

Changing the Lc value affects the separated and fused structure enhancement spectra in 

drastically different ways. The separated dimers appear relatively insensitive to this 

parameter. For Lc spanning 0-10 nm, the BDP peak wavelength varies by only 25 nm, and 

the peak EM-EF values remain within a factor of three [Fig. 5.5(a)]. This is somewhat 

surprising as the electric field profile in the gap region is changing significantly for different 

Lc [Fig. 5.5(b)]. For wider gaps, the peak field intensity decreases, and the fields are 

extended laterally. These effects partially offset in the EM-EF calculation, as the local <E4> 

values are integrated over the entire gap. The 5 nm contact length structure actually yields 

the largest enhancement value and has a gap field profile with FWHM = 12 nm, almost 

twice that of the perfect spheres (Lc = 0 nm). Thus, moderate increases in contact area allow 

the gap electric fields to be moderately decreased without sacrificing enhancement. This may 
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be useful if analyte molecules are sensitive to photodegradation. It should also be noted that 

the 2D field profile over the disc-shaped gap region is almost perfectly rotationally 

symmetric, as the dimer sizes are much smaller than optical wavelengths. 

 

In contrast to the relatively constant BDP response of separated dimers, the CTP modes of 

fused dimers were found to strongly depend on Lc
 [Fig. 5.6(a)]. The low-energy CTP mode 

shifted from 780 nm all the way to 1630 nm for Lc values of 17 and 4 nm, respectively. The 

EM-EF peak magnitude changed by <50% during this shift. The high-energy CTP mode, in 

the visible portion of the spectrum, displayed essentially the opposite behavior, with the 

peak wavelength changing very little, but the peak EM-EF increasing by almost two orders 

of magnitude. These trends make sense as the spatial confinement of the low energy CTP in 

the crevice region is not as great as that of the high-energy mode [Fig. 5.4]. This makes the 

low-energy CTP sensitive to the total surface contour length, which increases for smaller 

values of Lc, and leads to a red-shift. These same arguments explain the similarities between 

Figure 5.6(a) and Figure 5.3(b), where the surface contour length is also changing as a 

function of decreasing Lmin value. The choice of Lc, at a fixed value of Lmin, uniquely 

determines the angle that the sphere surfaces make at the bridge point. The maximum gap 

fields (max |E|), as a function of this angle, are provided over the range of 0-85° in Figure 

5.6(b). The inset shows the full spectrum for the 60° and 85° geometries, where a large CTP 

red-shift is observed. The trends are very similar to those presented in Figure 5.2(b) for a 

two-dimensional notch. Relaxing the geometric constraint that the particles must be 

spherical (e.g., elliptical) would allow the surface angle, Lmin, and Lc parameters to vary 

independently. 
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(iii) Dielectric encapsulation of plasmonic antennas 

Encapsulated plasmonic antennae are useful as SERS tags 51, 54, as enhancers in shell-

isolated nanoparticle enhanced Raman spectroscopy 55, and as means of precisely controlling 

gap distances for the quantitative study of optical enhancement 56-57. Coatings can be applied 

after the adsorption of reporter molecules to effectively isolate them from the environment 

and create an enhancing structure with long shelf-life. Reporter molecules can also diffuse 

into polymer coatings and reach the metal surface 58. Here, we focus specifically on 

dielectric layers that represent oxide or organic coatings. A refractive index of 1.5 was 

chosen, with the coating applied uniformly over the entire dimer surface. Various coating 

thicknesses were studied, but the results can be summarized using only two examples, a thin 

2 nm coating and a thick 20 nm coating. The difference in EM-EF between a 20 nm coating 

and an infinite coating, where the simulation background refractive index is n = 1.5 

everywhere, was found to be only 10%. 

 

It should be emphasized that the electric field values used in the EM-EF calculations are still 

measured 1 nm from the metal sphere surfaces, which is now within the dielectric. The fields 

outside the coating are less than those around the corresponding bare metal particle for all 

coating thicknesses. These conclusions are in agreement with the field profiles around glass-

coated Ag nanoparticles previously calculated by Shanthil et al. 59. Hence, dielectric 

encapsulation is a not a general strategy for increasing the enhancement of SERS structures, 

but may be beneficial in specific cases where analyte molecules are either trapped inside the 

coating, can diffuse into the coating, or if the coating itself is optically active. 
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Figure 5.7 shows the calculated EM-EF values for dielectric-coated separated and fused 

dimers, along with those of the corresponding bare metal structures. In all cases, coatings 

cause the plasmon resonances to red-shift. This effect has been previously characterized for a 

variety of Au  nanostructures 60, and is caused by the spatial compression of light within the 

higher index dielectric material. For the separated spheres, coatings are found to increase 

