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ABSTRACT OF THE DISSERTATION 

 

Machine Learning-Enabled Optical Sensors and Devices 

by  

Muhammed Veli 

Doctor of Philosophy in Electrical and Computer Engineering 

University of California, Los Angeles, 2020 

Professor Aydogan Ozcan, Chair 

 

Machine learning has been transforming many fields including optics by creating a new 

avenue for designing optical sensors and devices. This new paradigm takes a data driven 

approach, without focusing on underlying physics of the design. This new alternative and yet 

powerful method brings new advancements to traditional design tools and opens up numerous 

opportunities. 

This dissertation introduces machine learning-enabled optical sensors and devices in which 

computational imaging and deep learning based design of devices tackle various challenges. First, 

a cost-effective and portable platform is presented to non-invasively detect and monitor a 

bacteria that resides in human ocular microbiome, Staphylococcus aureus. Contact lenses are 

designed to capture S. aureus using surface chemistry protocol, and sandwich immunoassay with 

polystyrene microbeads is performed to tag captured bacteria. Lens-free on-chip microscope is 
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used to obtain a single hologram of the contact lens surface and 3D surface of it is 

computationally reconstructed. Support vector machine based machine learning algorithm is 

employed to detect and count the amount of bacteria on contact lens surface. This platform, 

which only weighs 77 g, is controlled by laptop and provides ~16 bacteria/µL detection limit. 

This wearable sensor platform can be used to analyze and monitor other viruses and bacteria in 

tear with the appropriate modification to its surface chemistry protocol. Second, a novel physical 

mechanism is introduced, diffractive optical networks, to perform all-optical machine learning 

using passive diffractive layers that work together to implement various functions. This 

framework merges wave-optics with deep learning to all optically perform different tasks. A 

classification of handwritten digits and fashion products were demonstrated with 3D-printed 

diffractive optical networks. Moreover, a diffractive optical network is designed to function as an 

imaging lens in terahertz spectrum. This scalable platform can execute various functions at the 

speed of light with low power and help us to design exotic optical components. Third, terahertz 

pulse shaping architecture using diffractive optical surfaces is introduced. This platform 

engineers arbitrary broadband input pulse into desired waveform. Synthesis of various pulses has 

been demonstrated by designing and fabricating diffractive layers. This works constitutes the 

first demonstration of direct pulse shaping in terahertz spectrum with precise control of 

amplitude and phase of input broadband light over a wide frequency range. This approach can 

also find applications in other fields like optical communications, spectroscopy and ultra-fast 

imaging.  
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Chapter 1 Machine Learning-Enabled Computational Sensing  
 

Parts of this chapter have previously been published in M. Veli et al. “Computational Sensing 

of Staphylococcus aureus on Contact Lenses Using 3D Imaging of Curved Surfaces and Machine 

Learning”. ACS Nano, 2018, 12(3), 2554–2559. 

In this chapter, I present a cost-effective and portable platform based on contact lenses for 

non-invasively detecting Staphylococcus aureus, which is part of the human ocular microbiome 

and resides on the cornea and conjunctiva. Using Staphylococcus aureus-specific antibodies and 

a surface chemistry protocol that is compatible with human tear, contact lenses are designed to 

specifically capture Staphylococcus aureus. After the bacteria capture on the lens, and right 

before its imaging, the captured bacteria are tagged with surface-functionalized polystyrene 

microparticles. These microbeads provide sufficient signal-to-noise ratio for the quantification of 

the captured bacteria on the contact lens, without any fluorescent labels, by 3D imaging of the 

curved surface of each lens using only one hologram taken with a lensfree on-chip microscope. 

After the 3D surface of the contact lens is computationally reconstructed using rotational field 

transformations and holographic digital focusing, a machine learning algorithm is employed to 

automatically count the number of beads on the lens surface, revealing the count of the captured 

bacteria. To demonstrate its proof-of-concept, we created a field-portable and cost-effective 

holographic microscope, which weighs 77 g, controlled by a laptop. Using daily contact lenses 

that are spiked with bacteria, we demonstrated that this computational sensing platform provides 

a detection limit of ~16 bacteria/μL. This contact lens–based wearable sensor can be broadly 
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applicable to detect various bacteria, viruses and analytes in tear using a cost-effective and 

portable computational imager that might be potentially used even at home by consumers. 

1.1 Introduction 

The human body is the host to several microorganisms, forming the human microbiota
1
. 

These microorganisms live symbiotically in various parts of the human body, including the 

conjunctiva
2
, lungs

3
, skin, saliva, gut, and vagina

4
. The relationship between the human 

microbiota and various diseases such as obesity, rheumatoid arthritis, and diabetes has drawn 

strong attention to the analysis of the human microbiome
5
, also motivated by personalized 

treatments and medicine. Several microorganisms are also found in the ocular microbiota, one of 

which is Staphylococcus aureus. It is a gram-positive bacterium and is present in different parts 

of the body, including the conjunctiva, nose, and skin
6–8

. It is colonized in approximately 30% of 

humans
9
. It is also a human pathogen, and the carriers of Staphylococcus aureus have a higher 

risk of infection. It causes a variety of diseases like pneumonia, endocarditis, arthritis, and 

bacteremia
6
. 
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Monitoring of the human microbiome with the current methods is relatively costly and time-

consuming. 16S rRNA and whole-genome shotgun metagenomics gene-based sequencing are 

among the most commonly used techniques for the analysis of microbiome
10,11

. 16S rRNA 

sequencing starts with the extraction of the DNA from the isolated sample, and it is followed by 

 

Fig. 1.1 Schematic illustration of device and workflow (a) 3D schematic illustration and (b) a cross 

section of the portable lensfree microscope including a contact lens chamber. (c) Contact lens insertion 

into a PBS filled contact lens chamber. (d) Placement of the chamber on a CMOS image sensor. (e, f) 

Photographs of the lensfree microscope. 
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polymerase chain reaction (PCR) amplification, cycle sequencing, and database comparison
12

. 

As an additional challenge for monitoring of ocular microbiota, collecting samples from the 

ocular surface is quite tedious. It involves conjunctival swabs or tear fluid collection
8,13

 which 

require laborious sample collection steps as well as relatively expensive and bulky laboratory 

equipment for the sample analysis. 

Here, we present a cost-effective and portable platform that is based on contact lenses for 

detecting and monitoring Staphylococcus aureus, which is found in the human ocular 

microbiome. In this study, the detection of Staphylococcus aureus is enabled by a surface 

functionalized contact lens
14

, a lens-free computational imaging setup
15–18

, and a machine 

learning-based algorithm to quantify the amount of bacteria captured on the contact lens.  The 

surface of each contact lens is functionalized by a layer-by-layer (LBL) coating technique
19

 

which is shown to be compatible with the human tear. The LBL coating technique creates 

biofunctional films on different surface morphologies, and with the appropriate coating material, 

it enables contact lenses to be worn without any damage to the cornea
14

. Seven layers of 

poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) coating on a contact 

lens create a stable structure for binding of the anti-Staphylococcus aureus antibody to the 

surface of the contact lens. We used antibody attached daily contact lenses for specifically 

capturing Staphylococcus aureus particles that normally reside on the human cornea and 

conjunctiva. These surface functionalized contact lenses are expected to be worn for e.g., 12–16 

h for continuously capturing Staphylococcus aureus in tear. In this work, however, we spiked 

daily contact lenses with bacteria and after the capture process, and right before the 3D imaging 

of the lens surface, we attached 5-µm polystyrene beads to specifically bind to Staphylococcus 

aureus particles already captured on the lens. Staphylococcus aureus has a diameter of 0.75–1 
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µm
20

, and therefore 5-µm beads make their detection and counting easier using lensfree imaging 

of the contact lens 3D surface with a single hologram.   

 

 

Fig. 1.2 Schematic illustration of the contact lens surface functionalization and bead-based 

immunoassay steps 
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In fact, microscopic imaging of a contact lens is very challenging using traditional 

microscopy tools because it is large and has a curved 3D structure. Conventional microscopes 

have a small field of view (FOV) and a limited depth of field, making it extremely difficult and 

time-consuming to image the 3D surface of a contact lens using traditional imaging approaches. 

Our computational imaging platform is not only cost-effective and field-portable, but also offers 

a very large FOV (~30 mm
2
) and depth of field (> 1cm), which make it ideal for label-free 

imaging of the 3D surface of a contact lens using a single hologram, without the need for any 

mechanical scanning or fine alignments (Figure 1.1). Our lens-free on-chip imaging setup 

utilizes a multimode-fiber-coupled light emitting diode (LED), which emits partially coherent 

light at 527 nm. In order to image the contact lenses with their natural curvy shape, they are 

placed in a custom-designed chamber filled with a phosphate-buffered saline (PBS) solution. An 

inexpensive complementary metal oxide semiconductor (CMOS) image sensor captures a single 

hologram of each contact lens, which is then reconstructed to automatically identify the captured 

micro-beads on the lens surface. This analysis includes a tilt correction algorithm that handles 

the image distortions caused by the curvature of the contact lenses, a holographic 3D image 

reconstruction algorithm, as well as a support vector machine (SVM) based learning model that 

can specifically detect the captured 5-µm beads and digitally separate them from other unwanted 

particles deposited on the lens surface.  

Using daily contact lenses that are surface functionalized and spiked with bacteria, we 

demonstrated a detection limit of ~16 bacteria/μL with this computational 3D imaging and 

machine learning approach. The presented wearable sensing framework using surface 

functionalized contact lenses and computational imaging can be broadly applicable to sense 
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numerous other target bacteria, viruses and analytes in tear samples and might even be suitable 

for consumer use at home. 

1.2 Results  

Acuvue Moist 1-day contact lenses have an inherently ionic surface structure. Etafilcon A of 

these contact lenses is negatively charged
21

 at the physiological pH so that the innermost layer of 

the positively charged polyelectrolyte, PAH, can bind to the contact lens surface electrostatically. 

In a similar fashion, the chemical functionalization of the contact lens surface was performed 

with an alternative LBL deposition of the positively charged polyelectrolyte, PAH, and the 

negatively charged polyelectrolyte, PSS, by using the electrostatic interaction between them. The 

outermost layer was coated with the positively charged PAH to enable the electrostatic 

interaction between the functionalized contact lens surface and the anti-Staphylococcus aureus 

antibody, which is negatively charged at the physiological pH. These seven alternating layers of 

coating on the contact lens surface created a stable interface for the successive antibody binding 

and bead-based immunoassay formation (Figure 1.2). Importantly, previous work showed that 

this polyelectrolyte coating did not exhibit cell toxicity
14

. 

As detailed in the Methods section, the digital 3D surface mapping of each contact lens under 

test provides the rotation angle for each sub-region on the lens surface that we need for field 

rotations. Figure 1.3-d shows the digitally reconstructed 3D surface of a contact lens. The color 

map indicates the distance of each point on the contact lens surface from the CMOS image 

sensor plane. In our experiments, we observed a maximum tilt of approximately 20° at the 

corners of the contact lens with respect to the CMOS sensor. After the tilt correction of each sub-

region of interest, we create a set of images, each of which is tangential to the contact lens 
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surface. By digitally stitching all these tilt-corrected small tiles, we obtained an in-focus image of 

the contact lens surface, covering approximately 31 mm
2
 on the lens surface, which is larger than 

the active area of the CMOS imager, as expected. In Figure 1.3-e, the reconstructions of some of 

these sub-regions are shown without any tilt correction and after tilt correction. We can clearly 

observe that the 5-µm beads are in focus, as desired, over the entire FOV after the tilt correction, 

whereas in the regular reconstructions, they are out of focus at the edges of each region of 

interest. This phenomenon is more obvious if one looks at the corners of the contact lens; for 

example, in regions 1 and 2, the impact of tilt corrections is more apparent compared to region 3 

(Figure 1.3).  

To explore the detection limit of our platform, five solutions of Staphylococcus aureus at 

different concentrations were applied after the surfaces of the contact lenses were functionalized 

as described in the Methods section. At each concentration of bacteria, we used three individual 

contact lenses to test the repeatability of our approach. After the incubation of the streptavidin-

coated antibody conjugated 5-µm beads, the contact lenses were imaged using our lens-free on-

chip microscope, and the 5-µm beads were automatically counted using an SVM-based 

algorithm described in the Methods section. Figure 1.4 shows the number of the detected beads 

on contact lens surfaces for different concentrations of Staphylococcus aureus. A detection limit 

of 16.3 bacteria/µL was achieved using our platform, based on µ+3σ of our control samples, 

where µ refers to the mean and σ is the standard deviation. Previous results reported that the 

human eye can contain increased concentrations of bacteria (e.g., >10 cfu/µL) even for 

asymptomatic individuals.
8
 Considering the fact that under a bacterial infection the concentration 

of bacteria in tear is expected to be significantly higher than this baseline, we believe that our 

sensing limit is relevant for the detection of such infections.  A further improvement in our 
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sensing performance can potentially be achieved by increasing our training data size and the 

number of the spatial features used in the SVM-based particle detection algorithm, which can 

help us reduce the rate of false positives. Convolutional neural network based deep learning 

approaches could also be utilized to further advance our results, which is left as future work. 

 

 

Fig. 1.3 Schematic diagram of the image reconstruction and processing steps 
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1.3 Discussion 

The presented work makes use of contact lenses as the basis of a computational sensing 

platform. Although not demonstrated in this work since we did not experiment with human 

samples, we believe that this wearable method is more convenient for patients when compared to 

e.g., conjunctival swabs and tear collection. We also believe that this method should increase the 

efficiency of sample collection because the contact lens will be worn throughout the day for e.g., 

12–16 h and it will be continuously in contact with the human tear.  

We demonstrated a proof-of-concept platform that can potentially monitor and non-

invasively analyze the human ocular microbiome in a cost-effective manner. This platform can 

automatically detect and enumerate Staphylococcus aureus particles that are captured on contact 

lenses. It includes a field-portable lens-free microscope, a custom-made contact lens chamber, 

surface functionalized contact lenses, and an automated holographic image reconstruction and 

processing algorithm that also utilizes machine learning. We have achieved a detection limit of 

16.3 CFU/µL. We believe that this platform might serve as a promising tool for the analysis and 

monitoring of the human ocular microbiome and can be broadly applicable to other target 

bacteria, viruses and analytes that can be sensed using wearable and flexible substrates, including 

but not limited to contact lenses.  

1.4 Materials and Methods 

The procedure for the automated detection and quantification of Staphylococcus aureus starts 

with the functionalization of the surface of a contact lens, and it is followed by a bead-based 

immunoassay on the lens surface to achieve specificity and sensitivity. After the capture of the 

target bacteria, each contact lens under test is placed in a custom-designed sample holder, and its 



11 

 

lens-free hologram is taken using our portable on-chip microscope. Each hologram is then 

rapidly reconstructed to reveal a microscopic image of the 3D surface of the contact lens, which 

is then analyzed using an automated machine-learning algorithm to estimate the count of 

Staphylococcus aureus captured on the lens surface.  

 

Materials 

Poly(sodium 4-styrenesulfonate) (PSS; Mw ~200000 g mol
-1

) (product no. 561967), bovine 

serum albumin (BSA) (product no. B4287), phosphate buffered saline (PBS pH 7.4) (product no. 

P3813), and Tween®20 (product no. P9416) were purchased from Sigma–Aldrich. 

Poly(allylamine hydrochloride) (PAH; Mw ~120000–200000 g mol
-1

) (product no. 43092) was 

purchased from Alfa Aesar. Anti-Staphylococcus aureus antibody (product no. ab73962) and 

  

Fig. 1.4 Limit of detection of the platform (a) The number of the detected beads on the contact lens surface 

per mm² as a function of the bacteria concentration. (b) Zoomed in version of (a), red dashed line refers to 

µ+3σ of the control samples. 
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Anti-Staphylococcus aureus antibody biotin (product no. ab35192) were purchased from Abcam. 

Contact lenses (Acuvue Moist 1-day) were purchased from Contact Lenses Canada. 

Staphylococcus aureus bacteria (product no. 27660) were purchased from American Type 

Culture Collection (ATCC). Sodium chloride (NaCl) (product no. SX0420) was purchased from 

Millipore Sigma. Streptavidin coated 5-µm polystyrene beads (product no. SVP-50-5) were 

purchased from Spherotech Inc. Acrylic glass (PMMA) (product no. 8560K354) was purchased 

from McMaster-Carr. The LED (product no. C503B-GAN-CB0F0791-ND) was purchased from 

Digikey and the multimode fiber (product no. FG105LCA) was purchased from Thorlabs. The 

coverslips were purchased from Fisher Scientific. Reagent grade water was used throughout the 

experiments. 

Design of the portable lens-free on-chip microscope 

Our lens-free microscope consists of an LED that emits green light with a peak wavelength 

of 527 nm, a multimode fiber (105 μm core diameter), a CMOS image sensor with a pixel size of 

1.67 µm (MT9J003STM/STC, ON Semiconductor), a custom-made contact lens holder, and a 

3D printed housing that holds all the components (Figure 1.1). The design of the housing was 

done using Autodesk Inventor Professional, and it was printed using a 3D printer and 

acrylonitrile butadiene styrene (ABS) material (Dimensions Elite, Stratasys).  

The top part of the contact lens chamber is a 22x22 mm No.1 coverslip (thickness: 120 μm), 

and the bottom part is formed by a 24x35 mm No.0 coverslip (thickness of 70 μm). The 

rectangular sidewalls of the chamber were prepared using a laser cutting device with PMMA 

(thickness of 6 mm). The coverslips and PMMA were glued together using an epoxy (Figure 1.1-

c). After the bead-based immunoassay, each contact lens was placed inside the PBS-filled 
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contact lens chamber for holographic imaging. This sample holder provides an environment for 

the contact lenses to retain their natural 3D structure and curvature while enabling us to image 

them by preventing surface fluctuations that may occur at the liquid–air interface. The holder 

was then placed directly on the top of the CMOS image sensor.  The fiber-coupled LED 

provided sufficient spatial coherence to capture a single hologram that contains all the 

microparticles captured over the 3D surface of the contact lens. The exposure time of each 

hologram was ~50 ms, which is short enough to avoid any problems related to a potential shift in 

the contact lens position within the sample holder. For illumination, a hole was drilled on the 

LED package, and a multi-mode fiber was inserted into that hole and fixed with an optical glue
22

. 

This fiber-coupled LED was then placed approximately 5 cm away from the CMOS sensor plane. 

The LED was powered by the CMOS sensor board. 

