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Interplay between Position-Dependent Codon Usage Bias and
Hydrogen Bonding at the 5= End of ORFeomes

Juan C. Villada,a Maria F. Duran,a Patrick K. H. Leea

aSchool of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China

ABSTRACT Codon usage bias exerts control over a wide variety of molecular pro-
cesses. The positioning of synonymous codons within coding sequences (CDSs) dic-
tates protein expression by mechanisms such as local translation efficiency, mRNA
Gibbs free energy, and protein cotranslational folding. In this work, we explore how
codon usage affects the position-dependent content of hydrogen bonding, which in
turn influences energy requirements for unwinding double-stranded DNA (dsDNA).
We categorized codons according to their hydrogen bond content and found differ-
ential effects on hydrogen bonding encoded by codon variants. The specific posi-
tional disposition of codon variants within CDSs creates a ramp of hydrogen bond-
ing at the 5= end of the ORFeome in Escherichia coli. CDSs occupying the first
position of operons are subjected to selective pressure that reduces their hydrogen
bonding compared to internal CDSs, and highly transcribed CDSs demand a lower
maximum capacity of hydrogen bonds per codon, suggesting that the energetic re-
quirement for unwinding the dsDNA in highly transcribed CDSs has evolved to be
minimized in E. coli. Subsequent analysis of over 14,000 ORFeomes showed a perva-
sive ramp of hydrogen bonding at the 5= end in Bacteria and Archaea that positively
correlates with the probability of mRNA secondary structure formation. Both the
ramp and the correlation were not found in Fungi. The position-dependent hydro-
gen bonding might be part of the mechanism that contributes to the coordination
between transcription and translation in Bacteria and Archaea. A Web-based applica-
tion to analyze the position-dependent hydrogen bonding of ORFeomes has been
developed and is publicly available (https://juanvillada.shinyapps.io/hbonds/).

IMPORTANCE Redundancy of the genetic code creates a vast space of alternatives
to encode a protein. Synonymous codons exert control over a variety of molecular
and physiological processes of cells mainly through influencing protein biosynthesis.
Recent findings have shown that synonymous codon choice affects transcription by
controlling mRNA abundance, mRNA stability, transcription termination, and tran-
script biosynthesis cost. In this work, by analyzing thousands of Bacteria, Archaea,
and Fungi genomes, we extend recent findings by showing that synonymous codon
choice, corresponding to the number of hydrogen bonds in a codon, can also have
an effect on the energetic requirements for unwinding double-stranded DNA in a
position-dependent fashion. This report offers new perspectives on the mechanism
behind the transcription-translation coordination and complements previous hypoth-
eses on the resource allocation strategies used by Bacteria and Archaea to manage
energy efficiency in gene expression.

KEYWORDS codon variants, transcription efficiency, DNA unwinding, resource
allocation, energy efficiency

Codon usage controls protein synthesis through a variety of mechanisms (1, 2). A
number of classic works have established the links between codon usage and

mRNA translation (3–5), with important insights into the physiological consequences of

Citation Villada JC, Duran MF, Lee PKH. 2020.
Interplay between position-dependent codon
usage bias and hydrogen bonding at the 5=
end of ORFeomes. mSystems 5:e00613-20.
https://doi.org/10.1128/mSystems.00613-20.

Editor Casey S. Greene, University of
Pennsylvania

Copyright © 2020 Villada et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Patrick K. H. Lee,
patrick.kh.lee@cityu.edu.hk.

Received 1 July 2020
Accepted 27 July 2020
Published

RESEARCH ARTICLE
Ecological and Evolutionary Science

crossm

July/August 2020 Volume 5 Issue 4 e00613-20 msystems.asm.org 1

11 August 2020

http://orcid.org/0000-0003-2216-4279
http://orcid.org/0000-0001-8598-0172
http://orcid.org/0000-0003-0911-5317
https://juanvillada.shinyapps.io/hbonds/
https://doi.org/10.1128/mSystems.00613-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:patrick.kh.lee@cityu.edu.hk
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.00613-20&domain=pdf&date_stamp=2020-8-11
https://msystems.asm.org


synonymous mutations (6, 7). The specific arrangement of synonymous codons in
coding sequences (CDSs) has been shown to serve as a regulatory mechanism for
translation dynamics (8) and protein cotranslational folding (9). In particular, the 5=-end
region of CDSs has strong effects on translation where synonymous codon choice is
associated with targeting efficiency of signal peptides (10), ramping of translation
efficiency (11), local folding energy (12), modulated protein expression (13), and
recognition of nascent peptides by the signal recognition particle (14).

Similarly to translation, codon usage bias has been associated with transcriptional
selection (15) and optimization of transcription efficiency (16). Recent reports support
the idea that codon variants also define the energy and cellular resources required for
transcript biosynthesis (17–20) and the speed of transcript elongation (21). However, in
contrast to translation, the potential links between position-dependent codon usage
bias at the 5= end of CDSs and transcription have yet to be thoroughly investigated as
it is difficult to disentangle the effects operating at the level of transcription from those
operating at the level of translation, where position-dependent codon usage bias is
known to have an effect (3–5).

During transcription, helicases melt the hydrogen bonds in double-stranded DNA
(dsDNA) (22–25) to expose the single-stranded DNA (ssDNA) template sequence, while
RNA polymerase produces the RNA molecule (26). Although the role of helicase can be
active or passive (27), the dsDNA unwinding process requires energy (28) and success-
ful unwinding of the dsDNA is a determinant in preventing abortive transcription and
translation initiation (29). In this work, we explore whether the previously established
position-dependent arrangement of codons can also create a position-dependent
energetic requirement to unwind dsDNA by controlling the number of hydrogen
bonds. Our central hypothesis stems from the fact that increased GC content of a gene
increases the number of hydrogen bonds in its dsDNA, thereby demanding higher
unwinding energy (30).

Here, by first analyzing the ORFeome (the set of all CDSs in a genome) of Escherichia
coli as a model and subsequently extending the investigation to a more comprehensive
set of over 14,000 ORFeomes, we provide genomic evidence that codon usage bias
creates an exponentially increasing ramp of hydrogen bonding at the 5= end of CDSs
in Bacteria and Archaea. The findings in this study are not intended to provide evidence
for stronger positional selection of codons for transcription efficiency over the well-
established theories of position-dependent codon selection in translation efficiency
(11) and mRNA secondary structure (12). Instead, our results suggest that as another
layer of a potential biological role, position-dependent codon usage bias creates a
position-dependent energetic requirement for unwinding dsDNA. This report provides
novel insights into the evolution of molecular traits and the trade-offs between the
genetic code and the physiology of organisms.

RESULTS
Effects of codon variants on hydrogen bonding and its positional dependency

at the 5= end of the E. coli ORFeome. We began our analysis by categorizing codons
according to their hydrogen bond content (Fig. 1). The number of hydrogen bonds in
a codon is directly coupled to the GC content of a codon due to the Watson-Crick base
pairing of nucleotides (31). Each codon can contain six to nine hydrogen bonds, but
most codons tend to have seven or eight (Fig. 1A). All degenerate amino acids have
choices for codons with different numbers of hydrogen bonds (Fig. 1B), and the relative
content of hydrogen bonding of a codon can be decreased by 25% according to the
synonymous codon choice (Fig. 1C). The range of choices for hydrogen bonding
becomes wider in accordance with position-dependent codon usage bias, where the
overall and local hydrogen bond composition of a CDS can be fine-tuned by introduc-
ing synonymous mutations (Fig. 1D).

All CDSs in the ORFeome of E. coli K-12 substrain MG1655 were analyzed to test
whether the number of hydrogen bonds follows a positional dependency at the 5= end.
The mean number of hydrogen bonds in each codon position was calculated. We
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observed that the number of hydrogen bonds per codon gradually increased in a
position-dependent manner until about the 15th codon position. After this codon
position, the number of hydrogen bonds converged to levels of carrying capacity that
remained similar until the 250th codon position (Fig. 1E). Subsequently, we discretized
codons into the following two groups according to their hydrogen bond content:
“cheap” codons (with six or seven hydrogen bonds) and “expensive” codons (with eight
or nine bonds). We observed that the members of the group of cheap codons are
utilized with high (�65%) frequency and that their use then decreases gradually in a
position-dependent manner until an equilibrium is reached at about the 15th codon
position (Fig. 1F). From the 15th codon position to the 100th, the frequencies of
utilization of cheap and expensive codons do not vary by more than �5%, with cheap
codons appearing much less frequently than expensive codons (Fig. 1F).

Taken together, these results show that the choice of different synonymous codons
can affect hydrogen bonding and that the E. coli ORFeome apparently uses this
flexibility in a way that smoothly increases the energetic requirement for unwinding the
dsDNA molecule in CDSs.

