Lawrence Berkeley National Laboratory
LBL Publications

Title
An automated and portable method for selecting an optimal GPU frequency

Permalink

bttgs:ééescholarshiQ.orgéucéitemﬁczOchj

Authors

Ali, Ghazanfar

Side, Mert
Bhalachandra, Sridutt

Publication Date
2023-12-01

DOI
10.1016/j.future.2023.07.011

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at bttgs://creativecommons.org/licenses/bv/4.0/{

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/3cz016cf
https://escholarship.org/uc/item/3cz016cf#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

An Automated and Portable Method for Selecting an Optimal GPU Frequency

Ghazanfar Ali®, Mert Side?, Sridutt Bhalachandra®, Nicholas J. Wrightb, Yong Chen?

4Texas Tech University, 2500 Broadway, Lubbock, 79409, TX, USA
bLawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, 94720, CA, USA

Abstract

Power consumption poses a significant challenge in current and emerging graphics processing unit (GPU) enabled high-performance
computing systems. In modern GPUs, dynamic voltage frequency scaling (DVFES) appears to be a reliable control to regulate power
consumption and performance. However, the DVES design space is large - hence, brute-force approaches are infeasible to select
the optimal frequency. Furthermore, no single frequency can be universally optimal for applications with varying computational
intensities. Thus, the application’s complexity and the availability of a wide range of frequency settings are a challenge in selecting
the optimal frequency configuration for a given GPU workload. To that end, this paper proposes a systematic approach that
consists of three steps. The feature characterization study identifies the fine-grain GPU utilization metrics that influence the power
consumption and execution time of a given workload. To understand the performance, power, and energy consumption behaviors of
a workload across GPU’s DVES design space, we derived analytical power and performance models using the identified fine-grain
features. It is shown that the same set of GPU utilization metrics can estimate both the power consumption and execution time
while being agnostic of changes to frequency and input sizes. Applying a power control with the single objective of reducing power
may cause performance degradation, leading to more energy consumption. A multi-objective approach is proposed to select the
optimal GPU DVFS configuration for a workload that reduces power consumption with negligible degradation in performance. The
evaluation was conducted using SPEC ACCEL benchmarks and three real applications - NAMD LAMMPS, and LSTM on NVIDIA
GV100, GA100, and AMD MI210 GPUs. On average, real applications showed 29.6% energy savings with a performance loss
of 5.2% on GA100 and 22.6% energy savings with a performance loss of 4.7% on GV100. Moreover, the proposed models are
portable to real applications, GPU architectures, and vendors, and require metric collection at only the default frequency rather
than all supported DVFS configurations. Additionally, we conducted a comparison between our models and the GPU assembly
instructions (PTX)-based static models. The results revealed a significant reduction in the average error rates, with a decrease from
19.7% to 3.1% for power models and from 29.4% to 5.2% for performance models.

Keywords: GPU frequency selection, DVFS, GPU power modeling, GPU performance modeling, energy delay product,
multi-objective function, energy efficiency

1. Introduction

In the new era of post-Moore’s law, GPUs are likely to be cru-
cial in accelerating computing capacity for current and future
high-performance computing (HPC) systems. While GPUs are
performant, they increasingly consume a significant amount of
power. For example, today, a single advanced GPU consumes
power up to 500 W [1] which is close to a traditional HPC
node [2]. As such, the power consumption of HPC systems
built with GPUs is limited by power. An exascale system built
with current generation GPUs expects to consume more than
the desired 20 MW power budget [3] (e.g., the Frontier [4]),
even without considering the infrastructure and cooling over-
heads. Furthermore, HPC data centers have been more con-
cerned about performance historically; however, in more recent
times due to the “dark silicon” phenomenon [5], there has been
a paradigm shift toward striking a balance between power and
execution time [6]. For example, literature [7] estimated that a
5% decrease in power consumption of the Summit supercom-
puter could generate savings of around 1 million dollars. There-
fore, it is increasingly critical to develop GPU power manage-

ment strategies that can lower power consumption with a mini-
mum impact on execution time.

There are several challenges to designing efficient power
management strategies for GPUs. First, the complexity of
GPU workloads in terms of their utilization of computational
resources can lead to diverse power consumption needs. Sec-
ond, GPUs offer a wide array of power consumption controls,
and understanding the impact of these power controls on power
consumption and performance is non-trivial. For example, the
NVIDIA GA100 (Ampere) and GV100 (Volta) GPUs provide
81 core DVFS configurations in the range of 210 - 1410 MHz
and 167 DVFS configurations in the range of 135 - 1380 MHz,
respectively. While this flexibility is certainly favorable for sav-
ing power, it also makes the GPU’s DVFES design space more
complex in selecting a DVES configuration that provides op-
timal power consumption and execution time simultaneously.
Given the complexity of different workloads and power con-
trols, it is not realistic for HPC system architects and operators
to select the optimal GPU frequency manually.

Limitations of state-of-art approaches: Many studies have

https://www.sciencedirect.com/science/article/pii/S0167739X23002613
https://www.elsevier.com/open-access/userlicense/1.0/

explored to improve GPU power, performance, and energy ef-
ficiency [8, 9, 10, 11, 12, 13, 14]. The major research areas
include DVES space exploration, optimal frequency determina-
tion, analytical and machine learning (ML) based models using
utilization metrics, and static code analysis. However, the ex-
isting approaches have some caveats: (1) features derived us-
ing static code analysis or utilization metric are not always best
representative of a workload (often workload or architecture-
specific), and (2) multi-objective functions provide a range of
best frequencies rather a definitive optimal frequency [15, 7].

Experimental methodology and artifact availability: To
address these challenges, the Optimal GPU Frequency Selec-
tion [16] has been proposed to automate the selection of the
optimal DVFS configuration for a workload that requires three
steps. First, characterization and identification of the GPU
features that directly influence power and performance. We
used the mutual information technique to prune the features
most relevant to power and performance. Second, modeling of
power and performance behaviors across DVFS design space
to enable model-based estimation of a workload’s power and
execution time using the workload’s utilization requirements.
Third, the determination of the optimal DVFS configuration
based on the estimated power and execution time profiles across
all DVFS configurations. Flexible optimal frequency selection
techniques were devised using multi-objective functions. These
techniques included energy-delay product (EDP) [6, 17, 18, 19]
and energy-delay-square product (ED?P). EDP takes the opti-
mality of both energy and execution time (delay) into consid-
eration simultaneously while selecting the optimal frequency.
ED?P provides double-weight to the execution time.

Although the Optimal Frequency Selection has been previ-
ously described, a methodology to make it portable across dif-
ferent GPU architectures and real applications have remained
undeveloped. In this study, we approached this by perform-
ing data collection for real applications on new GPU architec-
ture, several inter-architectural analyses, and an extension of
the power model. In particular, we analyze the portability of
the features selected in study [16] on the NVIDIA GA100 GPU.
The power model proposed in [16] is extended to mitigate inter-
architectural power consumption variations. The application-
level portability is evaluated by estimating optimal frequencies
of real applications using the models developed with micro-
benchmarks. The GPU architecture-level portability is evalu-
ated by estimating the optimal frequencies of real applications
on GA100 using the models developed with micro-benchmarks
on GV100. We provided more evaluation data (selected fre-
quencies, energy savings, changes in performance), useful in-
sights, and example usage of our methodology in a produc-
tion environment. The source codes, including data collection,
power controls, data analysis, and implementation of analytical
models, are publicly available [20].

Key insights and contributions: Overall, this study makes
the following contributions.