Contact lens surface functionalization 

After unpacking the daily contact lenses, we washed them by dipping each one of the lenses 

into a PBS solution (10 mM, pH 7.4) to equilibrate the polymer surface of the contact lenses. The 

surface was then functionalized using the LBL deposition of polyelectrolytes, PAH, and PSS. 

First, the contact lenses were dipped into cationic polyelectrolyte, PAH (5 mg mL
-1

 in 0.5 M 

NaCl) for 15 min. Then, they were washed with 0.5 M NaCl solution three times. Next, the 

contact lenses were dipped into anionic polyelectrolyte, PSS (5 mg mL
-1

, in 0.5 M NaCl), for 15 

min. Then, they were washed again with 0.5 M NaCl solution three times. The same PAH and 

PSS deposition steps were repeated until seven layers of polyelectrolyte coating (i.e., PAH-PSS-

PAH-PSS-PAH-PSS-PAH) were created on the surface of each contact lens (Figure 1.2-b). 

Bead-based immunoassay and related experimental procedures  
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200 μL of 10 μg/mL captured antibody anti-Staphylococcus aureus solution in 10 mM PBS 

(pH 7.4) was incubated on the contact lenses, which were previously coated with 

polyelectrolytes as detailed earlier (Figure 1.2-c). After this incubation for 16 h, they were 

washed with 10 mM PBS at pH 7.4 to remove the excess antibody from the contact lenses. Then, 

the lens surface was blocked by a buffer (1% BSA in 10 mM PBS), incubated for 2 h to reduce 

the non-specific binding of the antibody attached polystyrene beads (Figure 1.2-d). The contact 

lenses were then washed once with 10 mM PBS at pH 7.4.  

To mimic the daily use of the contact lenses, 200 μL solution of 4% (v/v) formaldehyde fixed 

Staphylococcus aureus (at different concentrations) in 10 mM PBS (pH 7.4) was incubated on 

the contact lenses for 16 h (Figure 1.2-e).  During this incubation period, Staphylococcus aureus 

would adhere to the antibody coated contact lens surface. After this incubation, the contact lenses 

were washed once with 10 mM PBS (pH 7.4). Then, at the testing phase (i.e., after each contact 

lens captured the Staphylococcus aureus particles on its surface) the 200-μL bead and antibody 

mixture was incubated on the contact lenses for 2 h (Figure 1.2-f). To prepare these streptavidin-

coated 5-μm beads, they were mixed with 27 μg/mL biotin-anti-Staphylococcus aureus in a 

separate tube in 10 mM PBS (pH 7.4) for 1 h. The strong interaction between streptavidin and 

biotin enables antibody-conjugated microbeads to specifically attach to Staphylococcus aureus. 

This approach provided specificity, helping us correlate the number of bacteria with the number 

of microbeads. Finally, the contact lenses were washed thrice with a washing buffer (10 mM 

PBS, 0.1% BSA, and 0.05% Tween ® 20 at pH 7.4) to remove the excess beads before their 

imaging using the holographic on-chip microscope.  

Automated analysis of the holograms of contact lenses  



15 

 

We prepared an image processing algorithm (Figure 1.3) for the automated detection and 

counting of Staphylococcus aureus captured on contact lenses. This algorithm starts with the 

holographic reconstruction of the 3D contact lens surface and uses an SVM-based learning 

algorithm for label-free classification of the captured particles on the lens surface.  First, a rough 

estimate of all the particles on a contact lens was made by reconstructing its lens-free hologram 

at all the possible object planes with a vertical spacing of 5 µm as shown in Figure 1.3-b. The 

possible 5-µm bead candidates were then detected from each reconstructed amplitude image by a 

simple threshold. In order to have a better accuracy in the axial position estimation of each 

particle, an autofocusing algorithm using the Tamura coefficient was employed on these 

potential particle candidates
23–27

. The resulting x-y-z positions of these beads were then selected 

as the sampled points on the contact lens 3D surface (Figure 1.3-c). A physical constraint based 

on this initially estimated 3D shape of the contact lens was also applied to remove possible 

detection artifacts and false positives due to unbound floating particles in the sample holder. A 

locally-weighted linear regression was then performed on these points to digitally generate a 3D 

map of each contact lens surface that is under test, as shown in Figure 1.3-d. This step is 

important to properly image and count the 5-µm beads captured on the surface of the contact 

lenses, and that is why we first reconstructed the 3D contact lens surface digitally, and then 

employed a tilt correction algorithm
8,29

 to smaller regions of interest on the contact lens surface 

to digitally bring each region of interest in focus. There are different approaches to image tilted 

objects such as extended-focus imaging (EFI) 
30,31

 and rotational field transformations
28,29

. In this 

work, we used the latter approach, which is based on the angular spectrum method.  This tilt 

correction algorithm involves two Fast Fourier Transform (FFT) operations and one interpolation 

operation. In essence, with the knowledge of the complex optical field at one of the planes, we 
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can obtain the complex field at another rotated plane by using this tilt correction algorithm. In 

order to perform this operation, each lens-free hologram of a contact lens was digitally divided 

into 192 equal tiles (i.e., smaller regions of interest) and each tile was processed separately. 

These tiles were reconstructed at their corresponding heights, where their centers intersected 

with the computationally generated 3D contact lens surface. The natural curvature of the contact 

lenses prevents each tile to be completely in-focus, making the edges of the tiles out of focus. To 

mitigate this, the reconstructed tiles were rotated using the tilt correction algorithm so that they 

became tangent to the computationally generated contact lens 3D surface (Figure 1.3-e). For 

each tile, we calculated the rotation angle based on the reconstructed 3D contact lens surface.  

To further eliminate false positives, we employed an SVM based learning algorithm
26

 to 

distinguish 5-µm beads from other non-specifically bound particles on the lens surface that 

appear in the reconstructed and tilt-corrected holographic images. Each object’s size, intensity 

and ratio of the Tamura coefficient at the focus plane with respect to four other planes were fed 

into an SVM algorithm forming a set of six features. The SVM was then trained on 

approximately 3,000 particles, where 1,200 of them were 5-µm beads, all of which were 

manually labeled, forming our training data. Figure 1.3-g shows the blind detection of the target 

beads captured on the contact lens surface after the SVM was successfully trained. The steps 

shown in Figure 1.3-c to Figure 1.3-g were repeated three more times for refining the detection 

results.  
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Chapter 2 All-optical Machine Learning Using Diffractive Networks  
 

Parts of this chapter have previously been published in X. Lin et al. “All-optical machine 

learning using diffractive deep neural networks” Science, 361, 1004-1008 (2018). In this chapter, 

all-optical machine learning platform is introduced.  

Deep learning has been transforming our ability to execute advanced inference tasks using 

computers. Here we introduce a physical mechanism to perform machine learning by 

demonstrating an all-optical diffractive deep neural network (D
2
NN) architecture that can 

implement various functions following the deep learning–based design of passive diffractive 

layers that work collectively. We created 3D-printed D
2
NN s that implement classification of 

images of handwritten digits and fashion products, as well as the function of an imaging lens at a 

terahertz spectrum. Our all-optical deep learning framework can perform, at the speed of light, 

various complex functions that computer-based neural networks can execute; will find 

applications in all-optical image analysis, feature detection, and object classification; and will 

also enable new camera designs and optical components that perform distinctive tasks using 

D
2
NN s. 

2.1 Introduction 

Deep learning is one of the fastest-growing machine learning methods
32

. This approach uses 

multilayered artificial neural networks implemented in a computer to digitally learn data 

representation and abstraction and to perform advanced tasks in a manner comparable or even 

superior to the performance of human experts. Recent examples in which deep learning has made 

major advances in machine learning include medical image analysis
33

, speech recognition
34

, 
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language translation
35

, and image classification
36

, among others
32,37

. Beyond some of these 

mainstream applications, deep learning methods are also being used to solve inverse imaging 

problems
38–44

. 

 

Fig. 2.1 Diffractive deep neural networks (D
2
NNs). (A) A D

2
NN comprises multiple transmissive (or reflective) 

layers, where each point on a given layer acts as a neuron, with a complex-valued transmission (or reflection) 

coefficient. The transmission or reflection coefficients of each layer can be trained by using deep learning to 

perform a function between the input and output planes of the network. After this learning phase, the D
2
NN design 

is fixed; once fabricated or 3D-printed, it performs the learned function at the speed of light. L, layer. (B and C) We 

trained and experimentally implemented different types of D
2
NNs: (B) classifier (for handwritten digits and fashion 

products) and (C) imager. d, distance. (D) Comparison between a D
2
NN and a conventional neural network (14). 

Based on coherent waves, the D
2
NN operates on complex-valued inputs, with multiplicative bias terms. Weights in a 

D
2
NN are based on free-space diffraction and determine the interference of the secondary waves that are phase- 

and/or amplitude-modulated by the previous layers. “ο” denotes a Hadamard product operation. “Electronic neural 

network” refers to the conventional neural network virtually implemented in a computer. Y, optical field at a given 
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layer; Ψ, phase of the optical field; X, amplitude of the optical field; F, nonlinear rectifier function [see 2.4 Materials 

and Methods for a discussion of optical nonlinearity in D
2
NN]. 

Here we introduce an all-optical deep learning framework in which the neural network is 

physically formed by multiple layers of diffractive surfaces that work in collaboration to 

optically perform an arbitrary function that the network can statistically learn. Whereas the 

inference and prediction mechanism of the physical network is all optical, the learning part that 

leads to its design is done through a computer. We term this framework a diffractive deep neural 

network (D
2
NN) and demonstrate its inference capabilities through both simulations and 

experiments. Our D
2
NN can be physically created by using several transmissive and/or reflective 

layers, where each point on a given layer either transmits or reflects the incoming wave, 

representing an artificial neuron that is connected to other neurons of the following layers 

through optical diffraction (Fig. 2.1A). In accordance with the Huygens-Fresnel principle, our 

terminology is based on each point on a given layer acting as a secondary source of a wave, the 

amplitude and phase of which are determined by the product of the input wave and the complex-

valued transmission or reflection coefficient at that point. Therefore, an artificial neuron in a 

D
2
NN is connected to other neurons of the following layer through a secondary wave modulated 

in amplitude and phase by both the input interference pattern created by the earlier layers and the 

local transmission or reflection coefficient at that point. As an analogy to standard deep neural 

networks (Fig. 2.1D), one can consider the transmission or reflection coefficient of each point or 

neuron as a multiplicative “bias” term, which is a learnable network parameter that is iteratively 

adjusted during the training process of the diffractive network, using an error back-propagation 

method. After this numerical training phase, the D
2
NN design is fixed and the transmission or 
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reflection coefficients of the neurons of all layers are determined. This D
2
NN design, once 

  

Fig. 2.2 Experimental testing of 3D-printed D
2
NNs. (A and B) After the training phase, the final designs of five 

different layers (L1, L2, …, L5) of the handwritten digit classifier, fashion product classifier, and the imager D
2
NNs 

are shown. To the right of the network layers, an illustration of the corresponding 3D-printed D2NN is shown. (C 

and D) Schematic (C) and photo (D) of the experimental terahertz setup. An amplifier-multiplier chain was used to 

generate continuous-wave radiation at 0.4 THz, and a mixer-amplifier-multiplier chain was used for the detection at 

the output plane of the network. RF, radio frequency; f, frequency. 

physically fabricated using techniques such as 3D-printing or lithography, can then perform, at 

the speed of light, the specific task for which it is trained, using only optical diffraction and 



21 

 

passive optical components or layers that do not need power, thereby creating an efficient and 

fast way of implementing machine learning tasks. 

2.2 Results 

In general, the phase and amplitude of each neuron can be learnable parameters, providing a 

complex-valued modulation at each layer, which improves the inference performance of the 

diffractive network. For coherent transmissive networks with phase-only modulation, each layer 

can be approximated as a thin optical element (Fig. 2.1). Through deep learning, the phase values 

of the neurons of each layer of the diffractive network are iteratively adjusted (trained) to 

perform a specific function by feeding training data at the input layer and then computing the 

network’s output through optical diffraction. On the basis of the calculated error with respect to 

the target output, determined by the desired function, the network structure and its neuron phase 

values are optimized via an error back-propagation algorithm, which is based on the stochastic 

gradient descent approach used in conventional deep learning. 

To demonstrate the performance of the D
2
NN framework, we first trained it as a digit 

classifier to perform automated classification of handwritten digits, from 0 to 9 (Figs. 

2.1B and 2.2A). For this task, phase-only transmission masks were designed by training a five-

layer D2NN with 55,000 images (5000 validation images) from the MNIST (Modified National 

Institute of Standards and Technology) handwritten digit database
45

. Input digits were encoded 

into the amplitude of the input field to the D
2
NN, and the diffractive network was trained to map 

input digits into 10 detector regions, one for each digit. The classification criterion was to find 

the detector with the maximum optical signal, and this was also used as a loss function during the 

network training. 
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Fig. 2.3 Handwritten digit classifier D
2
NN. (A) A 3D-printed D

2
NN successfully classifies handwritten input 

digits (0, 1, …, 9) on the basis of 10 different detector regions at the output plane of the network, each 

corresponding to one digit. As an example, the output image of the 3D-printed D
2
NN for a handwritten input of “5” 

is demonstrated, where the red dashed squares represent the trained detector regions for each digit. Other examples 

of our experimental results are shown in fig. 2.13. (B) Confusion matrix and energy distribution percentage for our 

experimental results, using 50 different handwritten digits (five for each digit) that were 3D-printed, selected among 

the images for which numerical testing was successful. (C) Same as (B), except summarizing our numerical testing 

results for 10,000 different handwritten digits (~1000 for each digit), achieving a classification accuracy of 91.75% 

using a five-layer design. Our classification accuracy increased to 93.39% by increasing the number of diffractive 

layers to seven, using a patch of two additional diffractive layers added to an existing and fixed D2NN (fig. 2.6). 

After training, the design of the D
2
NN digit classifier was numerically tested using 10,000 

images from the MNIST test dataset (which were not used as part of the training or validation 
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image sets) and achieved a classification accuracy of 91.75% (Fig. 2.3C). In addition to the 

classification performance of the diffractive network, we also analyzed the energy distribution 

observed at the network output plane for the same 10,000 test digits (Fig. 2.3C), the results of 

which clearly demonstrate that the diffractive network learned to focus the input energy of each 

handwritten digit into the correct (i.e., the target) detector region, in accord with its training. 

With the use of complex-valued modulation and increasing numbers of layers, neurons, and 

connections in the diffractive network, our classification accuracy can be further improved (figs. 

2.5 and 2.6). For example, fig. 2.6 demonstrates a Lego-like physical transfer learning behavior 

for D2NN framework, where the inference performance of an already existing D
2
NN can be 

further improved by adding new diffractive layers—or, in some cases, by peeling off (i.e., 

discarding) some of the existing layers—where the new layers to be added are trained for 

improved inference (coming from the entire diffractive network: old and new layers). By using a 

patch of two layers added to an existing and fixed D2NN design (N = 5 layers), we improved our 

MNIST classification accuracy to 93.39% (fig. 2.6); the state-of-the-art convolutional neural 

network performance has been reported as 99.60 to 99.77% 
46–48

.  
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Fig. 2.4 Fashion product classifier D
2
NN. (A) As an example, the output image of the 3D-printed D2NN for a 

sandal input (Fashion-MNIST class 5) is demonstrated. The red dashed squares represent the trained detector 

regions for each fashion product. Other examples of our experimental results are shown in fig. 2.14. (B) Confusion 

matrix and energy distribution percentage for our experimental results, using 50 different fashion products (five per 

class) that were 3D-printed, selected among the images for which numerical testing was successful. (C) Same as (B), 

except summarizing our numerical testing results for 10,000 different fashion products (~1000 per class), achieving 

a classification accuracy of 81.13% using a five-layer design. By increasing the number of diffractive layers to 10, 

our classification accuracy increased to 86.60% (fig. 2.9). 

Following these numerical results, we 3D-printed our five-layer D2NN design (Fig. 2.2A), 

with each layer having an area of 8 cm by 8 cm, followed by 10 detector regions defined at the 

output plane of the diffractive network (Figs. 2.1B and 2.3A). We then used continuous-wave 
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illumination at 0.4 THz to test the network’s inference performance (Figs. 2.2, C and D). Phase 

values of each layer’s neurons were physically encoded using the relative thickness of each 3D-

printed neuron. Numerical testing of this five-layer D2NN design achieved a classification 

accuracy of 91.75% over ~10,000 test images (Fig. 2.3C). To quantify the match between these 

numerical testing results and our experiments, we 3D-printed 50 handwritten digits (five 

different inputs per digit), selected among the same 91.75% of the test images for which 

numerical testing was successful. For each input object that is uniformly illuminated with the 

terahertz source, we imaged the output plane of the D2NN to map the intensity distribution for 

each detector region that is assigned to a digit. The results (Fig. 2.3B) demonstrate the success of 

the 3D-printed diffractive neural network and its inference capability: The average intensity 

distribution at the output plane of the network for each input digit clearly reveals that the 3D-

printed D2NN was able to focus the input energy of the beam and achieve a maximum signal at 

the corresponding detector region assigned for that digit. Despite 3D-printing errors, possible 

alignment issues, and other experimental error sources in our setup, the match between the 

experimental and numerical testing of our five-layer D2NN design was found to be 88% (Fig. 

2.3B). This relatively small reduction in the performance of the experimental network compared 

to our numerical testing is especially pronounced for the digit 0 because it is challenging to 3D-

print the large void region at the center of the digit. Similar printing challenges were also 

observed for other digits that have void regions; e.g., 6, 8, and 9 (Fig. 2.3B). 

