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Surface-based morphometry reveals caudate subnuclear 
structural damage in patients with premotor Huntington disease
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Geschwind3, Duan Xu1, and Christopher P. Hess1,3

1Department of Radiology and Biomedical Imaging, University of California San Francisco, San 
Francisco, CA, USA

2Department of Radiology, Seoul National Univeristy Hospital, Seoul, South Korea

3Department of Neurology, University of California San Francisco, San Francisco, CA, USA

Abstract

In patients with premotor Huntington’s disease (pmHD), literature has reported decreases in 

caudate volume. However, the regional vulnerability of the caudate nucleus to pmHD remains to 

be clarified. We aimed to determine whether regional structural damage of the caudate nucleus 

was present in pmHD and was correlated with clinical profile using a surface-based morphometric 

technique applied to T1-weighted MRI. The study cohort consisted of 14 volunteers with 

genetically confirmed pmHD (6 males; 41.8 ± 13.2 years) and 11 age- and sex-matched controls 

(5 males; 46.2 ± 11.9 years, p > 0.3). On 3-T T1-weighted images, bilateral caudate volumes were 

manually delineated. The resulting labels were converted to a surface, triangulated with 1002 

points equally distributed across subjects using SPHARM-PDM. Displacement vectors were then 

computed between each individual and a template surface representing the whole cohort. 

Computing point-wise Jacobian determinants (JD) from these vectors quantified local volumes. 

We found decreases in bilateral global caudate volumes in the pmHD group compared to controls 

(t = 3.4; p = 0.002). Point-wise analysis of local volumes mapped caudate atrophy in pmHD 

primarily onto medial surface (t > 2.7; FDR < 0.05), with most pronounced changes in 

anteromedial subdivision. In a combined group of patients and controls, volume within the area 

presenting significant group difference was positively correlated with scores of executive function 

(r = 0.7; p < 0.001) and working memory (r = 0.6; p = 0.002). In patients, the caudate atrophy was 

associated with increase in disease burden (r = 0.7; p = 0.005). Caudate subnuclear atrophy 
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measured using our surface-based morphometric technique is evident in pmHD, correlates with 

clinical variables, and may provide a more sensitive biomarker than global volumes.
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Introduction

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by 

abnormal trinucleotide repeat within the Huntingtin gene, ultimately causing widespread 

cellular disruption across the brain (Dogan et al. 2013; Gusella et al. 1996). There is 

considerable variability in age of onset, symptom severity, and rate of progression across 

affected individuals. Prior to the diagnosis of manifest disease, which rests upon the clinical 

appearance of motor symptoms, there exist subtle cognitive and psychiatric symptoms (Duff, 

Paulsen, et al., 2007; Paulsen et al., 2008) and structural abnormalities of the brain (Cheng et 

al. 2011; Weir et al. 2011). Reliable biomarkers of subclinical disease progression are 

necessary to enable clinical trials of putative neuroprotective agents during a long potential 

therapeutic window (Vonsattel 2008; Weir et al. 2011; Finkbeiner 2010; Weir et al. 2011). 

Imaging of brain structures and subsequent morphometric analyses of early disease targets 

may provide a sensitive and objective marker for monitoring progression in premotor 

Huntington’s disease (pmHD).

Measures of caudate volume are a compelling choice for use as a marker of pmHD. The 

earliest neuropathologic changes, the loss of medium-sized spiny neurons, are seen within 

this structure. These have been documented more than a decade before diagnosis, and 

decrements progress reliably as diagnosis approaches (Aylward et al. 1996; Aylward et al. 

2012; Dominguez et al. 2015; Paulsen et al. 2008). Further, caudate atrophy in pmHD is 

linked to declines in executive functions (Holl et al. 2013; You et al. 2014), which predict 

poor quality of life (Read et al. 2013).

The caudate nucleus is not a uniform structure (Kim et al. 2013a; Nakano 2000; Parent and 

Hazrati 1995; Postuma and Dagher 2006; Selemon and Goldman-Rakic 1988); rather, it 

consists of several distinctive functional zones: associative striatum (head of caudate), 

sensorimotor striatum (dorsolateral rim of the caudate), and the limbic striatum (ventral 

caudate). Analysis of the caudate in autopsy studies (Roos et al. 1985; Vonsattel et al. 1985a) 

suggests that volumetric changes are not uniform across these subregions. We thus 

hypothesized that atrophy would vary regionally across the volume of the caudate in pmHD, 

and that regionally atrophy would be related to measurements of executive functional deficit. 

