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S U M M A R Y
We present a method for measuring the dispersion of higher mode surface wave phase velocities
from a single seismogram using a hierarchical transdimensional Bayesian approach. The
1-D shear velocity profiles down to 800 km depth between sources and seismic stations
are regarded as the controlling parameters to tune the phase velocities of fundamental and
higher modes. The misfits between synthetics and real waveforms indicate whether the phase
velocities are recovered well from the data. We use Monte Carlo Markov chains to approximate
the posterior distribution of each model parameters and assess the uncertainties from these
probability density functions. These techniques can test models of varying dimensions while
being parsimonious, thereby letting the data themselves control the complexity of the solution.
Another advantage is that the algorithm can decide how much data noise is needed in order
to explain the data without overfitting them. The data noise can be treated as an unknown and
different noise levels can be applied to the different time windows considered. The posterior
noise distributions can then be used as an indicator of the quality of the waveform fit within
each frequency–time window. We considered phase velocities between 50 and 200 s for each
mode and performed a reliability analysis to determine which modes and periods are reliably
constrained. In this paper, we first present the method and demonstrate its feasibility with
synthetic tests, which show that the technique is robust. We then illustrate it with applications
to real data. We applied the method to two paths sampling Australia using earthquakes at
regional distances and obtained results that agree well with previous studies. The new method
can be used in regional and global tomographic studies to obtain phase velocity maps and 3-D
models of seismic velocities and anisotropy at depths that are not well resolved by fundamental
mode surface waves or body waves.

Key words: Inverse theory; Probability distributions; Tomography; Statistical seismology;
Surface waves and free oscillations.

1 I N T RO D U C T I O N

Higher mode surface waves carry unique, independent constraints
on structure at greater depths than commonly used fundamental
mode surface waves, and thus enhance the vertical resolution of
surface wave tomographic models in the deep upper mantle, transi-
tion zone and uppermost lower mantle. However, most surface wave
tomography studies are still limited to fundamental surface waves
because traditional surface wave measurements can only be readily
applied to fundamental modes and measuring higher modes is com-
plicated. Only in very specific and rare cases has it been possible to
isolate and measure the dispersion of the first higher mode Rayleigh
wave using single mode dispersion methods (Crampin 1964; Roult
& Romanowicz 1984). The difficulties in measuring higher modes

are mainly due to the fact that their group velocities overlap signif-
icantly in a broad frequency range and thus they do not appear as a
clear wave train on the seismogram. When distant events are used, a
small difference in group velocity can be sufficient to obtain mode
separation using numerical techniques, but it is not always enough.

One way to take advantage of the information contained in higher
mode surface waves is to retrieve velocity structure directly, without
extracting dispersion curves first. Most of these techniques involve
determining path-averaged shear wave velocity structure for multi-
ple station–receiver pairs and combining them to obtain 3-D models
of Earth’s internal structure. Cara & Lévêque (1987) determined
path-averaged VS models from a single seismogram using mode
branch cross-correlation functions (Lerner-Lam & Jordan 1983)
as secondary observables. This method, which was designed to
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minimize the dependence on the starting model, was later automated
and combined with a regionalization scheme (Montagner 1986) to
model 3-D velocities (Debayle 1999) and anisotropy (Maggi et al.
2006). Nolet (1990) developed a two-step nonlinear partitioned
waveform inversion (PWI) technique that was automated by Lebe-
dev & Nolet (2003). Using synthetic seismogram calculations, the
PWI finds along-path velocity models that fit recorded waveforms
and inverts the velocity models obtained for all paths to constrain
3-D structure. Li & Romanowicz (1995, 1996) were also able to ob-
tain the averaged structure along the great circle between the source
and receiver using a waveform modelling technique that included
nonlinear asymptotic coupling theory and coupling across different
branches.

Despite the difficulty, several attempts have been made to separate
higher modes. Some methods operate in the frequency–wavenumber
(ω − k) domain and use seismic arrays (Cara 1973, 1978, 1979;
Nolet 1975). While this kind of direct measurement is fast to im-
plement, there are a few limitations: (i) the method can only be
applied in regions with dense arrays and thus cannot be applied at
the global scale, (ii) it requires the usage of linear regional seis-
mic arrays approximately aligned with the epicentre, which reduces
the geographical ray coverage, and (iii) variations within an array
cannot be assessed (Laske & Widmer-Shnidrig 2015).

Another method, based on mode branch stripping, was devel-
oped by van Heijst & Woodhouse (1997). The principle behind
this technique is that the signals of overtone branches can be iso-
lated by fitting the cross-correlation function of a single mode us-
ing mode branch cross-correlation functions. However, while this
method does not rely on arrays and thus can be used in global tomog-
raphy, it does not work well with epicentral distances shorter than
30◦ (van Heijst & Woodhouse 1999) since individual higher modes
cannot be separated from others in a seismogram when the path is
too short. Additionally, it might be difficult to separate one single
mode from observed seismograms when that mode is contaminated
by interference from other modes.

Other researchers have utilized waveform fitting techniques to
extract higher mode dispersion. Stutzmann & Montagner (1993)
and Stutzmann et al. (1994) developed a waveform fitting tech-
nique to invert phase velocity dispersion and velocity structure
at depth in successive steps. Beucler et al. (2003) proposed a
roller-coaster technique in which the phase velocity perturbation
is obtained by fitting the synthetic seismogram to the real data.
Yoshizawa & Kennett (2002, 2004) and Yoshizawa & Ekström
(2010) used the Neighbourhood Algorithm (Sambridge 1999a) to
search the model space for multimode dispersion in a nonlinear
waveform inversion. Visser et al. (2007) developed a method sim-
ilar to that of Yoshizawa & Kennett (2002) to estimate multimode
dispersion curves for global tomography, though they were addi-
tionally able to obtain quantitative uncertainties on the phase speed
measurements by performing a Bayesian appraisal of the mod-
els sampled (Sambridge 1999b). Uncertainties were determined
from the whole ensemble of dispersion models obtained instead
of taking the standard deviation of the 1000 best models as in
Yoshizawa & Kennett (2002).