1. Features Portability: The initial characterization of fea-
tures using micro-benchmarks in study [16] confirms the
impact of GPU utilization features on power usage, energy,

and execution time. In this study, we evaluate the portabil-
ity of features in terms of different input sizes, other GPU
architectures, and vendors. We observe that the selected
features are portable across architectures and vendors.

2. Models portability: Based on the characterization study,
analytical models for execution time and power were pro-
posed in the study [16]. We evaluated the portability of
the models using real-world HPC and machine-learning
workloads (application-level portability), NVIDIA GA100
GPUs (architecture-level portability), and AMD MI210
GPUs (vendor-level portability). The metric collection
is required only at the GPU’s maximum DVFS configu-
ration for a given workload. These metrics are used to
estimate a workload’s power and performance for the re-
maining DVFS configurations using the proposed models.
We evaluated the portability of the proposed methodol-
ogy in study [16] for real-world applications. On NVIDIA
GV100, using real-world applications, these models esti-
mated power and performance up to 95.2% and 96.9%, re-
spectively. Furthermore, we have evaluated the portability
of the models across different GPU architectures and ven-
dors. The power and performance models, developed us-
ing GV100’s data (thermal design power (TDP) of 250W),
estimated power and execution time of real applications on
GA100 (TDP of 500 W) with accuracies of up to 97.9%
and 98.2%, respectively. To evaluate vendor-level porta-
bility, we have mapped the feature set utilized in construct-
ing the models from NVIDIA to a corresponding feature
set available in AMD. The power and performance mod-
els, utilizing data from GV100, accurately estimated the
power consumption and execution time of real applica-
tions on the AMD Instinct MI210 GPU, achieving accu-
racies of up to 96.1% and 99%, respectively.

3. Energy-performance trade-offs: The efficacy of the
multi-objective optimal functions is evaluated. The en-
ergy profiles chosen by the ED*P-based optimal frequency
achieved an energy saving of up to 29.6% with a perfor-
mance loss of 5.2% for real applications on GA100.

4. Comparison with state-of-the-art models: We con-
ducted a comparison between our models and the GPU
assembly instructions (PTX)-based static models [7]. The
results revealed a significant reduction in the average er-
ror rates, with a decrease from 19.7% to 3.1% for power
models and from 29.4% to 5.2% for performance models.

Limitations of the proposed approach: The models require
a given workload to be run at the maximum frequency to ac-
quire utilization metrics. The models can only be used in asso-
ciation with DVFS. Other power controls, like power capping,
are beyond the current scope of this work.

This paper is organized as follows. Section 2 provides the
background and motivation of this research. Section 3 describes
the experimental setup. Section 4 presents an overview of the
methodology, data collection, feature analysis, analytical mod-
eling, and explains the multi-objective algorithm for selecting
the optimal frequency. Section 5 and 6 present the evaluation
results. Section 7 provides a comparison of models with state-

of-the-art research. We discuss other related work and compari-
son in Section 8. Section 9 provides sample deployment options
and Section 10 discusses concluding remarks.

2. Motivation

This section discusses the impact of DVFS on performance,
power, and energy patterns on compute- and memory-intensive
workloads. It also explains why multi-objective optimal func-
tions are needed to select the optimal DVFES configuration.

2.1. Impact of DVFS on Compute-Intensive workload

DVES technique is one of the widely used techniques to reg-
ulate power and performance by clocking the GPU core to dif-
ferent frequency configurations. Several previous works [10, 9]
observed that the impact of DVES on power and execution time
depends on GPU architecture and application intensity. Hence,
GPU workloads with different computational intensities show
different power and execution time behaviors for a given core
DVES configuration. As a preliminary step, we tested DGEMM
and STREAM [21, 22] GPU micro-benchmarks to understand
the power and execution time characteristics of compute- and
memory-intensive applications. Even though we have tested all
supported GPU configurations, configurations below 510 MHz
showed high performance penalties leading to a higher power
and thus are infeasible. Hence, we only use configurations in
the range of 510 - 1410 MHz (61 configurations) for GA100 and
510 - 1380 MHz (117 configurations) for GV100. It is worth
noting that unlike some previous GPU architectures, which pro-
vide multiple memory frequency configurations, GA100 and
GV100 support a single high bandwidth memory (HBM) fre-
quency, i.e., 1593 MHz and 877 MHz, respectively.

Figure 1 (a) to (d) show variations in power, execution
time, energy, and execution time (floating-point operations
per second (FLOPS)) across 117 DVFS configurations for the
compute-intensive workload (i.e., DGEMM). It is observed that
power is approximately a direct linear function of GPU core
frequency. Performance degradation of up to 3x was observed
when the GPU core frequency was changed from the maximum
to the minimum frequency. We also noted that performance
degradation is negligible for the frequencies in the range of
1250 - 1380 MHz. These frequencies can potentially be a vi-
able opportunity for energy-performance trade-offs. Overall, it
shows that for compute-intensive applications, DVFS is an ef-
fective technique to scale power. The power behavior can be
scaled down to less than half of the GPU’s TDP at the lower
configuration (e.g., 510 MHz). On the other hand, the power
can be ramped up to its TDP limit at the maximum frequency.

The execution time exhibits an indirect nonlinear relationship
with DVES configurations, as shown in Figure 1 (b). Perfor-
mance degradation of up to ~3x was observed when the DVFS
configuration was swayed from the maximum to the minimum
configuration. We also noted that the performance degradation
is negligible in the ~1250 - 1380 MHz frequency range. This
frequency range can potentially be viable options for energy
and performance trade-offs for compute-intensive workloads.

Figure 1 (c) shows that energy is a parabolic (i.e., quadratic
relationship) function of DVFS configuration. The energy met-
ric for each DVFS configuration was computed as a product of
power (a) and execution time (b). In general, the global min-
imum energy point across DVFS configurations is considered
the optimal frequency where the compute-intensive DGEMM
can save energy up to ~15.8%.

Figure 1 (d) shows nearly a direct linear relationship between
FLOPS and DVFS configurations. Like the execution time, the
increment in FLOPS after 1250 MHz is insignificant.

To summarize, we can infer two main corollaries. First, the
power consumption is highly dependent on the DVFS configu-
ration. Second, an application’s performance (both time and
FLOPS) does not improve after reaching a particular DVFS
configuration. Hence, any further increase in frequency causes
increased in power without noticeable performance gain.

2.2. Impact of DVFS on Memory-Intensive workload

Figures 1 (e) to (h) show variations in power, execution time,
energy, and bandwidth across supported DVFS configurations
for STREAM. Like DGEMM, power for STREAM is nearly
linear with DVFES configuration as shown in Figure 1 (e). The
power at the maximum DVFS configuration (1380 MHz) is
~100W and can be reduced up to ~50W at the minimum DVFS
configuration (510 MHz) used in this study. Figure 1 (f) shows
an indirect nonlinear relationship between execution time and
DVES configurations. It is worth noting that the execution time
does not change for over 800 MHz. Thus, this configuration
is optimal for the execution time. This phenomenon is also
reflected in Figure 1 (h) showing that the bandwidth does not
improve after ~ 800 MHz. Figure 1 (g) depicts the quadratic
relationship between the frequency and energy. It is worth not-
ing that the frequency providing the lowest energy point for
STREAM (with energy savings of ~33%) is not the same fre-
quency as DGEMM, suggesting that the optimal frequency of
an application is driven by its computational intensity.

The HBM data rate is nearly a direct linear function of DVFS
configuration as demonstrated in Figure 1 (h). The increase in
GPU frequency also speeds up the data rate of the HBM. In
alignment with (f), bandwidth does not improve after a DVFS
configuration.