Next, we tested the classification performance of D2NN framework with a more complicated 

image dataset—i.e., the Fashion-MNIST dataset 
49

, which includes 10 classes, each representing 

a fashion product (t-shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and 
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ankle boots; see fig. 2.7 for sample images). In general, for a coherently illuminated D2NN, we 

can use the amplitude and/or phase channels of the input plane to represent data to be classified  

 

Fig. 2.5 MNIST training convergence plots A phase-only modulation D
2
NN (left column) and a complex valued 

(i.e., phase and amplitude) modulation D
2
NN (right column) as a function of the number of diffractive layers (N = 1 

and 5) and the number of neurons used in the network. The y-axis values in each plot report the MNIST digit 

classification accuracy and the loss values as a function of the epoch number for the testing datasets. For the same 

number of diffractive layers, using complex-valued modulation and increasing the spacing between each layer 

increase the number of connections of the diffractive network, further helping to improve its inference success (also 

see Fig. 2.8, top two rows). For N=1, layer distance (3cm) refers to the distance between the sample/output plane 

and the diffractive layer. The same physical neuron size was used in each case, matching the MNIST D
2
NN design 

reported in our main text. For each class, the detector width was 4.8 mm. We also obtained similar conclusions for 

the Fashion MNIST dataset results reported in Fig. 2.8. 
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or processed. In our digit classification results reported earlier, input objects were encoded by 

using the amplitude channel, and to demonstrate the utility of the phase channel of the network 

input, we encoded each input image corresponding to a fashion product as a phase-only object 

modulation. Our D2NN inference results (as a function of the number of layers, neurons, and 

connections) for classification of fashion products are summarized in figs. 2.8 and 2.9. To 

provide an example of our performance, a phase-only and a complex-valued modulation D2NN 

with N = 5 diffractive layers (sharing the same physical network dimensions as the digit 

classification D2NN shown in Fig. 2.2A) reached an accuracy of 81.13 and 86.33%, respectively 

(fig. 2.8). By increasing the number of diffractive layers to N = 10 and the total number of 

neurons to 0.4 million, our classification accuracy increased to 86.60% (fig. 2.9). For 

convolutional neural net–based standard deep learning, the state-of-the-art performance for 

Fashion-MNIST classification accuracy has been reported as 96.7%, using ~8.9 million learnable 

parameters and ~2.5 million neurons
50

. 

To experimentally demonstrate the performance of fashion product classification using a 

physical D2NN, we 3D-printed our phase-only five-layer design and 50 fashion products used as 

test objects (five per class) on the basis of the same procedures employed for the digit 

classification diffractive network (Figs. 2.2A and 2.3), except that each input object information 

was encoded in the phase channel. Our results are summarized in Fig. 2.4, revealing a 90% 

match between the experimental and numerical testing of our five-layer D2NN design, with five 

errors out of 50 fashion products. Compared with digit classification (six errors out of 50 

digits; Fig. 2.3), this experiment yielded a slightly better match between the experimental and 

numerical testing results (despite the more challenging nature of Fashion-MNIST dataset), 

perhaps because we used the phase channel, which does not suffer from the challenges 
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associated with 3D-printing of void regions [such as in digits 0, 6, 8, and 9 (Fig. 2.3)], to encode 

input image information for fashion products. 

Next, we tested the performance of a phase-only D2NN, composed of five 3D-printed 

transmission layers to implement amplitude imaging (Fig. 2.2B). This network was trained using 

the ImageNet database
51

 to create a unit-magnification image of the input optical field amplitude 

at its output plane (~9 cm by 9 cm)—that is, the output image has the same physical size as the 

input object. As illustrated in fig. 2.10, A and C, the trained network initially connects every 

amplitude point at the input plane to various neurons and features of the following layers, which 

then focus the light back to a point at the output (i.e., image) plane, which is, as expected, quite 

different than the case of free-space diffraction (i.e., without the presence of the diffractive 

network), illustrated in fig. 2.10, B and D. 

After training and blind testing, which served to numerically prove the imaging capability of 

the network (figs. 2.10 and 2.11), we then 3D-printed this designed D2NN. Using the same 

experimental setup shown in Fig. 2.2, C and D, we imaged the output plane of the 3D-printed 

D2NN for various input objects that were uniformly illuminated by continuous-wave radiation at 

0.4 THz. Figure 2.12 summarizes our experimental results achieved with this 3D-printed D2NN, 

which successfully projected unit-magnification images of the input patterns at the output plane 

of the network, learning the function of an imager, or a physical auto-encoder. To evaluate the 

point spread function of this D2NN, we imaged pinholes with different diameters (1, 2, and 3 

mm), which resulted in output images, each with a full width at half maximum of 1.5, 1.4, and 

2.5 mm, respectively (fig. 2.12B). Our results also revealed that the printed network can resolve 

a linewidth of 1.8 mm at 0.4 THz (corresponding to a wavelength of 0.75 mm in air), which is 



29 

 

slightly worse in resolution compared with the numerical testing of our D2NN design, where the 

network could resolve a linewidth of ~1.2 mm (fig. 2.11C). This experimental degradation in the 

performance of the diffractive network can be due to factors such as 3D-printing errors, potential 

misalignments, and absorption-related losses in the 3D-printed network. 

 

Fig. 2.6 Lego-like transfer learning approach (Top) MNIST training convergence plot of a complex-valued 

modulation D
2
NN for N = 5 layers and 0.2 million neurons in total. The y-axis values report the MNIST digit 

classification accuracy and the loss values as a function of the epoch number for the testing dataset. (Middle) We 

illustrate a Lego-like physical transfer learning behavior for D
2
NN framework, i.e., additional layers are patched to 

an existing D
2
NN to improve its inference performance. In this example shown here, we trained 2 additional layers 

that were placed right at the 23 exit of an existing (i.e., fixed) 5-layer D
2
NN. (Bottom) After the training of the 
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additional 2 layers, the inference success of the resulting “patched” diffractive neural network has reached 93.39% 

for MNIST testing dataset. For each class, the detector width was 0.8 mm. Also see fig. 2.20 for a comparison of 

detector widths. 

2.3 Discussion 

Optical implementation of machine learning in artificial neural networks is promising 

because of the parallel computing capability and power efficiency of optical systems
52–54

. 

Compared with previous optoelectronics-based learning approaches
52,55–57

, the D2NN framework 

provides a distinctive all-optical machine learning engine that efficiently operates at the speed of 

light using passive components and optical diffraction. An important advantage of D2NNs is that 

they can be easily scaled up using various high-throughput and large-area 3D-fabrication 

methods (such as soft lithography and additive manufacturing), as well as wide-field optical 

components and detection systems, to cost-effectively reach tens to hundreds of millions of 

neurons and hundreds of billions of connections in a scalable and power-efficient manner. For 

example, integration of D2NNs with lensfree on-chip imaging systems
15,17

 could provide extreme 

parallelism within a cost-effective and portable platform. Such large-scale D2NNs may be 

transformative for various applications, including image analysis, feature detection, and object 

classification, and may also enable new microscope or camera designs that can perform specific 

imaging tasks using D2NNs. To achieve these new technologies, nonlinear optical materials and a 

monolithic D2NN design that combines all layers of the network as part of a 3D-fabrication 

method would be desirable. Among other techniques, laser lithography based on two-photon 

polymerization
58

 can provide solutions for creating such D2NNs. 
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Fig. 2.7 Fashion-MNIST sample images.  Some sample images for each class of the Fashion MNIST dataset. 

2.4 Materials and Methods 

TensorFlow-based design and 3D-printing of a D
2
NN. We implemented D

2
NN design 

using TensorFlow (Google Inc.) framework, as shown in Fig. 2.15. Because we consider 

coherent illumination, the input information can be encoded in the amplitude and/or phase 
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channels of the input plane. The free-space propagation module is implemented using the angular 

spectrum method. To help with the 3D-printing and fabrication of the D
2
NN design, a sigmoid 

function was used to limit the phase value of each neuron to 0-2. For each layer of the D
2
NN, 

we set the neuron size to be 400 µm and 300 µm, for the digit classifier network and the lens 

network, respectively. With a higher resolution 3D-printer or fabrication method, smaller 

neurons can also be used in our D
2
NN design to increase the number of neurons and connections 

to learn more complicated tasks. Furthermore, as illustrated in Fig. 2.11A, the number of the 

network layers and the axial distance between the layers are also design parameters. 

At the detector/output plane, we measured the intensity of the network output, and as a loss 

function to train the imaging D
2
NN, we used its mean square error (MSE) against the target 

image. The classification D
2
NN was also trained using a nonlinear loss function, where we 

aimed to maximize the normalized signal of each target’s corresponding detector region, while 

minimizing the total signal outside of all the detector regions (see Fig. 2.3A). We used the 

stochastic gradient descent algorithm, Adam
59

,
 
to back-propagate the errors and update the layers 

of the network to minimize the loss function. The digit classifier and lens D
2
NNs were trained 

with MNIST
45

 and ImageNet
51

 datasets, respectively, and achieved the desired mapping 

functions between the input and output planes after 10 and 50 epochs, respectively. The training 

batch size was set to be 8 and 4, for the digit classifier network and the imaging network, 

respectively. The training phase of the fashion product classifier network shared the same details 

as the digit classifier network, except using the Fashion MNIST dataset
49

. The networks were 

implemented using Python version 3.5.0. and TensorFlow framework version 1.4.0 (Google Inc.). 

Using a desktop computer (GeForce GTX 1080 Ti Graphical Processing Unit, GPU and Intel(R) 

Core(TM) i7-7700 CPU @3.60GHz), the above-outlined TensorFlow based design of a D
2
NN 
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architecture took ~8 and 10 hours to train for the digit classifier and the lens network, 

respectively.  

 

Fig. 2.8 Fashion-MNIST training convergence plots. Fashion MNIST results achieved with D
2
NN framework. 

Training convergence plots of phase-only as well as complex-valued modulation D
2
NNs (for N=5 and N=10 layers). 

The y-axis values in each plot report the Fashion MNIST classification accuracy and the loss values as a function of 

the epoch number for the testing datasets. The 1st row and 2nd row refer to the same diffractive neural network 

design (N=5 and 0.2 million neurons in total), except with one difference, the physical space between the layers: 1 

cm vs. 3cm, respectively, which affects the number of connections in the network. As expected, the fully connected 

networks (with 3cm layer-tolayer distance) have better inference performance compared to the 1st row that has 1cm 
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layer-to-layer distance. For each class, the detector width was 4.8 mm 

After the training phase of the optimized D
2
NN architecture, the 3D model of the network 

layers to be printed was generated by Poisson surface reconstruction
60

 (see Fig. 2.16). First, 

neurons’ phase values were converted into a relative height map (∆𝑧 = 𝜆𝜙/2𝜋∆𝑛), where ∆𝑛 is 

the refractive index difference between the 3D printing material (VeroBlackPlus RGD875) and 

air. The refractive index 𝑛 and the extinction coefficient (𝑘) of this 3D-printing material at 0.4 

THz were measured as 1.7227 and 0.0311, respectively, which corresponds to an attenuation 

coefficient of 𝛼 = 520.7177 𝑚−1 . Before the 3D printing process, we also added a uniform 

substrate thickness of 0.5 mm to each layer of a D
2
NN. A 3D mesh processing software, 

Meshlab
61

, was used to calculate the 3D structure, which was then used as input to a 3D-printer 

(Objet30 Pro 3D, Stratasys Ltd, Eden Prairie, Minnesota USA). For the training of MNIST digit 

classifier D
2
NN and Fashion-MNIST classifier D

2
NN, we padded input images with zeros to fit 

the input aperture of the diffractive network (8 cm x 8 cm). In our THz experiments we used 

aluminum foil to create zero transmission regions at the input plane, to match our training 

settings for each D
2
NN design. 

Following the corresponding D
2
NN design, the axial distance between two successive 3D-

printed layers was set to be 3.0 cm and 4.0 mm for the digit classifier and lens networks, 

respectively. The larger axial distance between the successive layers of the digit classifier D
2
NN 

increased the number of neuron connections to ~8 billion, which is approximately 100-fold 

larger compared to the number of the neuron connections of the imaging D
2
NN, which is much 

more compact in depth (see Figs. 2.2(A, B)).  
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Fig. 2.9. Convergence plot of a complex-valued modulation D
2
NN.  Complex modulation D

2
NN that has N=10 

and 0.4 million neurons in total, for Fashion MNIST classification that achieves a blind testing accuracy of 86.60%. 

For each class, the detector width was 0.8 mm. 

Terahertz Set-up. The schematic diagram of the experimental setup is given in Fig. 2.2C. 

The electromagnetic wave was generated through a WR2.2 modular amplifier/multiplier chain 

(AMC) made by Virginia Diode Inc. (VDI). A 16 dBm sinusoidal signal at 11.111 GHz (𝑓𝑅𝐹1) 

was sent as RF input signal and multiplied 36 times by AMC to generate continuous-wave (CW) 

radiation at 0.4 THz. We used a horn antenna compatible with WR 2.2 modular AMC. The 

source was electrically-modulated at 1 KHz. The illumination beam profile was characterized as 

a Gaussian (Fig. 2.17), and the distance between the object and the source planes was selected as 

81 mm, 173 mm and 457 mm to provide a beam spot size of 20 mm, 40 mm and 104 mm, full-

width half-maximum (FWHM), for the imaging D
2
NN and the digit classification D

2
NN, 

respectively. The beam passed through the input object and then the optical neural network, 

before reaching the output plane, which was scanned by a single-pixel detector placed on an XY 

positioning stage. This XY stage was built by placing two linear motorized stages (Thorlabs 

NRT100) vertically to allow precise control of the position of the detector. The detector scanning 
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step size was set to be 600 μm, 1.2 mm and 1.6 mm for the imaging lens, the digit classification 

D
2
NN and the fashion classifier D

2
NN, respectively. The distance between detector/output plane 

and the last layer of the optical neural network was adjusted as 3 cm and 7 mm for the classifier 

D
2
NN and the lens D

2
NN, respectively. We used a Mixer/AMC made by VDI to detect the 

amplitude of the transmitted wave (𝑓𝑜𝑝𝑡). A 10-dBm sinusoidal signal at 11.138 GHz (fRF2) was 

used as a local oscillator. This signal was multiplied by 36 through the multiplier and mixed with 

the detected signal. The mixing product (𝑓𝐼𝑅 = |𝑓𝑅𝐹1 − 𝑓𝑜𝑝𝑡|) was obtained at 1 GHz frequency. 

This down-converted signal passed through an amplification stage which consisted of two low-

noise amplifiers (Mini-Circuits ZRL-1150-LN+) to amplify the signal by 80 dBm and a 1 GHz 

(+/-10 MHz) bandpass filter (KL Electronics 3C40-1000/T10-O/O) to get rid of the noise coming 

from unwanted frequency bands. After this, the signal went through a low-noise power detector 

(Mini-Circuits ZX47-60) and the output voltage was read by a lock-in amplifier (Stanford 

Research SR830). The modulation signal was used as the reference signal for the lock-in 

amplifier. The dynamic range of the setup was measured as 80 dB. 
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Fig. 2.10: Wave propagation within an imaging D
2
NN. (A, C) To provide insights to the operation principles of a 

D
2
NN, we show the amplitude and phase information of the wave that is propagating within a D

2
NN, trained for 

amplitude imaging. The object was composed of 3 Dirac-delta functions spread in x direction. (B, D) Same as in (A, 

C), except without the D
2
NN. ‘L’ refers to each diffractive layer of the network. (C) and (D) show the cross-

sectional view along the z direction indicated by the dashed lines in (A) and (B), respectively.  
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Wave analysis in a D
2
NN. Following the Rayleigh-Sommerfeld diffraction equation

62
, one 

can consider every single neuron of a given D
2
NN layer as a secondary source of a wave that is 

composed of the following optical mode: 

                     𝑤𝑖
𝑙(𝑥, 𝑦, 𝑧) =

𝑧−𝑧𝑖

𝑟2 (
1

2𝜋𝑟
+

1

𝑗𝜆
) 𝑒𝑥𝑝 (

𝑗2𝜋𝑟

𝜆
),                  (2.1) 

where l represents the l-th layer of the network, i represents the i-th neuron located at 

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) of layer l, 𝜆 is the illumination wavelength, 𝑟 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)
2 + (𝑧 − 𝑧𝑖)

2 

and 𝑗 = √−1. The amplitude and relative phase of this secondary wave are determined by the 

product of the input wave to the neuron and its transmission coefficient (𝑡), both of which are 

complex-valued functions. Based on this, for the l-th layer of the network, one can write the 

output function (𝑛𝑖
𝑙) of the i-th neuron located at (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) as:  

𝑛𝑖
𝑙(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) = 𝑤𝑖

𝑙(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)𝑡𝑖
𝑙(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) ∑ 𝑛𝑘

𝑙−1(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑘 = 𝑤𝑖
𝑙(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)|𝐴|𝑒𝑗𝛥𝜃      (2.2) 

where we define 𝑚𝑖
𝑙(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) = ∑ 𝑛𝑘

𝑙−1(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑘  as the input wave to i-th neuron of layer l, 

|𝐴| refers to the relative amplitude of the secondary wave, and ∆𝜃 refers to the additional phase 

delay that the secondary wave encounters due to the input wave to the neuron and its 

transmission coefficient. These secondary waves diffract between the layers and interfere with 

each other forming a complex wave at the surface of the next layer, feeding its neurons. The 

transmission coefficient of a neuron is composed of amplitude and phase terms, i.e., 

𝑡𝑖
𝑙(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) = 𝑎𝑖

𝑙(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑒𝑥𝑝(𝑗𝜙𝑖
𝑙(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)) , and for a phase-only D

2
NN architecture the 

amplitude 𝑎𝑖
𝑙(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is assumed to be a constant, ideally 1, ignoring the optical losses, which 

is discussed in “Optical Losses in a D
2
NN”. In general, a complex-valued modulation at each 

network layer improves the inference performance of the diffractive network (see e.g., figs. 2.5 
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and 2.8). 