Lower hydrogen bonding at the first CDS of operons in E. coli. One biological
interpretation of the observed position-dependent hydrogen bonding is that it may
favor CDS transcription according to the modulated efficiency of dsDNA unwinding.
Thus, evolution might reflect differential selective forces for hydrogen bonding opti-
mization acting on the CDSs of operons with more than one CDS. Specifically, if
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hydrogen bonding has an effect on transcription, the first CDS within an operon, being
closest to the beginning of the transcriptional unit, should be better optimized for
lower hydrogen bonding than internal CDSs.

To test this hypothesis, the number of hydrogen bonds of CDSs according to the
position they occupy within an operon in E. coli was quantified (Fig. 2A). Only operons
containing two or more CDSs were analyzed, and the downstream analyses focused on
the first three CDS positions within an operon as the number of operons with more
than three CDSs is low (less than a third of the number of operons with two CDSs)
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(Fig. 2B). We observed that CDSs in the first position within an operon (i.e., CDS 1) had
a significantly lower number of hydrogen bonds (Wilcoxon test, P � 0.05) than the
internal CDSs (i.e., CDS 2 and CDS 3) in the majority of the codon positions along the
length of a CDS (Fig. 2C).

The preference for a lower number of hydrogen bonds appeared weaker down-
stream of the 20th codon position as the difference in the hydrogen bonding between
CDS 1 and subsequent CDSs became consistently and gradually less significant as
indicated by both the pairwise comparisons (Wilcoxon test) and group rank differences
according to CDS position (Kruskal-Wallis test) (Fig. 2C). In the codons in positions 81
to 100, the number of hydrogen bonds between CDS positions was not significant
(Kruskal-Wallis test, P � 0.05). The number of hydrogen bonds in CDS 2 was significantly
lower (Wilcoxon test, P � 0.0082) than that in CDS 3 primarily in codon positions 1 to
20 (Fig. 2C). However, differences in hydrogen bonding based on CDS position were
found to be preserved in comparisons of codon positions from 1 to 100 (Fig. 2D) and
over the entire length of a CDS (Fig. 2E). Together, these results suggest that the
proposed transcriptional efficiency hypothesis favors the beginning of the transcription
unit in E. coli.

Highly transcribed CDSs require a lower maximum capacity of hydrogen bonds
per codon in E. coli. An alternative approach to assess the proposed association
between position-dependent hydrogen bonding and dsDNA unwinding energy is to
study whether there are differences in hydrogen bonding between CDSs with different
expression levels. We hypothesized that if CDSs prefer codons with a lower number of
hydrogen bonds at the 5= end to optimize transcription, the position-dependent
hydrogen bonding might be differentiable according to transcript abundances. By
analyzing the transcriptome sequencing (RNA-Seq) data of E. coli generated under 16
different sets of conditions (32) as illustrated in Fig. 3A, we found that highly tran-
scribed CDSs required lower levels of hydrogen bonding (Fig. 3B) and that the level of
hydrogen bonding was generally lower in most codon positions from 1 to 100 (Fig. 3C)
than with the minimally transcribed CDSs. The differences in the levels of hydrogen
bonding increased with the level of disparity in transcript abundances between highly
and minimally expressed CDSs (Fig. 3B), suggesting that a preference for lower num-
bers of hydrogen bonds helps to optimize transcription (Fig. 3B). The position-
dependent hydrogen bonding of randomly selected CDSs indicated that most CDSs still
exhibited a ramp regardless of transcript abundance (Fig. 3B). Overall, we observed that
highly transcribed CDSs in E. coli required a lower maximum capacity of hydrogen
bonds per codon, suggesting that the energetic requirement to unwind the dsDNA is
lower for highly transcribed CDSs than for minimally transcribed CDSs (Fig. 3).

Distinguishing position-dependent hydrogen bonding from translation-
related and mRNA secondary structure-based phenomena in E. coli and Saccha-
romyces cerevisiae. In order to support the hypothesis of the transcriptional relevance
of position-dependent hydrogen bonding and to distinguish it from the already known
translation-related and mRNA secondary structure-based hypotheses, we assessed the
potential relationships between the position-dependent hydrogen bonding and the
metrics traditionally used in codon usage bias studies for E. coli and S. cerevisiae (to gain
insights into potential differences between Bacteria and Archaea and eukaryotes). The
metrics computed as a function of the codon position were (i) the frequency of
preferred codons (determined using relative synonymous codon usage [RSCU] data), (ii)
mRNA secondary structure folding (using the probability of base pairing), (iii) codon
optimality (using the codon adaptation index [CAI]), (iv) translation efficiency (using the
tRNA adaptation index [tAI]), and (v) hydrogen bonding.

We observed a ramp in all the codon usage metrics, mRNA folding, and hydrogen
bonding as a function of codon position in E. coli (Fig. 4A). In contrast, the results
obtained for S. cerevisiae showed that hydrogen bonding and mRNA secondary struc-
ture formation appeared unrelated (Fig. 4A). In order to understand the potential
associations among all the computed metrics, a correlation network analysis was
conducted (Fig. 4B). We found that hydrogen bonding significantly (adjusted P � 0.01)
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and strongly (Spearman’s � � 0.51) correlated with the mRNA secondary structure in E.
coli but not in S. cerevisiae (Spearman’s � � 0.28) (Fig. 4C). Consistently, the ramps
found in mRNA secondary structure and hydrogen bonding were found to be strongly
related in the first 15 to 20 codons only in E. coli (Fig. 4D). Overall, the observed
correlation suggests that selection acts to maintain tightly associated ramps in mRNA
secondary structure and hydrogen boding only in E. coli (Fig. 4).

In order to assess whether these observations could be extended to other micro-
organisms, we deployed the same analyses on a set of model Bacteria, Archaea, and
Fungi (see Fig. S1 in the supplemental material). Although the conclusions remained
largely the same for the other ORFeomes, there were some differences. For example,
similarly to the results seen with E. coli, a ramp was also observed in all the codon usage
metrics and hydrogen bonding as a function of codon position in the archaeon
Haloferax volcanii, but this was not the case for the other model ORFeomes analyzed
(Fig. S1A). Although the bacterium “Candidatus Methylacidiphilum kamchatkense” and
the archaeon Methanosarcina acetivorans did not show a clear positional dependency
on the frequency of preferred codons (RSCU), codon optimality (CAI), and translation
efficiency (tAI), mRNA folding and hydrogen bonding showed a ramp (Fig. S1A),
indicating that the hydrogen bonding phenomenon is distinguishable from the other
codon usage-related phenomena in these organisms. In general, position-dependent
hydrogen bonding was found to be tightly related to the mRNA secondary structure
formation in the model Bacteria and Archaea but not in the model eukaryotes (Fig. S1B
to D).

Modeling the hydrogen bonding ramp in E. coli. After investigating the biological
relevance of the ramp of hydrogen bonding as a function of transcriptional unit (Fig. 2)
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and gene expression (Fig. 3) as well as identifying its association with the mRNA
secondary structure formation as a potential genomic signal of the coupling between
transcription and translation in Bacteria and Archaea (Fig. 4), we then sought to model
and characterize the ramp in E. coli. We tested three mathematical functions to model
the mean number of hydrogen bonds per codon as a function of codon position.
According to Akaike information criterion (AIC) and Bayesian information criterion (BIC)
data, the bounded exponential model with three parameters (initial content, rate, and
carrying capacity) produced the best fit (Fig. 5A). The fitness of the model showed that
the number of hydrogen bonds per codon follows an exponential function of codon
position with a positive rate that has a ramp-like shape at the 5= end of CDSs.

Testing the selection for reduced hydrogen bonding at the 5= end in E. coli.
After determining that the ramp of hydrogen bonding can be better fitted by an
exponential model, we further tested whether selection acts, through position-
dependent codon usage bias, against uniform distribution of hydrogen bonds per
codon along CDSs in E. coli. To test this hypothesis, we applied codon shuffling
techniques (33, 34) to generate 200 simulated ORFeomes of E. coli that contained
random synonymous mutations. The codon-shuffled ORFeomes were used as a null
model to test selection against uniformity using the �2 statistic (33, 34).

The z2 value (from the �2 statistic) per codon position showed that selection acted
against uniform distribution of the number of hydrogen bonds and that selection was
noticeably stronger at the 5= end of the E. coli ORFeome (Fig. 5B). Finally, we investi-
gated the direction of selection acting on the 5= end of the E. coli ORFeome. To assess
the selection direction, we computed the value for the �-gram and found that selection
acted to reduce the number of hydrogen bonds at the 5= end of CDSs in the E. coli
ORFeome in a position-dependent manner (Fig. 5C).