Two key takeaways: First, the execution time, power, and
energy patterns of compute- and memory-intensive workloads
indicate - (a) the change in GPU frequency effectively changes
the execution time, power, and energy metrics. (b) The in-
tensity of the change in these metrics is highly dependent on
the workload’s computational intensity. Second, the lowest
DVEFS configuration consumes the lowest power. However, the
same configuration degrades performance at maximum. Fur-
thermore, the maximum configuration can provide maximum
performance; on the other hand, it may not be optimal for power
and energy saving.

2.3. Can One DVFS Configuration Fit All?

The optimal DVFS configuration for an application refers
to a GPU operating frequency that reduces the power at the

CF S 960f 1.2, 8
S 250 mnnnnnnnnnnnnnnnnn @@ = o = % o e eeeeaae o
2 20 ”\“Mm‘“‘u g of 3.95, 1380 MHz Jo20 808.3),1087 MHz| & T Es e
§ 150 “’-"“ ko7 2880 i 24 e
2 100 o 5 %] 2 F o &S
(@ g - S
& so == TDP g 3 3 & 840 T 2 == Max. Attainable
w 0 0
600 800 1000 1200 1400 3500 800 1000 1200 1400 80050800 1000 1200 1400 600 800 1000 1200 1400
(a) DGEMM-Core Frequency (MHz) (b) DGEMM-Core Frequency (MHz) (c) DGEMM-Core Frequency (MHz) (d) DGEMM-Core Frequency (MHz)
=40 210 @
P+ 2357 ~ 200} g 2000 e
2 50 - 1.9'5,1072 MHz S 190 + | 148.6J, 915 MHz < 800 (K *
% 150 ToP £ 3o 5180 £ 60 W
£ 100 ol 25 g 170 3 ool
CEEE 5 2 160 H
£ 50| @@ g 20 P ®{ W 150 g 200 == Max. Attainable
ws 0
600 800 1000 1200 1400 600 800 1000 1200 1400 600 800 1000 1200 1400 @ 600 800 1000 1200 1400

(e) STREAM-Core Frequency (MHz)

(f) STREAM-Core Frequency (MHz)

(g) STREAM-Core Frequency (MHz) (h) STREAM-Core Frequency (MHz)

Figure 1: Power, execution time, energy, and FLOPS variations across different frequency configurations for DGEMM (upper) and STREAM (lower), respectively.

cost of no performance degradation (ideally) or achieves the
best trade-off between performance degradation and reduction
in power and energy. However, empirical results in Figures 1
(b) and (c) show that the optimal execution time and optimal
power consumption are exhibited by different DVFS configura-
tions for an application. Furthermore, these configurations are
not portable across applications (Figure 1 (b) and (f) or (c) and
(g)). Comparatively, the optimal execution time was achieved
at higher frequencies than the frequencies that delivered the op-
timal energy, and optimizing one objective can adversely affect
the other. Thus, selecting the optimal frequency automatically
for an arbitrary application is not a trivial task due to conflict-
ing criteria of high performance and low power and energy.
This observation supports a need for a multi-objective solution
that simultaneously considers both execution time and power
consumption for an application to determine the optimal DVFS
configuration, which is the ultimate objective of this work.

3. Experimental Setup

3.1. Target Applications

In this study, we used three real applications, two micro-
benchmarks, and 19 industry benchmark applications in the
SPEC ACCEL suite.

3.1.1. Real Applications

In this study, we used three GPU-enabled real-world applica-
tions, including: (1) Nanoscale Molecular Dynamics (NAMD)
[23, 24], a large biomolecular systems simulation program;
(2) Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) [25, 26], a particle simulator that models solid-
state, soft matter, and coarse-grained materials; and (3) Long
short-term memory (LSTM) [27] algorithm, a TensorFlow-
based [28] implementation of binary sentiment classification of
large movie review dataset [29]. The domains for these appli-
cations are shown in Table 1

3.1.2. Benchmark Applications

The proposed models were validated using the SPEC
ACCEL® benchmark suite [30]. The application domains for
the benchmarks in the SPEC ACCEL are shown in Table 2.

Table 1: The real applications used in our evaluations.

Benchmark | Languag D
Parallel molecular dynamics

NAMD C++/Charm++ | code for large biomolecular
systems

LAMMPS Cit Large Atomlc Slmulatlons,
Molecular Simulations

LSTM Python Binary classification, Senti-

ment Analysis

Table 2: The SPEC ACCEL benchmarks suite containing 19 OpenCL enabled
benchmarks.

Benchmark Langua*gl*)omain

tpact C++ | Astrophysics

stencil C++ Thermodynamics

1bm C++ Fluid Dynamics

fft C Signal processing

spmv C++ Sparse Linear Algebra

mriq C Medicine

histo C Silicon Wafer Verification

bfs C Electronic Design Automation, Graph Traversals
cutcp C Molecular Dynamics

kmeans C++ Dense Linear Algebra, Data Mining
lavamd C N-Body, Molecular Dynamics

cfd C++ Unstructured Grid, Fluid Dynamics

nw C++ Dynamic Programming, Bioinformatics
hotspot C Structured Grid, Physics Simulation
lud C++ Dense Linear Algebra, Linear Algebra
ge C++ Dense Linear Algebra, Linear Algebra
srad C Structured Grid, Image Processing
heartwall | C Structured Grid, Medical Imaging
bplustree | C Graph Traversal, Search

3.2. Target Systems

In this study, we collected the utilization metrics for
SPEC ACCEL, DGEMM, and STREAM, real applications
(LAMMPS, NAMD, and LSTM) using NVIDIA Ampere
A100 GPU node at the National Science Foundation (NSF)’s
Chameleon CHI@UC site [31], AMD Instinct MI210 node at
AMD site, and Volta V100 GPU node at High Performance
Computing Center of Texas Tech University, managed by the
Slurm Scheduler [32]. Table 3 lists the configurations of these
systems. To avoid any interference from other jobs, all our ex-
periments were run on nodes that were exclusive. All experi-
ments were performed using an NVIDIA GV100 with CUDA
version 11.2 and driver version 450, and GA100 with CUDA
version 11.5 and driver version 465. For MI210, we used
ROCm 5.4, rocprof 2.0, and rocm-smi 5.4. Data analysis and

Table 3: Platforms used for our evaluations.

Site Platform CPU Memory oS GPU GPU Memory | GPU TDP
Chameleon@UC Dell PowerEdge XE8545 2 x 64 cores x AMD EPYC 7763 512 GB CentOS 8 GA100 SXM4 | 80 GB HBM2e 500 W
Chameleon@UC Dell PowerEdge C4140 2 x 24 cores x Intel Xeon Gold 6230 | 128 GB CentOS 7 GV100 PCle 32GB HBM2 250 W

HPCC@TTU Dell PowerEdge R740 2 x 20 cores X Intel Xeon Gold 6242 | 384 GB CentOS 8 GV100 PCle 32GB HBM2 250 W
Test Server@ AMD | SUPERMICRO AS-4124GS-TNR 2 x 64 cores X AMD EPYC 7742 528 GB | Ubuntu 18.04 | MI2I0PCle | 64GB HBM2e 300 W

modeling was performed using Python 3.10.1 64-bit.

4. Methodology

This section introduces the overall methodology, data col-
lection process, feature analysis, power modeling, performance
modeling, and the multi-objective approach to selecting the op-
timal frequency.

E(b) Optimal DVFS Config Selection

GPU

Run workload
lat maximum
DVFS config

(a) Model Development
.