In our study, we developed a waveform modelling method using
a reversible jump Markov Chain Monte Carlo (rj-MCMC) inver-
sion (Bodin & Sambridge 2009) to extract higher mode dispersion
curves and their uncertainties at periods between 50 and 200 s. Like
the methods of Yoshizawa & Kennett (2002), Yoshizawa & Ekström
(2010), Visser et al. (2007), and Visser (2008), our technique has
the advantage of sampling the model space instead of choosing one
model among many possible solutions with a strong regularization

scheme. It therefore provides more reliable posterior model uncer-
tainties than regularized inversions. Additionally, contrary to those
previous studies in which the authors adopted a fixed dimension
model space chosen a priori, the rj-MCMC sampler offers a way to
treat the dimension of the model space as variable. In addition, be-
cause we use a Hierarchical Bayes approach, data noise parameters
are treated as unknowns in the inversion, which accounts for the part
of the signal that we are not able to explain with our forward theory
and the chosen parametrization. This allows the model to explain
the data without overfitting them. In this paper, we first present the
method and validate it using a synthetic test, and then show two real
data examples.

2 M e t h o d

Our goal is to measure phase velocity dispersion for fundamen-
tal and higher mode Rayleigh waves using waveform modelling.
To do this, we seek a large number of path-averaged 1-D shear-
velocity models that can fit the filtered waveform, and the resulting
models are employed to calculate dispersion curves. These path-
specific 1-D models represent the average fundamental and higher
mode dispersion curves for the chosen source–receiver path as in
Yoshizawa & Kennett (2002), Yoshizawa & Ekström (2010), Visser
et al. (2007) and Visser (2008).

2.1 Waveform Modelling

A synthetic seismogram (s) can be calculated by summation of
normal modes (m) of amplitude Am in the frequency domain (ω) for
a 1-D model as follows (e.g. Dahlen & Tromp 1998):

s(ω) =
∑

m

Am(ω)exp[iω�/cm(ω)], (1)

where cm(ω) is the phase velocity of the mode m at angular fre-
quency ω and � is the epicentral distance. The relationship between
seismograms and their corresponding velocity model is thus highly
nonlinear. A fully nonlinear approach, which does not require any
partial derivatives with respect to model parameters or any strong
constraints on parametrization, is therefore desirable to perform
waveform inversion.

Fortran code Mineos (Masters et al. 2011) can be used to compute
synthetic seismograms for a reference 1-D model of Earth’s interior
by normal mode summation. The advantage of such formulation
is that it builds a direct connection between seismic waveforms
and phase velocities. However, the calculation of normal mode
eigenfunctions and eigenfrequencies for a given mantle model is
very time-consuming and thus we cannot use the fully nonlinear
formulation that is eq. (1) at each iteration of an MCMC scheme.
We thus decided to linearize the forward modelling problem in order
to overcome the computational speed limitation. As in Yoshizawa
& Kennett (2002), we obtained a first synthetic seismogram for
a reference model using fully nonlinear calculations (eq. 1). We
then used perturbation theory to update the seismogram for other
models generated at each iteration of the Markov Chain. For a small
perturbation, the change in mode eigenfrequency can be calculated
assuming unperturbed eigenfunctions:

δln(ω) =
∫ a

0

(
δα

α
(r )Kα(r, ω) + δβ

β
(r )Kβ (r, ω)

+ δρ

ρ
(r )K

′
ρ(r, ω)

)
dr +

∑
d

δd[Kd (ω)]+−, (2)
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where δln(ω) = δω/ω, a is the radius of the Earth, and α, β, ρ

and d are P-wave velocity, S-wave velocity, density and radius of
discontinuities, respectively. Kα, Kβ, K

′
ρ and Kd are the Fréchet

derivatives, which relate the change in wave velocities, density and
depth of discontinuity from the reference model to changes in the
eigenfrequencies. The Fréchet derivatives can be calculated for each
mode using the eigenfunctions determined for the reference model
(Woodhouse 1980).

In theory, all parameters (δα, δβ, δρ and δd) could be allowed
to vary. However, for computational reasons, we decided to only
search for shear-wave velocity models. This will unlikely affect the
results since P-wave velocity and density have little influence on
the phase velocity perturbation in the frequency range considered
(5–20 mHz) as tested by Visser (2008). Similarly, we also neglected
perturbations in the depth of mantle discontinuities, which are not
well resolved by the data considered (Meier et al. 2009) and in-
cluding them in the parametrization does not significantly affect the
resulting velocity models (Weidner et al. 2017). Correctly account-
ing for the Moho depth has been shown to be important as it can
have strong nonlinear effects on waveform modelling and phase
velocity calculations (Montagner & Jobert 1988). We decided to
account for deviations from PREM in Moho depth by adopting a
reference model that includes crustal constraints from CRUST1.0
(Laske et al. 2013), averaged over the length of the chosen path,
and calculating the corresponding shear wave sensitivity kernels.
The partial derivatives employed therefore reflect departures of the
Moho from PREM. Hence, eq. (2) becomes

δln(ω) =
∫ a

0

δβ

β
Kβdr. (3)

The updated frequency can then be converted into phase velocity
for a normal mode of angular order l using (Jeans 1923; Dahlen &
Tromp 1998):

c(ω∗) = ω∗a

l + 0.5
, (4)

where ω∗ is the updated eigenfrequency for the mode considered.
In Fig. 1, we compare synthetic seismograms calculated using the
normal mode summation without linearization (eq. 1) and the lin-
earized method based on perturbation theory described above (eq.
3). The results show that the phase velocity information from the
linearized perturbation method and the nonlinear formulation match
well, especially in the period range we are interested in (50–200 s).

The rj-MCMC method described below performs a guided Monte
Carlo sampling of the model space using the values of the misfit
between the real and the synthetic seismograms. The data and the
synthetics are compared in different time and frequency windows,
which are chosen such that they include the fundamental and sev-
eral higher modes. We used different time and frequency windows
to compare the fundamental and higher mode waveforms. We em-
ployed group velocities to choose the beginning and the end of the
time windows for the fundamental mode and we employed S- or SS-
wave arrival times and group velocities to choose the higher mode
time window as in Lebedev & Nolet (2003). For epicentral distance
shorter than 35◦ the higher mode window start time is set just before
the arrival of the S-wave train. For epicentral distance between 35◦

and 70◦ the start time is just after the S and before the SS wave
train. Group velocities can be picked manually by inspection of the
waveform or using a frequency–time analysis (Dziewonski et al.
1969). Those windows are summarized in Table 1. An example of
time window selection on real data is shown in Fig. 2 for an event
in Chiapas, Mexico and station HRV in north eastern America.