Position-dependent hydrogen bonding consistently correlates with mRNA
structure folding in Bacteria and Archaea but not Fungi. As local reduction of base
pairing probability in mRNA facilitates translation initiation (35), this matched the
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observed region of reduced hydrogen bonding in the selected model Bacteria and
Archaea (Fig. 4; see also Fig. S1). Next, we tested whether the observed correlations
between hydrogen bonding in CDSs and formation of the mRNA secondary structure
could be a genomic signal in diverse genera of Bacteria and Archaea, but not eu-
karyotes, as part of the molecular mechanism that optimizes the coordination between
transcription and translation (36). The expectation is that for genes of organisms whose
transcription and translation are coupled in space and time (i.e., Bacteria and Archaea),
the significant and strong positive correlation between the position-dependent mRNA
secondary structure formation and hydrogen bonding should be found to be univer-
sally conserved. In contrast, the correlation in eukaryotes should be insignificant or
weaker.

To investigate this issue, the position-dependent probabilities of pairing of mRNA
and position-dependent hydrogen bonding of �1,700 ORFeomes in the representative
data set were computed. We discretized the correlation analysis by different regions of
codon position (Fig. 6A) and found that the positive and strong correlation was
conserved in Bacteria and Archaea regardless of the codon position region (Fig. 6B).
However, despite an increase in the Pearson’s (Fig. 6B) and Spearman’s (Fig. S2A)
median correlation values in Fungi as the codon position region was shortened, the
correlation values were found to be �0.5 in the best-case scenario and much lower
than those seen in Bacteria and Archaea. Overall, the correlation between the position-
dependent probability of pairing of mRNA and position-dependent hydrogen bonding
in Bacteria and Archaea is significantly stronger than that seen with eukaryotes (Fig. 6C;
see also Fig. S2B). While these two metrics are expected to correlate positively with one
another, the consistently strong associations observed for Bacteria and Archaea provide
new insights into the evolutionary coupling of transcription and translation through the
position-dependent optimization of hydrogen bonding and mRNA pairing probability.
Accordingly, we further investigated whether evolution preserves position-dependent
hydrogen bonding in Bacteria and Archaea. The results of the test for selection against
uniform distribution of hydrogen bonds per codon along CDSs on every ORFeome in
the representative data set indicated that both the strength of the selection (Fig. 6D;
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see also Fig. S3A) and the direction of the selection (Fig. 6E; see also Fig. S3B) are
conserved in Bacteria and Archaea.

Finally, we studied if the distribution of correlations between the position-
dependent pairing probability of mRNA and position-dependent hydrogen bonding is
associated with specific taxonomic classes and whether these classes show similar
patterns of genomic GC and GC3 content and mutational bias (i.e., GC3/GC) (Fig. S2C).
As an outlier with respect to the correlation, the members of the bacterial class
Mollicutes were found to contain a set of ORFeomes for which the correlation was
weakly positive (Fig. S2C). Mollicutes also showed the lowest genomic GC and GC3

content in the set of bacterial and archaeal ORFeomes analyzed (Fig. S2C). All other
Bacteria and Archaea classes showed equally strong correlations but variable genomic
GC and GC3 content and mutational biases (Fig. S2C). Interestingly, the three fungal
groups showing the highest median of the correlation distribution corresponded to the
three classes with the lowest genomic GC and GC3 content and a mutational bias value
of �1.0 (Fig. S2C). The Fungi classes Malasseziomycetes and Tremellomycetes showed
the strongest correlations between the position-dependent pairing probability of
mRNA and position-dependent hydrogen bonding, but these correlations were nega-
tive, and no associations were found with the GC and GC3 content and mutational bias
(Fig. S2C). Overall, the results from this representative data set showed that position-
dependent hydrogen bonding consistently correlates with mRNA structure folding in
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Bacteria and Archaea but not eukaryotes and that selection against uniform distribution
of codons within CDSs acts on these bacterial and archaeal ORFeomes to reduce the
number of hydrogen bonds in the first codons of CDSs.

Modeling the hydrogen bonding ramp in ORFeomes of Bacteria, Archaea, and
Fungi. After we had successfully modeled the hydrogen bonding ramp in E. coli
(Fig. 5A) and identified its association with the mRNA secondary structure formation as
a potential genomic signal of the coupling between transcription and translation in
Bacteria and Archaea but not in eukaryotes (Fig. 6A to C), we further investigated
whether the bounded exponential ramp model can be universally fitted to diverse
ORFeomes. To explore this issue, we compiled a comprehensive data set with �14,500
ORFeomes that included Bacteria, Archaea, and Fungi from diverse phyla (Fig. 7A). The
data set comprised ORFeomes with various numbers of CDSs (Fig. S4A), total lengths
(Fig. S4B), mean CDS lengths (Fig. S4C), diverse GC3/GC ratios (Fig. S4D), and different
mutational biases per phylum (Fig. S4E). We analyzed the position-dependent number
of hydrogen bonds per codon of each ORFeome and found that in most Bacteria and
Archaea (94% of Bacteria and 86% of Archaea), the number of hydrogen bonds per
codon position could be successfully fitted by the bounded exponential model whereas
the fit of this model was unsuccessful in most Fungi (85%) (Fig. 7B). Instead, the linear
model produced a better fit for most of the fungal ORFeomes (Fig. S5A) and the subset
of ORFeomes successfully fitted by the bounded exponential model was not mono-
phyletic (Fig. S5B). We further investigated differences between the groups that suc-
cessfully and unsuccessfully fitted the bounded exponential model, and only two
significant different features were observed (Fig. S6). First, the total ORFeome lengths
tended to differ between the two modeled groups in Bacteria and Fungi (Fig. S6A,
P � 0.001); second, the mean lengths of CDS per genome were significantly different in
Bacteria (Fig. S6B, P � 0.001). No differences were found for GC3/GC ratios (Fig. S6C).
Scrutinized by phylum, only Aquificae and Nitrospirae showed major differences in
genomic GC content (Fig. S6D) and mutational bias (Fig. S6E) between the two
modeled groups (caused by outlier ORFeomes). For the outliers ORFeomes that could
not be successfully modeled by the bounded exponential model, it was found that they
had a relatively higher GC content and a higher GC3/GC ratio.

Once we established that the bounded exponential model could be fitted to most
Bacteria and Archaea, we evaluated the statistical significance of the modeling by
estimating the P value for the rate parameter (a strong indicator of the ramp) in each
successful fitted model (Fig. S7A). We found that most of the rate parameter estimates
for Bacteria (99.5%) and Archaea (91%) were significant (P � 0.001), while only eight
were significant in the small subset of ORFeomes that were successfully modeled in
Fungi (43 ORFeomes) (Fig. S7A). We further assessed whether the statistical significance
of the rate parameter correlated with other molecular features (Fig. S7B). We found that
the strongest correlation in Bacteria and Archaea was with the total length of the
ORFeome and the number of CDSs per ORFeome (Pearson correlation coefficient,
Fig. S7B). By linear regression modeling, we observed that �30% of the variation in the
statistical significance of the rate parameter can be explained by the variation in the
number of CDSs in the ORFeomes of Bacteria and Archaea (R2 � 0.35 with P � 0.001 in
Bacteria and R2 � 0.28 with P � 0.001 in Archaea, Fig. S7C).

Characteristics of the ramp of the number of hydrogen bonds in Bacteria,
Archaea, and Fungi. Further characterization of the bounded exponential ramp model
parameters (Fig. 7C) showed that significant differences (� � 0.1% was adopted for the
analysis due to the large sample size) were not observed in the estimated parameter of
carrying capacity of hydrogen bonds between Bacteria, Archaea, and Fungi (Fig. 7D,
adjusted P � 0.001). On the other hand, the estimated parameters of initial number of
hydrogen bonds (Fig. 7E) and rate (Fig. 7F) were significantly different between all
groups (adjusted P � 0.001). We observed that the initial number of hydrogen bonds
was lowest in Bacteria (Fig. 7E), which is consistent with the rate of increase in the
number of hydrogen bonds per codon being the highest in Bacteria (Fig. 7F) to reach
carrying capacities that were not significantly different between all groups after the
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ramp (Fig. 7D). Hence, by linear regression modeling between the estimated parame-
ters for initial content and carrying capacity, one can approximate the rapidity of the
change in the average number of hydrogen bonds per codon given that the carrying
capacity becomes steady at about the 20th codon position (Fig. 7G).

We further assessed the phylogenetic relatedness of the ramp rate (the indicator for
the existence of the ramp of hydrogen bonding) for the ORFeomes in the representa-
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FIG 7 Characteristics of the hydrogen bonding ramp in ORFeomes of the comprehensive data set (A to G) and phylogenomics of the ramp rate in the
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tive data set. A whole-genome phylogenetic tree was constructed, and the ramp rate
was mapped to each branch (Fig. 7H). We observed that most of the phyla had similar
median ramp rates (Fig. 7I), with Actinobacteria, Proteobacteria, Verrumicrobia, and
Bacteroidetes showing the highest ramp rates among the bacterial phyla (Fig. 7I) and
the phylum Thaumarchaeota having the highest ramp rates among the archaeal phyla
(with a median value greater than that seen with some of the bacterial phyla) (Fig. 7I).
Interestingly, the fungal phylum Microsporidia showed positive ramp rates and the
median value was greater than that seen with some of the bacterial and archaeal phyla
(Fig. 7I).