L Kernel

Run kernels

across all AN

GPU H
ive|[Memory i H
Jl4 Kernel !
'
'
DVFS configs

GPU's Utilization Metncsl

Feature Analysis

GPU's Utilization Metrics

Estimate power
across all DVFS
configs

Estimate exec.
time_across all
DVFS configs

timate energy
across all DVFS
configs

Multi-objective
optimal functions,

Optimal DVFS config

Power Related Metrics Performance Related Metrics |

~ '
'
¥

Performance |1
Mode !

Power Model

Figure 2: (a) Functions related to power and performance models development.
(b) Functions related to the selection of the optimal frequency for a workload
using the proposed models and multi-objective techniques.

4.1. Overview

Our methodology consists of two phases: (1) building analyt-
ical models for power and execution time and (2) selecting the
optimal frequency selection for a given workload using multi-
objective optimal functions based on estimated power and exe-
cution time using analytical models.

Figure 2 (a) shows the process of building analytical models
for power and execution time, which are built using workloads’
GPU utilization metrics across GPU’s DVES design space. The
following functions were involved in developing power and per-
formance models: workload execution across GPU’s DVFS de-
sign space, metric collection, feature analysis, and model con-
struction. For developing models, we used utilization metrics of
only DGEMM (representative of compute-intensive workloads)
and STREAM (representative of memory-intensive workloads)
micro-benchmarks. The GPU’s utilization metrics were col-
lected across the GPU’s DVES design space for the entire ex-
ecution duration at the sampling interval of 20 ms. To miti-
gate statistical errors such as run-to-run variations, these bench-
marks were run three times for each frequency. As demon-
strated in Figure 1, extensive analyses were performed to under-
stand the impact of different frequencies on power, execution

time, energy, bandwidth, and FLOPS. The metrics were char-
acterized to find their relationship with power and execution
time, as shown in Section 4.3. Finally, power and performance
models were constructed empirically using the features which
showed the highest correlations with power and execution time,
respectively. One of the main objectives of these models is the
portability and applicability of this methodology to a wide va-
riety of applications and other GPU architectures. We mod-
eled GPU architectural characteristics, which are instrumental
in mitigating the changes in power and execution time for a
target GPU architecture. These models do not require readjust-
ment based on the target GPU architecture.

As shown in Figure 2 (b), to determine the optimal GPU
DVES configuration, the following steps are involved. First,
a workload was run three times for data collection. As perfor-
mance is paramount to HPC workloads, we collected GPU’s
utilization metrics at the GPU’s maximum DVFS configura-
tion. Furthermore, the power and performance profile at the
maximum configuration was used as a reference point for the
power and performance profile at the selected DVFS configura-
tion. GPU’s metrics were collected at a sampling interval of 20
ms for each run of the workload. Second, the workload’s power
and execution time were estimated via the proposed power and
performance models, respectively. These estimations were per-
formed for each GPU DVFS configuration using the workload’s
utilization metrics acquired at the maximum frequency. This
model-based estimation of power and execution time across a
GPU’s supported DVFS configurations eliminates the need for
the execution of a workload across these different DVFS con-
figurations. The energy for a workload was computed using the
estimated power and execution time for each DVFS configura-
tion. Finally, multi-objective functions were used to determine
the optimal frequency among the GPU’s supported frequencies.
These multi-objective functions use EDP and ED?P, which es-
tablish energy-performance trade-offs by simultaneously taking
energy savings and performance degradation into account. The
EDP function computes the score for each frequency by mul-
tiplying the energy and execution time of the DVFS configura-
tion. The DVFS configuration with the lowest score is deter-
mined as the optimal frequency. The ED?P function is similar
to EDP; however, ED?P applies more weight to the execution
time. The ED?P always selects a higher DVFS configuration
than the EDP for a given workload. Thus, it is useful in en-
abling performance-centric energy-saving trade-offs.

4.2. Data Collection

We collected 12 GPU utilization metrics (seemingly relevant
to power and performance) for DGEMM, STREAM, SPEC
ACCEL benchmarks, and three real applications (LAMMPS,

NAMD, and LSTM) across 117 DVFS configurations on the
NVIDIA GV100. The same metrics were collected for real
applications across 61 DVFS configurations on the NVIDIA
GA100. We used the state-of-the-art NVIDIA Data Center
GPU Manager interface (DCGMI) [33] interface for metric ac-
quisition. The same interface was used to change the DVFS
configuration of the GPU. Table 4 provides the description of
the collected metrics. As described above, metrics related to
DGEMM and STREAM were used to build the power and per-
formance models. The metrics related to the SPEC ACCEL
and real applications were used as the measured data in the
model validation demonstrated in Sections 5 and 6. Section 6
also evaluates the inter-architectural portability of the proposed
models and the selection of the optimal frequency mechanism
using the real applications.

Table 4: Feature Description

Feature Description

Last measured power draw for the entire
board. [From DCGMI.]

Fraction of cycles where data was sent to or
received from device memory. It reports a
value between 0 and 1 that represents an av-
erage activity over a time interval. For ex-
ample, an activity of 0.2 indicates that 20%
of the cycles read from or write to device
memory over the time interval. [DCGMI.]
Fraction of cycles where the FP64 (double
precision) pipe was active. It reports a value
between 0 and 1 that represents an average
over a time interval. [DCGMI.]

Fraction of cycles where the FP32 (single
precision) pipe was active. The value is
defined similarly to fp64_active feature.
[DCGMI.]

Overall graphics engine activity. The value
gr_engine_active| (between O and 1 represents an average over
a time interval. [DCGMI.]

Application level SM clock frequency
(MHz). [DCGMI.]

Fraction of time at least one warp was active
on a multiprocessor, averaged over all multi-
processors. Warps both performing actively
computing and waiting on memory requests
are considered active. The value [0:1] repre-
sents an average over a time interval. Usu-
ally, a value of 0.8 or higher indicates effec-
tive usage of GPU. [DCGMI.]

Fraction of resident warps on a multiproces-
sor, relative to the maximum number of con-
current warps supported on a multiproces-
sor. The value [0:1] represents an average
over a time interval. The higher occupancy
does not always represent optimum GPU us-
age. [DCGMI.]

power_usage

dram_active

fp64_active

fp32_active

sm_app_clock

sm_active

sm_occupancy

pcie_tx_bytes

Bytes sent by PCle. [DCGMI.]

pcie_rx bytes

Bytes received by PCle. [DCGMI.]

gpuutilization

Fraction of time the compute pipe was busy.
The value represents an average over a time
interval. [DCGMI.]

run_time

Execution time of a specific benchmark ker-
nel. Sourced as wall time.

EZ¥) power_usage
T T T T T

run_time
T

10

0.80.9
08| = |
[
= 0.6 0.6
g 06| 0505 0508 T
» 04 X o 5
3
02} 0202 ts] o g
0.0L0.0,00 0.0,00 H. ol i
° e . N °
- }c* cc\)vax\d . ?o\\“ . o \\\¢"“o N }c\“‘
o . o %7 & @
Feature

Figure 3: Dependency between GPU’s utilization metrics, power and time

4.3. Feature Engineering

In this section, we discuss the process of selecting fine-
grained features which directly impact power and execution
time. Furthermore, we analyze the impact of different DVFS
configurations and input sizes on the selected features, and the
portability of these features across GPU architectures.

4.3.1. Selection of the Fine-Grain Features

Feature analysis was performed to choose features that di-
rectly impact an application’s power usage and execution time.
These features are critical to developing accurate, reliable, and
scalable analytical models for power and execution time esti-
mation. We used the Mutual Information (MI) technique [34,
35, 36] to identify the features correlated with power and ex-
ecution time. MI estimates distances using nonparametric k-
nearest neighbors algorithm. This approach shows an unbiased
correlation, which is more effective than the correlation (of-
ten algorithm-specific) shown by a machine learning algorithm.
As arepresentative of compute-intensive and memory-intensive
applications, the feature analysis used the dataset for DGEMM
and STREAM benchmark applications only. Figure 3 shows
the dependency between power_usage and run_time, and other
GPU utilization features. The feature with a higher mutual cor-
relation value (close to 1) is indicative of a higher dependency.
Out of these features, we observed that fp_active, sm_app _clock,
and dram_active are the most prominent features that influence
both power usage and execution time.