To our knowledge, this has been investigated in two prior studies: one of which found no 

changes (van den Bogaard et al. 2011), and the other showed multiple sites of atrophy only 

in a subgroup with high genetic burden scores (Younes et al. 2014). Lack of sensitivity in 

these studies may have been due to the use of automated segmentation methods that were 

based on a single average template from the healthy population, which may be inaccurate for 

the segmentation of patient cases in which the striatum deviates from its normal shape.
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To overcome the limitations of volumetric analysis based on a normal template, vertex 

(point)-wise morphometry based on a surface extracted from the manual segmentation has 

been suggested as a surrogate to manual subfield volumetry that can only be done with 

identification of the molecular layers, which is possibly visualized using ultra high-field (4–

7 Tesla) and high-resolution MRI. These surface-based approaches have successfully 

detected hippocampal subfield abnormality in various brain disorders (Joo et al. 2014; Kim 

et al. 2013b). Herein, we aimed to determine whether regional structural damage of the 

caudate nucleus was present in premotor HD using a surface-based morphometry applied to 

T1-weighted MRI. To investigate progression of structural changes, we correlated the 

regional structural changes with scores of genetic disease burden and executive dysfunction 

in pmHD.

Materials and methods

Subjects

We studied 14 volunteers with genetically confirmed pmHD (6 males; 41.8 ± 13.2 years) 

and 11 age- and sex-matched controls (5 males; 46.2 ± 11.9 years, p > 0.3) who were 

recruited from a registry maintained by the UCSF Memory and Aging Center clinic or via 

their participation in other research projects at our institution between August 2011 and 

August 2013. Participants in the pmHD group tested positive for the HD mutation and had at 

least 40 CAG repeats. Neurologists with expertise in HD used the Unified Huntington’s 

Disease Rating Scale (UHDRS) to determine the total motor score, between 0 and 124, and 

the diagnostic confidence level, between 0 (healthy, no abnormalities) and 4 (motor 

abnormalities consistent with HD, ≥99 % confidence), for each subject. The UCSF 

Committee on Human Research provided institutional review board approval for this Health 

Insurance Portability and Accountability Act-compliant prospective study, and written 

consent was obtained from all subjects.

Disease burden

CAG-Age-Product Scaled (CAPs), an index developed in the PREDICT-HD study to 

approximate the time to HD diagnosis by using the age at motor onset and the number of 

CAG repeats, was calculated for each subject with pmHD as CAPs × Age × (CAG × 33.66)/

432.3326 (Paulsen et al. 2006; Paulsen et al. 2008; Zhang et al. 2011). CAPs is classified as 

low (0 < CAPs <0.67), medium (0.67 < CAPs <0.85), or high (CAPs >0.85), reflecting 

higher cumulative disease burden and closer proximity to diagnosis. According to previously 

established norms, CAPs of less than, equal to, or greater than 1 indicates a 5-year diagnosis 

probability of less than, equal to, or greater than 50 %, respectively.

Cognitive assessments

Executive function and working memory are especially vulnerable to early brain changes in 

pmHD (Duff et al. 2010; Hart et al. 2011; Stout et al. 2011). We assessed cognitive function 

in these domains by using the National Institutes of Health (NIH) EXAMINER (Kramer et 

al. 2014) Executive Composite and Working Memory Score. The Executive Composite is a 

global measure of executive function that includes measures of working memory, cognitive 

control, and fluency. The Working Memory Score includes measures of spatial and verbal 
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working memory, which also contribute to the Executive Composite. Both measures are 

sensitive to cognitive changes and disease burden in pmHD (You et al. 2013).

MRI acquisition and image preprocessing

Subjects were scanned on 3 T MR imaging scanners (GE Healthcare, Milwaukee, 

Wisconsin) with 8 channel head coils. Volumetric T1-weighted imaging was performed 

using the following parameters: TR/TE = 7/2 ms, flip angle =15°, FOV = 23 cm, matrix 

=256 × 192, yielding the image resolution of 0.9 × 0.9x1mm3). A subspecialty certified 

neuroradiologist (C.P.H.) reviewed all images to assess for subjective striatal atrophy was 

present with pmHD compared with controls.

Each image underwent automated correction for intensity non-uniformity (Sled et al. 1998) 

and was then spatially normalized using linear registration to the MNI-ICBM 152 nonlinear 

template created using an unbiased framework for the construction of nonlinear average 

templates (Fonov et al. 2011).