A Web-based application to analyze position-dependent hydrogen bonding. In
order to facilitate the analysis of position-dependent hydrogen bonding of novel and
custom ORFeomes, a Web-based graphical user interface (GUI) application was devel-
oped using the R package shiny (37). The application incorporates all the methods
developed and implemented in this work. In a simple GUI (Fig. S8), the application
allows interactive investigation of novel and customized ORFeomes, download of raw
analysis and modeling data, and generation of high-quality figures. The application also
reports summary statistics associated with modeling of hydrogen bonding per codon
position by the bounded exponential model. For cases that cannot be successfully
modeled, the application provides outputs that graphically represent the observed
number of hydrogen bonds per codon position and a summary report of the analysis.
The application is publicly available at https://juanvillada.shinyapps.io/hbonds/.

DISCUSSION

By first analyzing the ORFeome of E. coli as a model and subsequently over 14,000
bacterial, archaeal, and fungal ORFeomes, we found evidence for an exponential ramp
of hydrogen bonding at the 5= end of CDSs in Bacteria and Archaea that is created by
a position-dependent codon usage bias. With the methods used in this investigation,
a similar ramp in fungal ORFeomes was not identified. From a resource allocation
perspective, a ramp of hydrogen bonding found in Bacteria and Archaea may provide
an energy-efficient mechanism in which the energy required to melt hydrogen bonds
(38–40) and unwind dsDNA is gradually increased. It has been reported previously that
AU-rich codons are selected for at the beginning of CDSs in E. coli and other organisms
(35) and that genomic GC content shows positional dependency in diverse organisms
(41), which would in turn reduce the local hydrogen bonding at the 5= end of CDSs. In
contrast to previous studies where analyses were limited to characterizing only the first
15 to 20 codon positions (35) or a smaller set of ORFeomes (41), we analyzed a longer
region of the 5= end of CDSs (100 or 250 codon positions) and a data set with thousands
of ORFeomes that included all three domains of life. Hence, we managed to identify
parameters that mathematically describe the formation of the hydrogen bonding ramp
and the extent of its conservation in microbial ORFeomes.

We have provided evidence indicating that the CDSs occupying the first position of
operons in E. coli have lower levels of hydrogen bonding than internal CDSs and that
this preference is the most obvious in the first �20 codons of the first CDS in an operon,
suggesting that transcriptional efficiency might be favored at the beginning of the
transcription unit (Fig. 2). By coupling hydrogen bonding and transcriptomics data of
E. coli, we further showed that highly transcribed CDSs demand a lower maximum
capacity of hydrogen bonds per codon, suggesting that the energetic requirement to
unwind the dsDNA in highly transcribed CDSs has evolved to be minimized (Fig. 3). By
contrasting position-dependent hydrogen bonding with codon usage metrics, we also
showed selection acts to maintain tightly associated ramps in mRNA secondary struc-
ture and hydrogen boding in E. coli (Fig. 4) as well as generally in Bacteria and Archaea
but not Fungi (Fig. 6). A parsimonious explanation for the existence of a ramp of
hydrogen bonding in Bacteria and Archaea, but not Fungi, is that it is a molecular and
evolutionary mechanism that optimizes the coupling of transcription and translation.
Transcription and translation in Bacteria and Archaea are coupled in space and time
(42), so the two processes influence each other. One such example can be found in the
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tight coordination maintained between transcription and translation in order to avoid
premature termination of transcription (36). Therefore, it is reasonable to hypothesize
that evolutionary traits may have been developed in order to optimally couple the
transcription of protein-coding genes and the translation initiation of mRNA in Bacteria
and Archaea. The ramp of hydrogen bonding might be one such trait that optimizes the
efficiency of the coupling between transcription and translation (i.e., cotranscriptional
translation efficiency) in Bacteria and Archaea. With a high level of cotranscriptional
translation efficiency, dsDNA unwinding energy (i.e., hydrogen bonding) should be
lower at the 5= end of CDSs than at regions downstream of the start codon. Subse-
quently, efficient initial elongation of transcription occurs, and the nascent mRNA
molecules effectively couple to the translation machinery such that translation elon-
gation begins effectively. In turn, translation also follows a ramp of efficiency in which
ribosomes are effectively recruited due to the relatively lower mRNA secondary struc-
ture, and initial elongation begins relatively slowly according to the enrichment of
nonoptimal and rare codons at the 5= end of CDSs (11, 43, 44).

In the proposed mechanism of cotranscriptional translation efficiency, although
both transcription and translation seem to be mediated by an initial ramp, the ramps
exhibit opposite efficiency. While a ramp of translation efficiency has been shown to
start with a higher occurrence of nonoptimally translated codons at the 5= end as a
mechanism to possibly reduce traffic jams of ribosome downstream in translation
elongation (5, 11, 45, 46), the ramp of hydrogen bonding found here at the same region
starts with codons that reduce the energy required for unwinding dsDNA. Thus, the
ramps of transcription and translation efficiency appear opposite but complementary in
Bacteria and Archaea. This complementarity of speed can further reduce conflicts
between the transcription and translation machineries (47).

From an evolutionary perspective, it will be interesting to further explore whether
transcription or translation exerts a stronger selective pressure on local codon usage
bias at the 5= end of ORFeomes as the genomic evidence presented here do not allow
distinguishing which mechanism drives selection. Nevertheless, the results presented
here support the notion that the energy requirements for unwinding dsDNA of a CDS
could be modulated by controlling the usage of synonymous codons to tune the
number of hydrogen bonds. Although we found that the mean rate of increase of the
number of hydrogen bonds per codon of Bacteria and Archaea is clearly higher than
that of eukaryotes, some eukaryotes still showed a nonnegligible rate. We hypothesize
that this may represent a signal of a remnant ramp that was lost in eukaryotes with the
evolutionary emergence of packaged genomic DNA in the nucleus and further decou-
pling of transcription and translation. There is evidence in the literature showing that
some nuclear sites can still support coupled transcription and translation in eukaryotes
(48).

Most lines of evidence in this study resulted from focusing on the model organism
E. coli. In the future, computational and experimental work should further investigate
position-dependent hydrogen bonding in diverse genera in the tree of life. Future
investigations should also consider integrating transcript and protein abundance data
to investigate the role of position-dependent hydrogen bonding in the overall mech-
anism of protein biosynthesis.

Overall, we report the existence of a ramp of the number of hydrogen bonds that
follows a bounded exponential function at the 5= end of CDSs in Bacteria and Archaea.
Optimization of cotranscriptional translation efficiency by reducing local hydrogen
bonding can be another selective force driving the occurrence of AU-rich codons at the
5= end of CDSs (35). The present work does not debunk any of the established
translation-related and mRNA secondary structure-based theories of position-
dependent codon usage bias (11, 12, 35). Instead, the ramp of hydrogen bonding
encoded by a genomic signal adds another layer to the complexity of codon biology.
The proposed mechanism for cotranscriptional translation efficiency might be another
factor in the multiobjective optimization of gene expression, but more evidence is
required. The genomic evidence compiled here suggests that effective coupling of
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transcription and translation at the 5= end of CDSs of Bacteria and Archaea might be
achieved by natural evolution via increasing the rate of occurrence of synonymous
codons that also reduce hydrogen bonding, complementing the subtle effects of
codons on the molecular biology of cells (2, 6, 13, 33, 45).

MATERIALS AND METHODS
ORFeomes, quality control of CDSs, and genomic analyses. The ORFeome of Escherichia coli K-12

substrain MG1655 (4,141 CDSs) was used as the main showcase example. Other model ORFeomes
investigated were those of the well-studied Bacteria “Candidatus Methylacidiphilum kamchatkense”
Kam1 (2,196 CDSs), the Archaea Methanosarcina acetivorans (4,540 CDSs) and Haloferax volcanii (4,027
CDSs), the yeast Saccharomyces cerevisiae (6,705 CDSs) and Schizosaccharomyces pombe (5,147 CDSs), and
the filamentous Fungi Neurospora crassa (11,653 CDSs) and Aspergillus nidulans (10,535 CDSs). The
ORFeomes were retrieved from the EnsemblBacteria (bacteria.ensembl.org) and EnsemblFungi (fungi.en-
sembl.org) databases.

A comprehensive data set of ORFeomes (ntotal � 14,511), including 13,921 Bacteria, 297 Archaea, and
293 Fungi, were retrieved from the NCBI/RefSeq (49). The commands used to compile the ORFeomes
were “Latest RefSeq” and “Exclude anomalous.” A smaller data set of representative ORFeomes (nto-

tal � 1,766) was compiled that included all the Bacteria (n � 1,176) from a previously curated list that has
even representation across phyla (18) and all the Archaea (n � 297) and Fungi (n � 293) ORFeomes in the
comprehensive data set.