The fp_active and dram_active are instrumental in under-
standing the computational intensity of a workload. In general,
compute-intensive applications show higher fp_active than the
memory-intensive applications as depicted in Figure 4 where
floating-point activity (fp-active) for DGEMM is higher than
STREAM. While DGEMM is also shown to have consider-
able memory activity (dram_active), the value for STREAM
is much higher. Moreover, we observed that the inclusion of
gpu_utilization does not improve the prediction accuracy, and
the pcie_* metrics did not provide any significant improvement
for our models either.

The sm_app_clock is used to scale the power and execu-
tion time of an application. For both benchmarks, power de-
creases (as depicted in Figure 1-(a) and (e)) with sm_app_clock
while the execution time increases (as illustrated in Figure 1 (b)
and (f)). It shows that a change in GPU frequency changes

the power and execution time in a computational intensity-
aware way. Therefore, it can be deduced that the GPU metrics
fp-active, dram_active, and sm_app_clock are reliable features
for controlling an application’s power usage and time.

4.3.2. Impact of DVFS on Computational Activities

We further investigated the impact of changes in DVFS con-
figurations on the computational activities (i.e., fp_active
and dram_active) of memory- and compute-intensive appli-
cations. DGEMM and STREAM were tested by changing the
DVES configurations at maximum input sizes on GA100 and
GV100 architectures. As demonstrated in Figure 4, the floating-
point activity is almost unaffected by the change of DVFS con-
figurations for both compute- and memory-intensive applica-
tions; however, memory-activity shows variations for both ap-
plications. We also observed that DGEMM exhibited different
memory usage behaviors across GV100 and GA100. We will
explain the rationale behind this deviation later.

STREAM

XU

DGEMM
L
«

FEEEEEG®

.6 Pxeessuiish
.4 HEEEss
~ e e .

Memory Activity FP Activit:

0.2 [@
)

00

s L L L o
600 800 1000 1200 1400
Core Frequency (MHz)

i i h L o
600 800 1000 1200 1400
Core Frequency (MHz)

Figure 4: Impact of DVFS on the computational activities (i.e., fp-active and
dram_active) of memory- and compute-intensive applications.

4.3.3. Impact of Input Size on Computational Activities

We investigated the impact of changes in input sizes on the
computational activities of memory- and compute-intensive ap-
plications. DGEMM and STREAM were tested using differ-
ent input sizes at the maximum core frequency on GA100 and
GV100 architectures, as depicted in Figure 5.

As in the case of changes in frequency, we observed similar
patterns concerning the change of input sizes on computational
activities. The floating-point activity is approximately unaf-
fected by the change of input sizes for both applications on both
GPU architectures. The memory activity of DGEMM showed
variations within and across both architectures. Unlike in the
previous case, the memory activity of STREAM was observed
to be mostly unaffected by the change in input sizes on both ar-
chitectures. In addition, our preliminary analyses confirm that
a change in input sizes of memory and compute-intensive ap-
plications does not change their power signature [37].

4.3.4. Features Portability Across GPU Architectures

We analyzed the portability of fp_active and dram_active
reported by memory-intensive (STREAM) and compute-
intensive (DGEMM) kernels across GV100 and GA100 archi-
tectures. Figure 4 and Figure 5 corroborate five findings con-
cerning to portability of these features across GPU architec-
tures: (1) floating-point activity for memory- and compute-
intensive kernels was reported the same on both architectures

and were unaffected by the change in DVFS configuration and
the change in input size; (2) memory activity is nearly unim-
pacted by the change in input size for a memory-intensive ker-
nel; (3) memory activity to some extent showed variation with
the change in DVFES configuration for both kernels; and (4) non-
uniform memory activity patterns on GV100 and GA100 for
DGEMM benchmark.

While GA100 memory frequency (i.e., 1593 MHz) is sig-
nificantly higher than the GV100 memory frequency (i.e., 877
MHz), results showed comparatively low memory activity on
GA100 for DGEMM. We investigated this deviation by looking
into the architectural characteristics of both GPUs. We found
that GA100 is enhanced with double-precision tensor cores,
which support double-precision matrix multiply-accumulate
(DMMA) instruction. A single DMMA instruction (on GA100)
is equal to eight traditional FP64 instructions (on GV100) [38].
This architectural enhancement enables GA100 to save signif-
icant memory space and bandwidth. The reduction in memory
activity for DGEMM on GA100 (Figure 4) is due to its support
for Double-Precision Tensor Cores capability.

Summary: MI technique confirms fp_active,
dram active, sm_app_clock as the top three features
exhibiting a strong relationship with power and execution time.
sm_app-clock (DVFS configuration) is a hardware feature
of the target GPU. fp_active is unaffected by the change in
sm_app-clock, the change in the input size, and the change
of GPU architecture. dram_active is slightly affected by the
change in sm_app_clock, the change in the input size, and the
change in GPU architecture. Overall, fp_active and dram_active
of an application can uniquely identify power and execution
time signature for a given GPU sm_app_clock.

4.4. Power Modeling

To develop a power model, it is essential to consider the as-
pects of applications and architectures that directly influence
power. Our empirical analysis indicates that the floating-point
and memory activities directly impact the (dynamic) power at
a given core frequency. This implies that the floating-point and
memory activities are reliable features to identify an applica-
tion’s power signature. The power is shown to increase approxi-
mately in a linear manner up to the GPU’s TDP, depending upon
the application’s activity. With these underlying basics, we use
floating-point activity (F Py), memory activity(DRAM ,.;), and
core frequency (f) to model activity-driven power (Py) behav-
ior of an application as shown in Equation 1.

Pr=a-FPuy;+B-DRAMyo, +y-f+C+x 2 (1)

where a, B, and y represent regression coefficients for floating-
point activity, memory activity, and core frequency, respec-
tively, and C is a constant. These coefficients are estimated us-
ing metrics data from DGEMM and STREAM benchmarks. A
is a constant factor that essentially scales up or down power for
other GPU architectures. Its value is a ratio of the target GPU’s
core count to the base GPU’s core count. When the core count
of the target GPU is more than the core count of the base GPU,
the resultant value is calculated by adding this value. However,

- Max =9 GV100-MEM [~ GV100-FP64 B9 GA100-MEM CZJ GA100-FP64 GV100-MEM (= GV100-FP64 B9 GA100-MEM CZJ GA100-FP64
10 —0.99 .9__0_&6_%9___0.95_1/.,9_2__0,97_ __u.gi_%)_ I . oI]
‘ 0.86 0.87 0.87
o8k | rge i
2 ‘
S 06} .
3 : 038
04+ R v .
< % 0024 % 2 024"
o2 944/ [<0. A
P % o 20.01110.01 150.0£0.01 [0.010.01

10Kx10K 15Kx15K 20Kx20K

DGEMM Matrix Size

23Kx23K

10240 15360 20480

STREAM Vector Size

Figure 5: Impact of different input sizes on the computational activities (i.e., fp-active and dram_active) of memory- and compute-intensive applications.

when the cores count of the target GPU is less than the cores
count of the base GPU, the resultant value is estimated by sub-
tracting this value. Moreover, computing the coefficients for the
models has no noticeable overhead. In our evaluations, the es-
timation of power and execution time, along with the selection
of the optimal frequency, took less than a second.