 

Fig. 2.11: Design of a transmissive D2NN as an imaging lens. (A) The performance of the imaging lens D
2
NN is 

optimized by tuning the physical layout of its architecture, including the number of layers (left) and the axial 

distance between the two consecutive layers (right). SSIM (structural similarity index) was used in this analysis, and 

we selected 5 layers with an axial distance of 4mm between two successive layers in order to maximize the network 

performance, while also minimizing its structural complexity - see the Supplementary Methods. (B) After the 

selection of the optimal neural network layout, the D
2
NN was trained using ImageNet dataset. After its training, we 

blindly evaluated the performance of the resulting D
2
NN with test images to demonstrate its success in imaging 

arbitrary input objects. (C) Blind testing results revealed that the trained D
2
NN can resolve at its output plane a 

linewidth of 1.2 mm. As shown in the 3
rd

 image on the right (D
2
NN With Errors), the Poisson surface reconstruction 
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errors, absorption related losses at different layers and a random misalignment error of 0.1 mm for each layer of the 

network design have little effect on the imaging performance of the D
2
NN. For comparison, the last image on the 

right shows the diffracted image at the output plane, without the presence of the D
2
NN 

Forward Propagation Model. The forward model of our D
2
NN architecture is illustrated in 

Fig. 2.1A and its corresponding TensorFlow implementation is summarized in Fig. 2.15A. To 

simplify the notation of the forward model, we can rewrite Eq. (2.2) as follows: 

                                                       {

 𝑛𝑖,𝑝
𝑙 = 𝑤𝑖,𝑝

𝑙 ∙ 𝑡𝑖
𝑙 ∙ 𝑚𝑖

𝑙   

𝑚𝑖
𝑙 = ∑ 𝑛𝑘,𝑖

𝑙−1
𝑘       

𝑡𝑖
𝑙 = 𝑎𝑖

𝑙𝑒𝑥𝑝(𝑗𝜙𝑖
𝑙)

,          (2.3) 

where i refers to a neuron of the l-th layer, and p refers to a neuron of the next layer, 

connected to neuron i by optical diffraction. The same expressions would also apply for a 

reflective D
2
NN with a reflection coefficient per neuron: 𝑟𝑖

𝑙 . The input pattern ℎ𝑘
0 , which is 

located at layer 0 (i.e., the input plane), is in general a complex-valued quantity and can carry 

information in its phase and/or amplitude channels (assuming a coherent D
2
NN). Without loss of 

generality, here we consider that the information of the input is encoded in its amplitude channel 

at layer 0 and the resulting wave function due to the diffraction of the illumination plane-wave 

interacting with the input can be written as: 

                                            𝑛𝑘,𝑝
0 = 𝑤𝑘,𝑝

0 ∙ ℎ𝑘
0,                        (2.4) 
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Fig. 2.12 Experimental results for imaging lens D
2
NN. (A) Output images of the 3D-printed lens D

2
NN are 

shown for different input objects: ‘U’, ‘C’, ‘L’ and ‘A’. To be able to 3D-print letter ‘A’, the letter was slightly 

modified as shown in the bottom-left corner of the corresponding image panel. For comparison, free-space 

diffraction results corresponding to the same objects, achieved over the same sample-output plane distance (29.5 

mm) without the 3D-printed network, are also shown. (B) Same as in (A), except the input objects were pinholes 

with diameters of 1 mm, 2 mm and 3 mm. (C) D
2
NN can resolve a line-width of 1.8 mm at its output plane. (D) 

Using a 3-mm pinhole that is scanned in front of the 3D-printed network, we evaluated the tolerance of the physical 

D
2
NN as a function of the axial distance. For four different locations on the input plane of the network, i.e., P1-P3, in 

(D) and P0 in (B), we obtained very similar output images for the same 3-mm pinhole. The 3D-printed network was 

found to be robust to axis defocusing up to ~12 mm from the input plane. While there are various other powerful 

methods to design lenses
63–65

, the main point of these results is the introduction of the diffractive neural network as 

an all-optical machine learning engine that is scalable and power-efficient to implement various functions using 

passive optical components, which present large degrees of freedom that can be learned through training data. 

which connects the input to the neurons of layer 1. Assuming that the D
2
NN design is composed 



42 

 

of M layers (excluding the input and output planes), then a detector at the output plane measures 

the intensity of the resulting optical field: 

                                                            𝑠𝑖
𝑀+1 = |𝑚𝑖

𝑀+1|
2
.                   (2.5) 

The comparison of the forward model of a conventional artificial neural network and a 

diffractive neural network is summarized in Fig. 2.1D. Based on this forward model, the results 

of the network output plane are compared with the targets (for which the diffractive network is 

being trained for) and the resulting errors are back-propagated to iteratively update the layers of 

the diffractive network, which will be detailed next. 

Error Backpropagation. To train a D
2
NN design, we used the error back-propagation 

algorithm along with the stochastic gradient descent optimization method. A loss function was 

defined to evaluate the performance of the D
2
NN output with respect to the desired target, and 

the algorithm iteratively optimized the diffractive neural network parameters to minimize the 

loss function. Without loss of generality, in our D
2
NN architecture, we defined the loss function 

(𝐸) using the mean square error between the output plane intensity 𝑠𝑖
𝑀+1 and the target, 𝑔𝑖

𝑀+1: 

                                                   𝐸(𝜙𝑖
𝑙) =

1

𝐾
∑ (𝑠𝑘

𝑀+1 − 𝑔𝑘
𝑀+1)2

𝑘 ,                   (2.6) 

where K refers to the number of measurement points at the output plane. Based on this error 

definition, the optimization problem for a D
2
NN design can be written as 

                                                 min
𝜙𝑖

𝑙 𝐸 (𝜙𝑖
𝑙), 𝑠. 𝑡.        0 ≤ 𝜙𝑖

𝑙 < 2𝜋                                   (2.7) 

To apply the backpropagation algorithm for training a D
2
NN, the gradient of the loss 

function with respect to all the trainable network variables needs to be calculated, which is then 
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used to update the network layers during each cycle of the training phase. The gradient of the 

error with respect to 𝜙𝑖
𝑙 of a given layer l can be calculated as:  

                
𝜕𝐸(𝜙𝑖

𝑙)

𝜕𝜙𝑖
𝑙 =

4

𝐾
∑ (𝑠𝑘

𝑀+1 − 𝑔𝑘
𝑀+1)𝑘 ∙ 𝑅𝑒𝑎𝑙{(𝑚𝑘

𝑀+1)∗ ∙
𝜕𝑚𝑘

𝑀+1

𝜕𝜙𝑖
𝑙 }.                                  (2.8) 

In Eq. (2.8), 
𝜕𝑚𝑘

𝑀+1

𝜕𝜙𝑖
𝑙  quantifies the gradient of the complex-valued optical field at the output 

layer (𝑚𝑘
𝑀+1 = ∑ 𝑛𝑘1,𝑘

𝑀
𝑘1

) with respect to the phase values of the neurons in the previous layers, 

𝑙 ≤ 𝑀. For every layer, 𝑙, this gradient can be calculated using: 

𝜕𝑚𝑘
𝑀+1

𝜕𝜙𝑖
𝑙=𝑀 = 𝑗 ∙ 𝑡𝑖

𝑀 ∙ 𝑚𝑖
𝑀 ∙ 𝑤𝑖,𝑘

𝑀 ,             (2.9) 

𝜕𝑚𝑘
𝑀+1

𝜕𝜙𝑖
𝑙=𝑀−1 = 𝑗 ∙ 𝑡𝑖

𝑀−1 ∙ 𝑚𝑖
𝑀−1 ∙ ∑ 𝑤𝑘1,𝑘

𝑀 ∙ 𝑡𝑘1

𝑀 ∙ 𝑤𝑖,𝑘1

𝑀−1
𝑘1

,        (2.10) 

𝜕𝑚𝑘
𝑀+1

𝜕𝜙𝑖
𝑙=𝑀−2 = 𝑗 ∙ 𝑡𝑖

𝑀−2 ∙ 𝑚𝑖
𝑀−2 ∙ ∑ 𝑤𝑘1,𝑘

𝑀 ∙ 𝑡𝑘1

𝑀 ∙ ∑ 𝑤𝑘2,𝑘1

𝑀−1 ∙ 𝑡𝑘2

𝑀−1 ∙ 𝑤𝑖,𝑘2

𝑀−2
𝑘2𝑘1

,                 (2.11) 

…. 

𝜕𝑚𝑘
𝑀+1

𝜕𝜙𝑖
𝑙=𝑀−𝐿 = 𝑗 ∙ 𝑡𝑖

𝑀−𝐿 ∙ 𝑚𝑖
𝑀−𝐿 ∙ ∑ 𝑤𝑘1,𝑘

𝑀 ∙ 𝑡𝑘1

𝑀 ∙∙∙∙∙ ∑ 𝑤𝑘𝐿,𝑘𝐿−1

𝑀−𝐿+1 ∙ 𝑡𝑘𝐿

𝑀−𝐿+1 ∙ 𝑤𝑖,𝑘𝐿

𝑀−𝐿
𝑘𝐿𝑘1

,                (2.12) 

where, 3 ≤ L ≤ M -1. In the derivation of these partial derivatives, an important observation is 

that, for an arbitrary neuron at layer l ≤ M, one can write: 

       
𝜕𝑛𝑘2,𝑘1

𝑙

𝜕𝜙𝑖
𝑙 = {

𝑗 ∙ 𝑡𝑖
𝑙 ∙ 𝑚𝑖

𝑙 ∙ 𝑤𝑖,𝑘1

𝑙 , 𝑓𝑜𝑟 𝑘2 = 𝑖

0,           𝑓𝑜𝑟 𝑘2 ≠ 𝑖
,                                       (2.13) 

where 𝑘1,2 represent dummy variables. During each iteration of the error backpropagation, a 

small batch of the training data is fed into the diffractive neural network to calculate the above 
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gradients for each layer and accordingly update the D
2
NN. 

 

Fig. 2.13 Sample experimental results for digit classifier D
2
NN. Summary of some of the experimental results 

achieved with our 3D-printed handwritten digit classification D
2
NN. The energy distribution percentage 

corresponding to each digit at the output plane shows that D
2
NN has the maximum energy focused on the target 

detector region of each digit (also see Fig. 2.3). 

Comparison with standard deep neural networks. Compared to standard deep neural 

networks, a D
2
NN is not only different in that it is a physical and all-optical deep network, but 

also it possesses some unique architectural differences. First, the inputs for neurons are complex-

valued, determined by wave interference and a multiplicative bias, i.e., the 

transmission/reflection coefficient. Complex-valued deep neural networks (implemented in a 
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computer) with additive bias terms have been recently reported as an alternative to real-valued 

networks, achieving competitive results on e.g., music transcription
66

. In contrast, this work 

considers a coherent diffractive network modelled by physical wave propagation to connect 

various layers through the phase and amplitude of interfering waves, controlled with 

multiplicative bias terms and physical distances. Second, the individual function of a neuron is 

the phase and amplitude modulation of its input to output a secondary wave, unlike e.g., a 

sigmoid, a rectified linear unit (ReLU) or other nonlinear neuron functions used in modern deep 

neural networks. Although not implemented here, optical nonlinearity can also be incorporated 

into a diffractive neural network in various ways; see the sub-section “Optical Nonlinearity in 

Diffractive Neural Networks”. Third, each neuron’s output is coupled to the neurons of the next 

layer through wave propagation and coherent (or partially-coherent) interference, providing a 

unique form of interconnectivity within the network. For example, the way that a D
2
NN adjusts 

its receptive field, which is a parameter used in convolutional neural networks, is quite different 

than the traditional neural networks, and is based on the axial spacing between different network 

layers, the signal-to-noise ratio (SNR) at the output layer as well as the spatial and temporal 

coherence properties of the illumination source. The secondary wave of each neuron will in 

theory diffract in all angles, affecting in principle all the neurons of the following layer. However, 

for a given spacing between the successive layers, the intensity of the wave from a neuron will 

decay below the detection noise floor after a certain propagation distance; the radius of this 

propagation distance at the next layer practically sets the receptive field of a diffractive neural 

network and can be physically adjusted by changing the spacing between the network layers, the 

intensity of the input optical beam, the detection SNR or the coherence length and diameter of 

the illumination source. 
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Imaging D
2
NN Architecture. Structural similarity index, SSIM

67
 values between the D

2
NN 

output plane and the ground truth (i.e., target images) were calculated to optimize the  

 

Fig. 2.14 Sample experimental results for fashion product classifier D
2
NN. Summary of some of the 

experimental results achieved with our 3D-printed fashion product classification D
2
NN. The energy distribution 
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percentage corresponding to each product at the output plane shows that D
2
NN has the maximum energy focused on 

the target detector region of each product (also see Fig. 2.4) 

architecture of the diffractive neural network. This way, we optimized the number of network 

layers and the axial distance between two consecutive layers as shown in Fig. 2.11A. The SSIM 

plots in Fig. 2.11A were calculated by averaging the results of 100 test images randomly selected 

from ImageNet.  

Note also that, based on the large area of the 3D-printed imaging network layers (9  9 cm) 

and the short axial distance between the input (output) plane and the first (last) layer of the 

network, i.e., 4 mm (7 mm), one can infer that the theoretical numerical aperture of our system 

approaches 1 in air (see Fig. 2.2B). During the training phase, however, our diffractive network 

learned to utilize only part of this spatial frequency bandwidth, which should be due to the 

relatively large-scale of the image features that we used in the training image set (randomly 

selected from ImageNet database). If a higher resolution imaging system is desired, images that 

contain much finer spatial features can be utilized as part of the training phase to design a D
2
NN 

that can approach the theoretical diffraction-limited numerical aperture of the system. One can 

also change the loss function definition used in the training phase to teach the diffractive neural 

network to enhance the spatial resolution; in fact deep learning provides a powerful framework 

to improve image resolution by engineering the loss function used to train a neural network
39,44

. 

Dataset Preprocessing. To train and test the D
2
NN as a digit classifier, we utilized MNIST 

handwritten digit database
45

 which is composed of 55,000 training images, 5,000 validation 

images and 10,000 testing images. Images were up-sampled to match the size of the D
2
NN 

model. For the training and testing of the imaging D
2
NN, we used ImageNet where we randomly 
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selected a subset of 2000 images. We converted each color image into grayscale and resized it to 

match our D
2
NN design. (We should note that color image data can also be applied to D2NN 

framework using different approaches although we did not consider it in our work since we  

 

Fig. 2.15: TensorFlow implementation of a diffractive deep neural network. (A) The resulting complex field of 

free-space propagated field is multiplied with a complex modulator at each layer and is then transferred to the next 

layer. To help with the 3D-printing and fabrication of the D
2
NN design, a sigmoid function was used to constrain the 

phase value of each neuron. (B) MNIST and ImageNet datasets were used to train the D
2
NN for handwritten digit 

classification and imaging lens tasks, respectively. Fashion MNIST dataset was used for training the fashion product 

classifier D
2
NN. The resulting complex fields and phase patterns of each layer are demonstrated at different epochs 

of the training phase.  

utilized a single wavelength THz system for testing. For colorful images, as an example, Red, 

Green and Blue image channels can be used as parallel input channels to a diffractive neural 
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network) The selected images were then randomly divided into 1500 training images, 200 

validation images and 300 testing images. We also obtained very similar imaging performance 

by using 10,000 images in the training phase; this is expected since each training image contains 

various spatial features at different parts of the image, all of which provide valuable patches of 

information for successfully training our diffractive imaging network. 

To test the performance of the D
2
NN digit classifier experimentally, 50 handwritten digits 

were extracted from MNIST test database. To solely quantify the match between our numerical 

testing results and experimental testing, these 3D-printed handwritten digits were selected among 

the same 91.75% of the test images that numerical testing was successful. The digits were up-

sampled and binarized, as implemented during the training process. Binarized digits were stored 

as a vector image, in .svg format, before they were 3D printed. The images were then fed into 

Autodesk Fusion Software to generate their corresponding 3D model. To provide amplitude only 

image inputs to digit classifier D
2
NN, the 3D-printed digits were coated with aluminum foil to 

block the light transmission in desired regions. 

To test our D
2
NN framework with a more challenging classification task, we used the 

Fashion MNIST database which has more complicated targets as exemplified in Fig. 2.7. Some 

of these target classes, such as pullovers (class 2), coats (class 4) and shirts (class 6), are very 

similar to each other, making it difficult for different classification methods. For example, the 

state-of-the-art DENSER convolutional neural network achieves 95.3% classification accuracy 

on Fashion MNIST dataset compared with 99.7% for MNIST dataset
49

. In order to train a D
2
NN 

with Fashion MNIST database, we encoded the target fashion product images into the phase 

channel of the input plane instead of the amplitude channel. Grayscale images corresponding to 
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fashion products were scaled between 0 and 2 as the phase-only input to the diffractive neural 

network, and other details of the Fashion MNIST experiments were similar as in MNIST 

classification experiments. 

D
2
NN Neuron Numbers and Connectivity. D

2
NN uses optical diffraction to connect the  

 

Fig. 2.16: 3D model reconstruction of a D
2
NN layer for 3D-printing. We apply Poisson surface reconstruction to 

generate the 3D model of each D
2
NN layer for 3D printing. The phase mask is first converted to a height map with 

the knowledge of the material refractive index, and the enclosed point cloud is formed by adding the substrate points. 

The 3D model is then generated by calculating the surface normal and performing the Poisson reconstruction. The 

final step is the 3D-printing of the D
2
NN model. 

neurons at different layers of the network. The maximum half-cone diffraction angle can be 

formulated as 𝜑𝑚𝑎𝑥 = sin−1(𝜆𝑓𝑚𝑎𝑥), where 𝑓𝑚𝑎𝑥 = 1 2𝑑𝑓⁄  is the maximum spatial frequency 

and 𝑑𝑓 is the layer feature size
62

. In this work, we demonstrated the proof-of-concept of D
2
NN 

architecture at 0.4 THz by using low-cost 3D-printed layers. The 3D printer that we used has a 

spatial resolution of 600 dpi with 0.1 mm accuracy and the wavelength of the illumination 
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system is 0.75 mm in air.  

For the digit and fashion product classification D
2
NNs, we set the pixel size to 400 µm for 

packing 200×200 neurons over each layer of the network, covering an area of 8 cm × 8 cm per 

layer. We used 5 transmissive diffraction layers with the axial distance between the successive 

layers set to be 3cm. These choices mean that we have a fully-connected diffractive neural 

network structure because of the relatively large axial distance between the two successive layers 

of the diffractive network. This corresponds to 200 × 200 × 5=0.2 million neurons (each 

containing a trainable phase term) and (200×200)
2×5=8.0 billion connections (including the 

connections to the output layer). This large number of neurons and their connections offer a large 

degree-of-freedom to train the desired mapping function between the input amplitude (digit 

classification) or input phase (fashion product classification) and the output intensity 

measurement for classification of input objects. 

For the imaging lens D
2
NN design, the smallest feature size was ~0.9 mm with a pixel size 

set of 0.3 mm, which corresponds to a half-cone diffraction angle of ~25°. The axial distance 

between two successive layers is set to be 4 mm for 5 layers, and the width of each layer was 9 

cm × 9 cm. This means the amplitude imaging D
2
NN design had 300×300×5=0.45 million 

neurons, each having a trainable phase term. Because of the relatively small axial distance (4 mm) 

between the successive layers and the smaller diffraction angle due to the larger feature size, we 

have <0.1 billion connections in this second D
2
NN design (including the connections to the 

output layer, which is 7 mm away from the 5
th

 layer of the diffractive network). Compared to the 

handwritten digit classification D
2
NN, this amplitude imaging one is much more compact in the 

axial direction as also pictured in Fig. 2.2(A, B).  
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Finally, we would like to emphasize that there are some unique features of a D
2
NN that make 

it easier to handle large scale connections (e.g., 8 billion connections as reported in Fig. 2.2A). 