For all ORFeomes analyzed in this work, CDSs with lengths not divisible by 3 and shorter than the
number of codons analyzed (100 or 250) were removed from the data set. The start codon was removed
from the data set before conducting any downstream analyses. The length, GC content of each CDS, and
GC content of each nucleotide position within a codon (GC1, GC2, and GC3) were calculated with SeqinR
(50). Taxonomic affiliation of all downloaded ORFeomes was mapped using the XML file with the
accession numbers of the ORFeomes and the table of lineages of all genomes deposited in NCBI. The
table of lineages was generated using NCBItax2lin (https://github.com/zyxue/ncbitax2lin) with
the NCBI taxonomy database (accessed February 2019). Information regarding the complete and
representative ORFeome data sets can be found in Table S1 and Table S2 in the supplemental material,
respectively.

Position-dependent number of hydrogen bonds. DNA sequences were analyzed using the R
packages Biostrings (51) and SeqinR (50). Nucleotides in each coding sequence were arranged in
a matrix with dimensions equal to the number of CDSs as the number of rows and with the number of
codons analyzed as the number of columns. After quality control, all the CDSs in an ORFeome were left
aligned from the 5= end. The number of hydrogen bonds was computed and stored in a matrix according
to the nucleotide base composition of CDSs (adenine [A] � thymine [T] � 2; guanine [G] � cytosine
[C] � 3). The number of hydrogen bonds at each codon position in an ORFeome was computed by
calculating the mean and the 95% confidence interval of the mean with nonparametric bootstrapping
(1,000 bootstraps) using the Hmisc (52) package in R. Matrix analysis and bootstrapping of thousands
of ORFeomes were possible due to parallelization of the computational processes in multiple computer
cores using the R packages foreach (53), doParallel (54), and doSNOW (55).

The relative number of hydrogen bonds was calculated as the observed content divided by the
maximum number of hydrogen bond per amino acid. The scaled number of hydrogen bonds was
calculated by centering and scaling the hydrogen bond contents of codons per amino acid using the
scale function in R.

Analysis of hydrogen bonding in operons. Operons of E. coli K-12 substrain MG1655 were
delineated using the Operon-mapper Web server (56). The DNA_topLevel genomic sequence FASTA
and the GFF files from EnsemblBacteria (bacteria.ensembl.org) were used as input. The number of
codons to analyze per CDS was set to 100, and the minimum number of CDSs per operon was set to 2.
All CDSs in the ORFeome were categorized according to their position within the operons, and all CDSs
located at the same operon position were aligned by the start codon. The number of hydrogen bonds
in CDSs of operons was quantified (i) in separate regions of 20 codons up to the 100th codon position,
(ii) from codon position 1 to position 100, and (iii) over the entire length of CDSs.

Quantification of hydrogen bonding in highly and minimally expressed CDSs. Transcriptomic
data (48 independent sets) generated from 16 different RNA-Seq experiments using E. coli K-12 substrain
MG1655 in triplicate (32) were downloaded from the Gene Expression Omnibus (accession no.
GSE45443). The transcript abundance estimates (in reads per kilobase per million [RPKM]), calculated
using Rockhopper software, were retrieved from the reference (32) and then mapped to the E. coli K-12
substrain MG1655 genomic sequences obtained from GenBank (accession no. U00096.3). CDSs in each
of the 16 experiments were ranked according to their transcript abundances, and the CDSs that appeared
in all 16 experiments at above or below the desired expression level threshold were grouped using the
Reduce function in R for downstream quantification of hydrogen bonding. Six corresponding pairs
corresponding to high expression threshold levels (i.e., top 5%, 10%, 15%, 20%, 25%, and 30%) and low
expression threshold levels (i.e., bottom 13%, 18%, 23%, 26%, 30%, and 35%) were examined. The
expression thresholds of the minimally expressed CDSs were set at levels that allowed similar numbers
of CDSs to be compared against the corresponding highly expressed CDSs. The start codon was removed
from all CDSs before quantification of the number of hydrogen bonds up to the 100th codon position.
The mean number of hydrogen bonds per codon position of all CDS in each group was fitted with the
locally estimated scatterplot smoothing (LOESS) nonparametric regression model.
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Position-dependent occurrence of frequent codons and optimal codons. The position-
dependent occurrences of frequent codons and of rare codons were computed with relative synony-
mous codon usage (RSCU) values (57), and the frequencies of optimal codons were computed with
codon adaptation index (CAI) values (57). RSCU and CAI values were calculated as described previously
(33) except that the geometric mean was not computed for each CDS. Instead, each codon was assigned
a value according to the table of codon usage calculated with the function uco in SeqinR (50). By
default, codons containing an undetermined nucleotide (N) were assigned the value “1” (no bias). RSCU
and CAI values corresponding to every codon position of an ORFeome were calculated as the mean and
the 95% confidence interval of the mean with nonparametric bootstrapping (1,000 bootstraps).

Position-dependent translation efficiency. Position-dependent translation efficiency was esti-
mated with tRNA adaptation index (tAI) values (58). Position-dependent tAI values were calculated using
the s vector as sprokaryote � (0, 0, 0, 0, 0.41, 0.28, 0.9999, 0.68, 0.89) for Bacteria and Archaea and
seukaryote � (0, 0, 0, 0, 0.41, 0.28, 0.9999, 0.68, 0.89) for Fungi as suggested previously (59). CodonR, the
original algorithm used to compute tAI values (github.com/mariodosreis/tai), was customized in R to
retrieve the value of every codon in a position-dependent manner. tRNA data sets for model organisms
were obtained from the genomic tRNA database (GtRNAdb) (v2.0) (60) and the tRNA gene database
curated by experts (tRNADB-CE) (v12.0) (61). The matrix of codon usage to compute tAI was obtained
with CodonM (github.com/mariodosreis/tai/blob/master/misc/codonM). The parameter sking in the
get_ws function was set to a value of 0 for eukaryotes and a value of 1 for Bacteria and Archaea. The
tAI value in every codon position of an ORFeome was calculated as the mean and the 95% confidence
interval of the mean with nonparametric bootstrapping (1,000 bootstraps).

Position-dependent mRNA secondary structure. The mRNA secondary structure was predicted by
calculating the probability of a base being unpaired in the mRNA molecule using the program
RNAplfold (v2.4.14) from the ViennaRNA package 2.0 (62) with the parameters L � 40, W � 40, and
u � 40. Data representing secondary structure probabilities were parsed to R objects using a previously
described method (63). The mean probability of each base being unpaired was calculated as the mean
of all probabilities of a base being unpaired in any position, and the probability of a codon being
unpaired was calculated as the mean of its number of bases. The probability of a codon forming a
secondary structure in the mRNA molecule was calculated as the difference between 1 and its probability
of being unpaired. The probability of a codon forming a secondary structure in every codon position of
an ORFeome was calculated as the mean and the 95% confidence interval of the mean with nonpara-
metric bootstrapping (1,000 bootstraps).

Model fitting. The uniform model [y�x� � A], linear model [y�x� � Bx � C], and bounded exponential
model (equation 1) were used to model the mean number of hydrogen bonds per codon as a function
of codon position (starting from the 2nd codon position).

y�x� �
ACeBx

A � C�eBx � 1� (1)

In the models, y is the mean number of hydrogen bonds and x is the codon position; A is the carrying
capacity of hydrogen bonds, defined as the maximum average number of hydrogen bonds that a
particular codon position can contain in an ORFeome; B is the rate of hydrogen bonds per codon, defined
as the change in the number of hydrogen bonds per codon; and C is the initial content, defined as the
number of hydrogen bonds at the first codon after the start codon.

The models were fitted to hydrogen bonding data concerning the first 100 codon positions as the
independent variable and the mean number of hydrogen bonds as the dependent variable. Self-Starting
Nls Logistic Model was used to estimate the initial parameters, and weighted least-squares for a
nonlinear model was used to estimate the final parameters (both were computed in R). As described
previously (34), the Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used
to select the model that best fitted a data set. In cases in which the exponential model could not be
successfully fitted but parameters were needed for downstream analyses, the initial content and carrying
capacity parameters were calculated, respectively, as the minimal number of hydrogen bonds among all
codon positions per ORFeome and the trimmed mean number of hydrogen bonds among all codon
positions calculated after filtering out 20% of the codons (10 codons from each end).

Phylogenomic analysis. The translated CDSs of the representative data set of ORFeomes were used
to construct a phylogenetic tree using the large-scale phylogenetic profiling of genomes method in
PhyloPhlAn2 (bitbucket.org/nsegata/phylophlan/wiki/phylophlan2). The supermatrix_aa config file
was used as input to build the tree with the parameters diversity�high and database�phylophlan. The
ramp rates estimated from the exponential bounded model were mapped to each branch of the tree
using ggtree (64) to integrate the phylogeny and hydrogen bonding parameters.