4.5. Performance Modeling

While the execution time of individual kernels is predictable
based on their computational activities, repetitive tasks and dif-
ferent data input sizes involved in real-world applications make
execution time estimation complicated. The execution time de-
pends on the input size, and literature [39] confirms our obser-
vations. The proposed performance model requires the execu-
tion time of a workload at the maximum-frequency, and then
our model scales the execution time for other frequencies. An-
other key point in designing a DVFS-based performance model
is to consider the impact of frequency scaling on time. Based on
our observations, the execution time exhibits nonlinear inverse
relation with GPU’s core frequencies, as shown in Figure 1-(b)
and (f). To address this challenge, researchers use the applica-
tion’s execution time at maximum core frequency as the appli-
cation’s default execution time and linearly estimate the varia-
tions in the execution time for the remaining core frequencies.
For example, recent literature [39] tried to estimate the change
in execution time in relation to a change in core frequency by
using the application’s default execution time as an input ex-
ecution time. Our evaluation of [39] shows two fundamental
shortcomings. First, the execution time estimation is limited to
compute-intensive applications. Second, the change in the esti-
mated execution time when the frequency is changed from the
GPU’s highest frequency is estimated in linear rather than the
desired nonlinear fashion. Therefore, we model these nonlinear
(nearly parabolic) behaviors demonstrated in Figure 1-(b) and
(f) as a second-degree polynomial function of floating-point ac-
tivity (FP,.) and change in frequency (Af). The performance
model is derived using Equations 2, 3, and 4. The performance
model is intended to estimate nonlinear variations in the appli-
cation’s execution time between the highest core frequency and
the remaining core frequencies.

Ty=T;

‘max

+ Ty, 2)

where Ty denotes the execution time at frequency f, T, repre-

sents the execution time at the highest frequency, and 7'y, refers

to the change in execution time from the maximum core fre-
quency to the given core frequency f, which is determined us-
ing Equation 3.

TfA :ﬂl - FPy +;82 ’Af+;33 ’FPaclz+

3
Ba+ FPaq - Af +Bs - Af? @

where F P, refers to the application’s FP activity at maximum
frequency and Af denotes the change in frequency from maxi-
mum to the given frequency as shown in Equation 4.

Af = f;nax - f (4)

The Bi1, B2, B3, Ba, and Bs are polynomial coefficients, which
are estimated using variations in execution time corresponding
to changes in frequency configurations and application’s FP ac-
tivity. These estimations were empirically computed using met-
rics data from DGEMM and STREAM benchmarks. The inclu-
sion of FP activity is critical because it reflects the application’s
computational activity (see Figure 1 (b) and (f)).

4.6. Optimal Frequency Selection

As already discussed in Section 2.3, the optimal frequency is
the one that reduces the power with no performance degradation
(ideally) or achieves the best trade-oft between execution time
and power. The optimal frequency for an application is selected
using a multi-objective approach including EDP [6, 17, 18, 19]
and ED?P. These approaches require energy and execution time
estimations. The energy is computed for each frequency (f)
using Equation 5 based on the power usage and execution time
estimated via the proposed power and performance models.

T fsimaed (&)

The algorithm for selecting the optimal frequency among sup-
ported DVES configurations is straightforward and shown in
Algorithm 1. This algorithm takes three lists, including energy
(E), execution time (T), and frequency (F) as input. It outputs
the optimal £ setting based on the ED?P score. The algorithm
involves two major steps: First, the ED?P score for each set of
energy and time is computed by multiplying the energy with the
square of execution time. Second, the lowest score decides the
optimal energy-delay profile out of the given sets of energy and
time for the given workload. The frequency (£) corresponding
to the lowest score is the optimal frequency and will be selected
as the optimal frequency. The optimal frequency selection us-
ing EDP is similar to this algorithm. The only difference is that

Sostimated = E fosimatea X

Algorithm 1 Optimal frequency determination using ED’P

Require: E;...EN,T)...TN,F1...Fy
times, and frequencies
Ensure: f

> list of energies, run
> optimal frequency

: function OptimMaL(E[1, T[1, F[1)

1
2: EDP « E x T? > compute list of EDP scores
3: min « 0
4: index < 0
5: N « length(ED*P)
6: for k=1to N do > find the minimum EDP score
7: if ED?P; < min then
8 min «— ED*P;
9: index «— K
10: f < Findex > optimal frequency

the EDP score is calculated instead of the ED?P score, where
the energy is multiplied by the execution time (i.e., energy and
time are given equal weights).

5. Evaluation with SPEC ACCEL Benchmarks

This section provides evaluation results for 19 benchmark ap-
plications in the SPEC ACCEL suite (see Table 2). Their uti-
lization metrics were unseen by our proposed models.

5.1. Estimation of Power and Performance

The power usage and execution time were estimated for the
SPEC ACCEL benchmarks across 117 DVFES configurations on
GV 100 using the proposed power and performance models.

An application’s power was estimated using the frequency
along with the FP and DRAM activities acquired at the max-
imum frequency. Figure 6 compares the estimation power
generated by the proposed power model and measured power
for each benchmark in the SPEC ACCEL. We used the mean
absolute percentage error (MAPE) metric to understand the
accuracy of the proposed models. As shown in Table 5,
the proposed power model estimated power usage for 15 of
the benchmarks in the SPEC ACCEL with an accuracy of
over 90% (and up to 99.1%). However, the model slightly
overestimated or underestimated power usage for the bench-
marks with significantly low or high computational activi-
ties. For example, hist (FP=0.0005, DRAM=0.0235) and
kmean (FP=0.0243, DRAM=0.3197) overestimated power us-
age. Conversely, stencil (FP=0.2781, DRAM=0.7301) un-
derestimated power usage.

For estimating the execution time, only frequency and FP
activity were used. Figure 7 compares the execution time esti-
mated by the proposed performance model and measured exe-
cution time for each benchmark in the SPEC ACCEL. The ex-
ecution time was estimated with an accuracy of more than 90%
(and up to 98.8%) for 15 benchmarks, as shown in Table 5. We
did not observe any underestimation of execution time. How-
ever, the proposed model is likely to slightly overestimate exe-
cution time for a benchmark exhibiting higher FP activity (e.g.,
lavamd, mriq).

5.2. Optimal Frequency Selection

The (measured) M-EDP and M-ED?P optimal frequencies
refer to the optimal frequencies selected via EDP and ED?P
approaches using measured energy and execution time metrics.
Similarly, (estimated) E-EDP and E-ED?P optimal frequencies
refer to the optimal frequencies selected via EDP and ED*P ap-
proaches using energy and execution time metrics estimated by
the proposed models. Figure 8 shows the optimal frequencies
selected via M-EDP, E-EDP, M-ED?P, and E-ED?P approaches
for each benchmark in the SPEC ACCEL on GV100. Table 6
lists M-EDP, E-EDP, M-ED?P, and E-ED?P optimal frequencies
for each SPEC ACCEL benchmark on GV100.

In general, the M-EDP, E-EDP, M-ED?P, and E-ED?P opti-
mal frequencies for each benchmark were less than the GPU’s
maximum frequency. This observation confirms our hypothesis
that the GPU’s maximum frequency is not always optimal. Fur-
ther, E-ED?P optimal frequency selected for each benchmark
was always higher than the E-EDP optimal frequency. This out-
come affirms our assumption that ED?P approach is useful in
defining more performant trade-offs. We also observed a sym-
biotic relationship between models accuracy, and P-EDP and
E-ED?P optimal frequencies: (1) A higher accuracy in estima-
tion of power usage and execution time for a benchmark lead
to the selection of more accurate E-EDP and E-ED?P optimal
frequencies (e.g., ge, nw); (2) an overestimated power lead to
the selection of comparatively lower E-EDP and E-ED?P opti-
mal frequencies (e.g., kmean, histo); and (3) an overestimated
execution time lead to selection of comparatively higher E-EDP
and E-ED?P optimal frequencies (e.g., 1avamd, mriq). The ac-
tual energy-performance trade-offs are evaluated below.