Segmentation of the caudate nucleus

Using the 3D T1-weighted image data registered to standard stereotaxic space, boundaries of 

the caudate volume were manually delineated (Fig. 1) by a radiologist J.H.K. using a 

previously published protocol (Looi et al. 2008). The radiologist was blinded as our patients 

and controls were anonymized and the MRI data were randomized. The caudate was 

outlined by drawing lines along the medial border of the internal capsule or corona radiata 

and along the lateral wall of the lateral ventricle. The lower margin of the head of caudate 

differentiating from nucleus accumbens was outlined at the most inferior slice, in which the 

white matter of the internal capsule separated the caudate head clearly from the putamen. 

The upper margin of the caudate was defined in the most superior slice in which the caudate 

could be seen distinct from the wall of the lateral ventricle. The tail of caudate that curved 

ventrally to border the lateral atrium of the lateral ventricles was not included for analysis 

because of difficult identification. Tracings were cross-referenced to both coronal and 

sagittal planes. In a week, the primary rater and another rater (H.K.) separately segmented 

12 cases that were randomly selected. For these cases, we computed the Kappa statistic 

between the 1st and 2nd labeling of the primary rater, resulting in excellent agreement (intra-

rater agreement: κ = 90 ± 1 %). Comparing between the two raters, we also found excellent 

inter-rater reproducibility (κ = 88 ± 2 %).

Surface-based mapping of caudate volume changes

As labels were created in a stereotaxic space, correction for intracranial volume was not 

required. A previously validated surface-based approach (Kim et al. 2008) was used to 

measure local volume changes by computing Jacobian determinants on surface-based 

displacement vectors between a given subject and a template surface (Styner et al. 2006). 

Caudate labels were converted to surface meshes using a spherical parameterization 

(SPHARM) based on area-preserving, distortion-minimizing mapping. Using a uniform 

icosahedron-subdivision of the SPHARM, we obtained a point distribution model (PDM) to 

allow shape-inherent point correspondences across subjects (1002 vertices). Each individual 

SPHARM-PDM surface was rigidly aligned to a template constructed from the mean surface 
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of all subjects with respect to the centroid and longitudinal axes of the 1st order ellipsoid 

(Gerig et al. 2001). Vertex-wise displacement vectors were calculated between each 

individual and the overall template (Styner et al. 2006). Displacement vectors were diffused 

within the volume enclosed by the surface using a heat equation, yielding a displacement 

vector field. To assess local volume changes, we calculated Jacobian determinants from 

these vector fields (Kim et al. 2008). Jacobian determinants were projected back onto the 

template surface using tri-linear interpolation and subtracting 1, we obtained a metric of 

growth (J > 0) or shrinkage (J < 0) in a unit-size cube (i.e., voxel) defined on each vertex.

Statistical analysis

Analysis was performed using SurfStat (http://www.math.mcgill.ca/keith/surfstat/) (Worsley 

et al. 2009). We used linear models for the following analyses. To identify regional volume 

alterations in pmHD, we compared Jacobian determinants between controls and pmHD 

patients using a linear model for which we performed point-wise t-tests while correcting for 

age and gender. We further assessed association between volume and neurocognitive scores 

(i.e., executive function and working memory evaluated by the NIH EXAMINER) by 

performing this correlation analysis while correcting for the covariate effect of the group 

using a linear model in order to remove a possible bias due to the skewness by group 

differences. We also correlated volume and disease burden (i.e., CAPs – scores based on 

CAG repeats and age) by Pearson’s correlation coefficient. Multiple comparisons were 

adjusted using the false discovery rate.

Results

Group comparison

Group analysis of mean volume over all surface-points revealed bilateral global caudate 

volume decrease in the pmHD group compared to controls (t = 3.4; FDR = 0.005). The 

effect size of atrophy in the pmHD was large (Cohen’s D = 1.3; the percent of nonoverlap 

between groups =52 %). Point-wise analysis of local volumes mapped caudate atrophy in 

pmHD primarily onto medial surface (t > 2.9; FDR < 0.05), with most pronounced changes 

in anteromedial subdivision (Fig. 2; t = 4.5, FDR < 0.001 at the peak) and dorsolateral rim at 

the head of the caudate (t = 7.0, FDR < 0.001 at the peak). These areas showed even larger 

effect sizes of atrophy in the pmHD group (anteromedial subdivision: Cohen’s D = 1.8, the 

nonoverlap between groups =77.4 %; dorsolateral rim: Cohen’s D = 2.7, nonoverlap 

=82.3 %). Point-wise paired tests revealed no asymmetric atrophy in pmHD (FDR > 0.3).

Association with neurocognitive performance and genetic disease burden

In a combined group of patients and controls, global caudate volume positively correlated 

with scores of global executive function (r = 0.6, FDR <0.05) but not with working memory 

(r = 0.4; FDR = 0.1). Volume within the area presenting significant group difference showed 

slightly higher correlations with scores of global executive function (r = 0.8, FDR = 0.001) 

and working memory (r = 0.5; FDR < 0.05; Fig. 3). In a separate analysis where we 

performed the same correlation analysis within the pmHD group, however, we found only a 

trend of correlation for the executive function (r = 0.6, p < 0.01 uncorrected) and no 

significant correlation for the working memory (r = 0.4, p > 0.2 uncorrected). This was 
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partly due to the small sample size as the effect size of correlation coefficients was high. 

Point-wise analyses of local volume localized significant correlations mainly in the 

anteromedial subdivision.

In patients, global caudate volume did not correlate significantly with disease burden (r = 

−0.4, FDR = 0.2). Caudate volume within the area presenting significant group difference, 

however, was negatively correlated with disease burden (r = −0.7; FDR = 0.01; Fig. 4). 

Splitting our pmHD patients into a low-burden group (n = 7) and a high-burden group (n = 

7) and testing their difference in volume, we found a significant difference (t = 3.2; FDR < 

0.01).

Discussion

The current study revealed global volume loss of the caudate in subjects with premanifest 

Huntington’s disease (pmHD), and furthermore attributed this change mainly to medial 

paraventricular atrophy. The caudate regional damage uncovered using our surface-based 

morphometry approach was concordant with the result of the previous landmark pathology 

study (Vonsattel et al. 1985a). This study reported that earliest changes of HD were seen in 

the medial paraventricular portion of the caudate nucleus, tail of the caudate nucleus, and 

dorsal part of the putamen (Table 1).

Volumetric and surface-based shape analyses on anatomical MRI have previously attempted 

to replicate in vivo the regional changes observed in neuropathological studies (van den 

Bogaard et al. 2011; Vonsattel et al. 1985a; Younes et al. 2014). In contradistinction to our 

study, these studies have not consistently demonstrated subnuclear abnormalities in the 

caudate nucleus of subjects with pmHD. In the shape analysis by van den Bogaard et al., 

although they found inward displacement in the medial portion of caudate body in manifest 

HD, no regional significant changes were found in pmHD (van den Bogaard et al. 2011). 

Likewise, a more recent caudate shape analysis in pmHD (Younes et al. 2014) only found 

spared dorsolateral and dorsomedial volume, and failed to reveal the caudate subnuclear 

atrophy that was depicted in the study of Vonsattel et al. (Vonsattel et al. 1985a). There are a 

few reasons why the current study was sensitive to these changes in the premanifest patients. 

Unlike these previous studies (van den Bogaard et al. 2011; Younes et al. 2014) that relied 

on single-template based automated segmentation, we manually delineated the caudate 

volume. We then adopted a well-established image processing method that measured 

Jacobian determinants derived from the point-wise displacement of the caudate surface that 

revealed the presence of medial paraventricular caudate atrophy in pmHD. In our previous 

studies (Kim et al. 2013b), we demonstrated that the popularly used displacement metric 

(van den Bogaard et al. 2011; Younes et al. 2014) could be entangled with various 

morphological changes including volume, local shift and bending. Differentiating volume 

changes from other morphological characteristics may also explain the superior sensitivity in 

the current study.

Our previous study using 7 T MRI found that a positive phase shift (attributed to elevated 

iron concentration) in the caudate correlated negatively with genetic disease burden and 

neurocognitive assessments of executive function and working memory of the NIH 
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EXAMINER (Apple et al. 2014), suggesting that the magnitude of microstructural changes 

in pmHD reflects the severity of neurocognitive deficits. Similarly, our morphometry study 

showed that caudate regional volume also correlated with genetic and neurocognitive scores 

of pmHD. Taken together, these studies highlight that both microstructural and 

macrostructural changes in the caudate can be observed in pmHD and that these changes are 

associated with executive dysfunction and time to manifest HD.

