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Abstract

The Statistical Mechanics of Biodiversity
by
Andrew James Rominger
Doctor of Philosophy in Environmental Science, Policy and Management
University of California, Berkeley
Professor John Harte, Co-chair

Professor Rosemary G. Gillespie, Co-chair

Since at least the time of Darwin biologists have searched for a simple set of universal gov-
erning mechanisms that dictate the dynamics of biodiversity. While much progress has been
made in understanding system-specific processes and in documenting the context-dependent
roles of such mechanisms as competition and facilitation, we still lack a universal govern-
ing rule set. The goal of understanding and predicting biodiversity dynamics comes at a
critical moment when human systems are disrupting those very dynamics. In this thesis I
approach this long-standing problem with the hypothesis that general patterns in biodiver-
sity emerge from a combination of the statistical mechanics of large systems and the unique
non-equilibrium dynamics imparted to biological systems by their evolutionary history. Sta-
tistical mechanics provides the key analytical approaches to abstracting the complex details
of biodiversity into general macroscopic predictions that I show receive support from em-
pirical data. However, key deviations from the simplest statistical mechanics of biodiversity
reveal the key role of biological evolution in driving systems away from the idealized steady
state predicted by statistical mechanics.

In Chapter 1 I expand a branch of non-equilibrial statistical mechanics, known as super
statistics, to explain previously unaccounted for wild fluctuations in the richness of taxa
through the Phanerozoic marine invertebrate fossil record and show how this non-equilibrium
is driven by clades’ punctuated exploration of their adaptive landscapes. This theory provides
a novel explanation for deep time diversity dynamics invoking emergence of lineage-level
traits as the drivers of complexity via the same mechanisms by which complexity emerges in
large physical and social systems. In the context of fossil diversity I show how this complexity
arises naturally from the uniquely biological mechanisms of punctuated adaptive radiation
followed by long durations of niche conservatism, and thus identify these mechanisms as
sufficient and necessary to produce observed patterns in the fossil record. I test this theory
using two seminal fossil datasets.

In Chapter 2 I use the chronosequence afforded by the Hawaiian Islands to capture evo-
lutionary snapshots of arthropod communities at different ages and stages of assembly to



understand how the history underlying an assemblage determine its contemporary biodi-
versity patterns. I apply static ecological theory of trophic networks based on statistical
mechanics to these rapidly evolving ecosystems to highlight what about the evolutionary
process drives communities away from statistical idealizations. This study indicates that
rapid assembly from immigration and speciation in young ecosystems and extinction in old
ecosystems could drive observed patterns.

In Chapter 3 I highlight and explain the computational requirements to testing one
statistical theory of biodiversity—the Maximum Entropy Theory of Ecology—with real data
and make those test available in a stream-lined framework via the R package meteR that I
authored.



I dedicate this thesis to my guides and sources of solace through the process of completing
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Introduction

Biodiversity is a striking feature of our world. Diverse ecosystems provide humanity with
irreplaceable services [1] and yet predicting biodiversity’s dynamics—a key goal in order to
better manage and preserve it—continues to elude ecologists and evolutionary biologists [2,
3]. Over the past 550 million years biodiversity has fluctuated between periods of rapid
diversification, such as the Cambrian explosion, and devastating extinctions, such as the end
Permian extinction [4, 5]. In the Modern, where we can directly sample living assemblages
of species, surprising regularities are found in the distributions of population sizes, resource
uses and trophic interactions across species [6-12]. Thus to predict biodiversity we must
embrace both the extreme variability and contingency of its history as well as the persistent
emergent similarities in macroscopic patterns across systems.

Statistical mechanics provides a powerful framework for predicting macroscopic generali-
ties in systems composed of many constituent, potentially complex, parts [e.g. 13, 14]. In this
thesis I use the predictive power of statistical mechanics to understand the origin of perva-
sive patterns in biodiversity, such as the distribution of its fluctuations through time and the
distribution of trophic interactions across species. I combine this approach with an explicit
consideration of the evolutionary process leading to these biodiversity patterns, seeking to
understand how biological evolution drives biological systems away from the steady state
idealizations predicted by statistical mechanics. Thus I show using examples from the fossil
record and rapidly evolving island biotas that general patterns in biodiversity emerge from
a combination of the statistical mechanics of large systems and the unique non-equilibrium
dynamics imparted to biological systems by their evolutionary history.

Biodiversity theory seeks to predict observed assemblages of species [7]. Historically,
this pursuit has been dominated by “bottom-up” theories that attempt to account for all
possible mechanistic interactions between species and their environments [7, 9, 15], which
invariable depend on the specifics of the systems for which they are developed and cannot be
generally applied across the breadth of biodiversity. The pursuit of simple universal theory
was ignited by the work of MacArthur & Wilson [16] whose quantitative description of island
assemblages as a dynamic equilibrium of colonization and extinction paved the way for more
nuanced theories such as the unified neutral theory of biodiversity [7], predicting the species
abundance distribution of any given local community based on the stationary distribution
of a birth-death-immigration-speciation process.

Surprisingly, the patterns these theories seek to predict do not appear to be unique to



biology [8], implying that the mechanisms leading to these outcomes should not be uniquely
biological. Indeed, there is historical precedent in ecology to consider macroscopic proper-
ties of assemblages, such as the species abundance distribution, as the outcome of general
statistical laws [17-20]. This “non-mechanistic” line of thinking has culminated in purely
statistical theories of biodiversity, such as the maximum entropy theory of ecology [9]. Such
theories parallel the coarse-graining of statistical mechanics, where the details of how micro-
states interact (e.g. particles in the case of theoretical physics or populations in the case of
biology) are averaged over in order to predict the behavior of the system as a whole.

The application of coarse-graining in ecology has met with considerable empirical success
le.g. 9, 21-23], yet biology differs fundamentally from statistical physics because of the
non-Markovian memory imparted to species and populations due to common inheritance of
genomes and niche-constructed environments [24] that are the result of natural selection.
If biological systems are in steady state they have the chance to overcome the effect of
evolutionary contingency, but far from equilibrium the importance of evolutionary history
should be clearly seen in deviations between observed biodiversity patterns and statistical
idealizations thereof.

Here I use two complementary approaches to understand the importance of evolution-
ary history through the lens of statistical mechanics. In the first I develop a dynamic
non-equilibrium theory of changes in biodiversity by extending a branch of non-equilibrium
statistical physics, known as super-statistics [25, 26], to demonstrate that the complex dy-
namic of diversity fluctuations through time arises from the same non-equilibrium processes
that can describe complexity in large physical [26] and social systems [27]. In the second
approach I test a static equilibrial theory of biodiversity [the maximum entropy theory of
ecology 9] across rapidly evolving arthropod communities of different ages in the Hawaiian
archipelago. This work combines population genetics with the geologic chronosequence to
understand how the rate and mode (e.g. through adaptive differentiation) of evolutionary
community assembly drives deviations from statistical steady sate. I develop open source
software, available as an R package, implementing these statistical mechanical approaches
to biodiversity theory to showcase the computation required to achieve these insights and
to make that computation more accessible to other biodiversity scientists. Broadly testing
this new form of theory will be critical for ultimately evaluating its utility in predicting and
understanding the spectacular diversity of life that is so critical to the health of our planet
and humanity.
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Chapter 1

Punctuated non-equilibrium and niche
conservatism explain biodiversity
fluctuations through the Phanerozoic

Andrew J. Rominger, Miguel A. Fuentes and Pablo A. Marquet

In revision for Proceedings of the Royal Society of London B



Abstract

Fluctuations in biodiversity, both large and small, are pervasive through the fossil record,
yet we do not understand the processes generating them. Here we use a novel extension
of theory from non-equilibrium statistical physics to show that three universal properties
of macroevolution, punctuated adaptive radiation, niche conservatism and resultant het-
erogeneity of diversification rates between taxa, are sufficient to explain previously unac-
counted for biodiversity patterns throughout the Phanerozoic. Using this theory, known
as super-statistics, we identify taxonomic orders as largely autonomous evolutionary units,
each likely experiencing its own unique and conserved adaptive landscape. This indicates
that while neutral processes could adequately explain within-order diversification, between-
order diversification is likely driven by major evolutionary innovations. Super-statistics, has
been successfully used to explain other complex systems including driven turbulent flows
and wild stock market fluctuations. Compared to other approaches that have used simple
birth-death processes, equilibrial dynamics or non-linear theories from complexity science,
super-statistics is superior in its ability to account for both small and extreme fluctuations
in fossil diversity. Its success opens up new research directions to better understand the evo-
lutionary processes leading adaptive landscapes to be conserved within orders and undergo
punctuated innovations between orders.



1.1 Background

Biodiversity has not remained constant nor followed a simple trajectory through geologic
time [1-6]. Instead, it has been marked by fluctuations in the number of extant taxa, both
positive in the case of net origination or negative in the case of net extinction. Major events,
such as adaptive radiations and mass extinctions have received special attention [7, 8], but
fluctuations of all sizes are ubiquitous [2, 5, 9].

Several approaches have been taken to study the complex trajectory of paleo-biodiversity
ranging from the hypothesis that biological systems self-organize to the brink of critical
phase-transitions [10, 11] to invocations of non-linear environmental perturbations [12] and
escalatory co-evolutionary interactions [13]. New data and analyses have not supported any
of these hypotheses at the scale of the entire Phanerozoic marine invertebrate fauna [5, 14,
15]. Other studies have modeled the mean trend in diversity as tracking a potentially evolving
equilibrium [2, 5, 6, 16] and yet ignore the potential role of stochasticity and non-equilibrium
dynamics in producing observed patterns [4, 9, 17]. As such, we still lack a synthetic theory
of evolving biodiversity through the fossil record. Here we use a simple model of evolution
in an abstract niche space derived from universal non-equilibrium processes to predict, with
great accuracy, the complex distribution of pervasive diversity fluctuations throughout the
marine Phanerozoic.

Despite the heterogeneity of explanations of Phanerozoic biodiversity, consensus has
emerged on three properties of macroevolution: 4) gross ecological and life history at-
tributes of clades (i.e. groups of related species descending from a common ancestor) are
often maintained, a phenomenon known as niche conservatism [18, 19]; i) long periods of
niche conservatism are interrupted by adaptive diversification and exploration of new eco-
logical niche space [19-21]; and #4) as a consequence of the interaction between their life
history characteristics and the dynamics of the environments they inhabit [22] different clades
experience different rates of morphological evolution, speciation and extinction [2, 3, 23, 24].

Observed bursts of adaptive radiation leading to novel morphologies in the fossil record
led Eldredge and Gould to their hypothesis of punctuated equilibrium [20]. Here we show
that this punctuation is actually akin to the “super statistical theory” of non-equilibrium dy-
namics in statistical physics [25]. Super-statistics [25] proposes that non-equilibrial systems
can be decomposed into locally equilibrial sub-systems. The distribution of equilibria across
sub-systems determines the dynamics of the complete system [25]. When these sub-systems
are superimposed the resulting system can no longer be described by a single equilibrial
model. In the context of macroevolution we propose that a clade with conserved life his-
tory characteristics corresponds to a locally equilibrial sub-system. If a certain region of
niche space can only contain a finite diversity of taxa [16, 23, 26, 27| then diversity within
clades should fluctuate stochastically about this equilibrium due to random origination and
extinction. The magnitude of these macroevolutionary rates should be a function of the life
history and ecological characteristics that define that region of niche space. Larval type [28],
body plan [17], body size [29], range size [29, 30] and substrate preference [19] have all been
shown to influence such rates. Thus different regions of niche space, and the clades occupying



them, will experience different magnitudes of stochastic fluctuation in diversity. As clades
occasionally split to fill new regions of niche space their punctuated diversification deter-
mines the non-equilibrium nature of the entire biota. Here we show that these properties
of macroevolution are sufficient to explain the complex fluctuations of marine invertebrate
diversity through the Phanerozoic.

