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ABSTRACT

Mutations in the epidermal growth factor receptor gene
(EGFR) represent one of the most frequent “actionable” al-
terations in non–small cell lung cancer (NSCLC). Typified by
high response rates to targeted therapies, EGFR tyrosine ki-
nase inhibitors (TKIs) are now established first-line treat-
ment options and have transformed the treatment paradigm
for NSCLC. With the recent breakthrough designation and
approval of the third-generation EGFR TKI osimertinib,
available systemic and local treatment options have
expanded, requiring new clinical algorithms that take into
account individual patient molecular and clinical profiles. In
this International Association for the Study of Lung Cancer
commissioned consensus statement, key pathologic, diag-
nostic, and therapeutic considerations, such as optimal
choice of EGFR TKI and management of brain metastasis, are
discussed. In addition, recommendations are made for clin-
ical guidelines and research priorities, such as the role of
repeat biopsies and use of circulating free DNA for
molecular studies. With the rapid pace of progress in treating
EGFR-mutant NSCLC, this statement provides a state-of-the-
art review of the contemporary issues in managing this
unique subgroup of patients.

� 2016 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. All rights reserved.

Keywords: Non–small cell lung cancer; EGFR mutation;
Tyrosine kinase inhibitor; Therapy; Resistance; Brain
metastases

Introduction
Since the seminal discovery of activating epidermal

growth factor receptor gene (EGFR) mutations in 2004,1,2

the management paradigms and outcomes of lung cancer
have changed dramatically. One of the key conceptual
advances has been the identification of subsets of patients
with non–small cell lung cancer (NSCLC) who exhibit
differential responses to specific therapies. The signifi-
cant impact of mutation-specific targeted therapies
directed against an expanding list of “actionable” alter-
ations has necessitated rapid integration of molecular
profiling into clinical practice. One of the striking obser-
vations arising from molecular screening of patient pop-
ulations globally has been the difference in prevalence of
EGFR mutations across ethnicities.3,4 For example, the
prevalence of EGFR mutations ranges from between 5%
and 10% in whites to between 60% and 70% in never-
smoking Asian patients with adenocarcinoma—notably
leading to regional differences in molecular profiling al-
gorithms, as well as to varying levels of feasibility in
conducting biomarker-selected trials.5

As a classic oncogene-driven solid tumor, EGFR
mutation–positive NSCLC has a unique disease course
typified by high response rates to tyrosine kinase in-
hibitors (TKIs).6 Several phase III studies comparing
first- and second-generation epidermal growth factor
receptor (EGFR) TKIs with chemotherapy have demon-
strated significantly higher response rates and longer
progression-free survival (PFS), establishing EGFR TKIs
as a first-line treatment of EGFR-mutant NSCLC.6–13

However, resistance to TKIs almost invariably occurs
and several molecular mechanisms have been described,
with the EGFR T790M somatic mutation being the most
frequent alteration detected in approximately half of
progressing tumors.14–16 Next-generation EGFR TKIs
have since been developed specifically to target the
T790M mutation,17,18 and they have demonstrated high
and durable responses in patients with advanced EGFR-
mutant NSCLC who have been previously treated and in
whom first- or second-generation EGFR TKIs have failed.
The median overall survival (OS) after first- or second-
generation EGFR TKIs has reached 2 to 3 years and is
likely to be extended further with the recent approval of
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third-generation EGFR TKIs that demonstrated a median
PFS of 9.6 months (for patients without central nervous
system [CNS] metastases).18

With an expanding array of biomarker-directed treat-
ment approaches in NSCLC, there has been an increasing
role for multiplexed clinical testing—both at the time of
initial diagnosis and at the time of disease progression.
Newclinical paradigms such as repeat biopsies specifically
for molecular profiling and novel efficacy end points, such
as dynamic changes in plasma EGFR mutations, are start-
ing to play a broader role in patient management.
Furthermore, with improved delineation of the clinical
sequelae of EGFR-mutant NSCLC (e.g., lifetime risk of CNS
involvement), there has been a need to better coordinate
multidisciplinary care with the expanding number of
treatment options available. With further comprehensive
genomic profiling studies on lung cancers, relevant cancer
traits and putative therapeutically tractable targets have
emerged.19–22 As a result, there has been significant
enthusiasm for developing multiple novel agents and
combinations in select patient populations, as well as an
urgent need to develop and validate a broad repertoire of
scalable laboratory techniques to screen patients with
lung cancer for actionable biomarkers.

In 2013 the International Association for the Study
of Lung Cancer published a consensus report on the
diagnostic and therapeutic aspects of the management
of NSCLC with EGFR inhibitors.23 Given the rapidly
evolving clinical paradigms, the committee has found it
timely to convene an expert panel to review the
emerging data pertaining to contemporary management
of this unique subgroup of patients, who may have the
potential for a long-term “chronic” life perspective
involving sequential treatment options. This consensus
statement was the result of a 2-day expert meeting with
participants from a multidisciplinary team comprising
medical and radiation oncologists, thoracic surgeons,
pathologists, pulmonologists, and radiologists. All
members critically reviewed and discussed the available
scientific data, with the specific aim of providing
practitioners with contemporary guidance with regard
to diagnostic algorithms and interdisciplinary clinical
management, as well as prioritized research questions.
Molecular Diagnostics
Methods for Ascertaining EGFR Mutation Status

With the increased accessibility of EGFR TKIs, routine
molecular testing for EGFR mutations has been increas-
ingly adopted as the standard of care worldwide. In
the seminal publication by the International Association
for the Study of Lung Cancer/American Thoracic Soci-
ety/European Respiratory Society,24 strong recommen-
dations were made regarding the necessity to classify
more accurately the histological types of NSCLC, and
guidelines were proposed for optimal management of
tissues to maximize their availability for molecular
studies. Although EGFR testing is recommended for all
patients in whom nonsquamous NSCLC has been diag-
nosed, it may also be considered in cases of squamous
histological findings with unique clinical phenotypes
(e.g., in never-smokers or in patients with mixed
adenosquamous subtypes). In this process, the role of
the pathologist is highly important to adequately
integrate both routine histopathologic assessment and
molecular testing into clinical pathology for proper
tumor diagnosis and subsequent selection of the most
appropriate therapy. The handling of the biopsy and
cytologic specimens for histological examination and
subsequent molecular testing requires thoughtful prior-
itization of sample use to prevent loss of tissue in
lower-priority analysis relative to the molecular testing
required for selection of therapy. The pathologist should
determine whether the amount of malignant cells avail-
able in the specimen is adequate for nucleic acid
extraction and also for histological section–based tests
(e.g., diagnostic immunohistochemical analysis, fluores-
cence in situ hybridization, etc.).

Nevertheless, there is international variation in terms
of who initiates molecular studies (i.e., the treating
oncologist or the pathologist). Reflex testing ordered
by the pathologist who makes the diagnosis can result in
a significant reduction in waiting time for the oncologist
making treatment decisions.25 However, this is largely
determined by the reimbursement policy for molecular
studies in the country or local health authority. From
the standpoints of the pathologist and workflow, it is
generally more efficient to obtain unstained sections
sufficient to test for the necessary molecular markers
relevant to clinical practice during the initial diagnostic
workup of the tumor biopsy sample. In this respect, two
critical considerations are the type of platform utilized
for molecular studies and the source of DNA.

A range of techniques and platforms are currently
available for evaluating EGFR mutation status and are
summarized in Table 1. Although most have high speci-
ficity, they vary in terms of assay sensitivity, whether
only known mutations are detected, and scalability for
multiplex testing. In general, a sensitivity of 1% to 5% is
considered acceptable and the procedure should be
conducted in a clinically approved diagnostic laboratory.
Although the Roche cobas 4800 system (Roche Molecu-
lar Systems, Inc.) is the only U.S. Food and Drug
Administration (FDA)-approved companion diagnostic
for erlotinib, a range of sensitive sequencing methods
are typically implemented in many molecular pathology
laboratories. Moreover, despite conferring high sensi-
tivity, the Roche cobas 4800 assay covers only the 28



Table 1. Methods for Detecting EGFR Mutations, Relative Performance, and Applications

Technique
Sensitivity
(% Mutant DNA)

Mutations
Identified

Detection of
Co-mutations

Potential
Applications Reference(s)

Direct sequencing 10%–25% Known and new No Tissue Multiple studies
Pyrosequencing 5%–10% Known only No Tissue Young et al., 201326

Multiplex PCR
(SnaPshot)

5% Known only Yes (hotspots) Tissue Dias-Santagata et al.,
201027

cobas 3%–5% Known only No Tissue, Plasma Lopez-Rios et al., 201328

WAVE-surveyor 2% Known only No Tissue, Plasma Janne et al., 200629

Mass spectrometry
based

1%–10% Known only Yes (hotspots) Tissue, Plasma Arcila et al., 201130;
Sherwood et al., 201431

High-depth NGS (at
least 200� depth)

1%–10% depending on
error rates and
sequencing depth

Known and new Yes Tissue, Plasma Uchida et al., 201532

Therascreen 1%–5% Known only No Tissue, Plasma Lopez-Rios et al., 201328

Scorpions ARMS 1% Known only No Tissue, Plasma Chiu et al., 201433

Locked nucleic acid
clamp

1% Known only No Tissue, Plasma Costa et al., 201434

TAm-Seq 2% Known and new Yes Tissue, Plasma Forshew et al., 201235

BEAMing <0.1% Known only No Tissue, Plasma Taniguchi et al., 201136

Digital droplet PCR <0.1% Known only No Tissue, Plasma Watanabe et al., 201537

CAPP-Seq w0.02% Known and new Yes Plasma Newman et al., 201438

EGFR, epidermal growth factor receptor gene; PCR, polymerase chain reaction; NGS, next-generation sequencing; ARMS, amplification refractory mutation
system; CAPP, cancer personalized profiling by deep sequencing.
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mutations that comprise approximately 95% of known
EGFR alterations, whereas Sanger sequencing may
uncover known and novel mutations (e.g., C797S) in
the context of resistance to third-generation EGFR
TKIs.39

Although tissue specimens are preferable for molec-
ular testing, cytologic samples with abundant malignant
cells can also be successfully used for such analyses.
Considering that two-thirds or more of patients with
lung cancer present with advanced-stage disease, the
most often available diagnostic samples are small biopsy
samples obtained through computed tomography
(CT)-guided core needle biopsy or fine-needle aspiration.
Thus, it is not surprising that large population-based
testing experiences have reported that 70% to 85% of
tested samples include core needle biopsy specimens,
fine-needle aspiration samples, and fluid specimens.4,40

Approximately 60% of the specimens are from the
primary lung tumor, with the remainder from metastatic
sites. Importantly, the reported failure rates for testing
are approximately 5% to 30%, mostly owing to inade-
quate sample materials or lower than the minimum
required tumor cellularity.40–42 In addition, tissues
samples obtained through transthoracic or broncho-
scopic needle biopsies are usually formalin fixed and
embedded in paraffin, which imposes some limitations
on the extent of molecular testing. Importantly, molec-
ular studies of biopsy and cytologic samples with
adequate material have yielded similar failure
rates.40,43,44 A further consideration is discordance
in molecular status between primary and metastatic
sites,45,46 which could be associated with tumor het-
erogeneity between the different sites of involvement.

Newer sequencing technologies can potentially offer
greater breadth of detecting genetic mutations with high
sensitivity—in both EGFR and other drivers. Targeted
multiplexed hotspot panels (e.g., Agena Oncocarta
[Agena Bioscience, San Diego, CA],47 SNaPshot [Applied
Biosystems, Foster City, CA],48 and next-generation
sequencing [NGS] panels49,50) have already been
developed and are available in College of American
Pathologists (CAP)-accredited academic and commercial
laboratories. Not only do they permit frequently occur-
ring mutations to be detected simultaneously, but some
NGS-based assays offer the possibility of detecting
chromosomal rearrangements, copy number variations,
and insertions or deletions, thus making a compelling
case for NGS-based molecular prescreening because all
classes of alterations—point mutations, rearrangements,
copy number changes, and insertions or deletions—are
therapeutically relevant in the management of NSCLC.

It is anticipated that the requirement for molecular
testing will increasingly affect the way that biopsies are
performed on suspicious or progressing lesions and how
samples are processed for routine pathologic diagnosis. In
particular, given the clinical impact of delineating mech-
anisms of resistance to EGFR TKIs (e.g., the T790M mu-
tation), additional expertise is required to evaluate the
suitability of acquiring biopsy specimens from posttreat-
ment lesions—in terms of both selection of appropriate
lesions and management of potential complications. Bi-
opsies should be directed at progressing sites (i.e., a
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growing lesion, a fluorodeoxyglucose F18–positron
emission tomography–positive site, or a new lesion), and
ideally on-site cytologic evaluation would be at hand to
verify quality of tissue yield. The committee recommends
that individual institutions establish a strategy or protocol
for obtaining tissue samples adequate for both clinical and
research studies, including additional tissue cores during
biopsy procedures, implementing rapid on-site cytologic
evaluation, and storage of frozen tissue for maximal yield
of genomic material.
What Is the Current Role for Plasma-Based EGFR
Testing?

Not all patients with advanced NSCLC are amenable
to repeat biopsy. In a single-center series of 126 patients,
repeat biopsy was feasible in 74.6% of patients, with
20% of patients with successful biopsies having inade-
quate tissue for mutational analysis,51 which highlights
the need to explore noninvasive tools to detect common
alterations. As such there has been significant enthu-
siasm for development of noninvasive methods for
testing EGFR mutation status, such as circulating
cell-free DNA (cfDNA).

To date, most studies have been retrospective. A
meta-analysis reported a sensitivity of 0.62 and a spec-
ificity of 0.96 as compared with tissue genotyping as the
standard,52 with higher sensitivity observed in patients
with stage III and IV disease. This has led to increasing
acceptance of noninvasive plasma-based testing for
EGFR mutations as a standard test for patient selection,
with the cobas platform having been approved in Europe
and China. Nevertheless, there remains a significant
chance of false negativity in ascertaining T790M in
cfDNA at present, underscoring the continued role for
traditional tissue-based molecular diagnosis.

Beyond providing a diagnostic tool, cfDNA status may
also make it possible to prognosticate patients. In
the EURTAC trial, a peptide nucleic acid–mediated
50-nuclease real-time polymerase chain reaction (PCR)
assay was used to detect cfDNA at baseline in 78% of
patients (76 of 97), which suggested that the presence of
L858R mutation in cfDNA is a negative prognostic
factor.53 Similarly, cfDNA has been examined as a phar-
macodynamic marker, where the failure of clearance of
plasma EGFR mutations after three cycles of combined
EGFR TKI treatment and chemotherapy (the FAST-ACT2
study) was found to be an independent predictor of
shorter PFS and OS.54 Thus, it may provide a tool to
further substratify patient subsets and provide an op-
portunity to identify “poor-risk” groups for escalation of
therapy (e.g., combinatorial approaches).

These data underscore the promise of cfDNA in dis-
ease monitoring, although several issues remain to be
elucidated before its widespread clinical application.
These include the differences in performance among
assay platforms (allele-specific PCR, emulsion PCR, and
NGS) and standardization of the time points for disease
monitoring, which will need to be prospectively
validated to determine relevant cutoffs and clinical
relevance.

Recommendations. (1) EGFR mutations should be
evaluated routinely in nonsquamous NSCLC, and it is
reasonable to consider testing lung cancer with other
histological patterns, especially in patients with
atypical clinical features (e.g., squamous cell carcinoma in
a never-smoker). (2) EGFR mutation studies should be
undertaken in College of American Pathologists/Clinical
Laboratory Improvement Amendments–accredited
laboratories on validated and sensitive platforms.
Multiplexed testing should be explored to cover the
breadth of actionable alterations in NSCLC. (3)
Tissue-based molecular analysis remains the accepted
standard for establishing initial diagnosis, as well as for
evaluating resistance to TKIs. Repeat biopsies of acces-
sible growing lesions in a safe manner after failure of
EGFR TKIs should be considered a new standard of care.
(5) At present, the clinical context in which genotyping
cfDNA has gained approval in certain countries is at
the time of initial diagnosis. (6) More research focused on
assay performance and the analytical range of
cfDNA is warranted to expand the potential clinical utility
(such as in enhancing patient stratification), although
prospective validation of this approach is required.

Optimal Selection of First-Line Therapy
for EGFR Mutation-Positive NSCLC

With eight randomized phase III trials establishing
the superior efficacy of first- and second-generation
EGFR TKIs versus chemotherapy, patients with acti-
vating EGFR mutations should commence by receiving
either a first or second-generation EGFR TKI or partici-
pate in ongoing clinical trials of EGFR inhibitors. There
are few studies comparing the relative efficacy of gefitinib
versus erlotinib, although retrospective studies suggest
that there is no difference in efficacy.55 Although the
incidence of adverse events such as rash and diarrhea is
more pronounced with second-generation EGFR TKIs,
there may be some patient subgroups that may especially
benefit from afatinib. Combined analysis of LUX-3
and LUX-6 studies showed for the first time an OS
benefit in the exon 19 deletion subgroup receiving
afatinib compared with those treated with platinum
doublet chemotherapy.56 However, a limitation in
these trials is the low proportion of patients in
the chemotherapy arms who crossed over to TKI.
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Nevertheless, this underscores the importance of
ensuring early access to an EGFR TKI during the disease
course and highlights the limitation of adopting OS as an
end point in clinical trials of EGFR-mutant NSCLC.

Given the potential for higher efficacy, second-
generation inhibitors such as afatinib and dacomitinib
are also being evaluated in the first-line setting. LUX
Lung-7 was the first randomized study that compared a
first-generation (gefitinib) to a second-generation
(afatinib) EGFR TKI.57 This phase IIB study (n ¼ 319)
aimed to show difference in three coprimary end points,
including PFS, OS, and time to treatment failure.
Although the median PFS times for afatinib and gefitinib
were 11.0 versus 10.9 months, respectively, the hazard
ratio demonstrated a significant difference at 0.73
(95% confidence interval: 0.57–0.95, p ¼ 0.017). In
addition, the proportion of patients who achieved
an objective tumor response was higher with afatinib
(70% versus 56%, p ¼ 0.0083) and this difference was
observed in both the L858R mutation (66% versus 42%)
and exon 19 deletion (73% versus 66%) subgroups. As
anticipated, the increased rates of grade 3 or higher
adverse events such as diarrhea (13% versus 1%), rash
(9% versus 3%), and fatigue (6% versus 0%) resulted in
more dose reductions in the afatinib arm compared with
in the gefitinib arm (42% versus 2%). The OS results
remain immature. The other study that compared
dacomitinib with gefitinib (ARCHER 1050) completed
accrual in March 2015 and data will likely be available in
late 2016. First-line trials involving a third-generation
EGFR TKI such as osimertinib have also been initiated
against erlotinib or gefitinib (Table 2) on the premise
that eradicating T790M-positive clones can forestall
resistance to treatment. However, at present, clinical
data do not convincingly support preferential use in the
first-line setting. Nevertheless, given the differences in
pharmacokinetics, dose intensity, and toxicity profiles,
key considerations in determining the choice of agent
include patient tolerability, mutation subtype, and access
to therapies.

Patients who commence by receiving chemotherapy
upfront (e.g., those whose EGFR mutation status had yet
to be determined before initiation of therapy) should
consider switching to an EGFR TKI after confirmation of
activating mutations. Although most randomized clinical
trials do not reveal differences in OS when comparing an
upfront TKI versus chemotherapy, EGFR TKIs do have
superior CNS disease control (discussed in a later section
on management of CNS disease).58 However, if the initial
response to chemotherapy is good, it is also reasonable
to consider completing four to six cycles followed by
a maintenance TKI, an approach validated in a small
subgroup of EGFR mutation–positive patients in the
SATURN trial.59
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There are fewer data regarding activity of EGFR TKIs for
uncommon EGFR mutations, which are found in
approximately 10% of patients.60–62 Most of the studies
are retrospective, comprising individual case reports in
patients treated with both first- and second-generation
TKIs that highlight differential sensitivities based on
mutation type.62,63 According to the largest pooled
analysis to date, which pooled data from LUX Lung 2,
LUX Lung 3, and LUX Lung 6, objective responses to
afatinib were observed in patients with G719X (77.8%
[14 of 18]), L861Q (56.3%, [nine of 16]), and S768I
(100% [eight of eight]) mutations. Finally, not all exon
20 insertions or duplications are insensitive to EGFR
TKIs, with the FQEA insertion at position A763_Y764 (in
the middle of the c-helix) conferring sensitivity to first-
and second-generation EGFR TKIs.60,64

As EGFR TKIs generally do not cure patients, a
range of combinatorial approaches with other active
agents is very appealing. EGFR TKIs combined with
chemotherapy have been evaluated in unselected
NSCLC. In subgroup analysis, PFS benefit has been
observed in patients with EGFR activating mutations;
however, a clinically relevant OS advantage has
not been demonstrated.65 Combinations with anti-
angiogenic therapy have yielded promising results. In a
randomized phase II study examining the role of
erlotinib-bevacizumab, median PFS reached an
impressive 16.0 months, compared with 9.7 months for
erlotinib alone.66 Another strategy with anti-EGFR an-
tibodies is the combination of afatinib-cetuximab,
which has demonstrated early evidence of efficacy in
EGFR TKI–resistant NSCLC.67 Other approaches that
are also being tested include targeting common escape
pathways, such as MET proto-oncogene, receptor
tyrosine kinase (MET) and insulin-like growth factor 1
receptor (IGF1R).68,69 Although these are rational
combinations, their clinical efficacy is unproven and the
outcome of ongoing clinical trials are eagerly awaited.
Combinations with immune checkpoint inhibitors have
shown durable responses,70 but they have not yet
clearly shown better efficacy than TKI alone, and
further studies are underway. Current ongoing pro-
spective phase III studies of combinations examined in
EGFR-mutant NSCLC are summarized in Table 2 and
have yet to be reported.

Recommendations. (1) Optimal first-line treatment for
EGFR-mutant NSCLC includes any of the approved EGFR
TKIs, including gefitinib, erlotinib, and afatinib. The
choice of agent should be based on factors such as per-
formance status and access to therapies. (2) For patients
with EGFR mutations whose treatment is initiated with
chemotherapy up front, due consideration should be
given to transitioning them to an EGFR TKI.
EGFR TKI Resistance
Definitions of Resistance: Clinical, Imaging, or
Emerging Biomarkers?

A diagnosis of “acquired resistance” to EGFR TKI
therapies is usually decided when lung cancer with a
known sensitizing EGFR mutation develops systemic
progression of disease (PD) (Response Evaluation
Criteria in Solid Tumors [RECIST] or World Health
Organization) while the patient is continuing to receive
an EGFR TKI after a documented partial or complete
response, or has had stable disease for more than 6
months, according to “Jackman’s criteria.”71 This clinical
definition has been adopted as a patient selection crite-
rion in many trials but does not take into account the
molecular mechanisms of resistance or the clinical
context of progression.

RECIST defines PD as an increase in the sum of di-
ameters of target lesions by 20% usually on CT scans.
Suppose that an original tumor is 10 cm in diameter and
then shrinks to 3 cm. The diagnosis of PD would be made
when the tumor diameter becomes 3.6 cm. These “pro-
gressing” patients may remain relatively asymptomatic
from their disease and current targeted treatment.
Therefore, a RECIST-based diagnosis of PD may not
necessarily indicate a need for an immediate change of
treatment. TheASPIRATION study showed that in selected
patients whose tumor was judged to have slow growth,
lack of symptoms, or a small number of lesions at PD,
erlotinibbeyond thepoint of PDaccording toRECIST could
be continued at the investigators’ discretion. Approxi-
mately half of the cohort (54% [93of 171])were eligible to
continue EGFR TKI beyond progression, and the median
duration of postprogression erlotinib was 3.1 months.72

Patient characteristics in the postprogression treatment
group included an Eastern Cooperative Oncology Group
performance status of 0 to 1 at time of progression, longer
median PFS, improved depth of response, and longer time
from best objective response to RECIST-based progres-
sion.72 The overall consensus is that it is reasonable to
maintain patients on an EGFR TKI even in the setting of
low-volume disease progression, as long as there is
perceived clinical benefit. In this setting, interval imaging
assessments should be continued at consistent time points
to monitor changes in tumor growth.

Nevertheless, given the deeper understanding of
molecular mechanisms and clinical patterns of resis-
tance, it will be increasingly important for trials to
consistently and accurately delineate patterns of resis-
tance or PD to reduce heterogeneity in patient cohorts,
as well as to improve interpretation of treatment effi-
cacy. Here the major challenge is identifying patients
who may have continued benefit from existing EGFR
TKIs with only low-volume disease progression. In this
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respect, clinical studies should take into account the pace
of tumor growth, as well as improve documentation of
disease beyond RECIST-based criteria, including CNS
versus extracranial progression and oligoprogression
versus systemic progression (Fig. 1). This will be espe-
cially critical because PFS is increasingly being adopted
as the primary end point in clinical trials and novel
agents might have specific therapeutic niches (e.g., CNS-
penetrant EGFR TKIs).73 A clinical pathway is proposed
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Table 3. IASLC Definitions of EGFR TKI Resistance

EGFR TKI
Resistance Clinical and Molecular Definition

Primary � Stable disease as best response after EGFR TKI monotherapy
Secondary � Partial response or stable disease for more than 6 mo with an enlarging extracranial target lesion(s)

� Documented resistance mechanism (e.g., T790M mutation, MET amplification, or other emerging mechanism
relevant to the TKI)

To avoid retreatment effect or disease flare
1. Patients can have minimal or no washout to EGFR TKI, especially in absence of grade 2 or higher toxicity
2. Patients should be receiving an EGFR TKI as the last line of therapy

Note: Patients who have a treatment-free interval from an EGFR TKI beyond 30 days may still be considered EGFR TKI resistant if (a) there has been no
intervening alternative treatment or (b) there has been intervening therapy but no appreciable response was observed.
IASLC, International Association for the Study of Lung Cancer; EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; MET, MET proto-oncogene,
receptor tyrosine kinase.
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hindrance imposed by the methionine residue, the
T790M mutation has also been shown in direct binding
assays to increase adenosine triphosphate affinity.74

Other resistance mechanisms involve bypass pathways
such as MET proto-oncogene, receptor tyrosine kinase
gene (MET) amplification (5%–30% depending on
thresholds), erb-b2 receptor tyrosine kinase 2 (HER2)
amplification (12%), phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha gene
(PIK3CA) mutation (5%), and B-Raf proto-oncogene,
serine/threonine kinase gene (BRAF) mutation
(1%).14,16,75 Beyond genomic alterations, transcriptomic
and proteomic perturbations such as AXL receptor
tyrosine kinase overexpression, phosphatase and tension
homolog loss, insulin-like growth factor 1/insulin-like
growth factor 1 receptor (IGF1/IGF1R) activation, nu-
clear factor-kappa-B activation, and epithelial to
mesenchymal transition have also been implicated,
although these are less frequently reported on account of
the lack of available robust assays. Histological trans-
formation to both squamous cell cancer76 and small cell
lung cancers16 has also been described, with the latter
shown to be consistently associated with loss of retino-
blastoma 1 gene (RB1).77 The common resistance
mechanisms are summarized in Table 4.

Clinical Strategies for EGFR TKI Resistance
At present, numerous ongoing clinical trials are

specifically addressing these resistance mechanisms;
however, the only mature data are related to the T790M
mutation. In the setting of clinical resistance to EGFR
TKI, the extended phase I study (AURA) of the third-
generation inhibitor osimertinib (AZD9291) confers an
objective response rate (ORR) of up to 51% in patients
with T790M mutations confirmed in repeat tumor bi-
opsies and 21% in T790M-negative tumors.18 With
further robust data arising from the phase II trial of
osimertinib (AURA2), the FDA granted accelerated
approval to osimertinib in November 2015. Another
third-generation EGFR TKI, rociletinib, was initially
reported as having similarly high responses in the
T790M-positive group (RR 59%).85 However the ORRs
confirmed by independent radiological review in the
cohorts of patients with T790M-positive tumors (cen-
trally confirmed) who received 500 mg twice daily and
625 mg twice daily were updated and substantially
lower (28% and 34%, respectively).86 Because the FDA’s
Oncologic Drugs Advisory Committee recommended
against accelerated approval of rociletinib, Clovis
Oncology decided to stop further clinical development of
rociletinib as part of its company strategy.

It is notable that responses have been observed among
T790M-negative patients with both third-generation in-
hibitors. Possible reasons for tumor response in T790M-
negative patients include EGFR TKI retreatment effect,
intratumoral heterogeneity (in which case biopsies may
have missed the detection of T790M), false-negative re-
sults and/or low detection rate, and possibly off-target
effects of the active metabolites (e.g., IGF1R inhibition).
At this time, patients with T790M-negative tumors should
be screened for other therapeutically tractable resistance
mechanisms under clinical evaluation, including MET
amplification,68,87 AXL receptor tyrosine kinase gene
(AXL) overexpression,88 and PIK3CA mutation.89 If there
are no suitable clinical trials, then platinum-based
chemotherapy would be a reasonable option. The ques-
tion of whether a EGFR TKI should be continued beyond
progression when switching to platinum-based chemo-
therapy was addressed in the IMPRESS study, in which
patients received up to six cycles of pemetrexed-cisplatin,
with or without gefitinib, after progression from a first-
line EGFR TKI.90 No difference in response rates (32%
versus 34%) or median PFS (5.4 months in both groups)
was demonstrated. However, a subsequent subgroup
analysis stratifying patients according to plasma
T790M status at time of progression suggested a role
for continuing gefitinib in those who are T790M
negative. Thus, although the IMPRESS study suggested
no difference associated with a TKI continued with
chemotherapy, whether selected patient subgroups



Table 4. Common EGFR TKI Resistance Mechanisms That Have Been Reported in Patient Samples

Mechanism Gene Alterations Prevalence Detection Method References

EGFR-dominant EGFR SNV: T790M 41%–63% LNA-PCR/sequencing assay Hata et al., 201315;
Yu et al., 201316

SNV: D761Y, T854A,
L747S

<5% PCR-RFLP Balak et al., 200678;
Bean et al., 200879;
Costa et al., 200780

Amplification 8% FISH Sequist et al., 201114

Bypass signalling tracts PIK3CA SNV 5% SNaPshot Sequist et al., 201114

BRAF SNV 1% SNaPshot Ohashi et al., 201275

MET Amplification 5% FISH Sequist et al., 201114;
Yu et al., 201316

HER2 Amplification 12%–13% FISH Takezawa et al., 201281;
Yu et al., 201316

AXL Increased expression 20% IHC Zhang et al., 201282

HGF Increased expression 61% IHC Yano et al., 201183

PTEN Loss 10% IHC Yamamoto et al., 201084

Phenotypic
alterations

RB1 loss Transformation to
small cell lung
cancer

14% Histological examination
and confirmed by
expression of
neuroendocrine markers

Sequist et al., 201114

Niederst et al., 201577

— Transition to EMT 16%-20% IHC stain of vimentin and
e-cadherin

Sequist et al., 201114;
Zhang et al., 201282

EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; EGFR, epidermal growth factor receptor gene; SNV, single nucleotide variation;
LNA, locked nucleic acid; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; PIK3CA, phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha gene; BRAF, B-Raf proto-oncogene, serine of threonine kinase gene; MET, MET proto-oncogene, receptor tyrosine kinase
gene; FISH, fluorescence in situ hybridization; HER2, erb-b2 receptor tyrosine kinase 2 gene; AXL, AXL receptor tyrosine kinase gene; HGF, hepatocyte growth
factor gene; IHC, immunohistochemistry; RB1, retinoblastoma 1 gene; EMT, epithelial-mesenchymal transition; PTEN, phosphatase and tensin homolog.
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(e.g., T790M-negative) may obtain additional benefit
from this approach remains an open question.

Given the importance of establishing T790M status in
the context of available third-generation EGFR TKIs,
there are circumstances in which target lesions might
not be amenable to tissue biopsies, such as in the case of
multiple small pulmonary nodules or in patients who are
at high risk for complications due to comorbidities, poor
lung function, or ongoing hemoptysis. Like plasma-based
EGFR mutation testing at time of diagnosis, the prospect
of tailoring treatment according to plasma T790M status
at the time of TKI resistance is appealing, although there
remain several questions that need to be addressed.

T790M as a Dynamic Biomarker
The presence or absence of T790M in plasma and

tumor can be due to biological and/or or technical rea-
sons. Differences in preanalytic processing, platform
performance characteristics and detection limits of
cfDNA, and disease burden, can all have an impact on the
test outcome.91 For example, determination of pretreat-
ment T790M mutation status in formalin-fixed, paraffin-
embedded tissue by using standard sequencing
platforms has been classically described in less than 5%
of treatment-naïve tumors (Table 5), but with more
sensitive techniques (e.g., droplet digital PCR), T790M
can be detected in up to 80% of these tumors.34,37 On the
other hand, recent in vitro data using cell line models
have suggested that T790M mutation could also arise de
novo as a new mutation in tumor cells that survive
(referred to as a drug-tolerant population) during
TKI therapy.102

Tumor heterogeneity can exist between different
disease sites (e.g., primary lesion versus liver metastasis)
and even within the same site, and sampling bias may
inadvertently result in a missed T790M mutation. cfDNA
may circumvent this by providing molecular portraits of
the total burden of the disease and not just a single site,
which is supported in studies in which pretreatment
T790M in plasma can be detected in up to 35% of pa-
tients.93 In the setting of secondary EGFR TKI resistance,
a recent study evaluated the utility of plasma T790M
using the cobas EGFR Mutation Test v2. Although
concordance between cfDNA and tumor biopsies was
only 61%, an additional 35% of patients (14 of 37) were
found to be T790M positive, to some extent illustrating
the impact of biological heterogeneity and the comple-
mentary role of noninvasive genotyping.101

The optimal management of patients who are plasma
positive and not progressing according to imaging re-
mains uncertain. In another prospective study evaluating
serial samples using digital droplet PCR technology,
plasma levels of EGFR sensitizing mutations were found
to drop with tumor response, with the emergence of
T790M mutations occurring in plasma up to 4 months
before PD by imaging studies, presumably owing to an



Table 5. Cohort-Based Studies Examining the Prevalence of the T790M Mutation

Study Cohort Source Technique n Prevalence

Treatment Naive
Inukai et al., 200692 Unselected NSCLC FFPE tissue Sanger dequencing 1 of 280 0.36%

FFPE tissue Mutant-enriched PCR assay 10 of 280 3.5%
Jain et al., 201593 EGFR Mþ FFPE tissue Sanger sequencing 9 of 461 1.9%
Costa et al., 201434 EGFR Mþ FFPE tissue Peptide–nucleic acid clamp PCR 62 of 95 65.26%
Rosell et al., 201194 EGFR Mþ FFPE tissue Peptide–nucleic acid TaqMan PCR 45 of 129 35%
Maheswaran et al.,95 EGFR Mþ FFPE tissue Scorpion ARMS 10 of 26 38%

Plasma Scorpion ARMS 8 of 23 34.8%
Yu et al., 201496 EGFR Mþ FFPE tissue Mass spectrometry–based 11 of 579 2%
Su et al., 201297 EGFR Mþ FFPE tissue Mass spectrometry–based 27 of 107 25.2%

FFPE tissue Sanger sequencing 3 of 107 2.8%
Watanabe et al., 201537 EGFR Mþ FFPE tissue Cycleave PCR method/MiSeq NGS 5 of 354 1.4%

FFPE tissue Droplet digital PCR 298 of 373 79.9%
Uchida et al., 201532 EGFR Mþ FFPE tissue NGS (ion torrent PGM) 0 of 103 0%

Plasma NGS (ion torrent PGM) 7 of 103 6.8%
Mok et al., 201554 Unselected NSCLC FFPE tissue cobas EGFR mutation 3 of 241 1.2%

Plasma cobas EGFR mutation 2 of 447 0.4%
Post-TKI treatment
Taniguchi et al., 201136 EGFR Mþ Plasma BEAMing 10 of 23 43.5%
Su et al., 201297 EGFR Mþ FFPE tissue Mass spectrometry 10 of 12 83.3%

FFPE tissue Sanger sequencing 4 of 12 33%
Sequist et al., 201114 EGFR Mþ FFPE tissue Multiplexed PCR 18 of 37 48%
Sakai et al., 201398 EGFR Mþ Plasma Mass spectrometry (SABER) 21 of 75 28%
Hata et al., 201313 EGFR Mþ FFPE tissue Not reported 22 of 54 41%
Yu et al., 201316 EGFR Mþ FFPE/fresh

frozen
Mass spectrometry, Sanger

sequencing, LNA
98 of 155 63.2%

Oxnard et al., 201499 EGFR Mþ Tissue Not described 4 of 9 44%
Plasma Droplet digital PCR 6 of 9 67%

Ishii et al., 2015100 EGFR Mþ Tissue Digital PCR 11 of 18 61%
Plasma Digital PCR 10 of 18 56%

Sundaresan et al., 2015101 EGFR Mþ Tissue Mulitple platforms 14 of 30 47%
Plasma cobas v2 16 of 32 50%

FFPE, formalin-fixed, paraffin-embedded; PCR, polymerase chain reaction; EGFR Mþ, epidermal growth factor receptor gene mutation–positive;
ARMS, amplification refractory mutation system; NGS, next-generation sequencing; PGM, Personal Genome Machine; NSCLC, non–small cell lung cancer;
SABER, single allele base extension reaction; LNA, locked nucleic acid.
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emerging population of resistant clones.99 Prospective
clinical trials will be required to establish the utility of an
early switch from first- to third-generation inhibitors at
“molecular progression” (i.e., the first appearance of
T790M in plasma).

To date, the diagnosis of TKI resistance has been
made by RECIST using imaging studies in clinical trials.
Blood or serum biomarkers and other imaging tech-
niques (e.g., positron emission tomography–CT) are
encouraged in the framework of investigational studies
and protocols, but their application in routine clinical
management beyond more traditional size-based criteria
remains to be established. In clinical practice, continua-
tion of an initial EGFR TKI beyond RECIST-based PD, as
long as the patient remains asymptomatic, can be an
option in selected cases. In summary, noninvasive
plasma based testing is highly promising, with great
potential for clinical utility in the clinic, although for
technical and biological reasons it should not at this time
replace tumor biopsies for ascertaining molecular status.
Recommendations. (1) In patients with minor disease
progression, it is reasonable to continue an EGFR TKI
beyond progression, especially if patients are asymp-
tomatic. (2) Alternative end points beyond RECIST
should be actively examined, particularly in the context
of stratifying for novel combinations and agents directed
toward specific therapeutic niches. (3) Third-generation
T790M-specific, wild-type–sparing EGFR TKIs are rec-
ommended in patients harboring T790M mutations who
progress while they are receiving a first- or second-
generation TKI. (4) Numerous strategies to overcome
resistance are currently being explored beyond T790M,
and participation in clinical trials should be encouraged.
Platinum-based chemotherapy is recommended for
patients without targetable alterations. (5) At this time,
the decision to switch to a third-generation EGFR TKI
should be based on radiologically determined progres-
sion and not solely on the detection T790M in cfDNA.
This is especially true given the range of sensitivities of
T790M detection currently available.
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Local Therapy for Unique Sites of
Disease Involvement
CNS Metastases

Brain metastases will develop in at least 25% to 30%
of patients with NSCLC.103 Whether EGFR-mutated
NSCLC has a higher tropism to metastasize to the CNS is
unclear104,105 because the lifetime risk is confounded by
this molecular subgroup’s longer survival. Because of
the blood-brain barrier, systemic chemotherapy tends to
be ineffective against brain metastases and palliative
radiotherapy is frequently used. The traditionally cited
prognosis is grim, with a median OS of less than 3
months without treatment and less than 6 months for
most patients.106,107

Interestingly, patients with EGFR-mutant NSCLC who
are harboring brain metastases have been reported
as having median survival times as long as 2 to 3
years.108,109 However, although patients with EGFR-
mutant NSCLC demonstrate high response rates to whole
brain radiation therapy (WBRT)110 and WBRT improves
the duration of intracranial disease control over TKIs or
stereotactic radiosurgery (SRS),108 many practitioners
seek to avoid the hair loss, fatigue, and other neuro-
cognitive sequelae of WBRT in this population. If radia-
tion therapy is to be performed, factors that may be
considered in the decision between WBRT or SRS might
include the degree of symptoms, size of metastatic tu-
mor(s), presence of hemorrhage or peritumoral edema,
brainstem involvement, and number of metastases.
Consultation with a radiation oncologist to evaluate
technical factors is highly encouraged. Rarely, in the
context of oligometastasis, neurosurgery can be consid-
ered, particularly at first presentation and if there is
low-volume extracranial disease.111

Furthermore, EGFR TKIs have independent activity in
the CNS, with response rates ranging up to 86% in small
series of patients treated exclusively with EGFR
TKIs112,113 and raising the question as to whether small
asymptomatic brain metastases may be treated with a
TKI alone. Although it is unlikely that a complete
response will be achieved with a TKI, TKIs frequently
produce partial responses or stable disease and it has
not been established in this clinical scenario that local
therapy increases survival.114

The combinatorial effect of TKIs with WBRT has been
tested in two prospective trials. A multi-institutional
phase II study combined erlotinib with WBRT in 40
patients with NSCLC. The ORR was 86% and the median
survival was 11.8 months, but in patients with a known
EGFR mutation, it was 19.1 months.115 The study
established the feasibility and tolerability of this option
for patients with EGFR-mutant NSCLC who have
numerous or symptomatic brain metastases and require
simultaneous urgent initiation of systemic therapy at
the time of WBRT.

The Radiation Therapy Oncology Group conducted a
phase III trial of WBRT and SRS, given alone or with
either temozolamide or erlotinib, for patients with
NSCLC with one to three brain metastases.116 The study
closed early on account of poor accrual and because the
three arms were not statistically different. Grade 3 to 5
toxicity rates were 41% to 49% in the two arms incor-
porating concurrent drug treatment. Patients were not
tested for EGFR mutation in this study and the combi-
nation of both WBRT and SRS has now become less
favored, especially in the EGFR-mutant population, thus
limiting the impact of this study on practice.

EGFR TKIs have shown promising efficacy in the
treatment of leptomeningeal disease.117,118 In particular,
a high dose or pulsatile dosing may produce a higher
response rate in this situation.119–121 More recently,
newer-generation EGFR TKIs have been reported
to show activity against leptomeningeal disease (e.g.,
osimertinib122 and the CNS-penetrant EGFR TKI
AZD3759).73 Both agents are currently being evaluated
in a larger cohort of patients with leptomeningeal dis-
ease and brain metastasis. TKIs may also be combined
with focally directed SRS or partial brain radiotherapy
for isolated leptomeningeal disease. For this challenging
clinical situation, consideration may be given to intra-
thecal chemotherapy and/or WBRT, although there
should be reservations about the morbidity unless the
patient has an exceptional performance status.123
Sites of Local Involvement Other Than the CNS
Locally directed therapy may take the form of SBRT,

image-guided ablation (including cryotherapy, radio-
frequency ablation, and microwave ablation), or even
surgical resection. Some of the key considerations are
summarized in Table 6. All of these therapies aim to
completely ablate the local disease with the view that
there will be overall benefit to the patient. The challenge
in deciding among these different methods is one of
balancing potential harms versus benefits.

One major limitation is that most of the data are
derived from retrospective case series, with only a few
series examining the management of oligometastases in
patients with EGFR mutations. From a systematic review
of patients with NSCLC with one to five metastases un-
dergoing radiation or surgery, significant factors that
predicted favorable outcomes include definitive treat-
ment of the primary site of disease, nodal status, and a
disease-free interval of 6 to 12 months.124 In a series
cohort of 25 patients with oncogene-driven NSCLC (15
anaplastic lymphoma receptor tyrosine kinase gene
[ALK] driven and 10 EGFR driven) treated with local



Table 6. Comparison of Methods to Treat Oligometastatic or Oligoprogressive Disease

Variable SBRT

Image-Guided Ablation (Including
Radiofrequency Ablation,
Cryoablation, and Microwave Ablation) Surgery

Key considerations � Patient fitness
� Lung function
� Size of tumor

� Size of tumor
� Location (proximity to major vessels)
� Tumor consistency
� Local expertise

� Patient fitness
� Burden of residual disease

Advantages � Noninvasive
� Able to encompass
tumor volume

� Multiple lesions can be
targeted

� Patient discharged the same day
� Multiple lesions can be targeted
� Preserves lung function
� Biopsy can be obtained for diagnostic
purposes at same sitting

� Macroscopic removal of tumor
� Ample tissue for molecular
analysis and heterogeneity
studies

Disadvantages � Unable to obtain tissue
for molecular studies

� May not achieve complete ablation
� Increasing use of general anesthesia

� Risk related to general
anesthesia

� Outcomes dependent on
careful patient selection
and local expertise

Complications � Pneumonitis � Pneumothorax, bronchopleural fistula,
pulmonary embolism

� Risk related to general anesthesia
(if indicated)

� Risk related to general
anesthesia

� Surgical complications
depending on location

SBRT, stereotactic body radiation therapy.
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ablative therapy, the median time to first oligoprog-
ressive disease was 9.8 months and median duration
of targeted therapy beyond progression of 6.2 months
(7.1 months in CNS-only progression and 4.0 in extra-
cranial progression). Local therapy comprised radiation
to the brain (SRS [n ¼ 7] and WBRT [n ¼ 6]) or SBRT to
extracranial sites, except in one patient having an adre-
nalectomy.125 In another case series specifically in
patients with EGFR-mutant NSCLC progressing while
receiving either gefitinib or erlotinib, aggressive local
therapy was pursued in 18 patients (approximately 10%
of examined cohort). The therapy included 11 thoracic
procedures (seven lobectomies, one wedge resection,
and three pneumonectomies) and two adrenalectomies,
with five other patients receiving either radiofrequency
ablation or radiation to lung lesions and/or nodal ba-
sins.126 From the time of local therapy, the median time
to progression was 10 months and the median time to
new systemic therapy was 22 months. The median OS
from the time of local therapy was 41 months for these
highly selected patients.

In summary, the role for surgery or locally ablative
therapy (image-guided or stereotactic radiation) in oli-
gometastatic or oligoprogressive disease is limited to
highly selected cases and is to a certain degree depen-
dent on the natural history of disease in each individual
patient. This may include patients who, after treatment
with the TKI, have had either (1) a complete response of
all disease with the exception of the primary lung lesion,
which that starts to progress, or (2) a significant
response in all sites followed by development of pro-
gression in four or fewer extracranial sites that are
amenable to complete surgical resection or local therapy.
In all cases, the magnitude of the proposed resection
(especially if pulmonary), the patients’ underlying car-
diopulmonary reserve, and whether postresection
sequencing of the tumors may influence subsequent
management must be considered carefully. Future
comparative studies should be designed, whether in the
context of direct comparisons or with the use of well-
documented registries, so that the role of each local
treatment modality may be better understood.

Recommendations. (1) For patients with a limited
number and volume of brain metastases, SRS produces
fewer neurologic sequelae than WBRT does, and it is a
frequently preferred option if technically feasible. (2)
Upfront TKIs may be considered for a limited number of
small asymptomatic metastases, although intracranial
disease control may be less robust in the absence of
radiation therapy. (3) Local therapy for extracranial
oligometastases can be considered on a case-by-case
basis.
Stage I to III EGFR-mutant NSCLC
In potentially curable earlier-stage disease, the addi-

tion of EGFR TKIs to curative-intent chemoradiation or
surgery is attractive in theory but remains an unresolved
area of research. In stage III disease, combination of
EGFR TKI with curative-intent chemotherapy and radi-
ation in unselected patients has been shown to be
harmful,127 although there are currently ongoing studies
such as RTOG 1306, which is exploring the role of



July 2016 Managing EGFR Mutation-Positive NSCLC 959
induction EGFR TKI before chemoradiation in patients
with activating EGFR mutations (NCT01822496). In the
large prospective RADIANT trial of stage IB to IIIA
resected NSCLC, the subset of patients harboring
EGFR mutations had a prolongation of disease-free
survival, albeit not a statistically significant prolonga-
tion.128 At present, the overall consensus is that there is
a limited role for EGFR TKIs in stage I to III disease
until further studies are completed. Several pros-
pective adjuvant trials evaluating erlotinib (ALCHEMIST
[NCT02193282]), and more recently osimertinib
(NCT02511106), in patients with resected EGFR muta-
tion NSCLC are ongoing.
Recommendation. (1) At present, there are no data
supporting the use of EGFR TKIs in patients with stage I
to III disease. Enrollment onto the ongoing randomized
trials is highly encouraged to definitively address this
subject.

Concluding Remarks
This consensus statement represents a distillation of

more than a decade of bench-to-bedside research, dur-
ing which time the clinical community has seen the
transformation of metastatic NSCLC into a chronic dis-
ease. However, the median OS of patients with EGFR-
mutant NSCLC still remains only approximately 2 to 3
years, notwithstanding the impact of highly promising
therapeutic approaches being evaluated in current trials.
We envision that the therapeutic landscape will evolve
rapidly to become more complex with the advent of new
combinations that incorporate immunotherapy and
multidimensional biomarker testing on tissue from both
traditional and nontraditional sources. As new therapies
and combinations are introduced, it is anticipated that
the genomic spectrum of resistance will shift depending
on the selective pressures imposed by therapy (e.g.,
C797S mutations in resistance to third-generation EGFR
TKIs).39 Careful integration of localized therapies, such
as surgery and radiation, may provide assistance in
maximizing the effects of systemic therapies. Integrating
those therapeutic measures that are highly effective in
the advanced stage into management of early-stage
disease remains an important goal to reduce risk for
disease relapse. An even more nascent research priority
would be the identification of never smoker cohorts at
risk for development of EGFR mutant NSCLC so as to
implement screening programs for early detection.
Continued progress will undoubtedly require additional
resourcing of clinical and laboratory services to meet the
demands of new patient management algorithms and
the accelerated pace of drug and biomarker develop-
ment—and increase the need to foster seamless inter-
disciplinary research and patient care to deliver high-
precision next-generation therapeutics tailored to indi-
vidual patients.
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