EM-EF, with the 20 nm coating yielding an enhancement 10x greater than the bare metal 

dimer [Fig. 5.7(a)]. Surprisingly, this increase does not correspond to a change in the spatial 

extent of the gap field; the FWHM of the bare and 20 nm coating gap profiles are almost 

identical at roughly 6 nm. Instead, it is the result of the peak absorption cross-section 

doubling for the 20 nm coating, indicating that significantly more energy from the excitation 

plane wave is being coupled into the BDP resonance. This appears to result from the higher 

polarizability of a dielectric coating such as glass than that of the air or vacuum surroundings 

otherwise present. 
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Figure 5.7 EM-EF values for dielectric (n = 1.5) coated Au separated (b) and fused (b) 

dimers. The coatings represent either SiO2 or polymer encapsulation of the underlying 

plasmonic structure. The fields used in the EM-EF calculation are recorded 1 nm above the 

metal surface, which resides within the dielectric. 
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The difference between the 2 and 20 nm coatings is relatively small, indicating that the 

presence of dielectric in the gap region is the dominant factor, with the rest of the coating 

playing only a secondary role. To test this, a simulation was run with a 10 nm dia. dielectric 

disk filling only the gap region, and the EM-EF profile was indeed found to be almost 

identical to that of the uniform 2 nm coating. For fused dimers [Fig. 5.7(b)], the trend in the 

peak wavelengths of the CTP-1 and CTP-2 modes are again similar to that shown in Figure 

5.3(b) and Figure 5.6(a). However, in this case, the surface contour length of the dimers is 

not changing due to geometric variations. Instead, the wavelength of the plasmon modes 

along the surface is being spatially compressed by the presence of the higher refractive index 

dielectric. This allows the surface contour of the same sized dimer to effectively become 

larger for the same excitation wavelength. 

 

E. Conclusions 

The main conclusion from our simulations is that separated dimers produce larger optical 

field enhancements than comparable fused geometries. Previous reports of fused dimers 

yielding extraordinary enhancement values are believed to be suspect, due to the use of very 

fine (<<1 nm) spatial discretization at the region of surface intersection. Classical optical 

models are prone to field divergence in this type of geometry, with increasingly small 

discretizations yielding arbitrarily large field values. One method of eliminating these 

divergence phenomena is to add a metal bridging structure of adjustable diameter that 

enables direct control of the minimum gap distance. Using physically relevant gap distances 

in the range of 5-20 Å, maximum local field enhancements of 50-180 were predicted for 
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fused dimers. These modest values agree with the available predictions from more advanced 

non-local or quantum optical models. 

 

Although fused dimers do not outperform separated dimers in the visible spectrum, they still 

achieve relatively large enhancements at infrared frequencies. For example, the total Raman 

enhancement of a fused Au dimer with 5 Å minimum gap distance is roughly 2 orders of 

magnitude greater than a 300 nm Au nanorod with a plasmon peak of similar wavelength. 

Wen et al. have demonstrated that the low energy charge-transfer plasmon modes of fused 

structures can be red-shifted even further into the mid-IR spectrum by using spatially 

elongated metal bridges that produce a dumbbell shape 41. It should be noted that these 

structures do not contain the same narrow gaps of the directly fused dimers, so the field 

enhancements will be significantly lower. 

 

The main barrier to the rational design and production of fused dimer antennae is their 

sensitivity to geometry. As was discussed at length, the minimum crevice distance, sidewall 

angle, contact area, and presence of dielectric coatings all strongly modify the charge-

transfer plasmon modes of the structures. If a SERS experiment was performed with a 

sample composed of a distribution of fused geometries, the expectation is that broadband 

optical enhancement would be observed across the entire visible and near-infrared spectrum. 

Experimental measurements of enhancement spectra from individual nanostructures remain 

challenging, in part due to the difficulty of performing broadband optical Raman 

experiments. As instrumentation improves and these capabilities improve, more quantitative 

comparisons between theory and experimental enhancements will be possible, and antenna 
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geometries can be more precisely characterized and optimized to yield maximum 

enhancements over a range of energies. 
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Appendix (A5) 

 

A5.1 Calculating global Raman enhancement factors (<E4>) 

Estimating the electromagnetic enhancement factor (EM-EF) requires the electric field 

values at every point where analyte is expected to be present, in this case over the entire 

surface of the dimer structure. As discussed in the main text, the fourth power of the local 

electric field will be used to estimate the near-field Raman enhancement. This calculation is 

only technically correct for point dipoles near a spherical antenna with a Stokes shift of zero 

for the scattered radiation 1. Despite these approximations, the E4 calculation method is the 

accepted standard for analysis of enhancing structures. 
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We follow the procedure of McMahon et al. 2 in computing EM-EF using a surface integral. 