The connectivity of a D
2
NN is controlled by the size of each neuron of a given layer (defining 

the diffraction angle) and the axial spacing between the layers. For example, consider a 5-layer 

D
2
NN design with a certain fixed neuron size; for this design, one can have a very low number 

of neural connections by closely placing the layers, one after another. On the other hand, one can 

also make the same design fully-connected by simply increasing the axial spacing between the 

layers, significantly increasing the number of connections. Interestingly, these two extreme 

designs (that vary significantly in their number of connections) would be identical in terms of 

training complexity because the computation time and complexity of digital wave propagation 

between layers is a not a function of the axial distance. Therefore largely spaced D
2
NN layers 

that form a fully connected network would be identical (in terms of their computational 

implementation complexity) to partially-connected D
2
NN designs that have shorter axial distance 

between the layers (also see Figure 2.8, top two rows, for an example on this comparison). 

 

Fig. 2.17: Terahertz Source Characterization. (A) Beam profiles were imaged at three different axial locations to 

quantify the beam parameters, based on which the Terahertz light source can be approximated as a Gaussian beam. 

(B, C) The plots show the radius of the source wavefront and its full width at half maximum (FWHM) as a function 
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of the source-object distance. For both of the 3D-printed D
2
NN designs, the illumination at the object/input plane 

can be approximated as a plane wave. 

Performance analysis of D
2
NN as a function of the number of layers and neurons. A 

single diffractive layer cannot achieve the same level of inference that a multi-layer D
2
NN 

structure can perform. Multi-layer architecture of D
2
NN provides a large degree-of-freedom 

within a physical volume to train the transfer function between its input and the output planes, 

which, in general, cannot be replaced by a single phase-only or complex modulation layer 

(employing phase and amplitude modulation at each neuron).  

To expand on this, we would like to first show that, indeed, a single diffractive layer 

performance is quite primitive compared to a multi-layered D
2
NN. As shown in Figure 2.5, a 

single phase-only modulation layer or even a complex modulation layer (where both phase and 

amplitude of each neuron are learnable parameters) cannot present enough degrees of freedom to 

establish the desired transfer function for classification of input images (MNIST) and achieves a 

much lower performance compared to a 5-layer D
2
NN network, the one that we demonstrated 

above. In these results reported in Fig. 2.5, the same physical neuron size was used in each case, 

representing our 3D-printing resolution. Fig. 2.5 shows that a single layer diffractive network can 

only achieve 55.64% and 64.84%  blind testing accuracy for phase-only and complex modulation 

D
2
NN designs, respectively, whereas N=5 layers (with everything else being the same) can 

achieve 91.75% and %93.23 blind testing accuracy, respectively. The same conclusion also 

applies for a single layer D
2
NN (N=1) that has 0.2 million neurons over the same area (assuming 

a higher resolution 3D-printer was available for defining smaller neurons). 

Figure 2.6 further demonstrates that by using a patch of 2 layers added to an existing/fixed 
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D
2
NN (N=5), we improved our MNIST classification accuracy to 93.39%; the state of the art 

convolutional neural net performance varies between 99.60%-99.77% depending on the network 

design
46–48

. We have obtained similar results for the Fashion MNIST dataset using N=5, 10 

layers (see Figs. 2.8-2.9). 

These results, summarized above, highlight that a single diffractive layer stagnates at its 

inference performance to modest accuracy values, and increasing the number of layers, neurons 

and connections of a D
2
NN design provides significant improvements in its inference capability. 

 

Fig. 2.18: Numerical Test Results of the Digit Classifier D
2
NN Including Error Sources. (A) As an example, the 

output image of the digit classifier D
2
NN for a handwritten input of “5” is demonstrated, where the red squares 

represent the trained detector regions for each digit. (B, C) are the same as in Fig. 3C of the main text, except they 

now take into account the Poisson surface reconstruction errors, absorption related losses at different layers and a 

random misalignment error of 0.1 mm for each layer of the network design. All these sources of error reduced the 

overall performance of the diffractive network’s digit classification accuracy from 91.75% (Fig. 3C) to 89.25%, 

evaluated over 10,000 different handwritten digits (i.e., approximately 1,000 for each digit). 

Error sources and mitigation strategies. There are five main potential sources of error that 

contribute to the performance of a 3D-printed D
2
NN: (1) Poisson surface reconstruction is the 

first error source. After the transmission layers are trained, 3D structure of each layer is 
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generated through the Poisson surface reconstruction as detailed in the Methods section. 

However, for practical purposes, we can only use a limited number of sampling points, which 

distorts the 3D structure of each layer. (2) Alignment errors during the experiments form the 

second source of error. To minimize the alignment errors, the transmission layers and input 

objects are placed into single 3D printed holder. However, considering the fact that 3D printed 

materials have some elasticity, the thin transmission layers do not perfectly stay flat, and they 

will have some curvature. Alignment of THz source and detector with respect to the transmission 

layers also creates another error source in experiments. (3) 3D printing is the third and the most 

dominant source of error. This originates from the lack of precision and accuracy of the 3D 

printer used to generate transmission layers. It smoothens the edges and fine details on the 

transmission layers. (4) Absorption of each transmissive layer is another source that can 

deteriorate the performance of a D
2
NN design. (5) The measurements of the material properties 

that are extensively used in our simulations such as refractive index and extinction coefficient of 

the 3D printed material might have some additional sources of error, contributing to a reduced 

experimental accuracy. It is hard to quantitatively evaluate the overall magnitude of these various 

sources of errors; instead we incorporated the Poisson surface reconstruction errors, absorption 

related losses at different layers and 0.1 mm random misalignment error for each network layer 

during the testing phase of the D
2
NNs as shown in Figs. 2.11 and 2.18. These errors showed 

minor influence on the performance of the diffractive networks.  

To minimize the impact of the 3D printing error, we set a relatively large pixel size, i.e. 0.4 

mm and 0.3 mm for the classification and imaging D
2
NNs, respectively. Furthermore, we 

designed a 3D-printed holder (Figs. 2.2(A, B)) to self-align the multi-layer structure of a 3D-

printed D
2
NN, where each network layer and the input object were inserted into their specific 
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slots. Based on the resolution of our 3D-printer, the misalignment error of a 3D-printed D
2
NN 

(including its holder) is estimated to be smaller than 0.1 mm compared to the ideal positions of 

the neurons of a given layer, and this level of error was found to have a minor effect on the 

network performance as illustrated in Figs. 2.11 and 2.18.  

For an inexpensive 3D-printer or fabrication method, printing/fabrication errors and 

imperfections, and the resulting alignment problems can be further mitigated by increasing the 

area of each layer and the footprint of the D
2
NN. This way, the feature size at each layer can be 

increased, which will partially release the alignment requirements. The disadvantage of such an 

approach of printing larger diffractive networks, with an increased feature size, would be an 

increase in the physical size of the system and its input optical power requirements. Furthermore, 

to avoid bending of the network layers over larger areas, an increase in layer thickness and hence 

its stiffness would be needed, which can potentially also introduce additional optical losses, 

depending on the illumination wavelength and the material properties. 

Optical Losses in a D
2
NN. For a D

2
NN, after all the parameters are trained and the physical 

diffractive network is fabricated or 3D-printed, the computation of the network function (i.e., 

inference) is implemented all-optically using a light source and optical diffraction through 

passive components. Therefore, the energy efficiency of a D
2
NN depends on the reflection 

and/or transmission coefficients of the network layers. Such optical losses can be made 

negligible, especially for phase-only networks that employ e.g., transparent materials that are 

structured using e.g., optical lithography, creating D
2
NN designs operating at the visible part of 

the spectrum. In our experiments, we used a standard 3D-printing material (VeroBlackPlus 

RGD875) to provide phase modulation, and each layer of the networks shown in Fig. 2.2 had on 



57 

 

average ~51% power attenuation at 0.4 THz for an average thickness of ~1 mm (see Fig. 2.19). 

This attenuation could be further decreased by using thinner substrates or by using other 

materials (e.g., polyethylene, polytetrafluoroethylene) that have much lower losses in THz 

wavelengths. One might also use the absorption properties of the neurons of a given layer as 

another degree of freedom in the network design to control the connectivity of the network, 

which can be considered as a physical analog of the dropout rate in deep network training
68

. In 

principle, a phase-only D
2
NN can be designed by using the correct combination of low-loss 

materials and appropriately selected illumination wavelengths, such that the energy efficiency of 

the diffractive network is only limited by the Fresnel reflections that happen at the surfaces of 

different layers. Such reflection related losses can also be engineered to be negligible by using 

anti-reflection coatings on the substrates. So far, the consideration of multiple-reflections 

between the layers has been neglected since such waves are much weaker compared to the 

directly transmitted forward-propagating waves. The match between the experimental results 

obtained with our 3D-printed D
2
NNs and their numerical simulations also supports this (see Figs. 

2.3 and 2.4). 

Although not considered in this manuscript since we are dealing with passive diffractive 

neural networks, diffractive networks can be created that use a physical gain (e.g., through 

optical or electrical pumping, or nonlinear optical phenomena, including but not limited to 

plasmonics and metamaterials) to explore the domain of amplified bias terms, i.e., |𝑡𝑖
𝑙| > 1 or 

|𝑟𝑖
𝑙| > 1. At the cost of additional complexity, such amplifying layers can be useful for the 

diffractive neural network to better handle its photon budget and can be used after a certain 

number of passive layers to boost up the diffracted signal, intuitively similar to e.g., optical 

amplifiers used in fiber optic communication links. 
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Fig. 2.19: Characterization of the 3D-printing material properties. (A) Our 3D-printing material (VeroBlackPlus 

RGD875) was characterized with a terahertz time-domain spectroscopy setup
69

. 1 mm-thick plastic layers were 

placed between the terahertz emitter and detector, and the transmitted field from the plastic layers was measured. 

The Fourier transform of the detected field was taken to calculate the detected power as a function of the frequency. 

The detected power levels for different numbers of 3D-printed layers are shown, revealing that the material loss 

increases at higher frequencies. Reference signal shows the detected power without any plastic layers on the beam 

path. (B) The power transmission ratio as a function of the number of layers is shown. The light transmission 

efficiency of a single 1mm-thick 3D-printed layer is 10−3.11/10 = 48.87%, and it drops to 10−11.95/10 = 6.38% for 

five 1mm-thick 3D-printed layers. (C, D) At 0.4 THz, the refractive index and the extinction coefficient of the 3D-

printing material can be calculated as 1.7227 and 0.0311, respectively. These numbers were used in the design and 

training of each D
2
NN so that the final 3D-printed network works as designed. 

Transmission and reflection modes of operation in D
2
NNs. The architecture of our D2NN 

can be implemented in transmission or reflection modes by using multiple layers of diffractive 
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surfaces; in transmission (or reflection) mode of operation, the information that is transferred 

from one diffractive layer to the other is carried with the transmitted (or reflected) optical wave. 

The operation principles of D
2
NN can be easily extended to amplitude-only or phase/amplitude-

mixed network designs. Whether the network layers perform phase-only or amplitude-only 

modulation, or a combination of both, what changes from one design to another is only the 

nature of the multiplicative bias terms, 𝑡𝑖
𝑙  or 𝑟𝑖

𝑙  for a transmissive or reflective neuron, 

respectively, and each neuron of a given layer will still be connected to the neurons of the former 

layer through a wave-interference process,  ∑ 𝑛𝑘
𝑙−1(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑘 , which provides the complex-

valued input to a neuron. Compared to a phase-only D
2
NN design, where |𝑡𝑖

𝑙| = |𝑟𝑖
𝑙| = 1, a 

choice of |𝑡𝑖
𝑙| < 1 or |𝑟𝑖

𝑙| < 1 would introduce additional optical losses, and would need to be 

taken into account for a given illumination power and detection SNR at the network output plane. 

Reconfigurable D
2
NN Designs. One important avenue to consider is the use of spatial light 

modulators (SLMs) as part of a diffractive neural network. This approach of using SLMs in 

D
2
NNs has several advantages, at the cost of an increased complexity due to deviation from an 

entirely passive optical network to a reconfigurable electro-optic one. First, a D
2
NN that employs 

one or more SLMs can be used to learn and implement various tasks because of its 

reconfigurable architecture. Second, this reconfigurability of the physical network can be used to 

mitigate alignment errors or other imperfections in the optical system of the network. 

Furthermore, as the optical network statistically fails, e.g., a misclassification or an error in its 

output is detected, it can mend itself through a transfer learning based re-training with 

appropriate penalties attached to some of the discovered errors of the network as it is being used. 

For building a D
2
NN that contains SLMs, both reflection and transmission based modulator 

devices can be used to create an optical network that is either entirely composed of SLMs or a 
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hybrid one, i.e., employing some SLMs in combination with fabricated (i.e., passive) layers. 

In addition to the possibility of using SLMs as part of a reconfigurable D
2
NN, another option 

to consider is to use a given 3D-printed or fabricated D
2
NN design as a fixed input block of a 

new diffractive network where we train only the additional layers that we plan to fabricate. 

Assume for example that a 5-layer D
2
NN has been printed/fabricated for a certain inference task. 

As its prediction performance degrades or slightly changes, due to e.g., a change in the input data, 

etc., we can train a few new layers to be physically added/patched to the existing 

printed/fabricated network to improve its inference performance. In some cases, we can even 

peel off (i.e., discard) some of the existing layers of the printed network and assume the 

remaining fabricated layers as a fixed (i.e., non-learnable) input block to a new network where 

the new layers to be added/patched are trained for an improved inference task (coming from the 

entire diffractive network: old layers and new layers).  

Intuitively, we can think of each D
2
NN as a “Lego” piece (with several layers following each 

other); we can either add a new layer (or layers) on top of existing (i.e., already fabricated) ones, 

or peel off some layers and replace them with the new trained diffractive blocks. This provides a 

unique physical implementation (like blocks of Lego) for transfer learning or mending the 

performance of a printed/fabricated D
2
NN design.  

In fact, we implemented this concept of Lego design for our MNIST diffractive network and 

our results are summarized in Figure 2.20, demonstrating that, for example, the addition of a 6th 

layer (learnable) to an already trained and fixed D
2
NN with N=5 improves its inference 

performance, coming close to the performance of a D
2
NN with N=6 layers that were 

simultaneously trained. Also see Figure 2.6 for an implementation of the same concept for 
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MNIST: using a patch of 2 layers added to an existing/fixed D
2
NN (N=5), we improved our 

MNIST classification accuracy to 93.39%. The advantage of this Lego-like transfer learning or 

patching approach is that already fabricated and printed D
2
NN designs can be improved in 

performance by adding additional printed layers to them or replacing some of the existing 

diffractive layers with newly trained ones. This can also help us with the training process of very 

large network designs (e.g., N ≥ 25) by training them in patches, making it more tractable with 

state of the art computers. 

 

Fig. 2.20: Fashion MNIST results achieved with complex-valued D2NN framework (also see Figs. 2.8 and 2.9). 
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Convergence plots of D
2
NNs (top and middle plots for N=5 and N=6, respectively) are shown. Bottom plots show 

the case for training only the 6th layer, where the first 5 layers of the network were fixed (i.e., identical to the design 

resulting from the top case, N=5) and the new layer was added between the 5th layer and the detector plane, 40 at 

equal distance from both. The layers of the N=5 and N=6 designs were separated by 3 cm from each other and the 

detector plane. The y-axis values in each plot report the Fashion MNIST classification accuracy and the loss values 

as a function of the epoch number for the training datasets. Addition of the 6th layer (learnable) to an already trained 

and fixed D2 NN with N=5 improves its inference performance, performing slightly better than the performance of 

N=6 (middle plots). Also see Fig. 2.6. 

Discussion of Unique Imaging Functionalities using D
2
NNs. We believe that the D

2
NN 

framework will help imaging at the macro and micro/nano scale by enabling all-optical 

implementation of some unique imaging tasks. One possibility for enhancing imaging systems 

could be to utilize D
2
NN designs to be integrated with sample holders or substrates used in 

microscopic imaging to enhance certain bands of spatial frequencies and create new contrast 

mechanisms in the acquired images. In other words, as the sample on a substrate (e.g., cells or 

tissue samples, etc.) diffracts light, a D
2
NN can be used to project magnified images of the 

cells/objects onto a CMOS/CCD chip with certain spatial features highlighted or enhanced, 

depending on the training of the diffractive network. This could form a very compact chip-scale 

microscope (just a passive D
2
NN placed on top of an imager chip) that implements, all-optically, 

task specific contrast imaging and/or object recognition or tracking within the sample. Similarly, 

for macro-scale imaging, face recognition, as an example, could be achieved as part of a sensor 

design, without the need for a high mega-pixel imager. For instance, tens to hundreds of different 

classes can potentially be detected using a modest (e.g., <1 Mega-pixel) imager chip placed at 

the output plane of a D
2
NN that is built for this inference task. 

For THz part of the spectrum, as another possible use example, various biomedical 
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applications that utilize THz imagers for looking into chemical sensing or the composition of 

drugs to detect e.g., counterfeit medicine, or for assessing the healing of wounds etc. could 

benefit from D
2
NN designs to automate predictions in such THz-based analysis of specimen 

using a diffractive neural network. 

Optical Nonlinearity in Diffractive Neural Networks. Optical nonlinearity can be 

incorporated into our deep optical network design using various optical non-linear materials 

(crystals, polymers, semiconductor materials, doped glasses, among others as detailed below). A 

D
2
NN is based on controlling the diffraction of light through complex-valued diffractive 

elements to perform a desired/trained task. Augmenting nonlinear optical components is both 

practical and synergetic to our D
2
NN framework. 

Assuming that the input object, together with the D
2
NN diffractive layers, create a spatially 

varying complex field amplitude E(x,y) at a given network layer, then the use of a nonlinear 

medium (e.g., optical Kerr effect based on third-order optical nonlinearity, 
(3)

) will introduce an 

all-optical refractive index change which is a function of the input field’s intensity, Δn  
(3) 

E
 2
. 