In statistical mechanics, local sub-systems can be defined by a simple statistical param-
eter [ often corresponding to inverse temperature. In the context of macroevolution we
define 8 as the inverse variance of a homogenous origination-extinction process, which will
capture all relevant information about a clade’s diversification under such a process. The
limit distribution of time averaged fluctuations in clade k’s diversity through time should
be approximately Gaussian with variance 1/8; (Appendix A.1). We posit that just as in
statistical systems, non-equilibrium dynamics can arise from the mixing of the dynamics of
many locally equilibrial subsystems. For marine Phanerozoic diversity this corresponds to
mixing the dynamics of many clades, all being described by their unique S values. Three
exemplar dynamics taken from a bias-corrected (see methods section) aggregation of the
Paleobiology Database (PBDB) [5] are shown in Figure 1.1. To predict the super-statistical
behavior of the entire marine invertebrate Phanerozoic fauna we must integrate over all pos-
sible local equilibria that each clade could experience. The distribution of 3 values describes
the probability that a given clade, chosen at random, will occupy a region of niche space
characterized by that inverse variance value. The form of this stationary distribution of
B values could shed interesting light on the biological processes that lead different clades
to different equilibria, as discussed below. Figure 1.1 shows the shape of this stationary
distribution estimated from bias-corrected PBDB [5] data.

To uncover the super-statistical nature of the marine invertebrate Phanerozoic fauna
we analyze the distribution of diversity fluctuations using two canonical databased of fossil
biodiversity, the PBDB [5] and Sepkoski’s compendium [31] of fossil marine invertebrates
(results from Sepkoski’s compendium are presented in Appendix A.2.3). We filter PBDB data
to include only well preserved marine invertebrates following previously published collection
inclusion criteria [5, 6]. We account for detection bias in the PBDB using an extension of
the “three timer” correction [5]. “Three timer” correction accounts for the rate of failure to
observe a genus, estimated by the number of times a gap occurs in its occurrence history. We
extend this correction by also employing a new publication bias correction to help eliminate
bias from preferential publication of novel taxa (see methods section). Results obtained
from this correction strategy are similar to other published methods (Fig. A.2). Fluctuations
within a clade are computed as the difference in standing diversity between two time intervals,
or equivalently the number of originations minus extinctions in one interval.

Phanerozoic biodiversity can be deconstructed and grouped into clades, or sub-systems,
in several different ways. Lacking a full phylogenetic hypothesis for all marine invertebrates
we use taxonomic classifications to identify potential sub-systems. Taxa ideally represent
groups of organisms that descend from a common ancestor and share similar ecologically and
evolutionary relevant morphological traits [32, 33]. For Phanerozoic marine invertebrates,
Holman [24] has shown that variance in diversity dynamics is less between taxa belonging to

8



the same order than taxa in different orders, indicating that the taxonomic level of orders is
a likely candidate for sub-system delineation. To evaluate the optimal taxonomic level for
sub-system designation, we test our superstatistical theory using taxonomic levels from order
through class to phylum. Additionally we compare our results to randomized taxonomies
to confirm that observed patterns are not an artifact of arbitrary classification but instead
represent real biologically relevant differences between clades.

1.2 Methods

1.2.1 Paleobiology Database data download and filtering

Data were downloaded from the Paleobiology Database (PBDB; www.pbdb.org) on 28 May
2013. Collections were filtered using the same approach as Alroy [5] to insure that only
well preserved marine invertebrate occurrences were used in subsequent analysis resulting in
221202 genus occurrences. These were further filtered to exclude those occurrences without
order-level taxonomy and those collections with age estimate resolutions outside the 10my
default bins of the PBDB resulting in 189516 occurrences left for analysis. To avoid basic
sampling concerns we excluded the earliest Cambrian and the Cenozoic.

To focus attention on the variance of fluctuations we center each clade’s fluctuation
distribution. Because “equilibrium” in the statistical mechanical sense means a system
undergoes coherent, concerted responses to perturbation the mean trend line is of less interest
than deviations from it. We also note that most clades are already close to centered and so
centering has little influence on clade-specific fluctuation distributions.

1.2.2 Three-timer and publication bias correction

We use a new and flexible method, described below, to correct for known sampling biases in
publication-based specimen databases [5, 6]. We were motivated to use this method because
rarefaction has been shown to under-perform compared to the more data-intensive share-
holder quorum subsampling (SQS) method [6]. However, subsampling cannot be applied to
small orders (i.e. the majority) because SQS becomes increasingly unreliable as sample size
decreases [6]. We therefore develop a simple method based on first correcting for detection
bias using the “three timer” correction [5] in which the rate of failure to observe a genus is
estimated by the number of times a gap occurs in the occurrence history of each genus. To
eliminate further bias due to preferential publication of novel taxa we divide observed num-
ber of genera per order per time period by the expected number of genera given publications
in that time period. The expected number is calculated by regressing the log-transformed
number of genera on log-transformed number of publications. There is a weak trend to-
ward higher diversity with more publications (Fig. A.1) meaning that the most important
correction comes from the three timer correction.



Our new method effectively re-scales each genus occurrence from 0/1 (absent/present),
to a weighted number continuously ranging between 0 and 1. This method achieves simi-
lar results to more computationally intensive sub-sampling procedures [5, 6]. We directly
compare our predicted time series of global genus diversity with results derived from SQS
[6] and the raw data (Fig. A.2). Our method shows minor differences with the SQS predic-
tion, However, these discrepancies do not have impact the distribution of fluctuations (Fig.
A.2) and super-statistical analysis on uncorrected PBDB data (see section A.2.1) produces
a similar result to the analysis on corrected PBDB data presented in the main text.

1.2.3 Numerical methods

To fit our super-statistical prediction we use the method of least squares instead and maxi-
mum likelihood. When building the prediction for P(x) by calculating order-level Gaussian
distributions and integrating over them, we use least squares to fit the variance term to each
order. We do so because orders potentially show asymmetries in their distribution of fluc-
tuations. Least squares is more flexible in fitting such distributions compared to maximum
likelihood which will always estimate the empirical variance as the best-fitting parameters.

We also estimate P(z) directly from the raw data using maximum likelihood to compare
the fit of our super-statistical prediction and that of a simple Gaussian distribution using
AIC. To calculate a likelihood-based confidence interval on our prediction we bootstrapped
the data, subsampling fluctuations with replacement from all orders combined.

1.3 Results and Discussion

At the order level in both the sampling-corrected PBDB (Fig. 1.1) and Sepkoski’s com-
pendium (Appendix A.2.3), fluctuations in genus diversity are well described by a Gaussian
distribution (Fig. 1.1). Gaussian fluctuations would result from a homogeneous origination-
extinction process under the condition of independence between orders. Independence could
result from neutral-like processes [34], where the dynamics of one taxon are unaffected by
those of another, or from dampening mechanisms that stabilize complex networks of in-
teracting taxa [35]. This is in direct contrast to the instability hypothesis underlying the
self-organized criticality theory of paleo-biodiversity [10, 11].

We estimate the distribution of f;’s simply as the maximum likelihood distribution de-
scribing the set of inverse variances for all orders. In both the PBDB and Sepkoski’s com-
pendium, Phanerozoic marine invertebrate orders clearly follow a Gamma distribution in
their 5y values (Fig. 1.1). While multiple processes could lead to a Gamma stationary dis-
tribution [e.g. 36], one interesting possibility is a mean-reversion process [36]. Mean reversion
could be a consequence of niche conservatism if g values are associated with a clade’s phys-
iological and life history traits, themselves evolving via Ornstein-Uhlenbeck-like exploration
of an adaptive landscape [36, 37].
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Using the observation of within order statistical equilibrium and Gamma-distributed Sy
parameters we can calculate, without further adjusting free parameters, the distributions of
order-level fluctuations for the entire marine Phanerozoic, P(z), as

P(z) = / el | B)F(8)B (L1)

where py(x | ) is the distribution of fluctuations within an order and f(f) is the stationary
distribution of inverse variance in the magnitude of order-level fluctuations in diversity. This
leads to a non-Gaussian, fat-tailed prediction for P(z) which matches both the PBDB and
Sepkoski data closely (Fig. 1.2 and Appendix A.2.3).

To quantitatively evaluate how well the super-statistical prediction matches the data we
constructed a 95% confidence envelope from bootstrapped maximum likelihood estimates for
P(x). Observed fluctuations fall within this 95% confidence envelope (Fig. 1.2), indicating
that the data do not reject the super-statistical prediction. For further comparison, we fit
a Gaussian distribution to the observed fluctuations, which corresponds to the equilibrium
hypothesis that all orders conform to the same statistics. Using Akaike Information Criterion
(AIC) we find that observed fluctuations are considerably better explained by the super-
statistical prediction than by the Gaussian hypothesis (AAIC = 11285.18). Thus, as expected
under the super-statitical hypothesis, the fat tailed distribution of fluctuations arise from
the superposition of independent normal statistics for fluctuations within orders.

Computing the distribution of fluctuations using classes instead of orders leads to a
substantially poorer fit to the observed data (Fig. A.4). We quantify this shift with the
Kolmogorov-Smirnov statistic, which changes from 0.041 in order to 0.062 in classes (Fig.
1.3). However, if super-statistical theory explains the data, this worsening fit with increasing
taxonomic scale is expected as the different classes are not well defined subsystems in their
fluctuation dynamics. Instead, classes aggregate increasingly disparate groups of organisms,
and thus effectively mix their associated Gaussian fluctuations, meaning that one statistic
should no longer be sufficient to describe class-level dynamics. Our analysis indicates that
orders are evolutionarily coherent and independent entities, with all subsumed taxa shar-
ing key ecological and evolutionary attributes allowing them to diversify concertedly and
independently from other orders. Both the good fit at the order level and worsening fit at
higher taxonomic levels is confirmed in Sepkoski’s compendium, which also allows analysis
of phylum-level patterns (Fig. A.5).

To further test the evolutionary coherence of orders we conducted a permutation exper-
iment in which genera were randomly reassigned to orders while maintaining the number of
genera in each order. For each permutation, we calculated the super-statistical prediction
and the Kolmogorov-Smirnov statistic. The permutation simulates a null model in which
common evolutionary history is stripped away (genera are placed in random orders) but the
total number of observed genera per order is held constant. Repeating this permutation
500 times yields a null distribution of Kolmogorov-Smirnov statistics that is far separated
from the observed value (Fig. 1.3) suggesting the good fit at the order level is not merely a
statistical artifact of classification but carries important biological information.
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1.4 Conclusion

Our analysis makes no assumption that orders should correspond to super-statistical sub-
systems, but identifies them as the appropriate level for marine invertebrates. Holman [24]
has also shown that orders are “evolutionarily coherent” in that subtaxa within orders share
common diversification dynamics. As we show, orders differ only in the variances of their
diversity fluctuations (Fig. 1.1).

Our study is the first to demonstrate that complex patterns in the sequence of origina-
tion and extinction events in the fossil record are the result of a simple underlying process
analogous to the statistical mechanisms by which complexity emerges in large physical [38]
and social systems [39]. We do so by identifying the biological scale at which clades con-
form to equilibrial dynamics, which could result from the process of niche conservatism. We
then show that punctuated shifts to different equilibria between clades, a consequence of
punctuated exploration of niche space by newly evolving clades, leads to a characteristically
non-equilibrial distribution of diversity fluctuations when the marine Phanerozoic fauna is
viewed as a whole macro-system.