The first step in the calculation is choosing the surface offset distance at which the fields 

will be sampled. This is somewhat arbitrary, but we have used a value of 1 nm. A 

complicating factor is that the dimer structures investigated here contain very small gaps, 

where a surface offset of 1 nm is larger than the entire gap width. To account for this, field 

values in gap regions, defined as those below the point of intersection of the standard 1 nm 

offset contours, are always recorded at the center of the gap. As is shown in Appendix A5.3, 

the gap regions dominate the EM-EF calculation, making the results fairly insensitive to the 

surface offset value chosen. For example, the largest difference in EM-EF for a 1 nm gap, 

separated dimer between surface offsets of 0.5 nm and 1 nm is only 3%. 

 

The Lumerical FDTD software does not currently support the direct implementation of 

curved field monitors that could be placed over the surface of the spheres. One solution is to 

record the field values in the entire 3D volume of a box encompassing the dimer, and then 

extract the desired fields from the surface only. Unfortunately, the small mesh size needed 

for convergence of these simulations (0.25 nm or less), and the 101 separate wavelengths 

recorded to capture the broadband response of the structures, lead the data output size of the 

required 3D field monitor to become unwieldy. 

 

A solution to this problem was found when it was observed that the dimer field profiles in 

the plane normal to the incident polarization were nearly radially symmetric. This occurs for 

two reasons. The first is that the dimer dimensions (sphere dia. = 50 nm) are much less than 

the wavelengths of the excitation radiation considered (>450 nm). This causes retardation 

effects to be minimal. The second reason is that the incident plane wave is linearly polarized 
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along the inter-sphere axis, making the resultant fields symmetric with respect to the dimer 

geometry. Tests were then performed to ascertain if a single 2D plane monitor cutting 

through the center of the dimer structures could be used to give a very accurate 

approximation of the fields over the entire surface of the sphere. Simulations were run with 

fields recorded by several 2D plane monitors cutting the spheres at different locations [Fig. 

A5.1]. 

XY plane 2D 
field monitor

Y

XZ

YZ1

k

E

Plane wave source
Simulation 
coordinates

YZ2 YZ3GapYZ

YZ plane 2D field monitors

 

The fields around the surface of the sphere at the location of each monitor in the YZ plane 

were calculated using two procedures. The more accurate method averaged all the field 

values around the sphere circumference given by a YZ monitor. The second method only 

averaged the field data from two points in the YZ monitor, those intersecting the XY plane. 

If the second method was found to give approximately the same values as the first, then it 

could be concluded that a single XY monitor through the center of the dimers would be 

sufficient for EM-EF calculations. 

 

Figure A5.1 Diagram of the field monitors 
used to compute <E4> values over the surface 
of the dimer structures. It was found that 
using only the field values from a single XY 

plane through the center of the spheres (red) 

gave a very accurate approximation of the 

total fields around the sphere surface (blue 

YZ monitors). 
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Figures A5.2 and A5.3 compare the results of the two field averaging procedures applied to a 

typical separated or fused dimer for each of the four YZ plane monitors. It is clear that the 

differences between the two methods are very small in all cases, with typical discrepancies 

<1%. The only exception is the GapYZ monitor for the fused dimer [Fig. A5.3], where the 

differences are large enough to yield a 10-20% in the <E4> values. For this reason, data were 

recorded for the GapYZ plane monitor in the case of all fused dimer simulations, and the 

complete monitor data were then used to calculate EM-EF. The final result of this simplified 

analysis procedure is that both <E> and <E4> values can be computed over the surfaces of 

the separated and fused dimers with data output sizes <500 MB and almost no decrease in 

the accuracy of the calculations. 
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Figure A5.2 Average surface electric field values for a separated dimer (1 nm gap) calculated using 
the monitors shown in Figure A5.1. The blue curves use data from 2D plane monitors in the YZ 
plane, while the red curves only use data from a single XY plane monitor. The relative difference 
between the two methods is <1% for all of the monitor positions and field values computed. 
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Figure A5.3 Average surface electric field values for a fused dimer (0 nm overlap, 1 nm Lmin) 
calculated using the monitors shown in Figure A5.1. The blue curves use data from 2D plane 
monitors in the YZ plane, while the red curves only use data from a single XY plane monitor. The 
largest errors are for the gap <E4> values where the methods differ by about 10% at certain 
wavelengths. For this reason, GapYZ monitors are included for all the fused structures and used to 
compute the <E4> values reported in Figure 5.2 of the main text. 