Because the amplitude of the synthetic seismograms depends
on the scalar moments of the event, and because inaccurate scalar
moments in catalogues might cause an increase in the data misfit,
we implemented an energy equalization method (Lebedev et al.
2005) before calculating the misfit between observed and synthetic
seismograms (defined in Section 2.2). The aim is to equalize the
energy of the synthetic with that of the data by multiplying the
amplitude of the synthetics by the following constant:

f eq =
√√√√∑t=t2

t=t1
d2(t)∑t=t2

t=t1
s2(t)

, (5)

where d(t) and s(t) are the observed and synthetic seismograms,
respectively, filtered in the frequency range considered (5–20 mHz).
t1 indicates the beginning of the overtone time window (window 3
defined in Table 1) and t2 is the end of the first fundamental mode
time window (window 1 in Table 1).

2.2 Bayesian inference

In a Bayesian formulation, model parameters are described by prob-
ability density functions (PDFs), which effectively indicate the un-
certainty associated with these parameters. The aim of a Bayesian
inference is to quantify the a posteriori probability distribution of
all model parameters given some prior information and the data.
Bayes’ theorem (Bayes 1763) gives the posterior as

p(m|dobs) ∝ p(dobs|m)p(m), (6)

where A|B means A given (or conditional on) B, that is, the probabil-
ity of having A when B is fixed. m is the vector of model parameters
and dobs is the observed data. The term p(dobs|m) is called likeli-
hood function, which shows the probability of observing data dobs

given a particular model m. The a priori probability of model, p(m),
contains what we assume about the model m before having the ob-
served data. Accordingly, the posterior distribution represents the
probability of the model given the observed data. The parts of the
model space that are more frequently required by the data than oth-
ers manifest with greater posterior probability, and hence are more
likely to reflect properties of the Earth (Backus 1988).

The likelihood function p(dobs|m) describes the probability of
data given the current model. In this study, we compared the wave-
form fit in three different frequency–time windows, and we assumed
the data noise in each window follows a multivariate normal dis-
tribution with zero mean and covariance matrix Cdi , where i is
the window index. The likelihood term for each frequency–time
window is thus written in this form:

pi (di |m) = 1√
(2π)n|Cdi |

× exp

[
−�i (m)

2

]
, (7)

where di is the data in window i, �i(m) is the function describing the
distance between real data and synthetics predicted by the current
model. The general expression for �i(m) considering correlated
noise is (Bodin et al. 2012):

�i (m) = (G(m) − di )
T C−1

di
(G(m) − di ), (8)

where d represents the measured data vector and G(m) is for the
synthetic data predicted by model m.

For simplicity, we assumed Gaussian and uncorrelated noise, in
which case the covariance matrix is diagonal. Then the equation
above becomes

�i (m) = Mi (m)/σ 2
i , (9)
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336 H. Xu & C. Beghein

Figure 1. Comparison between synthetic seismograms calculated with normal mode summation using Mineos without linearization (blue) and with our
linearized method (red) in three different period ranges: 100–200 s (top), 50–100 s (middle) and 30–50 s (bottom). The shear velocity model used to compute
the seismograms is shown in Fig. 3.

Table 1. Selection of frequency–time windows. The first and second window indices correspond to the fundamental
mode and the third window is for higher modes. The start and end times for the fundamental mode are determined by
the group velocities U indicated in the table and the event epicentral distance �. For the higher modes, the beginning
of the time window is determined by the S- or SS-wave arrival times. The end of the window is determined by �/U.

Window index Frequency (mHz) Start End

1 5–10 U = ˜4.45 km s−1 U = 2.95 km s−1

2 10–20 U = 4.30 km s−1 U = 3.20 km s−1

3 10–20 S or SS U = 4.30 km s−1

where σ i is the standard deviation of the Gaussian uncorrelated noise
in the ith frequency–time window, that is, the diagonal element of
the covariance matrix, and Mi is defined by

Mi (m) =
Li∑

j=1

(d j
i − f eqs j

i )2, (10)

where Li is the length of the selected time window, di is the observed
data, si is the synthetics calculated for model m and feq is the
energy equalization factor defined in eq. (5). The expression for the
likelihood becomes

p(di |m) = 1

(
√

2πσi )n
× exp

[
− Mi (m)

2σ 2
i

]
. (11)

The total likelihood function is then the product of the likelihood
functions of three frequency–time windows:

p(dobs|m) = p(d1|m)p(d2|m)p(d3|m). (12)

As shown in eq. (7), the level of noise accounts for theoretical errors,
that is, the part of the signal that we are not able to explain with the
forward theory and with the chosen parametrization, which is a sim-
plified and discretized representation of reality. Unlike traditional
inversion methods in which the noise level is fixed at a presumed
level, we use a Hierarchical Bayesian approach, treating noise pa-
rameters σ 1, σ 2 and σ 3 as unknowns in the inversion. These noise
parameters therefore determine the width of the Gaussian likelihood
function and the relative weight given to different frequency–time
windows during the inversion. The diagonal element σ i is given by
a uniform prior distribution, which is explored during the Monte
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Figure 2. An example of our automatic time window selection for a path across North America. The waveform is for the observed data. The station, HRV, is
located in northeastern America. The event was in Chiapas, Mexico and occurred on 2007 July 6. The time window in the upper panel is window 1 as defined
in Table 1. The time window on the right-hand side of the lower panel is for the fundamental mode (window 2) and the time window on the left-hand side of
the lower panel is the higher modes window (window 3).

Carlo search. An advantage of this approach is that the weights of
the different frequency–time windows are constrained by the data,
thereby avoiding an arbitrary choice of noise levels by the user and
the risk of overfitting the data. In addition, windows with better
waveform fit will naturally have higher weights since the relative
weight between different windows is controlled by the data error
levels σ 1, σ 2 and σ 3. We discuss the effects of data noise level in
Section 3.2.

Following Bodin et al. (2012), a uniform prior distribution with
relatively wide bounds is adopted here so that the final model will
be dominated by the data rather than by prior information. When
only independent parameters are considered, the prior probability
distribution can be written as the product of three terms:

p(m) = p(c, v|k)p(k)p(h), (13)

where c, v are vectors containing the depth and velocity of each
interpolation point, p(k) is the prior on the number of layers and
p(h) is the prior on noise hyper parameters. Details of the derivation
for the expression of p(m) can be found in Bodin et al. (2012).
Here, we only show the expression for velocity priors at the ith
interpolation point vi:

p(v|k) =
{ 1

�v
if Vmin ≤ vi ≤ Vmax

0 otherwise,
(14)

where Vmax and Vmin are the upper and lower bounds of velocity,
and �v is equal to (Vmax − Vmin). Any velocity that falls outside
this pre-defined boundaries leads to a null prior. For our study, we
chose �v = 10 per cent of the velocity in the reference model at a
given depth.