Our work highlights the importance of both niche conservatism and punctuated adaptive
radiation in producing the statistical behavior of the Phanerozoic; our theory thus provides
new motivation for identifying the eco-evolutionary causes of innovations between lineages
and how those innovations are eventually conserved within lineages. Armed with an under-
standing of the statistical behavior of diversification we can go on to examine mechanisms
underlying additional patterns in the mean trend of biodiversity through the Phanerozoic.
In particular, clades have been shown to wax and wane systematically through time [4, 9],
a pattern that we cannot explain with super-statistics alone.

Super-statistics could also be applied to other areas of evolution and macroecology. For
example new phylogenetic models already consider heterogeneous rates of diversification
le.g. 40]. The super-statistics of clades in adaptive landscapes could provide a means to
build efficient models that jointly predict morphological change and diversification. This
framework could also provide a new paradigm in modeling the distributions of diversity,
abundance and resource use in non-neutral communities. Non-neutral models in ecology are
criticized for their over-parameterization [41], yet a persistent counter argument to neutral
theory [34] is the unrealistic assumption of ecological equivalency [42] and poor prediction of
real dynamics [43]. If ecosystems are viewed as the super-position of many individualistically
evolving clades, each exploiting the environment differently and thus obeying a different set
of non-equivalent statistics, then diversity dynamics could be parsimoniously predicted while
incorporating real biological information on ecological differences between taxa.
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Figure 1.1: The distributions of within-order fluctuations in genus diversity shown for the
trajectories of three exemplar orders (A) and shown as an empirical cumulative density
aggregated across all orders (B). To display all orders simultaneously we simply collapse
their fluctuation distributions by dividing by their standard deviations. If orders conform
to the Gaussian hypothesis their scaled fluctuations should fall along the cumulative density
line of a normal N(0, 1) distribution, as shown in (B). In (C) the distribution of inverse
variances [ across all orders matches very closely to a Gamma distribution (black line);
exemplar orders are again highlighted.

16



o
Q3
o -
22 =
R
S ]
3 ]
2o
8O 3
g° 3 All data
3 4 © Data (n>=10)
5 |—— Superstatistics
S = Superstatistics likelihood ClI
© J— ML normal
= Normal likelihood CI o
_—I_I'ITI'I'I] [IRLBLILILLLLIL IIIII|T| [IRLBLILILLLLIL IIIII|T| T TTTI I IIIII|T|
1e-04 1e-02 1e+00 1e+

[Fluctuationsl

Figure 1.2: Distribution of fluctuations in genus diversity within orders of marine inverte-
brates in the Paleobiology Database [5] after bias correction. The distribution is fat-tailed as
compared to the maximum likelihood estimate of the normal distribution (blue line). At the
order level the empirical distribution of fluctuations are well described by our super-statistical
approach, both when computed from integrating over the distribution of observed variances
(red line) and when fit via maximum likelihood (95% confidence interval; red shading).
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Figure 1.3: Distribution of Kolmogorov-Smirnov (KS) statistics from randomly permuting
genera within orders (gray shading represents 95% confidence interval). Solid black line is
observed KS statistic at the order level, while the dashed black line shows the observed KS
statistic at the class level.
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Abstract

Aim Understanding how ecological and evolutionary processes together deter- mine patterns
of biodiversity remains a central aim in biology. Guided by ecological theory, we use
data from multiple arthropod lineages across the Hawaiian archipelago to explore the
interplay between ecological (population dynamics, dispersal, trophic interactions) and
evolutionary (genetic structuring, adaptation, speciation, extinction) processes. Our
goal is to show how communities develop from the dynamic feedbacks that operate at
different temporal and spatial scales.

Location The Hawaiian islands (19-22°N, 155-160°W).

Methods We synthesize genetic data from selected arthropods across the Hawaiian archipelago
to determine the relative role of dispersal and in situ differentiation across the island
chronosequence. From four sites on three high islands with geological ages ranging
from < 1 Ma to 5 Ma, we also generate ecological metrics on plantherbivore bipartite
networks drawn from the literature. We compare the structure of these networks with
predictions derived from the principle of maximum information entropy.

Results From the perspective of the island chronosequence we show that species at lower
trophic levels develop population genetic structure at smaller temporal and spatial
scales than species at higher trophic levels. Network nestedness decreases while mod-
ularity increases with habitat age. Single-island endemics exhibit more specialization
than broadly distributed species, but both show the least specialization in communities
on middle-aged substrates. Plantherbivore networks also show the least deviation from
theoretical predictions in middle-aged communities.

Main conclusions The application of ecological theory to island chronosequences can illumi-
nate feedbacks between ecological and evolutionary processes in community assembly.
We show how patterns of population genetic structure, decreasing network nestedness,
increasing network modularity and increased specialization shift from early assembly
driven by immigration, to in situ diversification after > 1 Myr. Herbivore-plant com-
munities only transiently achieve statistical steady state during assembly, presumably
due to incomplete assembly from dispersal in the early stages, and the increasing in-
fluence of island ontogeny on older islands.

20



2.1 Introduction

Current biodiversity is a product of speciation, extinction and dispersal, contingent on the
ecological interactions of organisms with their biotic and abiotic environment. The evolu-
tionary history leading to the assembly of any given ecological community must in some
way shape current ecological assemblages. However, because the processes of evolution and
ecology occur on different temporal and spatial scales, disentangling the relative influence of
local ecological mechanisms from historical evolutionary processes on patterns of community
structure remains a central challenge [1].

The evolutionary processes of speciation and extinction are classically viewed as con-
straints on regional species pools, occurring in a manner largely removed from local ecology
[2-4]. Conversely, ecological mechanisms tend to be viewed as packing standing diversity
into local communities through consumption, competition, facilitation and, more recently,
neutral ecological drift [2, 5-7]. While recent theoretical advances have provided greater in-
sight into ecological drift [2, 8], niche partitioning [5], competition, predation [7] and species
interaction networks [9, 10], these insights typically do not contain realistic evolutionary
assumptions [11] or ignore them entirely.

Insights into the genetic, biogeographic and selective mechanisms leading to diversifi-
cation have also emerged based on inference from current patterns of species, genetic or
phylogenetic diversity [e.g. 4, 12]. However, it is not possible to use current static patterns
to infer the temporal dynamics of either the evolutionary mechanisms or their ecological con-
sequences, nor can we understand what constitutes meaningful change in a system without a
baseline for comparison. Here we show how testing idealized ecological theories—such as the
unified neutral theory [2] or the maximum entropy theory of ecology [13]—on archipelagos
composed of islands formed in a discrete geological sequence can help identify the shift-
ing balance and feedback between fast-acting, local ecological mechanisms, and longterm,
large-scale evolutionary processes in determining ecological community structure. Islands
having different ages of formation, along with discrete volcanoes within islands, provide the
opportunity to study diversification of species and the assembly of communities in differ-
ent stages. Ecological theory provides an idealized null baseline against which to compare
observed patterns.

2.1.1 Hotspot oceanic archipelagos as model systems

Hotspot oceanic islands are opportune model systems for studying the interplay of local
ecological mechanisms and the evolutionary drivers of biodiversity patterns. Due to their
sequential formation as the tectonic plate moves over a volcanic hotspot, such island systems
offer a range of spatial and temporal scales over which to analyze the outcomes of ecological
and evolutionary processes [14]. While many archipelagos around the world share these biotic
and geological properties, the Hawaiian archipelago provides a particularly useful system for
study because its linear geological chronology [15], ecosystem developmental trajectories [16]
and phylogeographic patterns of biodiversity are each well characterized [17]. Moreover,
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studies of species diversity across the islands have revealed patterns that are non-uniform
across the island chronosequence with marked differences among lineages [e.g. 18, 19] that
can be used to test for biologically meaningful differences among lineages that might drive
their disparate diversification patterns.

2.1.2 Development of genetic structure

High levels of dispersal and associated gene flow among localities limit the extent to which
populations can diverge genetically. However, when gene flow is low, distinct populations
in different localities are free to diverge through local selective pressures and drift, which
can lead to diversification [20] Thus, the magnitude of genetic connectivity among popula-
tions provides a measure of the relative importance of dispersal-driven assembly (dictated by
processes removed from the local setting) in contrast to assembly by local (in situ) diversi-
fication in determining community composition. Using the chronosequence of the Hawaiian
archipelago, we can analyze populations from multiple sets of taxa across trophic guilds
occurring in geological contexts from young to old. We predict that dispersal-driven (ecolog-
ical) processes will dominate in community assembly in young habitats, with the importance
of in situ (evolutionary) processes increasing with habitat age. If evolutionary processes are
not important, we predict that communities should reach a statistical steady state through
ecological processes alone [13]. If, as we expect, evolutionary processes become increasingly
important in community assembly over time, we would expect to find associated deviations
from an ecological null model of community assembly, provided by idealized ecological the-
ory. Differences in population structure among taxa or trophic groups could indicate whether
sufficient time has passed along the chronosequence for the group of interest to experience
significant evolutionary pressures.

2.1.3 Macroecological metrics and idealized ecological theory

By their nature, unified theories of biodiversity [e.g. 2, 13| provide a simplified view of
ecology, but deviations from theory can provide insights into which particular ecological
patterns require additional biological mechanisms for their explanation [13]. The maximum
entropy theory of ecology [METE; 13] in particular provides predictions of species abundance
distributions, speciesarea relationships and metabolic rate and network linkage distributions
for idealized ecological communities in which the behavior of a system is governed by a
simple set of state variables. The principle of maximum information entropy (MaxEnt),
from which the METE is derived, is an established inference procedure that has yielded
accurate predictions of diverse patterns in fields as varied as thermodynamics (Jaynes, 1957),
economics [21], forensics [22], imaging technologies [23] and, more recently, ecology [e.g. 13,
24, 25]. MaxEnt works by seeking the least-biased prediction of a distribution of interest (e.g.
the distribution molecular velocities in the case of thermodynamics or of species abundances
in the case of ecology) while constraining that prediction to be consistent with state variables
describing the macroscopic attributes of the system (e.g. temperature or the total number of
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species and individuals). These are the most ignorant possible predictions about the system.
Thus, studying the unique ecological conditions and evolutionary histories of real-world
systems that deviate from the conditions predicted from maximizing information entropy
can provide insights into the processes driving ecological systems away from the statistical
steady state [13].

Ecological networks are complex systems forming hierarchical structures to which the
principle of MaxEnt has recently been applied [13, 26] and are a prime study focus because
networks of interacting species embody both the ecology of trophic links and evolutionary
processes such as co-evolution [6, 27-29]. Thus they present an opportune starting place to
study ecological and evolutionary feedbacks. The distribution of linkages in ecological net-
works can test whether plantanimal interaction networks assemble neutrally or through de-
terministic processes such as co-evolution of traits involved in foraging [30]. Analysis of other
network metrics such as modularity (the degree to which species interact in semi-autonomous
modules) and nestedness (the degree of asymmetry in interaction between specialists and
generalists) can further illuminate the underlying eco-evolutionary processes driving patterns
of species interactions [6, 27, 28]. In nested networks, species with fewer interactions (i.e.
more specialized species) will interact with a subset of the species with which generalists in-
teract. In this way interaction nestedness is mathematically equivalent to island nestedness
(in which islands that are less species rich are subsets of islands that are more species rich).
However, we only consider network nestedness here.