Building the position-dependent null models of ORFeomes with shuffled codons. The null
model to test selection against uniform distribution of codons was built by shuffling synonymous codons
within all CDSs in each ORFeome. A total of 200 simulated ORFeomes were built for each of the 1,496
ORFeomes (only Bacteria and Archaea) in the representative data set from which we obtained the metrics
of expected and standard deviation of the number of hydrogen bonds per codon position as described
in detail elsewhere (33). Having the observed and expected occurrence of the number of hydrogen
bonds per codon, we then computed the z2 of the �2 statistic as shown in equation 2:

�2 ��
i�1

n �O � E�2

�2 ��
i�1

n

z2 (2)

where O is the observed count of the number of hydrogen bonds per codon position, E is the expected count
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of the number of hydrogen bonds per codon position computed from the 200 simulated ORFeomes, � is the
standard deviation of the number of hydrogen bonds per codon position computed from the 200 simulated
ORFeomes, n is the number of codon positions, and z is the z score per codon position.

The hanging chi-gram (�-gram) value per position is calculated as shown in equation 3. The
parameters in equation 3 are as defined in equation 2.

�gram �
O � E

�E
(3)

Statistics, data analysis, and data visualization. Data analysis was conducted in R (v3.6.0) using
RStudio (v1.2.1335). The R package tidyverse (65) was used for data analytics, ggplot2 (66) for
data visualization, and cowplot (67) for assembling multiple figure panels. Unless otherwise specified,
differences between sample groups were tested using two-sided, nonpaired Wilcoxon rank sum test
(Mann-Whitney test). The Kruskal-Wallis test was applied in the operon analysis to test the statistical
significance of the differences in the number of hydrogen bonds between CDSs of each region.
Correction of P values in multiple testing was done with the Benjamini and Yekutieli method (68).
Pearson’s product-moment coefficient was used for linear correlation analyses, and Spearman’s � statistic
was used to estimate a rank-based measure of association. Spearman’s � was also used in the correlation
network analyses. A generalized additive model (GAM) was used to describe the position-dependent
hydrogen bonding as a function of the probability of mRNA secondary structure formation. Scaled
�-gram values were calculated by centering and scaling each ORFeome. Normalized z2 values were
computed using the min-max normalization function for each ORFeome (equation 4) as follows:

y�x� �
x � minx

maxx � minx
(4)

where x is the �-gram value (equation 3), minx is the minimum �-gram value of an ORFeome, and maxx

is the maximum �-gram value of an ORFeome.
Code and data availability. The scripts required to reproduce all the results and figures can be

obtained from https://github.com/PLeeLab/H_bonds_ramp. We developed a Web application (https://
juanvillada.shinyapps.io/hbonds/) for users to analyze the position-dependent content of hydrogen
bonding of ORFeomes.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 2 MB.
FIG S2, PDF file, 1.6 MB.
FIG S3, PDF file, 1.8 MB.
FIG S4, PDF file, 0.3 MB.
FIG S5, PDF file, 0.2 MB.
FIG S6, PDF file, 0.3 MB.
FIG S7, PDF file, 0.3 MB.
FIG S8, PDF file, 0.5 MB.
TABLE S1, TXT file, 9 MB.
TABLE S2, CSV file, 0.05 MB.

ACKNOWLEDGMENTS
This research was supported by the Research Grants Council of Hong Kong through

project 11206514 and the City University of Hong Kong through project 9678175. J.C.V.
acknowledges support provided by the Hong Kong PhD Fellowship Scheme (HKPFS).

J.C.V., M.F.D., and P.K.H.L. conceived the study. J.C.V. developed scripts for data
analysis. J.C.V., M.F.D., and P.K.H.L. performed data analysis and contributed to the
interpretation of findings. J.C.V. and P.K.H.L. wrote the manuscript. All of us approved
the final version of the manuscript.

We declare that we have no competing interests.

REFERENCES
1. Chaney JL, Clark PL. 2015. Roles for synonymous codon usage in protein

biogenesis. Annu Rev Biophys 44:143–166. https://doi.org/10.1146/
annurev-biophys-060414-034333.

2. Hanson G, Coller J. 2018. Codon optimality, bias and usage in translation
and mRNA decay. Nat Rev Mol Cell Biol 19:20 –30. https://doi.org/10
.1038/nrm.2017.91.

3. Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P,
Millican A, Eaton M, Humphreys G. 1984. Codon usage can affect effi-

ciency of translation of genes in Escherichia coli. Nucleic Acids Res
12:6663– 6671. https://doi.org/10.1093/nar/12.17.6663.

4. Rocha EP. 2004. Codon usage bias from tRNA’s point of view: redun-
dancy, specialization, and efficient decoding for translation optimization.
Genome Res 14:2279 –2286. https://doi.org/10.1101/gr.2896904.

5. Novoa EM, de Pouplana LR. 2012. Speeding with control: codon usage,
tRNAs, and ribosomes. Trends Genet 28:574 –581. https://doi.org/10
.1016/j.tig.2012.07.006.

Villada et al.

July/August 2020 Volume 5 Issue 4 e00613-20 msystems.asm.org 16

https://github.com/PLeeLab/H_bonds_ramp
https://juanvillada.shinyapps.io/hbonds/
https://juanvillada.shinyapps.io/hbonds/
https://doi.org/10.1146/annurev-biophys-060414-034333
https://doi.org/10.1146/annurev-biophys-060414-034333
https://doi.org/10.1038/nrm.2017.91
https://doi.org/10.1038/nrm.2017.91
https://doi.org/10.1093/nar/12.17.6663
https://doi.org/10.1101/gr.2896904
https://doi.org/10.1016/j.tig.2012.07.006
https://doi.org/10.1016/j.tig.2012.07.006
https://msystems.asm.org


6. Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and
consequences of codon bias. Nat Rev Genet 12:32– 42. https://doi.org/
10.1038/nrg2899.

7. Sauna ZE, Kimchi-Sarfaty C. 2011. Understanding the contribution of
synonymous mutations to human disease. Nat Rev Genet 12:683– 691.
https://doi.org/10.1038/nrg3051.

8. Cannarozzi G, Cannarrozzi G, Schraudolph NN, Faty M, von Rohr P,
Friberg MT, Roth AC, Gonnet P, Gonnet G, Barral Y. 2010. A role for codon
order in translation dynamics. Cell 141:355–367. https://doi.org/10.1016/
j.cell.2010.02.036.

9. Pechmann S, Frydman J. 2013. Evolutionary conservation of codon
optimality reveals hidden signatures of cotranslational folding. Nat
Struct Mol Biol 20:237–243. https://doi.org/10.1038/nsmb.2466.

10. Zalucki YM, Beacham IR, Jennings MP. 2009. Biased codon usage in
signal peptides: a role in protein export. Trends Microbiol 17:146 –150.
https://doi.org/10.1016/j.tim.2009.01.005.

11. Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, Pan T,
Dahan O, Furman I, Pilpel Y. 2010. An evolutionarily conserved mecha-
nism for controlling the efficiency of protein translation. Cell 141:
344 –354. https://doi.org/10.1016/j.cell.2010.03.031.

12. Tuller T, Waldman YY, Kupiec M, Ruppin E. 2010. Translation efficiency is
determined by both codon bias and folding energy. Proc Natl Acad Sci
U S A 107:3645–3650. https://doi.org/10.1073/pnas.0909910107.

13. Goodman DB, Church GM, Kosuri S. 2013. Causes and effects of
N-terminal codon bias in bacterial genes. Science 342:475– 479. https://
doi.org/10.1126/science.1241934.

14. Pechmann S, Chartron JW, Frydman J. 2014. Local slowdown of trans-
lation by nonoptimal codons promotes nascent-chain recognition by
SRP in vivo. Nat Struct Mol Biol 21:1100 –1105. https://doi.org/10.1038/
nsmb.2919.

15. McInerney JO. 1998. Replicational and transcriptional selection on codon
usage in Borrelia burgdorferi. Proc Natl Acad Sci U S A 95:10698 –10703.
https://doi.org/10.1073/pnas.95.18.10698.

16. Xia XH. 1996. Maximizing transcription efficiency causes codon usage
bias. Genetics 144:1309 –1320.

17. Chen WH, Lu GT, Bork P, Hu SN, Lercher MJ. 2016. Energy efficiency
trade-offs drive nucleotide usage in transcribed regions. Nat Commun
7:11334. https://doi.org/10.1038/ncomms11334.

18. Seward EA, Kelly S. 2018. Selection-driven cost-efficiency optimization of
transcripts modulates gene evolutionary rate in bacteria. Genome Biol
19:102. https://doi.org/10.1186/s13059-018-1480-7.