5.3. Energy and Performance Evaluation

The effectiveness of the optimal frequency is measured by
its ability to save energy with minimal performance degrada-
tion. The change in execution time and energy savings of the
optimal frequency are calculated with reference to the GPU’s
highest frequency. The change in execution time can be com-
puted using Equation 6:

Tmaximum

Tma,\'imum

T_Change(%) = 100 - ("”””’“’) 6)
where Tuximum and Topiimar are the measured execution times
for the application at maximum and optimal frequencies, re-
spectively. The T_Change can be either positive or negative. A
positive value indicates performance gain, and a negative value
suggests performance degradation using the optimal frequency.
The energy savings can be computed using Equation 7:

- Eoptimal)

E maximum

Emaximum

E_Savings(%) = 100 - (@)
where Eqximum and E,pima are energy consumed as measured
at the maximum and optimal frequencies, respectively.

Figure 9 shows energy savings and changes in execution time
achieved with (a) measured and estimated EDP optimal fre-
quencies and (b) measured and estimated ED*P optimal fre-
quencies for each SPEC ACCEL benchmark application. On

= x%x Measured +++ Estimated x%xx Measured +++ Estimated x%xx Measured +++ Estimatedl |xXx Measured +++ Estimated
Ee — T 5 6.5 — 6.5 p—T—
250t . 5.0
5 35 - . 35
220 1 1 1 1 1 2.0 1 1 1 1 1 A 2.0 1 1 1 1 1 A 2.0 1 1 1 1 1 A
& 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
tpacf - GPU Frequency (MHz) stencil - GPU Frequency (MHz) Ibm - GPU Frequency (MHz) fft - GPU Frequency (MHz)
E x%x Measured +++ Estimated x%x Measured ++4+ Estimated x%x Measured ++4+ Estimated x%x Measured ++4+ Estimated
£6 — T T T 6.5 T T T T T 5 T 6.5 T T T T T
2 sof]
g : - 3.5 =
220 1 1 1 1 1 A 2.0 1 1 1 1 1 A 2.0 1 1 1 1 1 A 2.0 1 1 1 1 1
& 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
spmv - GPU Frequency (MHz) mriq - GPU Frequency (MHz) histo - GPU Frequency (MHz) bfs - GPU Frequency (MHz)
= x%x Measured +++ Estimated x%xx Measured +++ Estimated x%xx Measured +++ Estimated x%xx Measured +++ Estimated
£ 65 ——T—T— 6.5 e 6.5 e 65 —
2 5.0 " 5.0
5 3 35F % x *4 35
220 1 1 1 1 1 2.0 1 1 1 1 1 A 2.0 1 1 1 1 1 2.0 1 1 1 1 1 A
& 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
cutcp - GPU Frequency (MHz) kmeans - GPU Frequency (MHz) lavamd - GPU Frequency (MHz) cfd - GPU Frequency (MHz)
’g x%x Measured +++ Estimatedl Ix)tx Measured +H+ Estimatedl Ix)tx Measured +++ Estimated x%x Measured +++ Estimated
£ 6. — T T T 6.5 T T T T T 6.5 T T T T T 6.5 T T T T T
2 sof
5 3.5 p=
220 1 1 1 1 1 A 2.0 1 1 1 1 1 A 2.0 1 1 1 1 1 A 2.0 1 1 1 1 1 A
& 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
nw - GPU Frequency (MHz) hotspot - GPU Frequency (MHz) lud - GPU Frequency (MHz) ge - GPU Frequency (MHz)
x%x Measured +++ Estimated x%x Measured ++4+ Estimated x%x Measured ++4+ Estimated
] T T T T T 6.5 T T T T T 6.5 T T T T T

50 a3 5.0
35 B 35

2.0 L L L L 1 2.0 L L L L L 2.0 L L L L L
510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
srad - GPU Frequency (MHz) heartwall - GPU Frequency (MHz) bplustree - GPU Frequency (MHz)

Power (norm.)
o

Figure 6: Comparisons between evaluated and estimated power for each benchmark in the SPEC ACCEL.

- xxx Measured Estimated xxx Measured Estimated xxx Measured Estimated xxx Measured Estimated

E 65 T T T T T 6.5 T T T T T 6.5 T T T T T 6.5 T T T T T

2 sof 1 so} 4

; 35k e 3.5 [1

£ .0 N .0 _ 2.0 1 1 1 1 1 2.0 1 1 1 1 1

F 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
tpacf - GPU Frequency (MHz) stencil - GPU Frequency (MHz) Ibm - GPU Frequency (MHz) fft - GPU Frequency (MHz)

< x%x Measured Estimated x%x Measured Estimated x%x Measured Estimated x%x Measured Estimated

E 65 T T T T T 6.5 T T T T T 6.5 T T T T T 6.5 T T T T T

g s0f {1 sof {1 sof {1 sof .

3 35F {1 35 4 3s5F 4 35F E

£ 20 L 1 L L L 2.0 L 1 1 N ! 2.0 1 1 1 1 1 2.0 1 1 1 1 1

F 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
spmv - GPU Frequency (MHz) mriq - GPU Frequency (MHz) histo - GPU Frequency (MHz) bfs - GPU Frequency (MHz)

- xxx Measured Estimated xxx Measured Estimated xxx Measured Estimated xxx Measured Estimated

E 65 T T T T T 6.5 T T T T T 6.5 T T T T T 5 T T T T T

g 5.0 | - 5.0 E 5.0 | E E

; 3.5 peany - 35k L 35 L. =

£ 20 L ! 1 ! 1 2.0 L 1 1 1 1 2.0 L N ! N N 2.0 L L ! 1 L

F 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
cutcp - GPU Frequency (MHz) kmeans - GPU Frequency (MHz) lavamd - GPU Frequency (MHz) cfd - GPU Frequency (MHz)

=< x%x Measured Estimated x%x Measured Estimated x%x Measured Estimated x%x Measured Estimated

E 65 T T T T T 6.5 T T T T T 5 6.5 T T T T T

g s0f 4 sof . 50 .

; 35k = 35 . “ 35F e

£ 20 L 1 1 L L 2.0 L L 1 ! ! 2.0 L L 1 ! L

F 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380

nw - GPU Frequency (MHz) hotspot - GPU Frequency (MHz) lud - GPU Frequency (MHz) ge - GPU Frequency (MHz)

- x%x Measured Estimated xxx Measured Estimated xxx Measured Estimated

£ T T T T T 5 T T T T T 6.5 T T T T T

£

] . 4 4

£

o e i A — 1 HE

£ 20 L L ! ! ! 2.0 L L ! 1 ! 2.0

F 510 655 800 945 109012351380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380

srad - GPU Frequency (MHz) heartwall - GPU Frequency (MHz) bplustree - GPU Frequency (MHz)

Figure 7: Comparisons between evaluated and estimated execution time for each benchmark in the SPEC ACCEL.

average, M-EDP and E-EDP (Figure 9 (a)) saved energies 36% tively saved energies 35.2% and 25.2% with performance gains
and 28.6% with performance gains 0.3% and 1.2%, respec- 1.3% and 2%, respectively. We noted that energy savings at-
tively. Similarly, M-ED?P and E-ED?P (Figure 9 (b)) collec- tained with estimated optimal frequencies are less than the en-