 

A5.2 Field enhancements of Au cylinders 

The computational requirements for simulating 3D spheres with very small gaps became 

prohibitive as the gap distances approached 5 Å. Identical simulations were performed in a 

2D FDTD environment, modeling parallel Au cylinders. The minimum gap distances could 

then be reduced to 1.25 Å. The maximum EM-EFs for both the separated and fused dimers 

were found to increase over the entire range of gap distances studied [Fig. A5.4]. The 

maximum local fields were well fit by a power law relationship of the form: |E| ~ 1/gapn with 

exponent values of n=1.15 and n=1.09 for the separated and fused dimers, respectively. This 

field scaling is very similar to that of the notch geometry results presented in Figure 5.2(a) of 

the main text. 
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It is also worth noting the differences between the 2D results and the corresponding 3D data 

shown in Figure 5.3 of the main text. One trend is that, at equal gap or Lmin distances, the 

EM-EFs of the cylinders are smaller by 1-2 orders of magnitude than the sphere results. This 

is because the cylinder surfaces have curvature over only a single spatial axis, as opposed to 

the two axes of the spheres. The higher local curvature of the spheres creates more confined 

and intense gap fields, a type of geometric field enhancement termed the “lightning rod 

effect” in the near-field optics literature. Additionally, the cylinder plasmon resonances are 

blue-shifted relative to those of spheres. For example, the enhancement λmax of the 0.5 nm 

separated cylinder dimer is 578 nm, compared to 611 nm for the similar sphere dimer. 
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Figure A5.4 EM-EF calculations for separated and fused Au cylinders for gap distances of 20, 10, 
5, 2.5, and 1.25 Å. The monotonic increase in enhancement with decreasing gap/Lmin distance is a 
symptom of the field divergence present when studying these structures with classical optical 
models. 
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SUMMARY 

This work described the operating principles and theory of tip-enhanced near-field optical 

microscopy (TENOM) as a flexible method of surface characterization, capable of extending 

optical spectroscopy to true nanoscale dimensions. The general principle of coupling 

radiation to a nanoscale antenna has found applications across a wide range of energy scales 

(UV-Vis-IR), and when combined with the many variants of scanning probe microscopy 

(mechanical, electrical, magnetic, etc.), the combined optical and physical characterization 

capabilities of these instruments are useful across many disciplines. 

 

Chapter 2 presented the design, construction, and experimental validation of a TENOM 

instrument that combines a commercial optical microscope with a custom-built shear-force 

atomic force microscope. Relevant instrument performance metrics including the optical 

microscope point-spread-function, atomic force microscope noise floor, and thermal stability 

of the full system were measured. Unambiguous enhancement of near-field optical signals 

was verified through multiple experiments: tip up-down tests with coumarin-6 dye 

molecules, optical signal scaling with probe-sample distance, and chemical imaging of 

patterned copper phthalocyanine films at spatial resolutions <50 nm (<λ/10). 

 

In Chapter 3, these efforts were extended to study the more complex optical properties of 

metal-free phthalocyanine (H2Pc). Exciton-coupling between adjacent H2Pc molecules leads 

to changes in the energy and intensity of the molecular fluorescence. The TENOM 

instrument was used to simultaneously collect spatially correlated fluorescence, Raman, and 

topographic data from a patterned H2Pc film, and these measurements allowed the 
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aggregation state of molecules to be mapped, with nanoscale spatial resolution, across a 

wide range of surface coverages including isolated molecules, dimers, and continuous films. 

 

Chapter 4 presented work using finite-difference time-domain (FDTD) simulations to study 

the fundamental optical physics of antenna nanostructures. Tuning the optical properties of 

support structures with attached plasmonic nanocavities was shown to be critical for either 

enhancing or quenching local field strengths, with materials possessing low extinction 

coefficients demonstrating superior performance. A quantitative comparative study of 

several proposed near-field antenna designs was also carried out, with architectures 

fabricated using focused ion-beam milling of the antenna apex identified as the most 

promising. FDTD simulations were also used in Chapter 5 to study pairs of plasmonic 

nanoparticles relevant for surface-enhanced Raman spectroscopy applications. It was shown 

that previous work on this system significantly over-predicted field enhancements due to 

numerical effects present at nano-gap features. Metal bridging structures were used to halt 

the field divergence at physically relevant lengths scales, allowing accurate study of 

experimentally relevant parameters including the fused contact area and presence of a 

dielectric encapsulation layer. 

 

Advancements across multiple fields are helping to push the TENOM technique forward. 

Improvements in high-intensity broadband laser sources will enable flexible measurement of 

both the electronic and vibrational structure of materials, and general improvements in nano-

manufacturing are expected to reduce the time and cost of producing high-enhancement 

resonant antennae with well-defined plasmonic structure. The future is bright for TENOM to 

find use as a versatile optical and physical surface characterization technique. 