This intensity dependent refractive index modulation and its impact on the phase and amplitude 

of the resulting waves through the diffractive network can be numerically modeled and therefore 

is straightforward to incorporate as part of our network training phase. Any third-order nonlinear 

material with a strong 
(3)

 could be used to form our nonlinear diffractive layers: glasses (e.g., 

As2S3, metal nanoparticle doped glasses), polymers (e.g., polydiacetylenes), organic films, 

semiconductors (e.g., GaAs, Si, CdS), graphene, among others. There are different fabrication 

methods that can be employed to structure each nonlinear layer of a diffractive neural network 

using these materials. 
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In addition to 3rd order all-optical nonlinearity, another method to introduce nonlinearity into 

a D
2
NN design is to use saturable absorbers that can be based on materials such as 

semiconductors, quantum-dot films, carbon nanotubes or even graphene films. There are also 

various fabrication methods, including standard photo-lithography, that one can employ to 

structure such materials as part of a D
2
NN design; for example, in THz wavelengths, recent 

research has demonstrated inkjet printing of graphene saturable absorber
70

. Graphene-based 

saturable absorbers are further advantageous since they work well even at relatively low 

modulation intensities
71

.  

Another promising avenue to bring non-linear optical properties into D
2
NN designs is to use 

nonlinear metamaterials. These materials have the potential to be integrated with diffractive 

networks owing to their compactness and the fact that they can be manufactured with standard 

fabrication processes. While a significant part of the previous work in the field has focused on 

second and third harmonic generation, recent studies have demonstrated very strong optical Kerr 

effect for different parts of the electromagnetic spectrum
72,73

, which can be incorporated with our 

deep diffractive neural network architecture to bring all-optical nonlinearity into its operation.  

Finally, one can also use the DC electro-optic effect to introduce optical nonlinearity into the 

layers of a D
2
NN although this would deviate from all-optical operation of the device and require 

a DC electric-field for each layer of the diffractive neural network. This electric-field can be 

externally applied to each layer of a D
2
NN; alternatively one can also use poled materials with 

very strong built-in electric fields as part of the material (e.g., poled crystals or glasses). The 

latter will still be all-optical in its operation, without the need for an external DC field. 
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Chapter 3 Terahertz Pulse Shaping Using Diffractive Networks 

 

Parts of this chapter have previously been published in M. Veli et al. “Terahertz Pulse 

Shaping Using Diffractive Surfaces” Nature Communications, DOI: /10.1038/s41467-020-

20268-z. In this chapter, I will introduce a pulse shaping framework that is using diffractive 

optical networks that is introduced in chapter 2.   

Recent advances in deep learning have been providing non-intuitive solutions to various 

inverse problems in optics. At the intersection of machine learning and optics, diffractive 

networks merge wave-optics with deep learning to design task-specific elements to all-optically 

perform various tasks such as object classification and machine vision. Here, we present a 

diffractive network, which is used to shape an arbitrary broadband pulse into a desired optical 

waveform, forming a compact and passive pulse engineering system. We demonstrate the 

synthesis of various different pulses by designing diffractive layers that collectively engineer the 

temporal waveform of an input terahertz pulse. Our results constitute the first demonstration of 

direct pulse shaping in terahertz spectrum, where the amplitude and phase of the input 

wavelengths are independently controlled through a passive diffractive device, without the need 

for an external pump. Furthermore, a Lego-like physical transfer learning approach is presented 

to illustrate pulse-width tunability by replacing part of an existing network with newly trained 

diffractive layers, demonstrating its modularity. This learning-based diffractive pulse 

engineering framework can find broad applications in e.g., communications, ultra-fast imaging 

and spectroscopy. 
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3.1 Introduction 

Inspired by neural interactions in human brain
74

, artificial neural networks and deep learning 

have been transformative in many fields, providing solutions to a variety of data processing 

problems, including for example image recognition
32

, natural language processing
75

 and medical 

image analysis
33

. Data-driven training of deep neural networks has set the state-of-the-art 

performance for various applications in e.g. optical microscopy
33,39,76–80

, holography
41,42,81–84

 and 

sensing
85–88

, among others. Beyond these applications, deep learning has also been utilized to 

solve inverse physical design problems arising in e.g., nanophotonics and plasmonics
89–92

. These 

advances cover a wide range of engineering applications and have motivated the development of 

new optical computing architectures
52,93–98

 that aim to benefit from the low-latency, power-

efficiency and parallelization capabilities of optics in the design of machine learning hardware. 

For example, Diffractive Deep Neural Networks (D
2
NN)

99
 have been introduced as an optical 

machine learning framework that uses deep learning methods, e.g., stochastic gradient-descent 

and error-backpropagation, to train a set of diffractive layers for computing a given machine 

learning task as the light propagates through these layers. Early studies conducted on this 

framework showed its statistical inference capabilities, achieving >98% numerical blind 

testing
100,101

 accuracy for the classification of the images of handwritten digits. Recently, the 

D
2
NN framework has also been extended to harness broadband radiation in order to design 

spatially-controlled wavelength de-multiplexing systems.
92

 

In parallel to these recent advances at the intersection of optics and machine learning, there 

has been major progress in optical pulse shaping, including pulse compression for optical 

telecommunication
102

 and pulse stretching for chirped pulse amplification
103

. Dynamic, 

customizable temporal waveform synthesis has been achieved using time
104–106

 or frequency 
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domain
107–109

 modulation. Among different approaches, the Fourier-transform based 

configuration
110

, which relies on conventional optical components such as lenses to establish a 

mapping between the pixels of an optical modulation device and the spectral components of the 

input broadband light, is one of the most commonly employed techniques. In various forms of its 

implementation, the optical modulation device placed at the Fourier plane in between two 

gratings can be a dynamic component e.g., a spatial light modulator
111–114

, an acousto-optic 

modulator
115,116

, a movable mirror
117

 or even a metasurface
118

, offering engineered dispersion 

and wavefront manipulation, tailored for different applications.  

However, these earlier pulse shaping techniques have restricted utility at some parts of the 

electromagnetic spectrum, such as the terahertz band, due to the lack of advanced optical 

components that can provide spatio-temporal modulation and control of complex wavefronts, 

covering both a broad bandwidth and a high spectral resolution at these frequencies
119,120

. As a 

result, direct shaping of terahertz pulses by engineering and independent control of the spectral 

amplitude and phase of the input wavelengths has not been achieved to date; instead, the 

synthesis of terahertz pulses has been generally performed indirectly through the engineering of 

the optical-to-terahertz converters or shaping of the optical pulses that pump terahertz 

sources.
121–125

 Previous work also demonstrated an active device using an external pump-induced 

inhomogeneous medium to shape input terahertz pulses, with limited control of the spectral 

amplitude and phase of each wavelength due to the inherent dispersion of the medium.
126
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Here, we demonstrate the use of diffractive networks designed by deep learning to all-

optically shape pulses by simultaneously controlling the relative phase and amplitude of each 

spectral component across a continuous and wide range of frequencies using only trainable 

diffractive layers, forming a small footprint, compact and passive pulse engineering system. This 

 

Fig. 3.1 Schematic of the pulse shaping diffractive network and a photo of the experimental setup. a 3D 

printed pulse shaping diffractive network that generates a square pulse with a width of 15.57 ps. b The 

schematic of the THz-TDS setup used in our experiments. The red line represents the optical path of a 780 nm 

femtosecond laser, and the blue line represents the terahertz beam.  Dashed lines show the input and output 

apertures of the diffractive network. c The physical system layout of the pulse shaping diffractive network 

design. The input and output apertures are squares, with edge lengths of 0.8 cm and 0.2 cm, respectively. Gray 

regions on the aperture planes represent aluminum coating to block light transmission. d The photo of the 

experimental setup.  
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framework uses a deep learning-based physical design strategy to devise task-specific diffractive 

systems that can shape various temporal waveforms of interest. Following the digital training 

stage in a computer, we fabricated the resulting diffractive layers (Fig. 3.1) and experimentally 

demonstrated the success of our pulse shaping diffractive networks by generating pulses with 

various temporal widths using a broadband terahertz pulse as input.  

These results constitute the first demonstration of direct pulse shaping in terahertz part of the 

spectrum, where a complex-valued spectral modulation function that is trained using deep 

learning directly acts on terahertz frequencies through a passive diffractive device, without the 

need for an external pump. The presented learning-based approach can shape any input terahertz 

pulse through diffraction and is fundamentally different from previous approaches that indirectly 

synthesize a desired terahertz pulse through optical-to-terahertz converters or shaping of the 

optical pump that interacts with terahertz sources. This new capability of direct pulse shaping in 

terahertz band enables new opportunities that could not be explored with indirect pulse shaping 

approaches. For example, precise engineering and synthesis of terahertz pulses with the state-of-

the-art methods is either not possible or very hard and costly to achieve, including e.g., pulsed 

terahertz generation through quantum cascade lasers
127–129

, solid-state circuits
130,131

 and particle 

accelerators
132

. Furthermore, the presented deep learning-based framework is quite flexible and 

versatile that can be used to engineer terahertz pulses regardless of their polarization state, beam 

shape, beam quality or aberrations of the specific terahertz generation mechanism. 
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Fig. 3.2 Pulse shaping diffractive network design and output results. a The thickness profiles of the 

resulting diffractive layers after deep learning-based training in a computer. These diffractive layers 

synthesize a square pulse with a width of 15.69 ps over the output aperture for an input pulse shown in b. 

b Normalized input terahertz pulse measured right after the input aperture (see Fig. 1); in time-domain 

(left) and spectral domain (right). The red arrows on the measured spectral amplitude profile represent the 

water absorption bands at terahertz frequencies. c Left: The numerically computed (blue) and the 

experimentally measured (orange) output pulses in time domain. Top right: The normalized spectral 

amplitudes corresponding to the numerically computed (blue) and the experimentally measured (orange) 

pulses. Bottom right: Unwrapped spectral phase distributions computed based on the numerical forward 

model (blue) and the experimentally measured (orange) pulse.  
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Despite using passive diffractive layers, the presented pulse shaping networks offer temporal 

pulse-width tunability that is experimentally demonstrated by varying the inter-layer distances 

within a fabricated diffractive network. We also investigated a Lego-like transfer learning 

approach to show the modularity of the design space provided by our framework. For example, 

we replaced a subset of diffractive layers as part of an already trained and experimentally 

validated pulse shaping diffractive network design with newly trained diffractive layers to 

synthesize optical square pulses with different pulse-widths. All the experimental results of the 

3D-fabricated pulse shaping diffractive networks presented in this work are in very good 

agreement with our numerically expected outputs, emphasizing the accuracy and robustness of 

our forward models used during the training of these diffractive networks.  

In addition to engineering terahertz pulses, the fundamental design approach that is presented 

here can be readily adapted to different parts of the electromagnetic spectrum for shaping pulses. 

Finally, we believe that this study extends the engineering and precise control of electromagnetic 

fields through deep learning-designed diffractive networks into time-domain shaping of pulses, 

further motivating the development of all-optical machine learning and information processing 

platforms that can better harness the 4D spatio-temporal information carried by light.     

3.2 Results 

Synthesis of arbitrary temporal waveforms through small footprint and compact systems has 

been of great interest for various applications in e.g., tele-communications, ultra-fast imaging 

and spectroscopy, and it represents a challenging inverse design problem. Specifically, it requires 

accurate control of the complex-valued weights of the spectral components across a wide 

bandwidth and with high spectral resolution. We addressed this challenging inverse design 
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problem through the training of diffractive networks as shown in Fig. 3.1c. The forward training 

model of our diffractive networks formulates the broadband light propagation using the angular 

spectrum representation of optical waves
92

. Based on the complex dispersion information of a 

diffractive material, the thickness of each diffractive feature (i.e., ‘neuron’) of a given diffractive 

layer is iteratively trained and optimized through the error-backpropagation with respect to a 

target cost function (see the Methods section). After the convergence of this deep learning-based 

training in a computer, we fabricated the resulting diffractive layers (Fig. 3.1c) using a 3D-

printer to physically form our pulse shaping network as shown in Fig. 3.1a. This diffractive 

network was then experimentally tested for its desired/targeted pulse shaping capability using a 

terahertz time-domain spectroscopy (THz-TDS) setup
133

 that provides a noise equivalent 

bandwidth of 0.1-5 THz (Figs. 3.1b,d). 

Each one of our pulse shaping diffractive networks consists of 4 trained layers that process 

the input terahertz pulse to synthesize a desired temporal waveform over an output aperture of 

0.2 cm × 0.2 cm. Based on this system layout and a given input pulse profile to be shaped (Fig. 

3.2b), we trained and fabricated diffractive networks that generate square pulses with different 

temporal widths. For example, Figure 3.2a demonstrates the diffractive layers of a pulse shaping 

network that was trained to generate a 15.5 ps square pulse by processing the spectrum carried 

by the input terahertz pulse. Figure 3.2c demonstrates the time-domain amplitude of the output 

waveform numerically computed (blue) based on the trained diffractive layers and the 

corresponding experimentally measured temporal waveform (orange), along with the associated 

spectral amplitude and phase distributions. The carrier frequency of the desired temporal 

waveform at the output was a non-learnable, predetermined parameter set to be 0.35 THz to 

avoid water absorption bands in the terahertz regime (depicted by the red arrows in Fig. 3.2b). 
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The numerically predicted output waveform (blue) in Fig. 3.2c indicates that a 4-layer diffractive 

network can synthesize a square temporal waveform with a pulse width of 15.69 ps without 

using any conventional optical components, in a compact architecture that spans approximately 

250-times the carrier wavelength in the axial direction. The pulse width of the temporal 

waveform created by the 3D printed diffractive layers at the output aperture is measured as 15.52 

ps, closely matching the numerically predicted result (15.69 ps). Similarly, a comparison of the 

output spectral amplitude profiles for the numerical and experimental results shows a good 

agreement in terms of the peak locations of the main and side lobes as well as the relative 

amplitude carried by each spectral component. On the other hand, an examination of the 

unwrapped phase profiles (experimental vs. numerical) reveals that the 3D-fabricated, physical 

diffractive network could not exactly create the sharp phase transitions at the expected spectral 

locations, but rather generated smoothened transitions. This smoothening contributes to some of 

the differences observed between the experimentally measured and the numerically calculated 

time-domain waveforms (Fig. 3.2c). The power efficiency of this diffractive network was 

experimentally measured as ~0.51% at the carrier frequency (f0 = 355 GHz), quantified at the 

output aperture, when normalized with respect to the input; here we should emphasize that >70% 

of the input optical power at the carrier frequency is in fact lost due to absorption within the 3D 

printed diffractive layers. Therefore, to create our diffractive layers, the selection of a different 

fabrication material with a much lower loss (e.g., polymers such as poly-methylpentene, 

TPX)
134–136

 can significantly boost the overall efficiency of these diffractive pulse shaping 

networks. Other strategies to improve our power efficiency include increasing the output 

aperture size and introducing additional power-related penalty terms during the training phase of 

the diffractive network (see Table 3.1 and Discussion section). 
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Fig. 3.3 Pulse shaping diffractive network design and output results a The thickness profiles of the 

resulting diffractive layers after deep learning-based training in a computer. These diffractive layers 

synthesize a square pulse with a width of 10.96 ps over the output aperture for an input pulse shown in b. b 

Normalized amplitude of the input terahertz pulse measured right after the input aperture (see Fig. 1 of the 

main text); in time-domain (left) and spectral domain (right). The red arrows on the measured spectral 

amplitude profile represent the water absorption bands at terahertz frequencies. c Left: The numerically 

computed (blue) and the experimentally measured (orange) output pulses in time domain. Top right: The 

normalized spectral amplitudes corresponding to the numerically computed (blue) and the experimentally 

measured (orange) pulses. Bottom right: Unwrapped spectral phase distributions computed based on the 

numerical forward model (blue) and the experimentally measured (orange) pulse.  
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Figure 3.3 further illustrates another diffractive network that was designed to create a 

narrower square pulse at its output aperture. At the end of its deep learning-based training, the 

numerical forward model converged to the thickness profiles shown in Fig. 3.3a in order to 

synthesize a 10.96 ps square pulse (blue) illustrated in Fig. 3.3c. When the diffractive layers 

depicted in Fig. 3.3a were 3D printed and experimentally tested using the setup shown in Fig. 

3.1d, the output pulse waveform was measured to have a temporal width of 11.85 ps (orange 

curve in Fig 3.3c), providing a good match to our numerical results, similar to the conclusions 

reported in Fig. 3.2.  

Beyond fabrication artefacts and misalignments observed in the 3D-printed diffractive   

networks, the variation of the input terahertz pulse from experiment to experiment is one of the 

significant contributors for any mismatch between the numerical and experimental output 

waveforms. The deep learning-based design of the diffractive networks shown in Figs. 3.2 and 

3.3 relies on a known input terahertz pulse profile that is experimentally measured over the input 

aperture. To be able to take into account uncontrolled variations of the input pulse profile from 

run to run, we used 5 different experimentally measured input pulse profiles (dashed curves in 

Figs. 3.4a-b) during the training phase of each diffractive network. In the experimental testing 

phase, however, the terahertz input pulse (light blue curve in Figs. 3.4a-b) slightly deviated from 

these input pulse profiles used in the training, causing some distortions in the experimental 

results shown in Figs. 3.2 and 3.3, compared to their numerically computed counterparts for the 

same diffractive network models (also see Fig. 3.5 and Fig. 3.6). 
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To shed more light onto this, next we normalized the experimentally measured spectral 

amplitude profiles depicted in Figs. 3.2c and 3.3c, based on the ratio between the average 

spectral amplitudes carried by the input pulses used in the training phase and the input pulse 

 

Fig. 3.4 Spectral normalization of the output pulse. a Input terahertz pulses impinging upon the 

diffractive network. Dashed lines represent the input pulses that were used in the training phase and the 

solid line represents the actual experimental input pulse used in the testing phase. b Normalized spectral 

amplitudes of the input terahertz pulses shown in a. c, d Left: normalized spectral amplitude of the output 

pulse obtained at the end of the training phase (yellow), compared with the experimental spectral 

amplitude before (orange) and after the spectral normalization step (blue). Right: numerical training output 

field (blue), experimental output field (orange) and the normalized output field (orange) corresponding to 

the desired (ground truth) square pulses with pulse-widths of (c) 15.49 ps and (d) 10.52 ps.  
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measured at the experimental testing phase. This simple spectral normalization procedure 

nullifies the effect of input terahertz source variations from experiment to experiment and 

provides us an opportunity to better evaluate the accuracy of the complex-valued spectral 

filtering operation performed by the 3D-fabricated diffractive network. Figures 3.4c and 3.4d 

demonstrate the experimental spectral amplitudes and the corresponding temporal waveforms at 

the network output before and after this spectral normalization step for the diffractive networks 

shown in Figs. 3.2a and 3.3a, respectively. Following the spectral normalization, the width of the 

square pulse created by the diffractive network in Fig. 3.3a, for example, decreased from 11.85 

ps to 10.49 ps, providing a better match to the 11.07 ps that is predicted by our numerical 

forward model (Fig. 3.4d). A similar improvement using spectral normalization was also 

observed for the diffractive network shown in Fig. 3.2a, almost perfectly matching its numerical 

counterpart in terms of the square pulse width, achieving 15.71 ps after the normalization step 

(Fig. 3.4c).  
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These results highlight that experiment-to-experiment variability of our input terahertz pulse 

profile causes it to deviate from the input pulse profiles used in the training phase of our 

diffractive network, creating some uncontrolled errors in the output pulse profile, which can be 

improved significantly after the spectral normalization step, as discussed above. To further 

explore the pulse shaping capabilities of diffractive networks, next we trained a set of “generic” 

diffractive networks that used/assumed a flat input spectrum during their training in order to 

 

Fig. 3.5 The temporal profiles of the output pulses, 15.7 ps, resulting from the designed numerical 

model (a, b) and the 3D-fabricated diffractive network (c) that was trained to synthesize a 15.7 ps 

square pulse. (a) the input pulse is one of the pulses that were used in training phase; (b,c) the input pulse 

is experimentally measured at the input aperture.  
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achieve a desired output waveform; stated differently, a generic diffractive network is trained 

using an input pulse where all the wavelengths have the same spectral amplitude and phase. To 

accurately demonstrate the pulse shaping behavior of these generic diffractive designs that were 

trained with flat spectra, we used spectral normalization based on the input pulse profile, 

experimentally measured at each run. For example, Figures 3.7a and 3.8 show the diffractive 

layers of a generic pulse shaping network model that was trained to create a 15.5 ps square pulse.  