2.3 The rj-MCMC method

The goal of the rj-MCMC method is to generate an ensemble of
earth models distributed according to a target distribution. In our
case, we want to find the 1-D shear velocity models that best-fit the
waveform data to represent the dispersion of multiple modes along
a specific source–receiver path.

Most inversion schemes adopt a fixed dimension model space.
However, we do not know the complexity of the VS profile, that is,
the dimension of the model space, a priori. One potential drawback
of fixing the depth parametrization is that different seismograms
may require different number of model parameters to improve the
fit and the results could potentially depend on the chosen prior
parametrization. Here, we adopted a transdimensional Bayesian in-
version, which consists in a sampling-based algorithm that include
the number of parameters in the set of unknowns and hence the
constraints added on the uncertain parametrization or uncertain
data errors can be released. The transdimensional approach lets the
data themselves constrain the allowable model complexity instead
of having the user choose a model parametrization (e.g. number of
layers or cells) a priori. It is well-known, however, that increasing
the complexity of the model parametrization often results in better
data fit and introduces parameter trade-offs. One difficulty in in-
verse problems is to determine which parameters are well resolved
and how much complexity is really needed by the data. To avoid
this problem, the rj-MCMC sampler, first proposed by Geyer &
Mφller (1994), is designed to find a parsimonious solution (Ma-
linverno 2002), that is, it naturally discourages high dimensional
(many layers) models and the least complex explanation or model
for an observation is preferred to avoid overfitting the data.

The rj-MCMC method has been explained in detail in Bodin &
Sambridge (2009) and Bodin et al. (2012). Our method is based on
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Figure 3. Example of model parametrization. The red squares denote the points at which the velocity model is perturbed. The complete dVS/VS profile is
obtained by linear interpolation between those points.
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Higher mode dispersion measurement 339

(a) (b)

Figure 4. (a) Colour density plot representing the ensemble of solutions obtained by inversion of the synthetic seismogram that was calculated with the input
model shown in (b); the posterior mean model resulting from this distribution of solutions is also displayed in (b).

(a) (b)

Figure 5. (a) Posterior distribution for the number of parameters in the synthetic test of Fig. 4; (b) Posterior distribution for the data noise level for each of the
three time windows considered.

theirs except that we used a different depth parametrization. The
nodes in the two different parametrizations have, nevertheless, a
similar meaning and the derivations are similar to theirs. The main
difference comes from the way the velocity models are constructed.
In Bodin et al. (2012), each Voronoi nucleus defines its nearest
neighbour region as one layer, which has the same velocity as the
nucleus within it. By contrast, in our model the shear wave velocity
perturbation at a given depth is interpolated from its two nearby
nodes.

In the rj-MCMC method, every new model is generated by it-
eratively perturbing the last one according to some chosen pro-
posal distribution. There are five types of perturbation based on the
parametrization we chose:

(1) Change the velocity of one interpolation point;
(2) Birth: create a new interpolation point;
(3) Death: remove one interpolation point at random;
(4) Move: randomly pick one interpolation point and move it to

a new depth;
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Figure 6. Comparison between input synthetic waveform and the waveform predicted by PREM (top) and by the mean model resulting from our inversion
(bottom). The seismograms shown here represent the velocity of the ground motion. The input seismogram was calculated for the true model shown in Fig. 4.
Two frequency bands, as indicated in Table 1, are considered separately. The waveforms match is much improved after inversion.

Table 2. Source parameters from GCMT catalogue. Event 200503021042A was used for the synthetic test. 200910151211A was for the western Australia
path and 201004172315A for the eastern Australia path.

ID Date Time lat (◦) lon (◦) Depths (km) M0 (dyne cm)
Strike, dip,

rake

200503021042A 2005/03/02 10:42:16.9 −6.54 129.99 196.1 5.73e+26 41, 88, 55
200910151211A 2009/10/15 12:11:19.8 −3.04 139.45 105.1 1.34e+25 296, 83, 145
201004172315A 2010/04/17 23:15:27.9 −6.82 147.30 62.9 2.19e+25 268, 50, 91

(5) Change the noise level;

Here we have employed a slightly different model proposal for
Birth than Bodin et al. (2012) due to the different parametrization
used here. The other proposals are the same. For the birth step, we
added a new interpolation point at depth c

′
k+1 and then assigned a

new velocity perturbation value v
′
k+1 to this new node. This is drawn

from a Gaussian proposal probability density:

q(v
′
k+1|v∗) = 1

θbirth

√
2π

exp

{
− (v

′
k+1 − v∗)2

2θ2
birth

}
, (15)

where v∗ is the current velocity perturbation value at the depth c
′
k+1

where birth takes place. The value of v∗ can be calculated by a
simple interpolation between its two nearest nodes. The standard
deviation θ birth of the Gaussian distribution is a parameter to be
chosen. We refer the reader to Bodin et al. (2012) for the proposal
distributions of other types of perturbation.

New models generated from those perturbations are then ran-
domly accepted or rejected according to the acceptance ratio. In
order to converge to the target distribution p(m|dobs), the accep-
tance probability from the current model m to the proposed model
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(a)

(b)

Figure 7. (a) Comparison between the output and input synthetic data in the time domain filtered in the 50–200 s period range; (b) Spectrogram of the waveform
fit f(ω, t) as defined in eq. (19). The regions with warmer colours correspond to better waveform fit in the F–T domain.

m
′
, α(m

′ |m), has to meet the following requirement:

α(m
′ |m) = min

[
1,

p(m
′
)

p(m)
· p(dobs|m′

)

p(dobs|m)
· q(m|m′

)

q(m′ |m)
· |J|

]
, (16)

where the matrix J is the Jacobian of the transformation from m to
m

′
.
The derivations of acceptance probability in rj-MCMC method

were given by Bodin et al. (2012), Appendix C. Here we will only
describe the ideas briefly and show the equations that differ from
theirs. For moves without change of dimension, both the Jacobian
term and the ratio of proposal distributions are 1 and the reader can
find the same results as Bodin et al. (2012) by inserting eqs (11)
and (13) into eq. (16). For the birth and death steps that involve
a change of dimension, it can be shown that the Jacobian term is
equal to 1. However, due to the different birth proposal distribution
we selected, the expression for the acceptance term for the birth
and death steps are different from Bodin et al. (2012). For the birth
step:

α(m
′ |m) = min

[
1,

θbirth

√
2π

�v
·exp

{
(v

′
k+1 − v∗)2

2θ2
birth

}
· p(dobs|m′

)

p(dobs|m)

]
.