To gain insights into community assembly as it happens, we propose an integrative frame-
work that harnesses advances in both evolutionary and ecological theory, placed in the con-
text of age-structured archipelagos. Mechanistically simplified ecological theories such as
the METE [13] can be used as powerful null models; deviations from theoretical expecta-
tions can flag biological phenomena that warrant further study. Here we demonstrate how
community-level data from age-structured island systems, combined with population genetic
and phylogenetic data, can test the extent to which the evolutionary histories behind such
communities drive their deviation from theoretical expectations. We provide an initial test
of this concept using a synthesis of published data on arthropod lineages in the Hawaiian is-
lands. We provide metrics of ecological and evolutionary dynamics across communities from
settings that range in geological age from 500 years to 5 Ma. We estimate taxon-specific
timelines for the development of population genetic structure for both herbivores and preda-
tors and couple these results with macroecological measures of community structure, using
predictions from statistical steady-state and ecological network theory to provide insights
into changes in community structure over the extended timeframe provided by the island
chronosequence.
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2.2 Methods

2.2.1 Dispersal-driven processes to in situ differentiation across
the island chronosequence

To evaluate the balance between regional immigration and the potential for local differentia-
tion, we measured how molecular variation is partitioned among populations within species
across locations of known substrate age on the islands of Hawaii and Maui (Fig. 2.1). We
compiled published [DNA sequences, amplified fragment length polymorphism (AFLPs) and
allozymes| and new data sets for a diversity of native Hawaiian arthropod groups that rep-
resent a spectrum of trophic levels (Tablel). New sequences were included for sap-feeding
Hemiptera group Nesosydne planthoppers [COI; data generated following the protocols in
Goodman et al. [31]; GenBank accession numbers: KT023113-KT023179] and Trioza psyllids
[COI, cytB; data generated following protocols in Percy [32]; GenBank accession numbers:
KR108061KR108144]. Samples were from the focal sites described below for the ecological
analysis, as well as from other locations across Hawaii and Maui. These data were used
to provide an estimate of how arthropod populations have accumulated genetic population
structure within the focal sites of different geological age.

We used analysis of molecular variance (AMOVA) to examine how genetic variation is par-
titioned at two scales of population structure: among sites within volcanoes and among vol-
canoes on both the island of Hawaii and the islands of the Maui Nui complex (Maui, Molokai,
Lanai). All analyses of allozyme and DNA sequence data were performed in Arlequin v.3.5
[33] using the AMOVA procedure to compute Fsr, a measure of genetic variance, or, where
possible, ®gr, an Fsr analogue that incorporates genetic sequence information. The Laupala
AFLP data were analyzed using tfpga v.1.3 [34], using the same hierarchical approach of
comparing within and among volcanoes as described above. To provide a temporal frame-
work for the population differentiation analysis we assembled divergence-dating information
from the literature for as many of the taxa as possible.

To explicitly test the association between landscape age and the potential for in situ
genetic divergence we analyzed how within-site Fgr varies with the geological age of volcanoes
on the islands of Hawaii and Maui Nui. For each volcano we calculated Fgr or ®gp [33] for
each taxon among sites within volcanoes. This analysis assumes that volcano age parallels
habitat age, allowing more or less time for the presence of the populations.

2.2.2 Ecological metrics across the island chronosequence

To investigate how ecological patterns change as communities age, we selected four focal sites
across the chronosequence and island ages (two on the island of Hawaii, one on Maui and
one on Kauai; Fig. 2.1) of approximately 12 km? (each was defined as a point with a 2 km
radius buffer). Focal sites were selected to have similar forest composition (dominated by
Metrosideros polymorpha; Myrtaceae), elevation (1100-1400 m) and rainfall (mean annual
precipitation 2000-3000 mm). We then constructed bipartite interaction networks between
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native herbivorous Hemiptera species and native plants at each of the study sites. Bipartite
networks describe the topology of ecological interactions between two guilds of organisms (e.g.
herbivores and their plant hosts). Quantitative information on the relative importance of
interaction links can be incorporated into network analyses [35]. However, currently available
data are restricted to binary networks: those that describe the potential for interaction
between any two species but not the relative frequency of that interaction to each species.

We compiled species lists of all native herbivorous Hemiptera for each focal site from
published species accounts. Species accounts and other published sources were used to de-
termine the presence, probable presence, or probable absence of each species at each of our
four focal sites. A documented presence was defined as a known specimen collected at the
focal site; a probable presence was defined as a species whose abiotic tolerances and known
geographic range overlap with a focal site but no known specimen exists confirming its pres-
ence. Probable absence was assumed when the criteria for presence or for probable presence
are not met. Two sets of species lists for each focal site were compiled: a conservative data
set composed of only documented presence occurrences and a less conservative data set that
also included probable presences.

Host plants for each species of Hemiptera were determined from published species ac-
counts. Data on host plant use at each specific site were not available so we assumed that if a
known host plant were present at a site it would eventually be used. Host plant occurrence in
the focal sites was determined using distribution models for 1158 species of Hawaiian plants
[36]. Each focal site was spatially joined in a geographic information system with all coin-
cident plant distribution models that fell within its boundaries. Two sets of resulting focal
site-specific networks were constructed: one using the conservative data set of Hemiptera
species presences and the other using the less conservative data set.

We hypothesized that potentially complex evolutionary feedbacks contributing to com-
munity assembly should result in departures from the predicted ecological statistical steady
state. We used the METE [13, 26] to compute the statistical steady state for the distri-
bution of the number of host plants used by each Hemiptera species (hereafter referred to
as degree distribution). To evaluate how well the METE predicts the data we simulated
METE-conforming communities having the same number of species and links as observed.
We then calculated the log-likelihood of each simulated data set and compared the resul-
tant distribution of log-likelihoods under the hypothesis that the METE is true with the
observed log-likelihood. This comparison is identical in approach to a z-score test using a
Monte Carlo simulation to estimate the sampling distribution of log-likelihoods. R scripts
[v.3.1.1; 37] used for METE estimation and Monte Carlo methods are available in Appendix
B.2. To investigate how speciation may in part drive network patterns and deviations from
those predicted by idealized ecological theory, we analyzed the number of links assigned to
each Hemiptera species (the degree distribution) separately for single-island endemics (those
species found on only one island and thus probably derived from in situ diversification) versus
multi-island endemics (those species found on multiple islands). Although multiple processes
can lead to a species being a single-island endemic [38], such taxa provide a proxy for how
much speciation occurs within islands. To compare species degree distributions between
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single-island endemics and multi-island endemics across sites of different ages we conducted
a generalized linear model with binomial error, treating site identity as a categorical predic-
tor. Binomial errors effectively account for network size due to the bounded support of the
binomial distribution.

To understand how other network properties change with age of the ecosystem substrate,
we calculated two widely used descriptive network metrics across sites—nestedness and mod-
ularity. Nestedness describes the degree of asymmetry of species interactions connecting
specialists and generalists [6, 39]. We calculated nestedness using the NODF metric [40]
as implemented in the R package vegan [41] and modularity using a variety of algorithms
implemented in the R package igraph [42]. These metrics are not directly comparable across
networks of different size and connectance [39], so for each metric in each network we calcu-
late z-scores using a null model that randomizes network structure while maintaining certain
aggregate network properties (Ulrich et al., 2009). These z-scores are calculated as the differ-
ence between the observed network metric minus the mean of the null model divided by the
null model standard deviation, or (Z,psZsim)/S Dsim- Because z-scores can be highly sensitive
to the choice of null model [39] we implemented both a probabilistic null model [6] and a null
model that strictly constrains the degree distributions of plants and herbivores [39]. The
probabilistic null uses the frequency of interactions as the probability that a randomized link
gets assigned to that cell in the interaction matrix [6]; thus the probabilistic null constrains
row and column sums in probability but not absolutely.

2.3 Results

2.3.1 Dispersal-driven processes to in situ differentiation across
the island chronosequence

The AMOVA revealed significant genetic population structure from the smallest to the largest
spatial scales examined, all within a very recent timeframe. For mitochondrial loci, statis-
tically significant molecular variation partitioned among sites within volcanoes ranged from
0.037 to 0.92 and among volcanoes from 0 to 0.30. Corresponding variation at multilocus
nuclear loci among sites within volcanoes ranged from 0.21 to 0.58 and among volcanoes from
0.04 to 0.34. Taxa in the lower trophic levels (herbivorous sap-feeding Hemiptera: planthop-
pers and psyllids) had as much or more molecular variation partitioned at the among-site,
within-volcano level than the among-volcano level, while the predatory spiders were less
structured at localities within volcanoes compared with among them (Table 1). The analy-
sis of genetic population structure across the chronosequence of localities revealed a similar
pattern. The herbivores show high genetic population structure among localities even on
young volcanoes (Fig. 2.2). By contrast, predatory spiders exhibited little genetic popu-
lation structure within sites on the same volcano; this was higher among volcanoes, with
values increasing with age across the chronosequence.

26



The observed levels of genetic divergence have evolved rapidly in many cases. For ex-
ample, for species from the island of Hawaii for which phylogenetic data provide divergence
times, estimates of dates of species divergence range from 0.5—4 Ma, with additional within-
species genetic divergence having developed subsequently (Table 1). That some of these
estimates are older than the known age of the Big Island suggests that genetic divergence
pre-dates their colonization to Hawaii, or alternatively that estimates include sampling er-
ror. For the one species where population genetic data were used to estimate divergence
times between populations, herbivorous Nesosydne planthoppers, it was determined that
populations diverged as little as 2600 years ago [31, Table 1].

2.3.2 Ecological metrics across the island chronosequence

The degree distribution of Hemiptera species varied across the chronosequence with both the
youngest and oldest sites deviating most from the statistical steady-state maximum entropy
predictions (Fig. 2.3). In the intermediate-aged site of Kohala, deviations are not signif-
icantly different from the predictions of maximum entropy. The generalized linear model
revealed significant differences between the degree distributions of single-island endemics
(species whose distributions are restricted to only one island) versus archipelagic endemics
that are found across multiple islands (Fig. 2.3). Single-island endemics show significantly
lower degree distributions overall (i.e. more specialization) compared with more generalist
species found across multiple islands. Furthermore, single-island endemics use more host
plant species on the intermediate-aged Maui site. The slightly younger Kohala shows in-
creased generalization for both single-island endemics and archipelago endemics. However,
when considering the degree distribution defined by trophic links to plant genera instead
of plant species, the pattern of increased generalization holds for Kohala, but endemics on
Maui no longer show a difference in their degree distributions from other island endemics.
This change in pattern suggests that increased generality of Maui endemics may be driven
by increased plant species diversity within genera on that island.

Network nestedness decreased with habitat age while modularity increased (Fig. 2.4).
This trend was recovered in networks constructed from both more and less stringent geo-
graphic criteria (Fig. B.2). Choice of null model changed the magnitude of modularity and
the sign of nestedness z-scores; however, the relative pattern of decreasing nestedness and
increasing modularity remained across the different null models used to standardize network
metrics (Fig. B.1). The patterns were also robust to sampling intensity, as demonstrated by
a rarefaction analysis (Fig. B.3).
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2.4 Discussion

2.4.1 Development of genetic population structure at different
trophic levels

The analysis of available genetic data presented here indicates that divergence is occurring
within the islands at small spatial scales and over short time periods (Table 2.1, Fig. 2.2).
Furthermore, the scale of population structure varies with trophic position, with structure
developing in sap-feeding herbivore lineages at smaller scales (and hence shorter timeframes
in the context of the chronosequence) compared with detritivorous crickets and predatory
spiders (Table 2.1, Fig. 2.2). Structure within species may allow populations to take in-
dependent evolutionary trajectories, especially when aided by other evolutionary processes
acting differentially across species geographic ranges. A variety of factors have been as-
sociated with the genetic divergence of populations and species in the lineages described
here, including combinations of genetic drift associated with geographic isolation [31, 32, 43,
44], adaptation associated with competition, predation and mutualism [45-47] and sexual
signaling [43, 48-50].