 

Fig. 3.6 The temporal profiles of the output pulses, 11.07 ps, resulting from the designed numerical model 

(a, b) and the 3D-fabricated diffractive network (c) that was trained to synthesize a 11.07 ps square pulse. 

(a) the input pulse is one of the pulses that were used in training phase; (b,c) the input pulse is experimentally 

measured at the input aperture.  
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Fig. 3.7 Generic pulse shaping diffractive network design and output results. a The thickness profiles of the 

resulting diffractive layers after deep learning-based training in a computer. These diffractive layers synthesize a 

square pulse with a width of 15.56 ps over the output aperture for an input pulse shown in b. b Normalized 

amplitude of the input terahertz pulse measured right after the input aperture (see Fig. 1 of main text); in time-

domain (left) and spectral domain (right). The red arrows on the measured spectral amplitude profile represent 

the water absorption bands at terahertz frequencies. c Left: The numerically computed (blue) and the 

experimentally measured (orange) output pulses in time domain. Top right: The normalized spectral amplitudes 

corresponding to the numerically computed (blue) and the experimentally measured (orange) pulses. Bottom 

right: Unwrapped spectral phase distributions computed based on the numerical forward model (blue) and 

experimentally measured (orange) pulse. Red arrow on the phase profile exemplifies a small discrepancy 

between the numerical and the experimental results due to the water absorption bands at THz frequencies.  
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Figure 3.7c reports the time-domain amplitude of the output waveform numerically 

computed (blue) based on these trained diffractive layers and the experimentally measured 

temporal waveform (orange) along with the corresponding spectral amplitude and phase 

distributions. The synthesized pulse shape by the 3D-printed diffractive network closely matches 

the numerically computed waveform using our forward model, despite the water absorption 

bands that appear in our experimental results, illustrated by the red arrows in Fig. 3.7b. The 

power efficiency at the carrier frequency (f0 = 400 GHz) of this diffractive network was 

experimentally measured as ~0.97%. Figure 3.9 further demonstrates three additional generic 

pulse shaping diffractive network models that were trained with a flat input spectrum and 

experimentally tested using our terahertz setup to achieve different square pulses, with pulse 

widths of 11.25 ps, 13.45 ps and 16.69 ps, respectively, demonstrating a very good match to their 

numerical counterparts. The numerically computed peak frequencies for these three different 

diffractive networks were 399.4 GHz, 396.1 GHz and 399.4 GHz, which were measured 

experimentally as 399.1 GHz, 402.2 GHz and 401.8 GHz, respectively. As we move towards 

higher optical frequencies beyond 0.6 THz, the experimental spectral amplitude distributions 

start to deviate from their numerically predicted counterparts. Considering that the maximum 

material thickness in our model is ~1mm, at higher optical frequencies corresponding to 

wavelengths below ~0.5 mm, the light may travel more than 2 wavelengths inside a diffractive 

feature (depending on the final trained model) which will then violate the thin modulation layer 

assumption in our forward model contributing to some of the experimental errors observed in Fig. 

3.9. In addition, the size each diffractive feature corresponding to a unique complex-valued 

modulation per neuron (see Methods) was chosen to be 0.5 mm due to the limited lateral 

resolution of our 3D printer. Therefore, for higher frequencies, the light fields are modulated at 
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each diffractive layer with 2D functions sampled at lower spatial rates, which, in return, partially 

limits the design capabilities of our diffractive networks at those smaller wavelengths of the 

pulse bandwidth. Furthermore, the uneven surface profile in 3D printing combined with 

thickness variations induced by fabrication imperfections contribute to some additional sources 

of experimental errors observed in our results. 

 

To further demonstrate the design capabilities of our diffractive pulse shaping framework, in 

addition to the square pulses with various temporal widths reported earlier, we also trained three 

new diffractive network models that were designed to output (1) a chirped-Gaussian pulse (Fig. 

 

Fig. 3.8 Thickness profile of diffractive layer (a) The thickness profile of the first layer of the 

diffractive network reported in Fig. 3.7. (b) CAD drawing of the same layer and (c) zoomed-in version of 

the red square shown in (b). (d) The photo of the layer presented in (a), (e) zoomed-in version of the red 

square shown in (d) and (f) a microscopic image showing the fabricated structural details of the green 

square in (e). 
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3.10), (2) a sequence of positive and negative chirped Gaussian pulses, one following another 

(Fig. 3.11) and (3) a sequence of two chirp-free Gaussian pulses (Fig. 3.12). These figures report 

a very good match between the target, ground-truth pulse profiles and the output pulses 

synthesized by the corresponding trained diffractive network, both in time and spectral domains, 

clearly demonstrating the versatile nature of the presented framework to synthesize arbitrary 

pulses, shaped through the deep learning-based design of diffractive surfaces.   
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Next, we demonstrated the temporal width tunability of pulse shaping diffractive networks 

despite the passive nature of their layers. By changing the axial distance between successive 

diffractive layers by ΔZ, the temporal width and the peak frequency of the output waveform can 

 

 

Fig. 3.9 Experimental validation of different generic pulse shaping diffractive networks. From left to right, 

the numerically computed (blue) and the experimentally measured (orange) normalized spectral amplitudes are 

illustrated with the inset plots showing the corresponding unwrapped spectral phase profiles; the numerically 

calculated (blue) normalized output pulse and the experimentally measured (orange) normalized output pulse 

are also shown along with the thickness profiles of the diffractive layers resulting from deep learning-based 

training for synthesizing the desired (ground truth) square pulses with pulse-widths of (a) 10.52 ps, (b) 13.02 ps 

and (c) 17.98 ps. 
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be tuned without any further training or a change to the 3D printed diffractive layers. We 

demonstrated this pulse-width tunability using the 3D printed diffractive network depicted in Fig. 

3.7, but a similar tunability also applies to the network models shown in Fig. 3.9. Since our 

diffractive networks used 30 mm layer-to-layer distance in their design, we considered the ΔZ 

range to be between -10 mm to 20 mm; for instance, when ΔZ is taken as -10 mm, the axial 

distance between all the successive layers of the diffractive network is set to be 20 mm. Within 

this axial tuning range, Figs. 3.13a-h demonstrate the effect of changing this layer-to-layer 

distance of an already designed/trained diffractive network on the output waveform and its 

complex-valued spectrum. The results reveal that as the diffractive layers get closer to each other 

axially, i.e., a negative ΔZ, the pulse-width of the output waveform increases and the peak 

frequency decreases. For instance, when the axial distance between each diffractive layer of the 

design shown in Fig. 3.7 is decreased by 5 mm (ΔZ = -5 mm) as shown in Fig. 3.13d, the peak of 

the spectral amplitude distribution shifts from 399.4 GHz to 349.1 GHz according to our 

numerical forward model. The pulse-width of the resulting square pulse at the output aperture 

was numerically found to be 17.59 ps suggesting a longer pulse compared to 15.56 ps 

synthesized by the original design, ΔZ = 0 mm (Fig. 3.13d). The experimentally measured pulse 

width with the same amount of axial change in the layer-to-layer distance of the diffractive 

network revealed a 17.56 ps pulse after the spectral normalization step, confirming the tunability 

of our pulse shaping diffractive network and also providing a very good match to our numerical 

results (Fig. 3.13). 
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Fig. 3.10 Generic pulse shaping diffractive network design trained for synthesizing a chirped Gaussian 

pulse. a The thickness profiles of the resulting diffractive layers after deep learning-based training in a 

computer. These diffractive layers synthesize a chirped Gaussian pulse over the output aperture of the 

diffractive network. b The numerically computed (dashed blue) and the targeted ground-truth (orange) output 

pulses in time domain. c The normalized spectral amplitudes corresponding to the numerically computed 

(dashed blue) and the target (orange) pulses. d Unwrapped spectral phase distributions computed based on the 

numerical forward model (dashed blue) and the target (orange) pulse. 
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When the layer-to-layer distance is increased, i.e., a positive ΔZ, the output square pulse gets 

narrower in time domain with an accompanying shift in the peak frequency toward higher values. 

Figure 3.13e demonstrates an example of this case with ΔZ = 5 mm, i.e. the distance between 

each diffractive layer is increased to 35 mm. In this case, the experimentally measured and 

numerically computed square pulses at the output plane have peak frequencies of 451.4 GHz and 

453.1 GHz, with the corresponding pulse-widths of 14.3 ps and 13.97 ps, respectively, once 

again confirming the tunability of our pulse shaping diffractive networks and demonstrating a 

very good agreement between the numerical forward model and our experiments. As we further 

increase ΔZ beyond 10 mm (depicted in Fig. 3.13f), the time domain pulse continues to get 

narrower.  

To further explore methods to alter a given fabricated diffractive network and its output 

function, next we employed a Lego-like physical transfer learning approach to demonstrate 

pulse-width tunability by updating only part of a pre-trained network with newly trained and 

fabricated diffractive layers, showing the modularity of a diffractive pulse shaping network. For 

this aim, we took the pre-trained network that experimentally synthesized a 15.57 ps square 

waveform, noted as the original design in Fig. 3.14a, and further trained only the last diffractive 

layer to synthesize a new desired output waveform, i.e., a 12.03 ps square pulse, by keeping the 

first three layers as they are (already fabricated). We experimentally validated this transfer 

learning approach as shown in Fig. 3.14b by removing the existing last diffractive layer and 

inserting a newly trained layer, fabricated using the same 3D printer. Numerical and 

experimental results revealed very good match to each other for the normalized output spectral 

amplitude over a wide frequency range as well as for the normalized output field waveform, 

generating pulse-widths of 12.21 ps and 13.25 ps, respectively. Next we took an alternative 
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approach: this time, the last two diffractive layers were replaced with new diffractive layers 

trained to generate 12.03 ps square pulses. As illustrated in Fig. 3.14c, with the addition of these

 

 

Fig. 3.11 Generic pulse shaping diffractive network design trained for synthesizing a sequence of positive 

and negative chirped Gaussian pulses. a The thickness profiles of the resulting diffractive layers after deep 

learning-based training in a computer. These diffractive layers synthesize a sequence of positive and negative 

chirped Gaussian pulses over the output aperture of the diffractive network. b The numerically computed 

(dashed blue) and the targeted ground-truth (orange) output pulses in time domain. c The normalized spectral 

amplitudes corresponding to the numerically computed (dashed blue) and the target (orange) pulses. d 

Unwrapped spectral phase distributions computed based on the numerical forward model (dashed blue) and 

target (orange) pulse. 
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two new diffractive layers to the already existing first two layers, the resulting new diffractive 

network successfully demonstrated the synthesis of 12.14 ps and 12.39 ps waveforms at the 

output aperture for the numerical and experimental waveforms, respectively. The peak frequency 

of the new network model was calculated to be at 399.4 GHz and it was experimentally 

measured to be at 399.8 GHz, showing once again a very good match between our numerical 

forward model and experimental results. Overall, the insertion of two newly trained layers, when 

compared to a single newly trained layer added on top of the existing layers of a 3D-fabricated 

network, provided us improved performance for achieving the new pulse form that is desired. 

3.3 Discussion 

The intrinsic pulse-width tunability of a given diffractive network that is achieved by 

changing the axial layer-to-layer distance is an interesting feature that we demonstrated 

numerically and experimentally: Figure 3.13a shows various pulse-widths obtained at seven 

different layer-to-layer distances using an existing network design. As the layer-to-layer distance 

of a diffractive network design increases, the temporal pulse-width at the output aperture gets 

smaller, without any further training or fabrication of new diffractive layers. This opens up the 

opportunity to synthesize new waveforms within a certain time window around the originally 

designed output pulse. In addition to that, an axial distance change between the existing layers of 

a diffractive network also shifts the center frequency of the output pulse as shown Figure 3.13b. 

As the diffractive layers get closer to each other, we observed a red-shift in the center frequency. 

Another related aspect of this pulse shaping diffractive framework is its modularity to tune the 

output pulses using a Lego-like physical transfer learning approach. By training a new layer (or 

layers) to replace part of an existing, pre-trained diffractive network model, on demand synthesis 

of new pulses can be achieved, as demonstrated in Figures 3.14b-c. These results highlight some 
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Fig. 3.12 Generic pulse shaping diffractive network design trained for synthesizing a sequence of chirp-

free Gaussian pulses. a The thickness profiles of the resulting diffractive layers after deep learning-based 

training in a computer. These diffractive layers synthesize a sequence of chirp-free Gaussian pulses over the 

output aperture of the diffractive network. b The numerically computed (dashed blue) and targeted ground-

truth (orange) output pulses in time domain. c The normalized spectral amplitudes corresponding to the 

numerically computed (dashed blue) and the target (orange) pulses. d Unwrapped spectral phase distributions 

computed based on the numerical forward model (dashed blue) and the target (orange) pulse.  
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of the unique features of diffractive pulse shaping networks and how they can adapt to potential 

changes in the desired output pulse patterns.   

The presented pulse shaping framework has a compact design, with an axial length of 

approximately 250  λ0, where λ0 denotes the peak wavelength. Moreover, it does not utilize any 

conventional optical components such as spatial light modulators, which makes it ideal for pulse 

shaping in terahertz part of the spectrum, where high-resolution spatio-temporal modulation and 

control of complex wavefronts over a broad bandwidth represent a significant challenge. In 

addition to being compact and much simpler compared to previous demonstrations of pulse 

shaping in terahertz spectrum, our results present the first implementation of direct pulse shaping 

in terahertz band, where the learned complex-valued spectral modulation function of the 

diffractive network directly acts on terahertz frequencies for pulse engineering. This capability 

enables new opportunities: when merged with appropriate fabrication methods and materials, the 

presented pulse shaping approach can be used to directly engineer terahertz pulses generated 

through quantum cascade lasers, solid-state circuits and particle accelerators.  Another major 

advantage of this deep learning-based approach is that it is versatile and can be easily adapted to 

engineer terahertz pulses irrespective of their polarization state, beam quality as well as 

spectral/spatial aberrations. 

The experimentally measured power efficiency values reported in our manuscript are ~1%. 

However, there exist various design strategies that can enable increased power-efficiency in 

diffractive pulse shaping networks as detailed in Table 3.1 (also see the Methods section). The 

diffractive networks reported in Table 3.1 were trained to synthesize 15.5 ps square pulses at 

their output plane. As one can observe in Table 3.1, the power efficiency values of the resulting 
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Fig. 3.13 Pulse width tunability of diffractive networks. (a) Numerically calculated and experimentally 

measured temporal pulse widths and (b) the corresponding shifts in the center frequency are depicted as a 

function of the inter-layer distances of a pulse shaping diffractive network that was originally trained for 

synthesizing a square pulse width of 15.50 ps (Δz = 0 mm, see Fig. 2). (c-h) The numerically computed (blue) 

and the experimentally measured (orange) normalized spectral amplitudes, with the inset plots showing the 

experimentally measured temporal waveform (red) when the layer-to-layer distances are changed by (c) Δz = -

10 mm, (d) Δz = -5 mm, (e) Δz = 5 mm, (f) Δz = 10 mm, (g) Δz = 15 mm and (h) Δz = 20 mm. The negative 

(positive) sign indicates that the inter-layer axial distances decrease (increase). 
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diffractive models can be increased by more than an order of magnitude by adjusting the training 

loss function, increasing the output aperture size and using low absorption materials. For 

example, as reported in the second column of Table 3.1, when the material absorption is ignored 

during the testing of a diffractive network model, a 2-fold wider output aperture (i.e., 4 mm) 

provides a significant improvement in the power efficiency of the pulse shaping networks, 

reaching 60.37% and 61% for two different network models. On the other hand, if the absorption 

of our 3D-printing material is taken into account as part of the optical forward model, one can 

reach an efficiency value of 17.84% by accordingly optimizing the training loss function and 

using a 4 mm output aperture (see Table 3.1).  

By comparing the top and bottom efficiency values for a given training loss function and 

design strategy reported in Table 3.1, we clearly see that the 3D-printing material used in this 

work decreases the pulse shaping network efficiency 2-5 times, in different designs, compared to 

an ideal, non-absorbing optical material. As an alternative fabrication material for diffractive 

pulse shaping networks, one can consider low-absorption polymers
134–136

 used in commercially 

available components designed for THz wavelengths, e.g., TPX, which exhibits a two orders-of-

magnitude smaller absorption coefficient compared to the 3D printing material used in our work. 

There have been various fabrication processes developed for such low absorption polymers
137,138

, 

which can be used to precisely control the thickness of these low-loss polymers with a relatively 

high-resolution (~λ/2) to manufacture pulse shaping diffractive networks with much lower 

material absorption. To even further improve the output efficiency of pulse shaping diffractive 

networks, anti-reflective (AR) coatings over diffractive surfaces can also be utilized to reduce 

back-reflections, similar to the AR-coated commercial lenses and other optical components. 
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Fig. 3.14 Changing the output temporal waveform of a diffractive network by a Lego-like transfer 

learning approach. a The temporal and spectral output distributions (blue dashed box), synthesized by the 

original diffractive design that was trained to generate a 15.50 ps square pulse. b Replacing the last diffractive 

layer with another, newly trained diffractive layer to synthesize a 12.03 ps square pulse at the output. The 

thickness profile of the newly trained diffractive layer is shown, together with the normalized spectral and 

temporal profiles synthesized by this new diffractive network in green dashed box.  c Replacing the last two 

diffractive layers with newly trained, two diffractive layers to synthesize a 12.03 ps square pulse at the output. 