(17)

The meaning of v
′
k+1 and v∗ is the same as in (15). For the death

step:

α(m
′ |m) = min

[
1,

�v

θbirth

√
2π

·exp

{
− (v

′
j − v

′
i )

2

2θ2
birth

}
· p(dobs|m′

)

p(dobs|m)

]
,

(18)

where vi is the velocity of the ith interpolation point to be removed
at depth ci and v∗ is the velocity at depth ci in the new structure after
the removal of the ith node.

If the newly proposed model is rejected, then the last model
is retained for another iteration. The Markov chain is generated
via hundreds of thousands of iterations. The first part of the chain
(called the burn-in period) is discarded, after which the random
walk is assumed to be stationary and starts to sample the model
space according to the posterior distribution p(m|dobs). If the algo-
rithm is run long enough, these samples should then provide a good
approximation of the structure of Earth as constrained by the data.

This ensemble solution contains many models with variable
parametrization and each VS model in the ensemble corresponds to
one dispersion relationship. The expected dispersion is the weighted
average through the posterior distribution sampled by the rj-MCMC
algorithm. One can use this average to choose one dispersion curve
with proper uncertainties for interpretation purpose.

2.4 Forward modelling and parametrization

In this study, we seek a 1-D depth-dependent isotropic shear velocity
model to represent the dispersion of multiple modes between a
chosen source and receiver. The isotropic nature of the model is
assumed mainly for computational reason, but it is a reasonable
assumption as demonstrated by Visser (2008) who showed that the
differences in the phase velocities calculated assuming isotropy
or anisotropy are small. The VS profile is described by a variable
number k of interpolation points (Fig. 3). The vertical position of
these points defines the depths at which VS is perturbed and the
horizontal position of these points corresponding to the amount VS

is perturbed relative to a reference model using the velocity prior
described by eq. (14).

We adopted the rj-MCMC algorithm (Bodin & Sambridge 2009)
to explore the model space and sample the distribution of model
parameters informed by the data. The procedure of our waveform
inversion can be summarized as follows:
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(a)

(b)

Figure 8. Inverted fundamental mode (a) and first overtone (b) phase velocity dispersion and uncertainties (blue) compared to the dispersion curve calculated
for the true model (red). The uncertainties shown here correspond to 2σ obtained from the posterior distribution.

(1) Choose path-specific reference 1-D shear velocity model
(2) Calculate normal mode eigenfrequencies for the reference

model using MINEOS and compute a reference synthetic seismo-
gram using normal-mode summation (eq. 1)

(3) Generate path-specific 1-D shear velocity model by perturb-
ing the reference model according to the proposal distribution of
the rj-MCMC scheme;

(4) Compute the synthetic seismogram predicted by the 1-D
model using eq. (3);

(5) Calculate the misfit between synthetic and observed wave-
forms in each window using the L2 norm;

(6) Randomly accept or reject the proposed model according to
the acceptance ratio;

(7) If the model is accepted, calculate and save the phase veloc-
ities predicted by the model using eq. (4) and generate a new VS

model by perturbing the accepted model according to the proposal
distribution. If the model is rejected, generate a new VS model by
perturbing the previously accepted model according to the proposal
distribution;

(8) Repeat steps (4) to (7) to generate the Markov chains;
(9) Gather all the saved phase velocities to determine the distri-

bution of dispersion curves obtained at each period/frequency;
(10) Calculate the mean and standard deviation of these distri-

butions to obtain a measured dispersion curve and uncertainties of
phase velocities, respectively;

(11) Estimate the reliability of the dispersion curves (see Sec-
tion 2.5).
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(a)

(b)

Figure 9. (a) Synthetic waveform of the first overtone calculated from the inverted 1-D Vs profile and filtered in the 50–200 s period range; (b) Spectrogram
P1(ω, t) of the relative weight of the first overtone in the synthetic test, as defined in eq. (20). The regions with warmer colours in the figure represent larger
weights in the F–T domain.

Figure 10. Reliability parameters as a function of frequency for the fundamental mode (n = 0) and the first five overtones in the synthetic test. The thresholds
we defined for each mode are denoted by the red dashed lines. Only periods at which the reliability parameters are above the threshold are kept as reliable
inversion results.

2.5 Reliability analysis

In principle, with the proposed method we are able to obtain the
phase velocities for any mode at any period since they are calculated
from the ensemble of VS models obtained. However, in practice, only
some modes at certain periods can be reliably constrained by a single
seismogram. It is thus important to estimate the reliability of the
measurements in each frequency band for different modes. Here,
we adopted a procedure similar to Yoshizawa & Kennett (2002) and
Yoshizawa & Ekström (2010) based on the frequency–time analysis
method (Dziewonski et al. 1969).

Let us first define the waveform fit f(ω, t):

f (ω, t) = exp

[
− Smis(ω, t)

Ssyn(ω, t)

]
, (19)

where Smis(ω, t) represents the spectrogram of the difference be-
tween real data and the inverted synthetics. Ssyn(ω, t) is the spectro-
gram of the whole synthetic waveform. Similarly, the relative power
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Figure 11. Locations of events (stars) and stations (triangles) used for the
real data test. The yellow lines show the great circle paths from sources to
receivers for western and eastern Australia.

(a) (b)

Figure 12. (a) Posterior distribution of relative velocity perturbations with
respect to Debayle et al. (2016) for the western Australia path; (b) Resulting
mean dVS/VS model.

of the jth mode pj(ω, t) is defined as

p j (ω, t) = exp

[
− Sres

j (ω, t)

Ssyn
j (ω, t)

]
, (20)

where Ssyn
j (ω, t) is the spectrogram of the jth mode waveform and

Sres
j (ω, t) is the spectrogram of the residual seimogram calculated as

the difference between the full synthetic and the jth mode waveform.
In practice, both the frequency ω and time t are discrete, so the
spectrograms can be expressed in matrix form. For example, the
element in the kth row and lth column of the spectrogram matrix
represents the amplitude of S(ωk, tl), where ωk is the discretized
frequency and tl is the centre of the lth time window used in the
frequency–time domain analysis.

The waveform fit f measures the difference between the synthetic
and real data in the frequency–time domain. It is designed such
that f(ω, t) = 1 at all frequencies and time when the synthetic
seismograms are identical to the observed data, and f decreases

when the waveform fit becomes worse. The relative power pj, which
measures the relative power of the jth mode, is designed in a similar
way so that pj(ω, t) = 1 at all frequencies and time when the jth
mode in the seismogram is completely dominant and there is no
contribution from other modes, and pj decreases as the contribution
from the jth mode becomes smaller.