The Nesosydne planthoppers provide evidence that some period of geographic isolation
preceded the divergence of sexual signals [31, 50]. Shifts in plant host use are also associated
with diversification in this group [46]. In a phylogenetic study of a radiation of sap-feeding
Nesophrosyne (Cicadellidae) leathoppers, species divergence was associated with host plant
specialization between 1 and 5 Ma, but only with geography on the younger island [51].
Our network analysis shows that specialization and modularity are more pronounced on
Maui than on Hawaii (Figs. 2.3 and 2.4), consistent with the phylogenetic results from
Nesophrosyne. Available dating analyses of other arthropod taxa indicate that population
genetic structure can develop in much less than 1 Myr (Table 1), and suggest that landscape
fragmentation processes (e.g. lava flows) may dominate the earliest stages of diversification
across taxa in the Hawaiian islands. Other taxa at low trophic levels, such as the herbivo-
rous Trioza psyllids, detritivorous Laupala crickets and fungivorous Drosophila, show similar
signals of geographic isolation combined with ecological and sexual processes driving genetic
divergence and diversification across sites as young as those on Hawaii [32, 43, 44, 48, 49].
By contrast, spiders, which are predatory, develop genetic discontinuities at larger spatial
and temporal scales with a strong signature of increasing structure with age of the chronose-
quence [52, Table 1]. Further work is needed to assess the generality of this pattern of slower
genetic differentiation in predators compared with herbivores.

2.4.2 Macroecological metrics: network structure and steady
state

Across the Hawaiian archipelago, nestedness appears to decrease generally with site age, and
is highest on the geologically youngest volcano, Kilauea. High nestedness on Kilauea may
arise with high immigration of new species with high probabilities to eat or be eaten by
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the generalist species already present at the site [6]. However, despite high nestedness on
Kilauea, and thus the potential for neutral colonization-driven assembly, this site did not
conform to the statistical steady-state predication of the METE. The observed deviations
from the METE at Kilauea appear to be largely driven by a surplus of singleton links (Fig.
2.3), which may reflect a state of incomplete assembly, possibly by lower species richness
of the plant and herbivore biotas. Conversely, at Kohala, at intermediate age (150 ka),
observations were not significantly different from the METE predictions. We posit that the
reason why theoretical predictions fit Kohala so well is that the site has had sufficient time
to undergo ecological succession and thus arrive at a statistical steady state, but is still too
young to be affected by ecological specialization and rapid in situ diversification associated
with host plants on older islands.

Interestingly, the communities on the older Maui and Kauai sites show strong deviations
from the METE expectations (Fig. 2.4). The METE is agnostic about which mechanisms
determine the values of the state variables that lead to its macroecological predictions (Harte,
2011). It does not account for the evolutionary history of biological systems. Thus, one
possible explanation for the strong deviations from the METE expectations, compared with
observations at our intermediate-aged site (Kohala), is that while the ages of Maui and
Kauai are sufficient for evolutionary assembly driven by specialization and diversification on
host plants, the older age of these islands may have led to range contractions and possibly
extinction of plant species on the oldest island of Kauai (Whittaker et al., 2008).

Our results show decreased nestedness and increased modularity on Maui and Kauai. Co-
evolution between interacting species should lead to greater modularity [27, 28]. However, the
influence of certain network properties, such as nestedness, on stability is still unknown, and
so theoretical predictions of how network properties should change over evolutionary time,
generally, are lacking. Theoretical and empirical studies have suggested that nestedness may
or may not promote stability [53, 54]. Furthermore, almost all studies of food webs have
focused primarily on single or short ecological time spans of network development that do not
span as much evolutionary time as is included here [e.g. 55]. Food webs are dynamic emergent
entities, with broad topological characteristics that may change dramatically over time [e.g.
56]. To our knowledge, our study represents the first to evaluate network topology over
larger temporal scales, and we argue that age-structured landscapes such as the Hawaiian
archipelago are promising for resolving long-standing debates on the causes and consequences
of network properties such as nestedness.

We found that single-island endemics were always more specialized than multiple-island
endemics. Although dietary breadth has been positively associated with geographic range
size [57], the direction of causality is unclear [58]: while dietary breadth may allow some
species to colonize other islands, it may also be driven by adaptation to exploit locally
abundant hosts across a large range. Nevertheless, both scenarios are consistent with the
hypothesis that in situ formation of single-island endemics may be the product of co-evolution
and specialization. At the Kohala site, which showed the best fit to maximum entropy
theory, single-island endemic and multiple-island endemic species alike showed increased
generalization (i.e. a higher degree, or more links; Fig 2.3), while at the youngest site of
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Kilauea, specialist single-island endemics may be limited by low plant diversity and thus
appear more specialized (Fig. 2.3). Conversely at the oldest site on Kauai, where plant
diversity is high [59], single-island endemics are again associated with decreased degree and
thus genuine specialization (Fig. 2.3). On Maui, single-island endemics show statistically
significant increases in generalization, but this pattern disappears when analyzing the data
at the resolution of plant genera, thus suggesting that Hemiptera species endemic to Maui
may benefit from the diversification of plant species within genera.

2.4.3 Future research

The data and analyses presented here describing insect and plant communities across a
chronosequence of habitats in Hawaii generate testable hypotheses concerning the relative
importance of ecological and evolutionary processes in community assembly. Our work to
date suggests the overarching hypothesis that ecological processes dominate community as-
sembly in younger environments, with evolutionary processes becoming increasingly impor-
tant as communities age. We can also make predictions about the sequence of community
assembly based on proposed mechanisms.

In younger communities we predict characteristics of ecological assembly, with species
resembling random samples through immigration from regional source pools. Thus, metrics
describing these communities will approach expectations of an ecological statistical steady
state. An exception will be communities that are still undergoing the initial stages of pri-
mary succession, which will change rapidly through time and represent nonrandom samples
of source pools. We also predict that these communities will exhibit a nested network struc-
ture, assuming new species will eat or be eaten by the generalist species already present in
the community, as suggested by previous work on nestedness [6] and by our finding that
widespread species tend to be generalists (Fig. 2.4). Following the same logic, in older com-
munities we expect to see characteristics of evolutionary assembly, dominated by processes
such as adaptive exploration of niche space, giving way to speciation. Thus, we predict
increasing specialization and modularity with time [6, 27, 28] as reflected by age across the
chronosequence.

Ecological data: assembly of species into communities

In order to build a more rigorous understanding of the assembly process in both younger and
older communities, fine-grained sampling of all macroscopic arthropod taxa is needed from
a large number of sites across the island chronosequence. This will allow an assessment of
changes in overall species composition and diversity across all players in the time-calibrated
landscape [18]. Such data will allow us to test entire arthropod communities for deviations
from METE predictions of statistical steady state [13] across substrates of different ages. For
example, predators, whose assemblages are likely to be more dominated by immigration and
ecological assembly (Fig. 2.2), may never show strong deviations from METE predictions,
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whereas herbivores could show increasing deviation with age in agreement with the network
results of this paper (Fig. 2.3).

Evolutionary data: diversification within species

The current study demonstrates that taxa from different trophic guilds differ in the scale at
which differentiation occurs and highlights the importance of fragmentation of the landscape
in facilitating differentiation. Future work will be aimed at gathering data for additional
focal taxa within this system, spanning different trophic levels. We will use these data to
understand taxonomic and functional differences in the rate of differentiation, to assess the
roles of genetic fusion and fission and the spatial scale over which they are important in
fostering diversification [60], and to detail the relative rates of speciation and extinction
across the island chronosequence.

2.5 Conclusions

We have shown how a chronosequence can be used to understand biodiversity dynamics
across an ecologicalevolutionary continuum. Focusing on entire communities of arthropods
in the Hawaiian islands allows us to incorporate predictions from idealized ecological the-
ories to understand eco-evolutionary feedbacks and generate predictions about how entire
communities develop over an extended time. Such an approach may prove fruitful for investi-
gating the separate and interactive roles of ecological and evolutionary drivers of community
assembly using age-structured systems as a simplified natural experiment, as exemplified by
oceanic archipelagos.

We have demonstrated how taxa in the lower trophic levels developed genetic structure
even in the youngest habitats of the observed chronosequence and at smaller spatial scales
(Table 2.1, Fig. 2.2). Thus, lower trophic levels are affected by in situ processes of diver-
sification very early in the chronosequence, compared with higher trophic levels, though in
situ processes become more important over time in the latter. Network nestedness decreased
while modularity increased with age (Fig. 2.4), again indicating a possible shift from assem-
bly driven by ex situ immigration early on to one based on in situ diversification, such as in
co-diversification of insect herbivores with host plants [6, 27]. That single-island endemics
(probably the product of in situ diversification) show more specialization at older sites than
more broadly distributed species (those taxa more likely to be initial colonists; Fig. 2.3) also
supports this hypothesis.

This study provides a framework for using chronologically arranged oceanic island sys-
tems to examine the interplay between evolutionary and ecological processes in shaping bio-
diversity. Our initial results provide a clear hypothesis that ecological processes dominate
community assembly in younger environments, with evolutionary processes becoming more
important as communities age. We demonstrate how this approach can provide insights into
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the development of communities over ecologicalevolutionary time, and the dynamic feedbacks
involved in assembly.
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Figure 2.1: Map of substrate age (millions of years, My) of the islands of Kauai, Maui and
Hawaii. Colours correspond to substrate age from young (light) to old (dark). Focal sites
are shown as black circles (on Hawaii, Kohala is in the north, Kilauea in the south) while
sampling sites for genetic data are represented by grey circles.
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Figure 2.2: Population genetic structure (®gp for all taxa except Laupala for which we
used Fgr) among sites within volcanoes with volcano age for insects and spiders. Calcula-
tions were based on mitochondrial DNA only (see Table 1 for details). The plant-feeding
groups, specifically the sap-feeding Hemiptera, show higher genetic structure among sites
on young volcanoes relative to older volcanoes, whereas detritivores (crickets), fungivores
(Drosophila) and in particular predators (spiders) show little structure on young volcanoes.
For spiders, substantial structure develops only later in the chronosequence, for example on
Maui at approximately 1 Ma. Numbers refer to different species: 1, Nesosydne chambersi;
2, Nesosydne raillardiae; 3, Nesosydne bridwelli; 4, Trioza HB; 5, Trioza HC; 6, Drosophila
sproati; 7, Laupala cerasina; 8, Tetragnatha anuenue; 9, Tetragnatha brevignatha; 10, Tetrag-
natha quasimodo; 11, Theridion grallator.
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Figure 2.3: Patterns in degree distributions across sites, comparing archipelago-wide en-
demics (cosmopolitans) with single-island endemic (Endemics) taxa. The top panels show
that networks deviate most from the predictions of the maximum entropy theory of ecol-
ogy on the youngest and oldest sites. Inset figures show the distribution of simulated mean
squared errors; if the vertical/red line falls within the grey region (95% confidence interval)
the data are not significantly different from the predictions of maximum entropy theory. All
sites except Kohala deviate from the predications. The bottom panel shows the number of
links for endemics versus cosmopolitans. Endemics show lower linkage overall, but signifi-
cantly increase on the intermediate-aged site Maui (highlighted with dotted box). Kohala
shows increased linkage overall (highlighted with a solid box).
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Figure 2.4: Trends in network metric nestedness and modularity through time. Nestedness
decreases while modularity increases. Error bars represent 95% confidence intervals from a
null model simulation.
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Abstract

1. Macroecological patterns appear to follow consistent forms across a range of natu-
ral systems, however the origin of their regularity remains obscured. The Maximum
Entropy Theory of Ecology (METE) predicts macroecological patterns of abundance,
metabolic rates and their distribution within communities and across space using an
information theoretic approach. METE’s success in predicting empirical patterns de-
mands that we further press the theory’s predictions to determine how (or whether)
predictability depends on attributes of the system and the temporal, spatial and bio-
logical scales at which we study it.