19. Jeacock L, Faria J, Horn D. 2018. Codon usage bias controls mRNA and
protein abundance in trypanosomatids. Elife 7:e32496. https://doi.org/
10.7554/eLife.32496.

20. Villada JC, Duran MF, Lee PKH. 2019. Genomic evidence for simultaneous
optimization of transcription and translation through codon variants in
the pmoCAB operon of type Ia methanotrophs. mSystems 4:e00342-19.
https://doi.org/10.1128/mSystems.00342-19.

21. Cohen E, Zafrir Z, Tuller T. 2018. A code for transcription elongation
speed. RNA Biol 15:81–94. https://doi.org/10.1080/15476286.2017
.1384118.

22. Wang H, Cui J, Hong W, Paterson IC, Laughton CA. 2013. The study of
interactions between DNA and PcrA DNA helicase by using targeted
molecular dynamic simulations. J Mol Model 19:4997–5006. https://doi
.org/10.1007/s00894-013-2008-4.

23. Donmez I, Patel SS. 2008. Coupling of DNA unwinding to nucleotide
hydrolysis in a ring-shaped helicase. EMBO J 27:1718 –1726. https://doi
.org/10.1038/emboj.2008.100.

24. Pincus DL, Chakrabarti S, Thirumalai D. 2015. Helicase processivity and
not the unwinding velocity exhibits universal increase with force. Bio-
phys J 109:220 –230. https://doi.org/10.1016/j.bpj.2015.05.020.

25. von Hippel PH, Delagoutte E. 2001. A general model for nucleic acid
helicases and their “coupling” within macromolecular machines. Cell
104:177–190. https://doi.org/10.1016/s0092-8674(01)00203-3.

26. Murakami KS, Darst SA. 2003. Bacterial RNA polymerases: the wholo
story. Curr Opin Struct Biol 13:31–39. https://doi.org/10.1016/S0959
-440X(02)00005-2.

27. Manosas M, Xi XG, Bensimon D, Croquette V. 2010. Active and passive
mechanisms of helicases. Nucleic Acids Res 38:5518 –5526. https://doi
.org/10.1093/nar/gkq273.

28. Szczelkun MD, Dillingham MS. 2012. How to build a DNA unwinding
machine. Structure 20:1127–1128. https://doi.org/10.1016/j.str.2012.06
.006.

29. Chen MC, Murat P, Abecassis K, Ferré-D’Amaré AR, Balasubramanian S.

2015. Insights into the mechanism of a G-quadruplex-unwinding DEAH-
box helicase. Nucleic Acids Res 43:2223–2231. https://doi.org/10.1093/
nar/gkv051.

30. Byrd AK, Matlock DL, Bagchi D, Aarattuthodiyil S, Harrison D, Croquette
V, Raney KD. 2012. Dda helicase tightly couples translocation on single-
stranded DNA to unwinding of duplex DNA: Dda is an optimally active
helicase. J Mol Biol 420:141–154. https://doi.org/10.1016/j.jmb.2012.04
.007.

31. Goodman MF. 1997. Hydrogen bonding revisited: geometric selection as
a principal determinant of DNA replication fidelity. Proc Natl Acad Sci
U S A 94:10493–10495. https://doi.org/10.1073/pnas.94.20.10493.

32. McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco
CA, Vanderpool CK, Tjaden B. 2013. Computational analysis of bacterial
RNA-Seq data. Nucleic Acids Res 41:e140. https://doi.org/10.1093/nar/
gkt444.

33. Villada JC, Brustolini AJB, da Silveira WB. 2017. Integrated analysis of
individual codon contribution to protein biosynthesis reveals a new
approach to improving the basis of rational gene design. DNA Res
24:419 – 434. https://doi.org/10.1093/dnares/dsx014.

34. Hockenberry AJ, Sirer MI, Amaral LAN, Jewett MC. 2014. Quantifying
position-dependent codon usage bias. Mol Biol Evol 31:1880 –1893.
https://doi.org/10.1093/molbev/msu126.

35. Bentele K, Saffert P, Rauscher R, Ignatova Z, Bluthgen N. 2013. Efficient
translation initiation dictates codon usage at gene start. Mol Syst Biol
9:675. https://doi.org/10.1038/msb.2013.32.

36. Zhu M, Mori M, Hwa T, Dai X. 2019. Disruption of transcription-
translation coordination in Escherichia coli leads to premature transcrip-
tional termination. Nat Microbiol 4:2347–2356. https://doi.org/10.1038/
s41564-019-0543-1.

37. Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J. 2019. shiny: Web
application framework for R. R package version 132. https://cran.r
-project.org/package�shiny.

38. Ma W, Whitley KD, Chemla YR, Luthey-Schulten Z, Schulten K. 2018.
Free-energy simulations reveal molecular mechanism for functional
switch of a DNA helicase. Elife 7:e34186. https://doi.org/10.7554/eLife
.34186.

39. Yang W. 2010. Lessons learned from UvrD helicase: mechanism for
directional movement. Annu Rev Biophys 39:367–385. https://doi.org/
10.1146/annurev.biophys.093008.131415.

40. Patel SS, Donmez I. 2006. Mechanisms of helicases. J Biol Chem 281:
18265–18268. https://doi.org/10.1074/jbc.R600008200.

41. Peeri M, Tuller T. 2020. High-resolution modeling of the selection on
local mRNA folding strength in coding sequences across the tree of life.
Genome Biol 21:63. https://doi.org/10.1186/s13059-020-01971-y.

42. Gowrishankar J, Harinarayanan R. 2004. Why is transcription coupled to
translation in bacteria? Mol Microbiol 54:598 – 603. https://doi.org/10
.1111/j.1365-2958.2004.04289.x.

43. Gingold H, Pilpel Y. 2011. Determinants of translation efficiency and
accuracy. Mol Syst Biol 7:481. https://doi.org/10.1038/msb.2011.14.

44. Navon S, Pilpel Y. 2011. The role of codon selection in regulation of
translation efficiency deduced from synthetic libraries. Genome Biol
12:R12. https://doi.org/10.1186/gb-2011-12-2-r12.

45. Tuller T, Zur H. 2015. Multiple roles of the coding sequence 5’ end in
gene expression regulation. Nucleic Acids Res 43:13–28. https://doi.org/
10.1093/nar/gku1313.

46. Miller JB, Brase LR, Ridge PG. 2019. ExtRamp: a novel algorithm for
extracting the ramp sequence based on the tRNA adaptation index or
relative codon adaptiveness. Nucleic Acids Res 47:1123–1131. https://
doi.org/10.1093/nar/gky1193.

47. Bell SD, Jackson SP. 1998. Transcription and translation in Archaea: a
mosaic of eukaryal and bacterial features. Trends Microbiol 6:222–228.
https://doi.org/10.1016/s0966-842x(98)01281-5.

48. Iborra FJ, Jackson DA, Cook PR. 2001. Coupled transcription and trans-
lation within nuclei of mammalian cells. Science 293:1139 –1142. https://
doi.org/10.1126/science.1061216.

49. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput
B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao
Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell
CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali
VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K,
Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz
SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C,
Webb D, Wu W, Landrum MJ, Kimchi A, et al. 2016. Reference sequence
(RefSeq) database at NCBI: current status, taxonomic expansion, and