For the reliability analysis, we want to consider the overall wave-
form fit and the relative weight of one single mode at the same time
because both factors indicate how well the phase velocities at certain
frequencies are constrained by the data. That is, the measurement
of the jth mode becomes more reliable if the waveform fit is better,
or if the relative weight of the jth mode increases. Following this
criteria, we define the reliability parameter as

r j (ω) =
∑

l

pkl
j f kl , (21)

where p and f are defined in eqs (19) and (20). To get the reliability
parameter of the jth mode rj(ω), we first multiply the waveform fit
by the relative weight of the jth mode in the F–T domain, and then
integrate the resulting matrix with respect to time. In this way, the
rj(ω) is a function of frequency and can be regarded as an indicator
of reliability at frequency ω for the jth mode. Examples of the
reliability analysis are shown in Section 3.

3 T E S T S A N D R E S U LT S

3.1 Synthetic tests

We first present a synthetic test to demonstrate that our method can
recover an input shear wave velocity model well (Figs 4 and 5). A
shear wave velocity profile generated by perturbing the Preliminary
Reference Earth Model (PREM; Dziewonski & Anderson 1981)
was used to calculate a synthetic seismogram. Fig. 4(b) displays
the input perturbation dVS(r)/VS(r). It is characterized by +3 per
cent anomaly relative to PREM at 200 km depth and −2 per cent
at 600 km depth. The synthetic seismogram (Fig. 6), representing
the velocity of the ground motion, was calculated for a great circle
path between the Banda Sea and Beijing, which corresponds to a
distance of 5347 km. We used the fundamental mode and the first
ten overtones to calculate the synthetics and to invert the synthetic
data. The event source parameters were taken from the GCMT
catalogue (Dziewonski et al. 1981; Ekström et al. 2012) and are
shown in Table 2. Only the vertical component is considered for
the waveform fitting. We generated correlated noise by bandpass-
filtering a sequence of uncorrelated Gaussian (white) noise, and
then added the correlated noise to the synthetic seismogram. This
way, the filtered noise sequence is correlated and data points in
the sequence are no longer independent. The noise level was set at
10 per cent of the average amplitude of the waveform contained in
the third time window as defined in Table 1, which includes higher
modes and excludes the fundamental mode.

The inversion of the synthetic waveform data was performed
using eight Markov chains starting from different random mod-
els, with the length of each chain fixed at 120 000 iterations. To
guarantee the convergence of the inversion when sampling the pos-
terior distribution, the first 60 000 iterations in each chain were
marked as ‘burn-in’ and we removed them from the ensemble of
sampled models. The ensemble of dVS/VS solutions represented by
a colour density plot is displayed in Fig. 4(a). The brighter colour
means the algorithm spent more time in that region, and there-
fore it corresponds to a more likely VS structure at that particular
depth. The mean output model calculated from the ensemble of

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/1/333/5376499 by U

C
LA Biom

edical Library Serials user on 31 M
ay 2019



Higher mode dispersion measurement 345

(a) (b)

Figure 13. (a) Posterior distribution of the number of velocity parameters for the western Australia path; (b) Posterior data error distribution for each of the
three time windows. Note the different scales on the horizontal axes.

(b)

(a)

Figure 14. The same as Fig. 7 but for the western Australia path. (a) real data and synthetic seismogram filtered in the 50–200 s period range and calculated
using the inverted mean model of Fig. 12; (b) F–T analysis of the misfit as defined in eq. (19).

solutions (Fig. 4b), which can be regarded as the expectation of
the ‘true model’, is close to the input model. Fig. 5(a) displays the
posterior distribution of the number of parameters used by the algo-
rithm during the inversion and demonstrates the parsimony of the
transdimensional framework: although we can almost always fit the
data better by introducing more parameters, the rj-MCMC method
tends to prevent overfitting the data and prefer models of smaller
dimensions. In this case the result shows that there is a higher prob-
ability that the data can be explained by less than eight depth nodes.
Fig. 5(b) represents the posterior data noise level and shows that
fitting the first time window required less data noise than the other
two time windows.

A comparison between the input and output seismograms is
shown in Fig. 6, which shows that the predicted waveform resulting

from our inversion fits the input data much better than the waveform
predicted by PREM. The misfit between the inverted waveform and
the input data is represented in Fig. 7 both in the time domain and
the F–T domain.

The fundamental mode and first overtone phase velocity disper-
sion was calculated and compared with the dispersion relationship
predicted by the true model (Fig. 8). The standard deviation of our
measurements at each period were calculated from the ensemble of
dispersion curves obtained. We see that the true dispersion curve is
within the 95 per cent likelihood contour of our inversion results at
all periods.

We further applied the reliability analysis described in the pre-
vious section to our synthetic test. The relative weight of the first
overtone is used as an example to demonstrate the method (Fig. 9).
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346 H. Xu & C. Beghein

Figure 15. Reliability parameters for the western Australia path (see Fig. 10 for details).

Figure 16. Measured phase velocities anomalies for the western Australia path and the modes and periods that were estimated to be reliable (Fig. 15). The
measurements were converted from perturbations with respect to the average version of the 3-D reference model into perturbations with respect to PREM.
Uncertainties correspond to 2σ .
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(a) (b)

Figure 17. Posterior ensemble of solutions for the eastern Australia path. See Fig. 4 for details.

(a) (b)

Figure 18. (a) Posterior ensemble for the number of parameters for the eastern Australia path; (b) Posterior noise distribution for each of the three time
windows. Note the different horizontal scales.

The spectrogram of misfit in Fig. 7 and the spectrograms of relative
weights (like in Fig. 9) were multiplied using eq. (21) and summed
along the time domain to obtain the reliability parameters as a func-
tion of frequency for each mode (Fig. 10). In order to automate
the process, we arbitrarily define the threshold values at 10 for the
fundamental mode and 2 for higher modes. For each mode, only
periods with reliability parameters larger than the threshold will be
kept. As is shown in the synthetic test results, the fundamental mode

and the first overtone have high reliability at all periods. The second
overtone is also above the threshold at most periods but the third
and fourth higher modes only have a short range of reliable results.
The fifth overtone cannot be determined reliably in the synthetic
test, likely because it was not excited well at those frequencies by
the employed seismic source.

Further synthetic tests were performed to verify whether our
method is valid for uncorrelated noise (Supporting Information
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348 H. Xu & C. Beghein

Figure 19. Real data and synthetic seismogram filtered in the 50–200 s period range and calculated using the inverted mean model of Fig. 17 (top); F–T
analysis of the misfit as defined in eq. 19 (bottom).

Figure 20. Reliabiliy test for the eastern Australia path. See Fig. 10 for details.

Fig. S1) and for fixed depth nodes, that is, when the transdimen-
sionality aspect of the software is turned off (Supporting Infor-
mation Fig. S2). This transdimensionality test showed that for a
parametrization with fixed number of parameters, similar to what
was implemented by others (Yoshizawa & Kennett 2002, 2004;
Visser et al. 2007; Visser 2008; Yoshizawa & Ekström 2010), we
can obtain phase velocity measurements with error bars that include
the predictions of the input model, that is, the ‘true’ data. However,
the mean phase velocities deviate from the true values, highlighting

the importance of reporting proper uncertainties with the measure-
ments. We also see that the mean phase velocities do not reproduce
the input data as well as when the number of parameters is allowed
to vary in the inversion. This is visible when comparing Supporting
Information Figs S1 and S2. This is also true for the mean velocity
model, which is not as close to the input model as the mean model
of Supporting Information Fig. S1. It should be noted, however, that
when the dimension of the model is fixed, smoothed parametriza-
tions such as B-splines are more commonly employed (Yoshizawa
& Kennett 2002, 2004; Visser et al. 2007; Visser 2008; Yoshizawa
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Figure 21. Reliable measured phase velocities expressed as perturbations with respect to PREM for the eastern Australia path and the modes and periods that
were estimated to be reliable (Fig. 20). The red curve represents measurements performed using the model of Debayle et al. (2016) as a reference model. The
blue curves are measurements performed using model S40RTS of Ritsema et al. (2011) as reference. The phase velocities were converted from perturbations
with respect to the 3-D reference model into perturbations with respect to PREM. Uncertainties correspond to 2σ .

& Ekström 2010), since they can more easily represent smooth 1-D
velocity variations with a limited number of nodes. In addition, we
note that the computational time when the transdimensionality is
turned on was not very different from when it was turned off.

We additionally tested the effect of the data noise level by under-
estimating it (Supporting Information Fig. S3) and overestimating it
(Supporting Information Fig. S4) compared to the input data. These
figures demonstrate that the prior data noise level can have large
influence on the inverted phase velocities as well as their estimated
uncertainties: when the noise level is underestimated, the posterior
uncertainties on the estimated phase velocities become smaller but
the input data are not well represented by those uncertainties as
they lie outside (or close to) two standard deviations. When the
noise level is overestimated, however, the uncertainties on the phase
velocities are much larger but the mean is close to the input data.
We therefore argue that overestimating the noise level leads to more
reliable measurements, albeit with larger uncertainties, and reduces
the possibility of overfitting the data.

3.2 Application to real data

In this section we present the phase velocity inversion results for two
paths across western and eastern Australia. Fig. 11 shows the loca-
tions of the events and stations. Both selected events have depths
larger than 50 km. The source parameters of the two events are listed
in Table 2. The epicentral distance for the western path is 4036 km
and for the eastern path is 4012 km. Although a nonlinear inversion

method is used here to calculate phase velocities from the S-wave
velocity models, it can still be preferable to use a reference model
that is as close as possible to the true structure of the region stud-
ied. This is mainly because our method to calculate the synthetic
seismograms is not fully nonlinear for computational reasons (see
Section 2). The forward modelling part of the algorithm was lin-
earized, and we search for model parameters dVS/VS between −5
and 5 per cent around a reference model in order to reduce errors
caused by the linearization. Here, we adopted the 3-D shear ve-
locity model of Debayle et al. (2016). We averaged the VS profiles
extracted from the reference model along each station–event pair
and used this average as a reference model for the specific 1-D path
considered. The prior data noise level was a uniform distribution
between 1 and 500 nm s−1 for each time window.

The posterior distribution of dVS/VS models for the western Aus-
tralia path is shown in Fig. 12, followed by the number of parameters
and data noise distributions (Fig. 13), the waveform fit (Fig. 14),
the reliability analysis (Fig. 15) and the estimated phase velocity
dispersion curves (Fig. 16). The inverted dVS/VS structure (Fig. 12)
displays a modest positive deviation from the reference model be-
tween 50 and 200 km depth as well as below 400 km depth. The
uppermost positive anomaly is consistent with a thick lithosphere
as expected in a cratonic area. The number of velocity parameters
required by the data is around four, which demonstrates the parsi-
mony of the algorithm, and the posterior data noise distributions
have relatively narrow Gaussian distributions with a standard devi-
ation much lower than the assumed prior noise level. Overall, the
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(b)(a)

Figure 22. The mean VS solution and one standard deviation for the western (a) and Eastern (b) Australia paths compared to PREM.

fundamental mode in the first window (5–10 mHz) is the lowest,
followed by the higher modes window.

The synthetic waveform calculated from the mean velocity model
fits the real data well (Fig. 14), and we see that phase velocities
for the fundamental mode has reliability parameters larger than
the pre-defined threshold, 10, at all periods considered (Fig. 15).
For the first overtone, the reliable measurements are in the period
range 92−200 s, with the threshold set at 2. Similarly, the second
overtone phase velocities were estimated to be reliable in the period
range 58−148 s. The reliability parameters of the third overtones is
between 60 and 88 s. Finally, a small portion (50–57 s) of the fourth
overtone was found to be reliable.

For the eastern Australia path, we repeated the procedure de-
scribed above. The results are shown in Figs 17–21. We see a
strong positive VS anomaly compared to the reference model at
about 60 km depth and a negative VS anomaly at 120–220 km depth.
Our solution can be interpreted as a thin lithosphere (about 100 km
thick) with slightly positive velocity anomalies and a low velocity
layer that may coincide with the asthenosphere (Fig. 22b), consis-
tent with Phanerozoic geological features and with previous studies
(Yoshizawa & Kennett 2015). It should also be noted, however, that
our VS solutions are not directly comparable with 3-D models, but
rather can be regarded as a 1-D approximation of the real Earth
structure along the selected path. Fig. 18 shows that the number of
parameters required to fit the data is between four and eight and
the data noise level is clearly the lowest for the fundamental mode

filtered between 5 and 10 mHz (window 1). Overall the noise level
is much higher for the eastern Australia path than for the western
Australia path. With Fig. 20, we show that the fundamental mode
and the first four overtones can be reliably retrieved: the funda-
mental mode has high reliability at 50–150 s. The first and second
overtones have large reliability at longer periods (60–200 s, 54–
200 s). The reliable periods for third and fourth overtones are 50–83
and 50–61 s, respectively. Measurements for the modes and periods
estimated reliable are shown in Fig. 21. This figure also displays
phase velocities measured using S40RTS (Ritsema et al. 2011) as
a reference instead of the Debayle et al. (2016) model to test the
dependence of our method upon the reference model. The results
show no significant dependence on the reference model. The relia-
bility tests were not strongly affected by the reference model either
(not shown here).