2. METE predicts multiple macroecolgical metrics using statistical idealizations from in-
formation theory; thus confronting METE with data represents a strong test of the
underlying biological mechanisms that could drive real communities away from sta-
tistical idealizations. METE has remained somewhat inaccessible due to its highly
mathematical nature and a lack of software for model construction/evaluation. To
remedy this, we have developed an R package implementation of METE.

3. Our open source (GNU General Public License v2) R package, meteR (version 1.0;
cran.r-project.org/web/packages/meteR), (1) directly calculates all of METE’s
predictions from a variety of data formats; (2) automatically handles approximations
and other technical details; (3) provides high-level plotting and model comparison
functions to explore and interrogate models.

4. With these tools in hand, ecologists can more readily test the predictions of METE for
their data sets. By facilitating tests of METE, we expect that a better understanding of
its strengths and limitations will emerge. A better understanding of the strengths and
limitations of METE will offer insight into how biological mechanisms and statistical
constraints combine to drive macroecological patterns.
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3.1 Background on the Maximum Entropy Theory of
Ecology

Macroecology [1] seeks to predict patterns in the distribution of individuals within species,
across body sizes, and over space. These patterns can vary with spatial, temporal and tax-
onomic scale which makes their regularities challenging to detect. Macroecological patterns
can be described quantitatively in the form of well-defined metrics such as species abundance
distributions (SAD), body size distributions (e.g. distribution of metabolic rates [=power]
across individuals, or the individual power distributions; IPD), and species-area relationships
(SAR). Macroecological theory attempts to predict the mathematical form of these metrics
from combinations of explicit mechanisms and statistical assumptions. Harte and colleagues
have developed a Maximum Entropy Theory of Ecology (METE) grounded in information
theory, which predicts the form of most of the macroecology metrics found in the literature,
needing very limited empirical data as input, and with no adjustable parameters [2—4].

Maximizing information entropy (MaxEnt) is a general inference procedure for solving a
class of problems involving inference of the least biased mathematical form of a probability
distribution (e.g., the species abundance distribution) given some prior knowledge that can
be expressed in the form of constraints on that distribution (e.g., the mean abundance
across all species). One special case of MaxEnt familiar to many ecologists is its use in
machine learning and species distribution modeling [SDM; 5], though there are a variety
of applications in ecology [6, 7] and other sciences [e.g. 8-10]. The conceptual goal of the
MaxEnt approach in macroecology is to build predictions that are not sensitive to potentially
arbitrary model parameter choices and represent a statistical idealization of a community
that is near steady state. The solution to the MaxEnt problem entails finding the form
of a distribution, p(n) (e.g. the SAD), that maximizes the information entropy function:
I = =% p(n)log(p(n)) under the constraints imposed by prior knowledge on p(n) (e.g.
mean abundance). Maximization is carried out by the method of Lagrange multipliers. The
resulting distribution is the function that is as smooth as possible given the constraints, and
thus reflects no information other than the prior constraints [11, 12].

The development of METE parallels the method used to derive the laws of classical
equilibrium statistical mechanics and thermodynamics by Jaynes [11], in which constraints
arise from knowledge of the state variables of the system: for example, the total energy,
volume, and number of molecules in a container of gas. In METE, the state variables used
to predict the metrics of macroecology are the area, Ay, of an ecosystem at any spatial scale
at which census data exist, the total number of species Sy, censused in that area, the total
number of individuals, Ny, across the Sy species, and the total rate of metabolic energy use,
Ey, by the Ny individuals. With the constraints that arise from the ratios of these state
variables, the maximum information entropy condition predicts the mathematical forms of
macroecological metrics (Table 3.1). Two distributions are at the core of the theory. The
first is a joint distribution (the Ecosystem Structure Function; ESF) over abundance, n, and
metabolic rate, e: R(n, €[Sy, No, Eo). R-de is the probability that a species randomly selected

45



from the census has abundance n, and an individual randomly selected from that species
has metabolic energy requirement in the interval (¢, e 4+ de). The second core distribution
is the Spatial Structure Function I1(n|A, ng, Ag) (SSF; mirroring the ESF). If a species has
no individuals in an area Ag, then II(n) is the probability that it has n individuals in an
area A within Ag. From these two core distributions many of the metrics commonly studied
in macroecology can be derived: for example the species abundance distribution arrises
by integrating R(n,e€) over € and the distribution of metabolic rates (or body size under
metabolic scaling theory [13] arrises by summing over n. The species area relationship can
be derived by combining the species abundance distribution with IT at multiple scales. These
derivations are detailed in Harte [4] and Table 3.1 provides a summary.

3.1.1 Stronger tests of METE

Tests of METE have been successful in a wide range of systems [2-4, 14, 15], however a great
deal of further testing is needed to establish METE’s generality, strengths and weaknesses.
Existing tests have focused on SADs or SARs while tests of metabolic rate distributions
are rare [but see 4, 15, 16]. However, the most illuminating cases are perhaps those where
METE fails [4], as these will demonstrate what attributes of a community drive it away
from the simple steady state into alternate, more complex or transient states. Addition-
ally, macroecological predictions other than the SAD and SAR have received relatively little
attention, and their generality and correlates of their successes and failures are unknown.
Two categories of failed predictions stand out. The first was originally considered a suc-
cess: the theory predicts an inverse relationship between metabolic rate (body size) and
abundance, called ‘energy equivalence’ or the Damuth rule [17]. Yet considerable data anal-
ysis reveals numerous exceptions to this prediction [18]. Second, and more fundamentally,
the theory fails to accurately predict empirical patterns in ecosystems undergoing relatively
rapid change [4, 15]. Examples are rapidly diversifying habitats on newly formed islands, or
ecosystems recovering from recent disturbance and undergoing relatively rapid succession, as
for example in the aftermath of fire. Because the deviation between the patterns predicted
by theory and empirical data from disturbed systems appears to itself follow a systematic
pattern [Rominger et al., in prep.; 15|, clues exist for how to extend the static theory to the
dynamic realm.

To promote the broad testing of METE across varied systems we have developed an open
source (GNU General Public License v2) R package, meteR (version 1.0; cran.r-project.org/
web/packages/meteR) that calculates all of METE’s predictions in an object-oriented frame-
work. We envision that meteR will be valuable for testing the scale dependence and equilib-
rium assumptions of METE’s predictions. That is, METE is not constrained to work at any
specific spatial or temporal resolution, or for any particular taxonomic unit. While METE is
typically applied to species coexisting in a single snap shot in time in a single plot, these con-
ventions are imposed by data availability and not any fundamental attributes of the theory.
One could readily study genus or family patterns across regional or subplot extents. meteR
allows rapid generation of many models built at different scales or across different clades to
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better examines METE’s successes and failures. We encourage in particular exploration of
how well METE predictions work across gradients of disturbance, ecosystem age, latitude,
elevation, phylogenetic diversity, functional diversity and level of invasion. Tests of theory
along these gradients can illuminate how the mechanisms associated with those gradients
drive communities away from the statistical idealizations of METE. Such an understanding
will help ecologists better predict when METE represents a sufficient model for their sys-
tem, what ecological processes might be needed to improve predictions, or theoretical scaling
relationships among state variables.

Only further comparison to data can address these open questions surrounding METE.
To detect generalities, tests must be performed in a wide range of systems, which means that
these tests must be performed by a large collection of researchers with different expertise.
Achieve this goal motivated out development of an R package [19], meteR, which makes the
theory accessible and provides an efficient workflow for evaluating METE with empirical
data.

3.2 meteR

Our R package, meteR, helps to address two key challenges with using METE: it reduces
the need for practitioners to understand many of the mathematical details of the theory,
and allows users to readily explore predictions without re-deriving maximum entropy so-
lutions by hand. The prerequisite for using meteR is an understanding of its predicted
macroecological distributions and relationships (Table 3.1), while details of exact solutions,
numerical methods and mathematical approximations used to derive them are relegated
to (user-accessible) functions “under the hood.” Importantly, meteR automatically checks
that the conditions for all approximations used in METE predictions are met, and if not,
implements more computationally costly exact solutions. Thus meteR provides not only
the quickest approach to testing METE because of its mathematical abstraction, but also
because it is operationally optimized. We contrast meteR with other software resources
for METE, which either include fewer predictive features [20] or are exclusively low-level
(e.g. code available at github.com/weecology/METE) and can only be used by those al-
ready well-versed in scientific computation. Additionally meteR is the only R resource avail-
able for METE, notable due to the accessibility and popularity of R, as opposed to other
programming languages, among ecologists. Furthermore we have unit tested meteR using
alredy published and verified solutions [4, 15] (results from these tests can be found at
github.com/cmerow/meteR/tree/master/tests/testthat), meaning that users can confi-
dently proceed with the results produced by our package. Additionally, bugs can be reported
via GitHub’s issue tracking feature (github.com/cmerow/meteR/issues).

meteR also simplifies model comparison and visualization. Fitted macroecological dis-
tributions can be readily used to predict, simulate, or compare to data for use in further
analyses. These operations are performed by familiar R functions; for example each fitted
distribution contains a d element which gives the function of the probability distribution for
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use in visualization and an r element for random number generation (in analogy to dnorm
and rnorm for a Gaussian distribution). Likelihoods can be computed using the standard
logLik function and plotting carried out using plot. By reducing the effort spent on these
tasks, meteR makes it practical to more fully explore METE models, e.g., by rapidly testing
models built from data aggregated at different spatial, temporal or biological scales. Fur-
thermore, owing to its object-oriented construction meteR allows users to take full advantage
of other packages in R, for example model comparison procedures achieved via likelihood and
AIC.

meteR provides a workflow to facilitate empirical tests of METE (Fig. 3.1). meteR
calculates state variables directly from a variety of data formats. Next, it calculates the
core probability distributions—the Ecosystem Structure Function (ESF) and Spatial Struc-
ture Function (SSF)—from which METE’s macroecological predictions arise. These core
functions are next used to construct two types of macroecological predictions: probabilistic
distributions (e.g. species abundance distribution) and deterministic relationships (e.g. the
species-area relationship). The predictions are readily assessed via both plotting functions
and statistical tests.

3.3 Package Features

3.3.1 Inputs

meteR accepts data in several formats, each of which is represented in the Input column in
Figure 3.1:

1. One row per individual: This is useful when individual metabolic rate measurements
are available

2. Multiple individuals of the same species per row: This is useful when multiple individ-
uals are observed with the same values; e.g., if no metabolic rates are observed or if an
average species metabolic rate is used. This format is also helpful if species are only
located at the plot level, and individual-level coordinates are not needed/available.

3. Spatial information: This can be provided for individuals or counts of species either
by the z,y coordinates of those observations or the row and column IDs of those
observations from a gridded landscape.

4. State variables: One can directly specify the values of Ny, Sy, and Ejy, to derive only
the theoretical predictions, which is useful to compare how predictions change with
different state variables from hypothetical datasets.