The thickness profiles of the newly trained diffractive layers are shown, together with the normalized spectral 

and temporal profiles synthesized by this new diffractive network in red dashed box. 
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In conclusion, we presented a modular pulse shaping network that synthesizes various pulse 

waveforms using deep learning. Precise shaping of the spectral amplitude and phase profile of an 

arbitrary input pulse over a wide frequency range can be achieved using this platform, which will 

be transformative for various applications including e.g., communications, pulse compression, 

ultra-fast imaging and spectroscopy. In addition to direct engineering of terahertz pulses, the 

presented diffractive pulse shaping network can be utilized in different parts of the 

electromagnetic spectrum by using appropriate fabrication technologies and materials.   

 

3.4 Methods  

Terahertz setup 

Figure 3.1 shows the schematic diagram of the terahertz time-domain spectroscopy (THz-

TDS) setup that was used to measure the input and output pulse profiles reported in this work. A 

Ti:sapphire laser (Coherent Mira HP) is used to generate femtosecond optical pulses. The optical 

 

Fig. 3.15 Experimentally measured full width at half maximum (FWHM) values of the spatial 

intensity profiles of different spectral components in the THz beam at the input aperture plane of the 

diffractive network. 
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beam generated by the laser is split into two parts. One part of the beam is used to pump a high-

power plasmonic photoconductive terahertz source to generate terahertz pulses
139

, which are 

collimated with off-axis parabolic mirrors and guided to a high-sensitivity plasmonic 

photoconductive terahertz detector
133

. The other part of the beam passes through an optical delay 

line (Newport IMS300LM) and is focused onto the terahertz detector. As a result, an ultrafast 

signal which is directly proportional to the incident terahertz field is generated within the 

terahertz detector. The signal is sampled with a 12.5 fs time-resolution over a 400 ps time-

window by changing the time delay between the terahertz and optical probe pulses incident on 

the detector, amplified with a transimpedance pre-amplifier (Femto DHPCA-100), and acquired 

with a lock-in amplifier (Zurich Instruments MFLI). For each measurement, 10 time-domain 

traces are collected and averaged. The described THz-TDS setup provides a 90 dB signal-to-

noise ratio over a 5 THz noise-equivalent-power bandwidth. 

Each one of the pulse shaping diffractive networks consists of 4 trained layers that are 

separated by 3 cm as illustrated in Fig. 3.1. The diffractive layers, input and output apertures, 

were fabricated using a 3D Printer (Objet30 Pro, Stratasys Ltd.). The fabrication/preparation of 

each diffractive layer takes approximately 1.5-2 hours. A square input aperture (0.8 cm) and an 

output aperture (0.2 cm) are placed 3 cm from the first diffractive layer and 10 cm from the last 

diffractive layer, respectively (Fig. 3.1c). The printed apertures were aluminum coated to prevent 

any light wave passing through the regions outside of the aperture. After the design and printing 

of the diffractive layers, they were placed at their corresponding locations inside a 3D printed 

holder that ensures robust alignment between the layers. During the pulse shaping experiments, 

the diffractive network was directly placed between the terahertz source and detector, coaxial  
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Table 3.1 Power efficiency values of pulse shaping diffractive networks trained with different loss functions. 
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with the terahertz input pulse emanating from the source (Figs. 3.1b,d).  After the alignment of 

the diffractive network, the output pulse was measured and it was followed by the measurement 

of the reference input pulse which was acquired by placing the same terahertz detector at the 

input aperture, without any diffractive layers between the source and detector. For generic 

diffractive networks that were trained with flat input spectra, the measured output pulse spectrum 

is normalized with respect to the measured reference input pulse and its spectral amplitude is 

smoothened around water absorption lines shown in Figs. 3.7, 3.9, 3.13 and 3.14. The measured 

pulse width at the network output is defined as the width of the time interval that the envelope of 

the pulse amplitude is at least 20% of its maximum. 

Forward Model 

Our forward model considers the layers of a diffractive network as thin modulation elements 

that are connected to the next layer through free space propagation. The modulation of neurons at 

each layer can be modeled as: 

𝑀𝑛 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝜆) = 𝐴𝑛 (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, 𝜆) exp (𝑗𝜑𝑛 (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, 𝜆))      (3.1),

where M represents the complex transmission/reflection coefficient. The field amplitude, phase, 

wavelength, and diffractive layer number are denoted by A, ϕ, λ and n respectively. Free space 

propagation between each layer is calculated based on the Rayleigh-Sommerfeld formulation of 

diffraction that models a diffractive feature as source of a secondary wave:  

𝑊𝑖
𝑛(𝑥, 𝑦, 𝑧, 𝜆) =

𝑧−𝑧𝑖

𝑟2 (
1

2𝜋𝑟
+

1

𝑗𝜆
) exp (

𝑗2𝜋𝑟

𝜆
)       (3.2),   
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where 𝑟 =  √(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)

2 , 𝑗 =  √−1  and 𝑊𝑖
𝑛(𝑥, 𝑦, 𝑧, 𝜆)  is the 

secondary wave generated by the i
th

 neuron on n
th

 layer at location (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖), respectively. Then, 

we can write the optical field at layer n, at point (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)  as: 

𝑈𝑛(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝜆) = 𝑀𝑛(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝜆) ∑ 𝑈𝑛−1(𝑥𝑘, 𝑦𝑘, 𝑧𝑘, 𝜆)𝑊𝑘
𝑛−1(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝜆)

𝑘

, 𝑛 ≥ 1   (3.3).  

Network Training  

During the training of a pulse shaping diffractive network, one of the 5 pulses measured at 

the input plane (Figs. 3.4a-b) were randomly selected as the input pulse at each iteration of the 

training model for the diffractive networks reported in Figs. 3.2 and 3.3; for the generic 

diffractive network models reported in Fig. 3.7 and Figs. 3.9-3.14, however, the input is modeled 

as a spectrally flat Gaussian beam with varying FWHM values over a wide frequency range (Fig. 

3.15) and with a uniform phase profile. The wave propagation is performed for N = 300 discrete 

frequencies that were uniformly sampled between 3 GHz and 1 THz.   

In our wave propagation through the diffractive layers, a 0.5 mm pixel (i.e., diffractive 

feature) size is assumed based on the lateral resolution of our 3D printer. While a pixel size of 

0.5 mm can create all the propagating modes of free-space for frequencies below ~300 GHz, they 

can only excite plane waves over a subset of the k-vectors supported by the free-space for the 

spectral components between 300 GHz and 1 THz.
140

 Therefore, our diffractive pulse shaping 

networks would benefit from higher resolution fabrication techniques with better lateral 

resolution to more accurately control and engineer the complex-valued spectral weights of a 

given desired pulse. 
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To calculate the Rayleigh-Sommerfeld integral more accurately, each pixel is oversampled 

twice so that all 4 elements have the same thickness values in that 2×2 grid. The thickness of 

each pixel, h, is composed of a base height (hbase) of 0.1 mm, which provides adequate 

mechanical stiffness to the fabricated diffractive layer and a trainable modulation height (htr) that 

is between 0 and 1 mm, i.e.,  

ℎ = ℎ𝑏𝑎𝑠𝑒 + ℎ𝑡𝑟          (3.4)   

To confine the modulation height between 0 and 1 mm, we defined htr over an auxiliary 

training-related variable, ha, using: 

ℎ𝑡𝑟 = 0.5𝑚𝑚 × {1 + sin(ℎ𝑎)}         (3.5),     

In its general form, the amplitude and phase modulation of each neuron of a given diffractive 

layer is a function of the layer thickness, incident wavelength, material extinction coefficient κ(λ) 

and refractive index n(λ), i.e., 

𝐴𝑛(𝑥, 𝑦, 𝑧, 𝜆) = exp (−
2𝜋𝜅(𝜆)ℎ

𝜆
)            (3.6)  

𝜑𝑛 (𝑥, 𝑦, 𝑧, 𝜆) =
2𝜋ℎ(𝑛(𝜆) − 𝑛𝑎𝑖𝑟)

𝜆
           (3.7)  

The material refractive index n(λ) and the extinction coefficient κ(λ) are defined as the real 

and imaginary parts of the complex refractive index, 𝑛̃(𝜆) = 𝑛(𝜆) + 𝑗𝜅(𝜆), determined by the 

dispersion of our 3D fabrication material
92

. Since we have relatively small variations in the 

extinction coefficient over the frequency band that we utilized in this work, we ignored the 

material absorption during the training and numerical simulations of diffractive layers.   
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After the wave propagation through diffractive layers, light goes through the output square 

aperture of 2mm width, which is placed right in front of the hemisphere silicon lens which is 1.2 

cm in diameter. Since the effective aperture of this Si lens was significantly restricted by the 

output aperture, it was modeled as a uniform slab with a refractive index of 3.4 and 0.5 cm 

thickness. After the propagation through the Si slab, the coherent integration of the optical waves 

incident on the active area of the detector was computed to obtain the spectral field amplitude 

and phase for each frequency. The power efficiency was defined as 𝜂𝑓0
=

𝐼𝑠𝑒𝑛𝑠𝑜𝑟,𝑓0

𝐼𝑖𝑛𝑝𝑢𝑡,𝑓0

 for the 

peak/center frequency (f0) of given diffractive network design, where 𝐼𝑖𝑛𝑝𝑢𝑡,𝑓0
 and 𝐼𝑠𝑒𝑛𝑠𝑜𝑟,𝑓0

 

denote the power within the input and output apertures, respectively.  

Our loss function (L) used during the training phase has three components: temporal loss 

term (Lt) which penalizes the mismatch between the target and the output time waveforms, the 

power loss term (Lp), and the power surrounding the detector region (Ls), i.e., 

𝐿 =  𝛼𝐿𝑡 + 𝛽𝐿𝑝 + 𝐿𝑠           (3.8)  

To calculate the temporal loss, Lt, first the output temporal waveform is reconstructed from 

the spectral field amplitude and phase on the detector area, and it is normalized. Then, the 

difference between the target temporal waveform and the reconstructed output waveform is 

integrated over time: 

𝐿𝑡 =  ∑(𝑓𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑓𝑜𝑢𝑡𝑝𝑢𝑡 )
2

𝑡

         (3.9),  

where 𝑓𝑡𝑎𝑟𝑔𝑒𝑡  and 𝑓𝑜𝑢𝑡𝑝𝑢𝑡  denote the ground-truth, time-domain waveform and the 

synthesized waveform by the diffractive network model at a training iteration. For a given 
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diffractive network model, 𝑓𝑜𝑢𝑡𝑝𝑢𝑡 is computed by propagating the input waves of all the spectral 

components from the input aperture to the output aperture. Next, the complex-valued wave fields 

of these different wavelength components are integrated over the sensitive area of the detector to 

obtain each complex-valued spectral coefficient at the output, which is followed by an inverse 

Fourier transform operation over the resulting vector.  Alternatively, the error term between a 

target, time-domain pulse, 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 , and the synthesized waveform by the diffractive network, 

𝑓𝑜𝑢𝑡𝑝𝑢𝑡, can directly be computed based on the complex-valued spectral coefficients without any 

inverse Fourier transform operation. However, in this case, since the error is defined based on the 

complex-valued target and output functions, two separate error functions must be computed for 

the real and imaginary parts of the spectral coefficients and these two losses must be combined to 

compute the final loss term.       

The analytical form of the square pulses used in this work can be written as: 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) =

𝑟𝑒𝑐𝑡(𝑏𝑡)cos (2𝜋𝑓0𝑡), where 𝑓0 and 𝑏 represent the carrier frequency and the rectangular pulse-

width, respectively. For the Gaussian pulses, however, the analytical form of the target 

waveform can be written as: 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = ∑ Cicos(2𝜋𝑓0(𝑡 − 𝑡0,𝑖)) exp (−(𝑡 − 𝑡0,𝑖)
2

/𝑛
𝑖=1

(2𝑝𝑖)) exp(𝑗𝑞𝑖(𝑡 − 𝑡0,𝑖)
2), where t0,i, Ci, pi and qi denote the time instant of the peak, magnitude, 

variance of the low-pass envelope and the instantaneous angular chirpiness, respectively. The 

number of desired pulses inside a targeted time-window is determined by n. For the three 

examples shown in Figs. 3.10-3.12, the target time domain waveforms were created by setting 

these parameters to [n = 1, t0 = 0, C1 = 1, p1 = 2.2×10
-22

, q1 = 5.76×10
21

]; [n = 2, t0,1 = 0, t0,2 = 27 

ps, C1 = 1, C2 = 0.5, p1 = p2 =1.38×10
-23

, q1 = 6.25×10
22

 q2 = -6.25×10
22

]; and [n = 2, t0,1 = 0, t0,2 

= 19 ps, C1 = 1, C2 = 1, p1 = p2 =4.58×10
-24

, q1 = q2 = 0], respectively.   
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For the diffractive network designs shown in last row of Table 3.1, we used a power loss 

term, Lp, defined as: 

𝐿𝑝 = {
− log (

𝜂

𝜂th

) ,    if 𝜂 < 𝜂th

0,                       if 𝜂 ≥ 𝜂th

           (3.10),  

where =
∑ 𝐼𝑠𝑒𝑛𝑠𝑜𝑟𝜔

∑ 𝐼𝑖𝑛𝑝𝑢𝑡𝜔
 . Iinput and Isensor denote the power within the input and output apertures for 

a given wavelength, respectively. For the diffractive network designs shown in Table 3.1 last 

row, corresponding to 2mm and 4mm output apertures, 𝜂th  was selected as 0.07 and 0.08, 

respectively. For the all remaining designs reported in the manuscript, the power loss term is 

defined as: 

𝐿𝑝 =
∑ (𝐼𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐼𝑠𝑒𝑛𝑠𝑜𝑟)

2
𝜔

∑ 𝐼𝑡𝑎𝑟𝑔𝑒𝑡
2

𝜔

            (3.11),  

where Itarget is the total power of the target waveform at a given wavelength within the input 

aperture, normalized with respect to the power of the input at the center frequency, 𝑓0.  

The last component of our loss function which represents the power surrounding the detector 

aperture is defined as:  

𝐿𝑠 =
∑ 𝐼𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝜔

∑ 𝐼𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑙𝑎𝑛𝑒𝜔
             (3.12),  

where Isurround is the total power at a given wavelength within the 5 mm × 5 mm square region 

that is centered around the output aperture (excluding the output aperture, i.e., it only measures 

the signal surrounding the output aperture) and Ioutput plane is the total power at a given wavelength 

within the output plane.   
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The diffractive networks that synthesized 10.58 ps, 10.96 ps, 13.26 ps, 15.56 ps, 15.69 ps and 

17.94 ps  square terahertz pulses were trained with   
𝛼

𝛽
 ratios of 6500, 500, 4500, 1500, 750000 

and 2500, respectively. For the Lego-like transfer learning approach, an  
𝛼

𝛽
 ratio of 8500 was 

used. For Figs. 3.10 and 3.12, the forward optical model was trained using an 
𝛼

𝛽
 ratio of 1500 and 

for  Fig. 3.11, we used 
𝛼

𝛽
= 15000. 

Table 3.1 reports a series of diffractive optical network designs that are trained to create a 

square pulse of 15.5 ps at their output apertures, achieving different levels of power efficiencies. 

Among these pulse shaping diffractive network models, the 
𝛼

𝛽
 ratio was adjusted depending on 

the size of the output aperture. Specifically, the diffractive networks targeting a 2mm aperture at 

the output plane were trained with 
𝛼

𝛽
= 1500, and this ratio was reduced to 136 for the diffractive 

pulse shaping systems with 4mm wide output apertures. Finally, an  
𝛼

𝛽
 ratio of 150 was used for 

the diffractive optical networks that were trained with the power efficiency loss term described in 

Eq. 3.10.  

In our training, Adam optimizer is used as a standard error backpropagation method with a 

learning rate of 0.8×10
-3

 for chirped-Gaussian pulses depicted in Figs. 3.10-3.11 and the chirp-

free Gaussian pulse train reported in Fig. 3.12. For the diffractive networks synthesizing 10.96 ps 

and 15.69 ps square pulses, on the other hand, the learning rate was set to be 10
-3

. For the rest of 

the diffractive network models 10
-4

 was used as the learning rate. All the trainable parameters 

were initialized as zero. Our designs used Python (v3.7.3) and Tensorflow (v1.15.0) on a 

computer that has Nvidia Titan RTX graphical processing unit, Intel Core i9 CPU and 128 GB of 
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RAM with Windows 10 operating system. MATLAB 2016b is used to convert designed 

diffractive layers to a 3D printable (.stl) file format.    
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Chapter 4 Conclusion 
 

Machine learning has been revolutionizing many areas of optics, including optical sensors 

and devices. Recent advances in computational imaging and deep learning improved our 

capabilities by providing noise reduction and better sensitivity in optical sensors and also helped 

us to overcome non-intuitive design problems for optical devices.  

In summary, my contributions to machine learning-enabled optical sensors are presented in 

Chapter 1. I introduced a platform to non-invasively analyze human ocular microbiome by 

computational imaging of contact lenses and machine learning based detection of bacteria, 

Staphylococcus aureus. This platform opens up an avenue for monitoring and detection of other 

bacteria in ocular microbiome with small changes in surface chemistry protocol, also enables 

further analysis and understanding between ocular microbiome and some diseases, by providing 

easy access to ocular environment. 

In chapter 2, a new framework that is based on deep learning has been introduced for all-

optical machine learning applications such as image classification and for solving non-inverse 

problems in optics. This diffractive optical network framework, which consists of passive layers, 

brings wave optics and deep learning together to tackle tasks with the speed of light processing, 

low power consumption while enabling parallel computing.  

In chapter 3, I introduced optical pulse shaping platform which is based on diffractive optical 

surfaces to synthesize arbitrary waveform from input pulse. Deep learning based training enables 

us to solve such interesting non-intuitive optical problems without using any conventional optical 

components. First direct pulse shaping in terahertz spectrum was demonstrated by synthetizing 
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arbitrary temporal waveforms. This avenue shows potential opportunities for the design of new 

optical devices using deep learning based diffractive optical networks.  
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