The mean absolute VS model were also plotted for paths and
compared to PREM (Fig. 22a). This figure shows a clear difference
between the eastern and western paths in the top 200 km, beyond
which the two velocity profiles become more similar.

In this study we used the centroid moment tensor from the GCMT
catalogue. We acknowledge, however, that for some paths dispersion
measurements performed using waveform modelling at single sta-
tions can be affected by uncertainties in source parameters. While
quality control can be applied to filter out unreliable earthquake
sources by comparing source parameters from different earthquakes
in the same region or by comparing different source catalogues, joint
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inversions of structure and source parameters are preferable (Valen-
tine & Trampert 2012). A future implementation of our technique
will include source parameter among the unknowns in order to
account for possible errors in the source parameters.

4 C O N C LU S I O N

We applied the rj-MCMC technique to the nonlinear problem of
measuring fundamental and higher mode Rayleigh wave phase ve-
locity dispersion using waveform modelling. The use of higher
mode surface waves in depth inversions of seismic velocities and
anisotropy is very valuable as it increases the vertical resolution of
tomographic models in the upper-mantle and transition zone. The
forward problem consisted in calculating synthetic seismograms by
normal mode summation using computer program Mineos and a
linearized approximation to the calculation of normal mode eigen-
frequencies. The rj-MCMC method enabled us to find a distribution
of 1-D shear velocity models that best fit the waveform and represent
the dispersion of multiple modes along a specific source–receiver
path. An advantage of this technique is that the algorithm can decide
how much data noise is needed to fit the data without overfitting
them. The posterior noise distributions can then be used as an indi-
cator of the quality of the waveform fit within each frequency–time
window. The data noise was thus treated as an unknown and different
noise levels were applied to the different time windows considered.
The resulting distribution of velocity models was used to calculate
a posterior distribution of dispersion curves from which a mean and
standard deviation were obtained for different modes. A reliability
analysis was then performed following Yoshizawa & Kennett (2002)
to assess which higher modes were reliably separated.

With synthetic tests, we showed that the newly developed method
presented here can extract the first four overtones and the fundamen-
tal mode at most periods between 50 and 200 s, but that the third and
fourth overtones can only be measured reliably at relatively short
periods and in a narrower period band (50–100 s for n = 3 and 50–
60 s for n = 4). Measurements performed for real data along two
paths sampling western and eastern Australia showed similar re-
sults: the fundamental mode and first two overtones were measured
reliably over most frequencies considered, and the third and fourth
overtones could be extracted and their dispersion measured over a
narrower frequency band for shorter periods. We also demonstrated
that the measured phase velocities do not strongly depend on the
reference model used to calculate the initial seismogram.

While computationally intensive, the technique presented here
has several advantages. It allows the user to sample the model space
without requiring any explicit regularization other than specifying
the bounds of the model space explored. In addition, because it is
transdimensional and parsimonious, it can include data noise and the
number of parameters among the unknowns without overfitting the
data. It therefore lets the data themselves control the complexity of
the solution. The reliability of mode separation can be assessed and
quantitative uncertainties on the dispersion curves of each mode
can be readily obtained. This provides useful information on the
data to seismologists who use these measurements to model 3-D
seismic velocity and anisotropy. Our technique can also be easily
adapted to include source parameters among the unknowns and
perform joint inversions of model structure and source parameters
to account for the effect of source uncertainties on the measured
phase velocities. A future implementation of the method will also
include perturbations in Moho depth as it can have an important
effect on waveform modelling for paths that travel mostly across

continental areas. We also note that the phase velocities are not
the only products of this technique. One could also envision using
the resulting path-averaged velocity models and uncertainties and
combine them to obtain a 3-D velocity model.
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Supplementary data are available at GJI online.

Figure S1. (A) Vs posterior distribution for a synthetic test
with uncorrelated noise. Both noise levels and model dimen-
sions are variable during the inversion. The red line in panel
(B) is the true model. The grey curve is the mean of the dis-
tribution of panel (A). (C) Inverted fundamental mode (top) and
first overtone (bottom) phase velocity dispersion curves and un-
certainties (blue) compared to the dispersion curve calculated
for the true model (red). The uncertainties shown here corre-
spond to two standard deviation obtained from the posterior
distribution.
Figure S2. Vs posterior distribution (A) for the synthetic test with
uncorrelated noise and fixed depth parametrization. We fixed the
number of depth nodes to 9 and we fixed their depths at 5, 20,
80, 140, 210, 310, 430, 550 and 690 km. Only the noise level and
amplitude of dVS/VS are allowed to vary during the inversion. The
red line in panel (B) is the true model and the grey curve is the
mean of the distribution of panel (A). (C) Inverted fundamental
mode (top) and first overtone (bottom) phase velocity dispersion
curves and uncertainties (blue) compared to the dispersion curve
calculated for the true model (red). The uncertainties shown here
correspond to two standard deviation obtained from the posterior
distribution.
Figure S3. Vs posterior distribution for the synthetic test with fixed,
uncorrelated and underestimated noise and fixed depth parametriza-
tion. The transdismentionality of the algorithm was turned off and
the depths of the nodes were the same as in Fig. S2. We assumed the
fixed noise level was underestimated in the inversion by a factor of
100 compared to the synthetic input data noise level. Only the am-
plitude of dVs/Vs was allowed to vary during the inversion. The red
line in panel (B) is the true model and the grey curve is the mean of
the distribution of panel (A). (C) Inverted fundamental mode (top)
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and first overtone (bottom) phase velocity dispersion curves and
uncertainties (blue) compared to the dispersion curve calculated for
the true model (red). The uncertainties shown here correspond to
two standard deviation obtained from the posterior distribution.
Figure S4. Vs posterior distribution for the synthetic test with fixed,
uncorrelated and overestimated noise and fixed depth parametriza-
tion. The transdismentionality of the algorithm was turned off and
the depths of the nodes were the same as in Fig. S2. We assumed the
fixed noise level was overestimated in the inversion by a factor of 10
compared to the synthetic input data noise level. Only the amplitude
of dVS/VS was allowed to vary during the inversion. The red line

in panel (B) is the true model and the grey curve is the mean of
the distribution of panel (A). (C) Inverted fundamental mode (top)
and first overtone (bottom) phase velocity dispersion curves and
uncertainties (blue) compared to the dispersion curve calculated for
the true model (red). The uncertainties shown here correspond to
two standard deviation obtained from the posterior distribution.
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