Note that models can be fit even when some components of the dataset are missing; e.g.,
if metabolic rate data are unavailable, meteR can still provide predictions that do not rely on
these data (e.g., SAD or SAR). If location data are missing, all non-spatial predictions are
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available. The data are subsequently included in all model objects (see below) so that plots
comparing predictions to observations can be be automatically produced. This flexibility in
data formats, along with the fact that data are included with model objects, allows users to
aggregate data at different spatial, temporal and taxonomic scales and fit models rapidly to
test and organize predictions under a variety of assumptions.

3.3.2 Core Functions

At the heart of METE are two probability distributions that are fit using the principle of
maximum information entropy, the ESF and SSF [4]. The ESF is fit with meteESF(...)
using a nonlinear equation solver [package nleqslv; 21| to find the Lagrange multipliers.
meteESF returns an object of class meteESF, for which a variety of S3 methods are available.
The ESF is typically not compared directly to data, but rather is used to obtain a number
of more familiar macroecological patterns such as the SAD, IPD and SPD [Table 3.1; 2, 4,
note that we use power—the “P” in IPD and SPD to refer to metabolic rate]. In meteR, all
of METE’s predicted distributions and relationships (cf. Table 3.1) can be obtained simply
by passing a meteESF object to the appropriate function (Fig. 3.1).

The SSF (II(n|ng, A, Ag)) describes spatial structure via the probability that n individuals
of a species are observed in a plot of area A given that ng individuals of that species were
observed in the entire study area of size Ay. For the case where A = Ay/2 METE predicts
a uniform distribution over n [p. 159 4]. The more general form of the SSF is obtained
similarly to the ESF using nleqslv in meteSSF(...), which returns an object of class
meteSSF inheriting from meteESF. meteSSF objects can be used directly to predict patterns
of spatial aggregation such as the SAR or the endemic-area relationship (Fig. 3.1).

3.3.3 Macroecological Predictions

From the ESF and SSF, all of METE’s macroecological predictions can be obtained (Ta-
ble 3.1). These predictions are divided into probability distributions (class meteDist) and
deterministic relationships (class meteRelat), as denoted in Table 3.1.

We use S3 methods for object classes meteESF, meteDist and meteRelat to allow users
to query models using familiar tools in R. For example, we include print and plot methods
to explore model output. Similarly, for likelihood-based inference, logLik and AIC can be
used to compare METE predictions to other distributions (e.g. comparing log-normal and
log-series distributions for the SAD). Measures of model fit comparing METE predictions to
data are readily performed using residuals or mse (for mean squared error). In a hypothesis
testing framework, meteR also provides tools to estimate the z-score of model fit using either
the logLikZ or mseZ functions. If the z-score is smaller than 1.96 this typically corresponds
to failing to reject the hypothesis that the observed data came from a METE distribution.
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3.3.4 Directly Working with Probability Distributions

A useful feature of meteR is its conceptual treatment of distributions using the distr package
[22]. For each of the macroecological probability distributions, meteR provides functions for
the density function (d), cumulative distribution (p), quantile function (q) and simulation
(r). This functionality for fitted METE distributions is analogous, e.g., to dnorm, pnorm,
gnorm, rnorm for the normal distribution in the stats package [19]. These functions are
used extensively internally in meteR functions; e.g. r functions are used simulate data from
fitted distributions to evaluate model fit via z-scores in mseZ and loglikZ (see below),
while p is used for plotting cumulative distributions in plot. These distribution functions
enable users to extend analyses to include more nuanced hypothesis testing, simulation for
theoretical studies and custom plotting.

3.4 Sample Code

We use two datasets, both made freely available and distributed with meteR, to illustrate
its functionality. The first dataset comes from a 16x16m survey of herbaceous plants in
the Anza Borrego Reserve in southern California [4] which we will use to study patterns
of abundance and spatial distribution (available as anbo in meteR). Briefly, the data set
consists of 16 1m? contiguous subplots. In each subplot, the abundance of each species was
recorded, however individual metabolic rates were not recorded. Consequently, we also study
a complementary dataset which contains individual body size measurements for one plot.
This dataset comes from an extensive sample of arthropods collected by canopy fogging in
native Hawaiian montane forest [23], which we will use to study patterns of abundance and
power (metabolic rate) distribution (available as arth in meteR).

With the anbo data set, we illustrate how to predict the species abundance distribution
(®(n)), the Species-Area relationship (S(A)), and the Spatial Structure Function (II(n)).
The code below generates the predicted distributions and produces Figure 3.2a.

data(anbo)

esfl <- meteESF(spp=anbo$spp, abund=anbo$count)
sadl <- sad(esf1l)

sadl # print function returns useful summary

Species abundance distribution predicted using raw data
with parameters:

SO NO EO
24 2445 NA
lal la2

0.00037 0.00109
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From the SAD object we can extract familiar probability distribution functionality and
plot it, e.g.,

sad1$r(20) # simulate 20 values

sad1$q(seq(0,1,length=10)) # 10% quantiles

plot(sadl, ptype=’rad’, log=’y’) # plotting can be customized by passing
# arguments to generic ‘plot’ via ‘...’

The SAR and EAR follow similarly; we can either compute these relationships from the
ESF or produce an object bundling the theoretical SAR with the observed data (plotting
this bundled object produces Fig. 3.2b:

sarl <- downscaleSAR(esfl, A=2"(seq(-2, 4, length=7)), A0=16)

earl <- downscaleSAR(esfl, A=2"(seq(-2, 4, length=7)), A0O=16, EAR=TRUE)
## sar2 bundles both the predicted SAR and the observed SAR similarly to
## the output of ‘sad(...)’

sar2 <- meteSAR(anbo$spp, anbo$count, anbo$row, anbo$col, Amin=1, A0=16)
plot(sar2, xlim=c(l, 278), ylim=c(1l, 45), log='xy’)

The upscaled SAR uses a more involved, recursive optimization routine [see eqns (7.70)
and (7.71) in 4] but is equally accessible in meteR:

sarUP <- upscaleSAR(esfl, A0=16, Aup=2-8)
plot(sarUP, add=TRUE, col=’blue’) # add to previous SAR plot

With the arth data set, we illustrate the individual power distribution (V(e|Sy, No, Eo)
as well as assessment of model fit using likelihood z-scores. Generating power distributions
follows the same routine as species abundance distributions, starting with the ESF"

data(arth)
esf2 <- meteESF(spp=arth$spp, abund=arth$count, power=arth$mass~(3/4))
ipd2 <- ipd(esf2)

plot(ipd2, ptype=’rad’) # showing two plotting options: rank and cumulative
plot(ipd2, ptype=’cdf’)

Note that we assume the relationship power = bodymass®* based on metabolic theory
[13]. The two different plotting options display the rank plot and cumulative density plots,
respectively, which are shown in panels (a) and (b) of Figure 3.3.

To evaluate model fit, we calculated the z-score of the likelihood of the data under the
“null” model that the data truly did come from the METE distribution. Thus a z-score of
less than = 2 fails to reject the hypothesis that the data came from a METE distribution.
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ipd2.z <- logLikZ(ipd2, nrep=999, return.sim=TRUE) # return simulated values
# for plotting

ipd2.z$z # the z-value itself

’log Lik.’ -2.713953 (df=2)

The z-value less than ~ 2 indicates we cannot reject METE. Figure 3.3 (panel c) visually
confirms this:

plot(density(ipd2.z$sim)) # density of simulated likelihoods
abline(v=ipd2.z$obs) # observed likelihood

More detailed examples are availible as a vignette included in meteR and accessible with
the command

3.5 Conclusions

By relegating mathematical details and conveniently organizing analyses, meteR allows users
to readily address new macroecological questions. Until now, tests of METE have primarily
been conducted by only a handful of experts, even though many more datasets surely exist
that could help us to better understand METE’s strengths and weaknesses and macroeco-
logical patterns more generally. meteR lowers the activation energy for new users to begin
to study both macroecology and METE, with the hope that more researchers will become
engaged and invest the necessary time to learn the theory. As such, meteR is valuable as
both a teaching and research tool.
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Figure 3.1: meteR’s workflow. meteR accepts multiple data types, which are used to calculate
the core probability distributions from which all predictions arise: the Fcosystem Structure
Function (ESF) and the Spatial Structure Function (SSF). From the ESF and SSF, a variety
of macroecological distributions can be calculated (see Table 3.1 for definitions). Each of
these can be plotted or summarized in various ways and model fit is readily assessed. Fur-
thermore, density, distribution function, quantile function and random generation is available
for each function, allowing for custom plotting, simulation and model evaluation.
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Figure 3.2: Species abundance distribution (a) and species area relationship (b) for the anbo
dataset. The blue line in (b) depicts the upscaled SAR predicted by METE. METE fits
the Anza Borrego data poorly at increasingly small scales. Understanding such systematic
deviations from theory could be an opportune area of exploration, and initial work suggests
that such deviations could be an indicator of anthropogenic disturbance (Newman et al., in
prep.) such as invasive species, which are present in the Anza Borrego dataset. Note that
we have stylized the log axes using custom code not included in meteR.
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munities from the fitted METE object and calculating their likelihoods. Thus the simulated
distribution represents hypothetical likelihoods for datasets obeying METE.
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Table 3.1: METE predictions. Following notational conventions in Harte [4], Z and Zp are
partition functions (i.e. to ensure their respective probability distributions to sum to 1),
A1, Ao, and A are Lagrange multipliers, and commonly used combinations of them include
B:A1+)\2, O-:)\l_'_EO)\Q, and7:/\1+€/\2.
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Conclusion

Using two seminal paleontological datasets [24, 25] I have shown that fluctuations in marine
biodiversity over the past 550 million years results from the superposition of many indepen-
dently fluctuating subsystems whose fluctuations are Gaussian but give rise to non-Gaussian
patterns when combined. These independent subsystems correspond to lineages of closely
related animal taxa, implying that diversification within lineages is driven by random addi-
tive interactions with the environment. These findings thus challenge the idea that changes
in origination and extinction through deep geologic time are the result of complicated evolu-
tionary interactions among organisms and between organisms and their environment [26-28].
However, I demonstrated that the evolutionary process responsible for generating new lin-
eages varies slowly through time, possibly driven by non-random evolutionary innovations in
the physiology and demography of new lineages. This slow change between lineages produces
patterns of apparent complexity earlier ascribed to unnecessarily complicated mechanisms.
I have further shown, using permutational null models, that these findings are not an arti-
fact of how fossils are taxonomically classified but rather capture true underlying biological
processes.

To further explore the importance of biological evolution in driving unique non-equilibrial
patterns I synthesized population genetic and trophic network data for Hawaiian arthropods
to show that as assembly by immigration (in communities assembled on young substrates)
gives way to evolutionary processes (in communities assembled on old substrates), arthro-
pod herbivore networks momentarily reach a steady state as predicted by equilibrial statis-
tical mechanics [29]. On the young and old end of this spectrum different eco-evolutionary
mechanisms lead to deviations from statistical mechanical theory: incomplete assembly and
non-equilibrium adaptive evolution, respectively. Using population genetic data from other
arthropod lineages I show that assembly and differentiation rates differ according to the
trophic level of the organisms, implying that different trophic levels will reach an equilib-
rium at different periods and for different durations along the chronosequence. This study
provides a framework for using island systems combined with simple equilibrial theory build-
ing to understand how complex communities emerge from ecological (population dynamics,
dispersal, trophic interactions) and evolutionary (genetic structuring, adaptation, speciation,
extinction) processes.

Finally, I argue that to fully realize the utility of statistical mechanics in the study
of biodiversity, we must test these theories across many different systems. I advocate for
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further exploring how the evolutionary process and rapid ecological transitions could drive
deviations from theory by proposing tests of the maximum entropy theory of ecology [30]
across gradients of disturbance, diversity and evolutionary age. To facilitate these novel tests
I provided ecologists with the open source R package meteR.

“Top-down” approaches to biodiversity theory will be critical for building universal pre-
dictions about the diversity of life [30, 31]. These theories require that many biological
details be course-grained but in turn promise unprecedented predictive power. Testing these
theories in real ecosystems can illuminate where more detailed, biologically-grounded mech-
anisms are further needed. In this thesis I have used principles form statistical mechanics to
develop and test new top-down theory that explains fluctuations in diversity through deep
geologic time and identifies key evolutionary processes as important mechanisms to include
in a synthetic eco-evolutionary theory of biodiversity. This work motivates exciting research
directions for the near future which I sketch below.

3.6 Future Work

3.6.1 Adaptive landscapes and non-Markovian memory

Ecological theory has of late been dominated by neutral models [e.g. 29, 32]. This ap-
proach needs robust alternative hypotheses because a lack of alternative theories rooted in
classical ecology could be one limitation preventing a more rigorous competition between
deterministic and statistical theories of biodiversity. My work with super-statistics in the
fossil record (Chapter 1) motivates a new approach to ecological theory using super-statistics
to parsimoniously capture the non-neutrality of species and relate that non-neutrality to the
non-equilibrium process of diversification on an adaptive landscape. Excitingly, following
the mathematics laid out in Chapter 1, this would yield a mechanistic basis for a negative-
binomial species abundance distribution, a distribution of central importance in modeling
samples of population sizes [33]

3.6.2 Metabarcoding and Ecological Theory

Combining test of ecological theory with massive phylogenetic data, as motivated by my
synthesis of population genetics with trophic networks (Chapter 2), could determine what
aspects of evolutionary history specifically shape ecological communities, but massive phy-
logenetic data on the scale of large ecological studies is limiting. A new approach dubbed
“metabarcoding” [34] harnesses next generation sequencing technology to produce massive
amounts of genetic data for ecological samples. This approach, however, has known pitfalls
[e.g. bias in primer affinities between taxa 35] but these could be overcome bioinformatically
using hierarchical models, already commonplace in ecology [36].
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Appendix A

Supplement to “Punctuated
non-equilibrium and niche
conservatism explain biodiversity
fluctuations through the Phanerozoic”

A.1 Limit distribution of a time-averaged
homogeneous origination-extinction process

Fossil taxa gain and lose taxa according to an origination-extinction process. We assume that
most fossil occurrences of a taxon come from the period of its history when it is dominant
and in steady state. In a time slice of duration 7 during such a period of steady state
the latent per capita rates of origination and extinction would be equal (i.e. A\ = pu = p)
and the number of origination or extinctions events (call such events Y) each follow an
inhomogeneous Poisson process with rate p/N; where N, is the number of species or genera
in the taxon of interest at time ¢. Allowing N; to vary smoothly with time, and invoking the
communicative property of the Poisson distribution, we arrive at the number Y of extinction
or origination events in 7 being distributed

Y ~ Pois(p /tTO N(t)dt). (A.1)

Under the steady state assumption we can approximate N(t) by N, the steady state diversity,
leading to -
Y ~ Pois(pNT). (A.2)

Assuming the 7 of each time period in the Paleobiology Database or Sepkoski’s com-
pendium to be approximately equal (i.e. equal durations of major stratographic units) then
the distribution of fluctuations within taxa will be asymptotically Gaussian.
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A.2 Additional super-statistical analyses

To evaluate the sensitivity of our super-statistical analysis on the particular data used and
we tested our predictions on different data sets (see below). The fact that it works in all
different applications indicates that it is robust to vagaries of different recording strategies
and bias corrections in paleobiology. This could mean that much of the raw signal in massive
fossil datasets, at least signals regarding fluctuations, are not artifacts of sampling, as has
been proposed before [1].

A.2.1 Raw PBDB data

We calculated the super-statistical prediction at the order level from raw genus diversity
recorded in the PBDB without correcting for taphonomic or sampling bias (Fig. A.3). The
super-statistical calculation also closely fits the raw data as in the case of sampling and
publication bias-corrected data.

A.2.2 Different taxonomic ranks in PBDB data

As noted in the main text, the super-statistical prediction predictably breaks down at higher
taxonomic scales. In Figure A.4 we present this worsening fit graphically using class level
data with three-timer and publication corrected PBDB data

A.2.3 Sepkoski’s compendium

Sepkoski’s compendium [2] provided the first hypothesis of Phanerozoic diversification. As
such, it has served as a benchmark for further investigation into large-scale paleobiological
patterns [3]. We conducted the same super-statistical analysis as in the main text and find
comparable results. Specifically, the super-statistical prediction far out preforms the null
Gaussian model (Fig. A.5) and worsens with increasing taxonomic scale (Fig. A.5), again
implying the uniqueness of orders.
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Figure A.1: Relationship between number of publications and genus diversity as recorded
by the PBDB.
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Figure A.2: Comparison of SQS method [4] (solid black line) with the raw data (dashed
black) and our three-timer and publication bias correction method (red). The time-series
of all marine invertebrate genera shows general agreement with the only major deviations
toward the modern (A). Despite these differences the distribution of fluctuations in genus
diversity across all marine invertebrates show good agreement (B).
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Figure A.3: Super-statistical prediction of raw (i.e. not bias corrected) order-level fluctua-
tions in genus diversity recorded in the PBDB. Grey dots are the full data of orders, while
black ones are orders with more than 15 points. The red line is our theoretical prediction
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Figure A.4: Super-statistical prediction of bias corrected class-level fluctuations in genus
diversity recorded in the PBDB. Grey dots are the full data of orders, while black ones are
orders with more than 15 points. The red line is our theoretical prediction and the blue line
the best Gaussian fit to the data. Note at the class level the fit is predictably worse, see

main text for discussion.
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Figure A.5: Super-statistical prediction (red line) of fluctuations in genus diversity recorded
in Sepkoski’s compendium of marine invertebrates compared to maximum likelihood normal
distribution (blue line). Super-statistical theory explains order level fluctuations well (A)
with increasingly poorer fits at the class (B) and phylum (C) levels.
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Appendix B

Supplement to “Community assembly
on isolated islands: Macroecology
meets evolution”

B.1 Compilation of networks and metric validation

Researchers have put forward a set of “network metrics,” including nestedness [1, 2] and
modularity [3, 4], to understand the complex structure of ecological networks. Null models
are used to evaluate the statistical significance of these metrics and to compare between
networks of different size [2]. We compare the results derived from two common null models:
the “probabilistic null” of [1] using the relative degree distributions of plants and herbivores
as weights while randomizing links and suffers from high Type II error [2]; the “fixed-fixed
null” [2] maintains the exact number of links assigned to each species while randomizing
which interactors fill the requisite set of links and suffers from high Type I error [2]. We find
that using these different null models does not change any trends in our network statistics
across the Hawaiian chronosequence but different null models do influence the sign and
significance of the network metrics (Fig. B.1). We therefore do not interpret the sing or
significance of the metrics but only their relative trends across site age.

Because these networks are based on opportunistic data associated with species descrip-
tions, and not based on standardized ecological surveys, we cannot interpret patterns in net-
work metrics without evaluating possible sampling biases [5-7]. To do so we rarify networks
by the number of Hemiptera species included and, for each subsampled network, re-calculate
nestedness and modularity z-scores. This rarefaction procedure shows that nestedness is
very sensitive to network size (Fig. B.3), a known property of nestedness [5-7]. However the
relative nestedness z-scores across networks remain qualitatively similar to those observed
for the complete networks (Fig. B.3). Modularity depends on network size in a more variable
way (Fig. B.3). Modularity is expected to decrease with network size [7] and so the marked
increase in modularity with network size on Haleakala is unexpected. However in light of
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the large number of highly specialized taxa this pattern is more reasonable—if most species
only have within module links then removing these species through subsampling will only
reduce overall modularity. Thus this pattern speaks to the high level of specialization on
Haleakala, and to a lesser extent at Kokee which also shows a slight increase in modularity
with network size (Fig. B.3).

B.2 R Scripts for Maximum Entorpy Analysis and
Monte Carlo Methods

B.2.1 Needed Functions

require(distr)

## d, p and r functions for the maxent link distribution
## also a funciton to calculate the MLE and log likelihood

dmelink <- function(x, la) {
exp(-lax(x-1)) - exp(-la*x)
}

pmelink <- function(x, la, lower.tail=TRUE) {
if (length(x) > 1) {
cp <- sapply(x, function(q) sum(dmelink(l:q, la)))
} else {
cp <- sum(dmelink(1l:x, la))

if (lower.tail) {
return(cp)

} else {
return(l - cp)

rmelink <- function(n, la, X0) {
sample (X0, n, rep=TRUE, prob=dmelink(1:X0, la))
+

gmelink <- function(x, la) {
fun <- DiscreteDistribution(1:3000, dmelink(1:3000, la))
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fun@q(x)

## likelihood functions (for simple cases maxent solution is equivilant
## to maximum likelihood solution so we use MLE for computational ease)
melink.mle <- function(x) {

log(1 + 1 / mean(x - 1))

melink.logLik <- function(x) {
la <- melink.mle(x)

length(x) * log(l - exp(-la)) - la * sum(x - 1)

## function to make rank function (for plotting) of maxent link distrib
melink.rankFun <- function(x) {
gmelink(seq(1-1/(length(x)+1), 1/(length(x)+1),
by=-1/(length(x)+1)), melink.mle(x))

## mean squared error function for maxent link distrib
melink.mse <- function(x) {
mean((sort(x, TRUE) - melink.rankFun(x))~2)

## monte carlo method for calculating distribution of mse values
## under model where maxent truely generated the link distribution
sim.melink.z <- function(x, X0, nsim=999) {

la <- melink.mle(x)

res <- replicate(unsim, {
# browser()
sim <- rmelink(length(x), la, X0)
return(melink.mse(sim))

19)

obs.mse <- melink.mse(x)

return(list (obs=obs.mse, z=(obs.mse - mean(res)) / sd(res), sim=res))
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B.2.2 Example Use

## set a Lagrange multiplier value and simulate data
la <- 0.01
x <- rmelink (2000, la, 2000)

## fit the maxEnt model to simulated data
x <- rmelink (2000, la, 2000)

## evalute if fitted maxEnt model matches the data

melink.mle(x) # the MLE should be near 0.01

plot(sort(x, TRUE)) # the plotted data should look like the theory
lines(pmelink(1:200, melink.mle(x)), col=’red’)

## test that the logLike function is returning the correct value
melink.logLik(x) - sum(log(dmelink(x, melink.mle(x)))) < le-12

## test that the log likelihood simulation is working
sim.melink.z(x, 200) # should be a small z-value
sim.melink.z(rbinom(100, 200, 0.1), 200) # should be a large z-value
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Supplemental Figures
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Figure B.1: Comparison of different null models (“Prob” and “Quasiswap”) used to stan-
dardize network metrics and comparison of different algorithms for assessing modularity
(“edge between” and “walk drap”). Choice of null model has a strong influence on the
sign and magnitude of metrics but not on their relative trends. The different modularity
algorithms lead to largely similar qualitative patterns.
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Figure B.2: Metrics NODF and modularity calculated for networks based on more biogeo-
graphically conservative assignment of Hemiptera to localities. Colors and metric specifics
as in Figure B.1.
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Figure B.3: Result from rarification analysis showing sensitivity of network metrics to num-
ber of Hemiptera sampled.
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