Codon Usage Bias and Hydrogen Bonding in ORFeomes

July/August 2020 Volume 5 Issue 4 e00613-20 msystems.asm.org 17

https://doi.org/10.1038/nrg2899
https://doi.org/10.1038/nrg2899
https://doi.org/10.1038/nrg3051
https://doi.org/10.1016/j.cell.2010.02.036
https://doi.org/10.1016/j.cell.2010.02.036
https://doi.org/10.1038/nsmb.2466
https://doi.org/10.1016/j.tim.2009.01.005
https://doi.org/10.1016/j.cell.2010.03.031
https://doi.org/10.1073/pnas.0909910107
https://doi.org/10.1126/science.1241934
https://doi.org/10.1126/science.1241934
https://doi.org/10.1038/nsmb.2919
https://doi.org/10.1038/nsmb.2919
https://doi.org/10.1073/pnas.95.18.10698
https://doi.org/10.1038/ncomms11334
https://doi.org/10.1186/s13059-018-1480-7
https://doi.org/10.7554/eLife.32496
https://doi.org/10.7554/eLife.32496
https://doi.org/10.1128/mSystems.00342-19
https://doi.org/10.1080/15476286.2017.1384118
https://doi.org/10.1080/15476286.2017.1384118
https://doi.org/10.1007/s00894-013-2008-4
https://doi.org/10.1007/s00894-013-2008-4
https://doi.org/10.1038/emboj.2008.100
https://doi.org/10.1038/emboj.2008.100
https://doi.org/10.1016/j.bpj.2015.05.020
https://doi.org/10.1016/s0092-8674(01)00203-3
https://doi.org/10.1016/S0959-440X(02)00005-2
https://doi.org/10.1016/S0959-440X(02)00005-2
https://doi.org/10.1093/nar/gkq273
https://doi.org/10.1093/nar/gkq273
https://doi.org/10.1016/j.str.2012.06.006
https://doi.org/10.1016/j.str.2012.06.006
https://doi.org/10.1093/nar/gkv051
https://doi.org/10.1093/nar/gkv051
https://doi.org/10.1016/j.jmb.2012.04.007
https://doi.org/10.1016/j.jmb.2012.04.007
https://doi.org/10.1073/pnas.94.20.10493
https://doi.org/10.1093/nar/gkt444
https://doi.org/10.1093/nar/gkt444
https://doi.org/10.1093/dnares/dsx014
https://doi.org/10.1093/molbev/msu126
https://doi.org/10.1038/msb.2013.32
https://doi.org/10.1038/s41564-019-0543-1
https://doi.org/10.1038/s41564-019-0543-1
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=shiny
https://doi.org/10.7554/eLife.34186
https://doi.org/10.7554/eLife.34186
https://doi.org/10.1146/annurev.biophys.093008.131415
https://doi.org/10.1146/annurev.biophys.093008.131415
https://doi.org/10.1074/jbc.R600008200
https://doi.org/10.1186/s13059-020-01971-y
https://doi.org/10.1111/j.1365-2958.2004.04289.x
https://doi.org/10.1111/j.1365-2958.2004.04289.x
https://doi.org/10.1038/msb.2011.14
https://doi.org/10.1186/gb-2011-12-2-r12
https://doi.org/10.1093/nar/gku1313
https://doi.org/10.1093/nar/gku1313
https://doi.org/10.1093/nar/gky1193
https://doi.org/10.1093/nar/gky1193
https://doi.org/10.1016/s0966-842x(98)01281-5
https://doi.org/10.1126/science.1061216
https://doi.org/10.1126/science.1061216
https://msystems.asm.org


functional annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/
10.1093/nar/gkv1189.

50. Charif D, Thioulouse J, Lobry JR, Perriere G. 2005. Online synonymous
codon usage analyses with the ade4 and seqinR packages. Bioinformat-
ics 21:545–547. https://doi.org/10.1093/bioinformatics/bti037.

51. Pagès H, Aboyoun P, Gentleman R, DebRoy S. 2019. Biostrings: efficient
manipulation of biological strings. R package version 2.52.0. https://
bioconductor.org/packages/release/bioc/html/Biostrings.html.

52. Harrell FE, Jr. 2019. Hmisc: Harrell Miscellaneous. R package version 4.2.0.
https://cran.r-project.org/package�Hmisc.

53. Ooi H, Microsoft, Weston S. 2017. foreach: provides foreach looping
construct. R package version 1.4.4. https://cran.r-project.org/package�
foreach.

54. Ooi H, Microsoft Corporation, Weston S, Tenenbaum D. 2018. doParallel:
foreach parallel adaptor for the ‘parallel’ package. Version 1.0.14. https://
cran.r-project.org/package�doParallel.

55. Ooi H, Microsoft Corporation, Weston S. 2017. doSNOW: foreach parallel
adaptor for the ‘snow’ package. R package version 1.0.16. https://cran.r
-project.org/package�doSNOW.

56. Taboada B, Estrada K, Ciria R, Merino E. 2018. Operon-mapper: a Web server
for precise operon identification in bacterial and archaeal genomes. Bioin-
formatics 34:4118 – 4120. https://doi.org/10.1093/bioinformatics/bty496.

57. Sharp PM, Li WH. 1987. The codon adaptation index–a measure of
directional synonymous codon usage bias, and its potential applications.
Nucleic Acids Res 15:1281–1295. https://doi.org/10.1093/nar/15.3.1281.

58. dos Reis M, Savva R, Wernisch L. 2004. Solving the riddle of codon usage
preferences: a test for translational selection. Nucleic Acids Res 32:
5036 –5044. https://doi.org/10.1093/nar/gkh834.

59. Dana A, Tuller T. 2014. The effect of tRNA levels on decoding times of
mRNA codons. Nucleic Acids Res 42:9171–9181. https://doi.org/10.1093/
nar/gku646.

60. Chan PP, Lowe TM. 2016. GtRNAdb 2.0: an expanded database of
transfer RNA genes identified in complete and draft genomes. Nucleic
Acids Res 44:D184 –D189. https://doi.org/10.1093/nar/gkv1309.

61. Abe T, Ikemura T, Sugahara J, Kanai A, Ohara Y, Uehara H, Kinouchi M,
Kanaya S, Yamada Y, Muto A, Inokuchi H. 2011. tRNADB-CE 2011: tRNA
gene database curated manually by experts. Nucleic Acids Res 39:
D210 –D213. https://doi.org/10.1093/nar/gkq1007.

62. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C,
Stadler PF, Hofacker IL. 2011. ViennaRNA package 2.0. Algorithms Mol
Biol 6:26. https://doi.org/10.1186/1748-7188-6-26.

63. Pedersen L, Hagedorn PH, Koch T. 2019. Identifying suitable target
regions and analyzing off-target effects of therapeutic oligonucleo-
tides. Methods Mol Biol 2036:261–282. https://doi.org/10.1007/978-1
-4939-9670-4_16.

64. Yu G, Lam TT, Zhu H, Guan Y. 2018. Two methods for mapping and
visualizing associated data on phylogeny using ggtree. Mol Biol Evol
35:3041–3043. https://doi.org/10.1093/molbev/msy194.

65. Wickham H. 2017. tidyverse: easily install and load the ‘Tidyverse.’ R
package version 1.2.1. https://tidyverse.tidyverse.org/.

66. Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer,
New York, NY.

67. Wilke CO. 2019. cowplot: streamlined plot theme and plot annotations
for ‘ggplot2.’ R package version 1.0.0. https://rdrr.io/cran/cowplot/.

68. Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in
multiple testing under dependency. Ann Statist 29:1165–1188.

Villada et al.

July/August 2020 Volume 5 Issue 4 e00613-20 msystems.asm.org 18

https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/bioinformatics/bti037
https://bioconductor.org/packages/release/bioc/html/Biostrings.html
https://bioconductor.org/packages/release/bioc/html/Biostrings.html
https://cran.r-project.org/package=Hmisc
https://cran.r-project.org/package=foreach
https://cran.r-project.org/package=foreach
https://cran.r-project.org/package=doParallel
https://cran.r-project.org/package=doParallel
https://cran.r-project.org/package=doSNOW
https://cran.r-project.org/package=doSNOW
https://doi.org/10.1093/bioinformatics/bty496
https://doi.org/10.1093/nar/15.3.1281
https://doi.org/10.1093/nar/gkh834
https://doi.org/10.1093/nar/gku646
https://doi.org/10.1093/nar/gku646
https://doi.org/10.1093/nar/gkv1309
https://doi.org/10.1093/nar/gkq1007
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1007/978-1-4939-9670-4_16
https://doi.org/10.1007/978-1-4939-9670-4_16
https://doi.org/10.1093/molbev/msy194
https://tidyverse.tidyverse.org/
https://rdrr.io/cran/cowplot/
https://msystems.asm.org

	RESULTS
	Effects of codon variants on hydrogen bonding and its positional dependency at the 5 end of the E. coli ORFeome. 
	Lower hydrogen bonding at the first CDS of operons in E. coli. 
	Highly transcribed CDSs require a lower maximum capacity of hydrogen bonds per codon in E. coli. 
	Distinguishing position-dependent hydrogen bonding from translation-related and mRNA secondary structure-based phenomena in E. coli and Saccharomyces cerevisiae. 
	Modeling the hydrogen bonding ramp in E. coli. 
	Testing the selection for reduced hydrogen bonding at the 5 end in E. coli. 
	Position-dependent hydrogen bonding consistently correlates with mRNA structure folding in Bacteria and Archaea but not Fungi. 
	Modeling the hydrogen bonding ramp in ORFeomes of Bacteria, Archaea, and Fungi. 
	Characteristics of the ramp of the number of hydrogen bonds in Bacteria, Archaea, and Fungi. 
	A Web-based application to analyze position-dependent hydrogen bonding. 

	DISCUSSION
	MATERIALS AND METHODS
	ORFeomes, quality control of CDSs, and genomic analyses. 
	Position-dependent number of hydrogen bonds. 
	Analysis of hydrogen bonding in operons. 
	Quantification of hydrogen bonding in highly and minimally expressed CDSs. 
	Position-dependent occurrence of frequent codons and optimal codons. 
	Position-dependent translation efficiency. 
	Position-dependent mRNA secondary structure. 
	Model fitting. 
	Phylogenomic analysis. 
	Building the position-dependent null models of ORFeomes with shuffled codons. 
	Statistics, data analysis, and data visualization. 
	Code and data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES



