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Positive Definiteness via Offdiagonal Scaling of a Symmetric Indefinite Matrix 

Abstract 

Indefinite symmetric matrices that are estimates of positive definite population matrices occur in a 

variety of contexts such as correlation matrices computed from pairwise present missing data and 

multinormal based theory for discretized variables. This note describes a methodology for scaling 

selected off-diagonal rows and columns of such a matrix to achieve positive definiteness. As a contrast 

to recently developed ridge procedures, the proposed method does not need variables to contain 

measurement errors. When minimum trace factor analysis is used to implement the theory, only 

correlations that are associated with Heywood cases are shrunk.  
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Positive Definiteness via Offdiagonal Scaling of a Symmetric Indefinite Matrix 

Let R be a symmetric indefinite matrix, that is, a matrix with both positive and negative eigenvalues. 

Often such matrices are intended to estimate a positive definite (pd) matrix, as can be seen in a wide 

variety of psychometric applications including correlation matrices estimated from pairwise or binary 

information (e.g., Wothke, 1993). Approaches to modifying R to create a pd matrix for further analysis 

include least squares approximation (Knol & ten Berge, 1989) and adding a small constant to its diagonal 

(e.g., Yuan & Chan, 2008); a thorough review is given in Yuan, Wu, and Bentler (2009). This note 

describes a methodology for scaling off-diagonal elements of R to achieve a pd approximation. This is 

done by finding a bounded diagonal scaling matrix that shrinks selected off-diagonal rows and columns 

of R . 

Lemma 1. There exists a diagonal matrix D with nonzero elements such that ( )R D is positive 

semidefinite. 

Proof: Such a D  can be obtained e.g., by minimum trace factor analysis (Bentler, 1972; Della Riccia & 

Shapiro, 1982). 

In the standard factor analytic situation where R is positive definite, D would be a pd diagonal matrix of 

unique variances, and ( )R D FF  would be the covariance matrix of the common parts of the 

variables. However, in the current context, R is indefinite and hence D has different properties.  

Lemma 2. One or more diagonal entries in D are negative. 

Proof: Assume the contrary. Then R is the sum of a positive semidefinite (psd) and a pd diagonal matrix, 

and thus R would be pd, which is contrary to assumption. Hence D must have one or more negative 

diagonal elements. 
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Let 2H be a diagonal matrix containing the diagonal of ( )R D ; in standard factor analysis, the 

elements of this matrix are known as communalities. Let RD be the diagonal matrix containing the 

diagonal of R , and let 0 ( )RR R D  . With these definitions, 2

0R D R H   . Let  be a pd diagonal 

matrix such that  2 20 RH D   .  

Theorem. 0* RR R D   is positive definite. 

Proof: Note that 2 2 2

0 0( )R H R H      is psd and 2 2

RD H  is pd. Since 

2 2 2 2

0* ( ) ( )RR R H D H     is the sum of a psd and a pd matrix, it is pd.  

The theorem shows how to obtain a pd matrix from an indefinite one, where ( *) ( )diag R diag R and 

the offdiagonals of *R are rescaled elements of R . When R is a correlation matrix with unit diagonals, 

*R can be similarly interpreted.  

Application 

Suppose that R is a correlation matrix obtained by polychoric and/or polyserial methodology. It is well 

known that this matrix is often indefinite in small samples, leading to problems in estimation and testing 

of derived models such as structural equation models. *R may be an appropriate substitute for R in 

such models. Although biased, *R is a consistent estimate of the population counterpart to R since *R

approaches R as N goes to infinity. The sampling distribution of elements of *R can be obtained using 

the bootstrap.  

To obtain *R in practice, a minimum trace factor analysis algorithm (e.g., Bentler, 1972; Jamshidian & 

Bentler, 1998) applied to R will yield a unique 2H such that 2( )tr H  is minimized. Let 2

iH be the ith 

diagonal element of 2H . If R is indefinite, many elements will have 2 1iH  but one or more elements 
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will be Heywood cases with 2 1iH  . The matrix 2 is constructed such that an element 2 1i   if 

2 1iH  , while if 2 1iH  , 2 2/i ik H  for some a priori constant 1k  . For simplicity, k may be taken as 

the same value for all Heywood variables. It is desirable to have k be only marginally smaller than 1.0, 

for example, .96k  . Then if 2 1.1iH  , for example, the ith row and column of 0R is multiplied by .934 

to yield the correlation in *R . Only those variables corresponding to Heywood cases have their 

correlations rescaled; the remainder are not modified. 

An example of this methodology is given in Table 1, which shows the correlations among 12 variables 

obtained for a random sample of 50 cases from a categorized multinormal population, based on Bonett 

and Price’s (2005) odds-ratio tetrachoric estimator. The eigenvalues of this correlation matrix are 

6.4233, 1.3704, 1.1237, 0.7641, 0.7174, 0.5059, 0.4430, 0.3334, 0.1559, 0.1115, 0.0600, -0.0087. The 

small negative eigenvalue makes the matrix indefinite. Minimum trace factor analysis showed that 

variables 3, 4, 6, and 9 had communalities greater than 1.0, ranging from 1.037 to 1.1543. Table 2 gives 

the correlation matrix after scaling using .96k  .  Only variables 3, 4, 6, and 9 have correlations that are 

reduced. The median reduction in correlation is .027, while the maximum reduction is .0712 ( 43r reduced 

from .8579 to .7867). The eigenvalues of the resulting matrix are 6.2305, 1.3369, 1.1195, 0.7738, 0.7204, 

0.5146, 0.4473, 0.3641, 0.1780, 0.1226, 0.1181, 0.0742. 

Discussion 

The most widely known methodology for dealing with indefinite or near singular symmetric matrices is 

that of ridge regression (Hoerl & Kennard, 1970) or Tikhonov regularization1. In standard ridge 

regression and other ridge applications, each diagonal of a symmetric matrix is incremented by a small 

positive number, say  , that is larger than the smallest eigenvalue of R . The statistical theory to make 

                                                           
1
 http://en.wikipedia.org/wiki/Tikhonov_regularization 
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this approach well-rationalized in the context of covariance and correlation structures has recently been 

developed (e.g., Yuan & Chan, 2008; Yuan, Wu, & Bentler, 2009), where variables are assumed to 

contain measurement errors that are explicitly accounted for in the model.  The approach proposed in 

this paper does not need variables to contain measurement errors in application. An example is the 

regression model with standardized variables when the correlation matrix of the predictors is nonpositive 

definite. When the proposed procedure is implemented using minimum trace factor analysis, 

correlations for variables associated with Heywood cases are smoothly scaled down; those among non-

Heywood variables remain undisturbed. 

A limitation of this methodology is that the scaling constant k is subjectively determined. The example 

used .96k  , but other values marginally below 1.0 could be used as well. Limited experience shows 

that the precise value does not matter much. The need to use subjective judgment in selecting tuning 

values is also a feature of previously proposed methods (Knol & ten Berge, 1989; Yuan & Chan, 2008; 

Yuan, Wu, & Bentler, 2009). 
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Table 1 

Tetrachoric Correlations (Bonett-Price Estimator) 

1.0000  0.2387 0.6161 0.6167 0.6621 0.5173 0.6758 0.7071 0.7983 0.5769 0.4705 0.7881 

0.2387 1.0000 0.3506 0.3537 0.2959 0.4637 0.1931 0.1202 0.2316 0.1708 0.4047 0.1161 

0.6161 0.3506 1.0000 0.8579 0.6603 0.4093 0.3826 0.5164 0.6079 0.5574 0.4512 0.5128 

0.6167 0.3537 0.8579 1.0000 0.7477 0.1803 0.4705 0.6167 0.6218 0.4705 0.3582 0.2966 

0.6621 0.2959 0.6603 0.7477 1.0000 0.3537 0.7364 0.5670 0.6613 0.5140 0.5140 0.4610 

0.5173 0.4637 0.4093 0.1803 0.3537 1.0000 0.3582 0.1803 0.0605 0.4705 0.3582 0.6161 

0.6758 0.1931 0.3826 0.4705 0.7364 0.3582 1.0000 0.4705 0.6424 0.6090 0.4911 0.4962 

0.7071 0.1202 0.5164 0.6167 0.5670 0.1803 0.4705 1.0000 0.7149 0.4705 0.3582 0.5164 

0.7983 0.2316 0.6079 0.6218 0.6613 0.0605 0.6424 0.7149 1.0000 0.4371 0.4371 0.6079 

0.5769 0.1708 0.5574 0.4705 0.5140 0.4705 0.6090 0.4705 0.4371 1.0000 0.3745 0.4512 

0.4705 0.4047 0.4512 0.3582 0.5140 0.3582 0.4911 0.3582 0.4371 0.3745 1.0000 0.4512 

0.7881 0.1161 0.5128 0.2966 0.4610 0.6161 0.4962 0.5164 0.6079 0.4512 0.4512 1.0000 
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Table 2 

Scaled Correlations 

1.0000  0.2387 0.5928 0.5878 0.6621 0.4719 0.6758 0.7071 0.7511 0.5769 0.4705 0.7881 

0.2387 1.0000 0.3373 0.3371 0.2959 0.4229 0.1931 0.1202 0.2179 0.1708 0.4047 0.1161 

0.5928 0.3373 1.0000 0.7867 0.6353 0.3593 0.3682 0.4968 0.5503 0.5363 0.4341 0.4934 

0.5878 0.3371 0.7867 1.0000 0.7127 0.1567 0.4485 0.5878 0.5577 0.4485 0.3414 0.2827 

0.6621 0.2959 0.6353 0.7127 1.0000 0.3226 0.7364 0.5670 0.6222 0.5140 0.5140 0.4610 

0.4719 0.4229 0.3593 0.1567 0.3226 1.0000 0.3267 0.1644 0.0519 0.4292 0.3267 0.5620 

0.6758 0.1931 0.3682 0.4485 0.7364 0.3267 1.0000 0.4705 0.6044 0.6090 0.4911 0.4962 

0.7071 0.1202 0.4968 0.5878 0.5670 0.1644 0.4705 1.0000 0.6726 0.4705 0.3582 0.5164 

0.7511 0.2179 0.5503 0.5577 0.6222 0.0519 0.6044 0.6726 1.0000 0.4113 0.4113 0.5719 

0.5769 0.1708 0.5363 0.4485 0.5140 0.4292 0.6090 0.4705 0.4113 1.0000 0.3745 0.4512 

0.4705 0.4047 0.4341 0.3414 0.5140 0.3267 0.4911 0.3582 0.4113 0.3745 1.0000 0.4512 

0.7881 0.1161 0.4934 0.2827 0.4610 0.5620 0.4962 0.5164 0.5719 0.4512 0.4512 1.0000 

 

 