Previous studies have proposed a slightly different topographical organization of the caudate 

(Kim et al. 2013a; Nakano 2000; Parent and Hazrati 1995; Postuma and Dagher 2006; 

Selemon and Goldman-Rakic 1988). A rough demarcation with 3 defined functional zones is 

however largely accepted: associative striatum (head of caudate), sensorimotor striatum 

(dorsolateral rim of the caudate), and the limbic striatum (ventral caudate). Our finding of 

caudate atrophy in relation to preHD was mapped mainly on anteromedial subregion that 

corresponded to the head of caudate. A recent meta-analysis of functional MRI has shown 

that the head of the caudate nucleus is activated mainly in relation to cognitive and 

emotional processes (Robinson et al. 2012). This study further showed that the head of the 

caudate had functional connectivity with the amygdala and portions of the anterior and 

posterior cingulate (BA32 and 31, respectively) that are involved in emotive and cognitive 

process whereas the posterior portion of the caudate displayed functional connectivity with 

regions involved in motor control (superior and medial frontal cortices including BA6 and 

BA8), and perception related processes (clusters in occipital lobe, the parietal lobe, and the 

posterior cingulate). This is also confirmed by a thorough review on functional and 

structural connectivity of cognition and emotion (Pessoa 2008). It remains to be investigated 

whether the neocortical cortices that are functionally and structurally linked with the 

primary site of caudate damage in pmHD are also affected.

Our study has several limitations. First, the number of subjects was small; however, most of 

our findings were significant after correction for multiple comparisons. It is also noted that 

the expert had a degree of difficulty in finding landmarks for labeling the caudate volume 

depending on the area. Nevertheless, such difficulty did not influence much the overall 

reproducibility of the manual labeling as we found a high intra-rater agreement using the 

kappa statistics. Regionally, the biggest uncertainty in identification of the landmark 

occurred at the level of the tail, which has been common in many previous articles as 

commented in literature (Looi et al. 2008). This may be the main reason why we did not 

observed the known dorsal-to-ventral gradients of HD progression (Vonsattel 2008) although 

our study revealed the medial-to-lateral gradient of caudate. Finally, the present study 

examined only the caudate nucleus by performing a cross-sectional analysis. To generalize 

and complement the outcome of the present study, future work should include other striatal 

and extrastriatal structures and multiple time points of each patient using a longitudinal 

design. This may assess the spatiotemporal disease progression more precisely and the 

viability of these imaging markers as outcomes in clinical trials.

In conclusion, analyzing patients with pmHD, our surface-based morphometric technique 

revealed an early sign of caudate subnuclear structural damages, which was associated with 

disease burden. The association with other clinical profiles such as scores in executive 

function, and working memory may need a further clarification with a larger sample study. 
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Elucidating caudate atrophy using the employed subregional volumetry techniques has the 

potential to provide a more powerful biomarker than total caudate volumes because we 

could identify the regions most atrophied at this early stage and demonstrate relationships to 

key clinical variables.
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Fig. 1. 
Caudate nucleus on anatomical MRI. An expert manually delineated caudate volume (red). 

The 3D rendering of a labeled caudate volume is also shown (right-bottom; A: anterior, M: 

medial: S: superior)
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Fig. 2. 
Group comparison of mean caudate volume (a) and local volumes (b) between patients with 

pmHD and controls. Caudate atrophy was found in the pmHD group and mapped on the 

medial surface with the most pronounced change in the region of anteromedial subregion. 

Gray: non-significant/colors: significant after FDR adjustment for multiple comparisons
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Fig. 3. 
Association between caudate volume and neurocognitive function. a. Within the area 

showing the significance in the group comparison, we correlated averaged volume and 

neurocognitive scores. We performed this correlation analysis while correcting for the 

covariate effect of the group using a linear model in order to remove a possible bias due to 

the skewness by group differences. Significant correlation was found for both executive 

function and working memory. b. Point-wise correlation analysis found the significance 

primarily mapped on the anteromedial subregion (FDR < 0.05)
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Fig. 4. 
Association between caudate volume and genetic disease burden. a Within the area showing 

the significance in the group comparison (Fig. 2), we correlated averaged volume and CAPs. 

Larger disease burden was significantly associated with smaller caudate volume (r = 0.7; 

FDR < 0.01). b We split our pmHD patients into a low-burden group (n = 7) and a high-

burden group (n = 7) and tested their difference in volume: We found a significant difference 

(t = 3.2; FDR < 0.01)
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