10

Table 5: Power and performance estimation accuracy for SPEC ACCEL benchmark applications.

tpacf | stencil | 1bm | fft | spmv | mriq | histo | bfs | cutcp | kmeans | lavamd | cfd | nw | hotspot | lud | ge | srad | heartwall | bplustree
[Power(%) | 985 86.1 9451908 | 89.6 | 97.8 | 832 [983 [937 83 984 951|942 90 90 [963 | 90.8 99.1 94.6
| Time (%) | 91.9 922 978 | 863] 975 | 81.9 | 988 [98.7 [85 97.6 80.6 [96.2 [983 87.2 94.1 [984] 94.8 96.2 93
160 — T T T T T T 240 — T T T T T T 160 — M-EDP
stencil
140 4
EEDP
120}
E 4
5 100f M-EDP
H
3 4
[
E-EDP
60| 4
40
170
160 -
150 L
__ 140}
g 130
ut
S
2 120f
o
8 qof
100 1
%l
20 22 24 26 28 30 32 20 2 24 2% 28 32 20 2 24 2% 28 3
Time (S) Time (S) Time (S)
20— T T T T T T 50— T T T T T T 1 T T T T T T T 1 T T T T T T
cfd M-EDP
200 ®8 cutcp M-EDP| 160 |- 1-‘; lavamd ade MR ¥
1801 R 140 [
EEDP 110
S 60| - 120
2 100
T 14of M-EDPY 100}
H %ol
S 120t B sl
E-EDP
100 1 @lq@&' 4 60l sor
h LT
s0f e g0 ol 70b
1
g0l L L L L L L Py L L s L L L 60
20 24 26 28 30 32 20 22 24 2 28 30 32
Time (S) Time (S)
80— T T T T T T T T 1 'd T T T T ®
M-EDP| u M-ED?P
sr 1 180 | el 120
g B
E-EDP g 1101
__ 65| 4
B 100
T or M-EDP| aor
[%ol
% s b 120
o sl
sol E-E0P_
100
st 4 7oL
a0f - sor 60l
B TR R R B T I
Time (S) Time (S) Time (S)
170 — T T T T 1 T T T T T T T 1 T T T T T T T
o % srad Rt B s bplustree M-EDP
150 |- % 4 1401
- o 100F
e E-EDP
sr 8 1
g 1301 120
s 4 meoP| gol
% =r &tg 1 1001
2 qiof b 1 °r
g’i.. E-EDP
100k By, 1 e}
'® co» sl
)
%0 - P S0 1
sl L s L L L L L L L L L L L L L L L L L L
20 22 24 26 28 30 32 20 22 24 26 28 30 32 20 22 24 26 28 30 32
Time (S) Time (S) Time (S)

Figure 8: The optimal DVFS profiles at GV100 selected with measured-EDP, estimated-EDP, measured-ED?P and estimated-ED?P for each benchmark in the SPEC
ACCEL shown along with the power and execution time for each supported DVFS configurations.

11

80

Energy (E-EDP)]

Time (E-EDP) [GV100]

T Energy (M-EDP) [GV100] 772 Time (M-EDP)

[GV100

[GV100]

2!
" 2323 2726 278
14 b X
B o@%] g o2
-2 . . 2
3 XN« B) Q C) O £
I R S R *«\eo“ \a“a«\ c

(a) Energy savings and change in execution time achieved with measured and estimated EDP optimal frequencies for each SPEC ACCEL benchmark application.

Energy (E-ED?P) [GV100] Time (E-ED?P) [GV100] [EZE Energy (M-ED?P) [GV100] [ZZ] Time (M-ED?P) [GV100]
80| 77 i
3 or B
s 49
44
& /39 39 40 4 i
£ 2424 3 7 73 2426 2429 270 27 3034 n¥ 2y
S ol T 1 16 1718 T A 51 L 208 #Hi T : X X - 2,122 X 1 H
0=02{33302@0@@3@%@2&3@01}32@03 Z=23@0220 }22"02&@%}22:2
1 1 1 1 1 1 1 1 1 1 -0 ! 1 1 1-1 1 1 1 1 1
X N o & T S I) Q g O £ o ot O 3 S \J e
o© IR\ & e 3 AR A o W) X 2 g
W% e N A N o @\e@ o “0\99 B x@"’(‘«w\"%‘

(b) Energy savings and change in execution time achieved with measured and estimated ED?P optimal frequencies for each SPEC ACCEL benchmark application.

Figure 9: Energy savings and change in execution time achieved with (a) measured and estimated EDP optimal frequencies and (b) measured and estimated ED?P

optimal frequencies for each SPEC ACCEL benchmark application.

Table 6: The optimal DVFS at GV100 selected with measured-EDP, estimated-
EDP, measured-ED?P and estimated-ED?P for SPEC ACCEL benchmark.

Optimal Frequency (MHz)
Benchmark EDP ED’P
Measured | Estimated | Measured | Estimated

tpacf 907 1020 997 1110
stencil 1102 1020 1102 1102
Ibm 907 982 997 1065
ftt 1102 1065 1102 1155
spmv 1102 990 1102 1072
mriq 960 1117 997 1207
histo 1050 982 1102 1057
bfs 1200 982 1200 1057
cutcp 907 1072 997 1162
kmeans 1072 990 1072 1065
lavamd 990 1132 990 1230
cfd 1072 997 1102 1080
nw 997 982 997 1065
hotspot 907 1057 907 1147
Tud 1222 1005 1222 1095
ge 997 982 997 1065
srad 997 1005 1102 1087
heartwall 997 997 997 1080
bplustree 907 1012 997 1102

ergy savings attained with the measured optimal frequencies.
The reason behind this minor undersaving is overestimating the
power usage of some benchmarks (as concluded in the previous
section). In addition, the measured and estimated energy sav-
ings are similar for the benchmarks having higher accuracy in

12

the estimation of their power and execution time (e.g., ge, cfd).
In conclusion, our approach saves energy by one-fourth without
performance degradation for the SPEC ACCEL 19 benchmarks.
These observations confirm the effectiveness of our approach.

6. Portability Evaluation

This section evaluates the portability of the proposed ap-
proach from two perspectives: (1) portability with real-world
applications, including NAMD, LAMMPS, and LSTM (see Ta-
ble 1 for more details about the applications), and (2) portability
with the state-of-the-art NVIDIA Ampere GPU and AMD In-
stinct MI210 GPUs (see Table 3 for more details about GPUs).
These evaluations confirm the suitability and applicability of
the approach across various architectures and vendors.

To evaluate real applications, we used the following config-
urations. For NAMD, we performed an experiment using the
standard Apolipoprotein Al (ApoAl) dataset, which comprised
92,224 atoms of lipid, protein, and water [40]. ApoAl simu-
lates a bloodstream lipoprotein. For LAMMPS, we performed
a standard Leanard-Jones 3D melt experiment. For LSTM, we
used a dataset of 50000 movie reviews for binary sentiment
classification; 50% of the movie reviews were used for training
and the remaining 50% for testing. In contrast to the bench-
marks executed only on the GPU, the real applications run on
both CPU and GPU. However, only the corresponding GPU
metrics are used in our evaluation.

6.1. Feature Mapping

The proposed approach requires floating point and mem-
ory activities of an application at the GPU’s default frequency,
along with the set of supported frequency configurations, in
order to estimate power and performance at each frequency.
We acquired these features using the NVIDIA DCGM interface
for the GV100 GPU. Since the DCGM interface is supported
by NVIDIA GA100, these features are inherently portable to
NVIDIA GA100. However, for the AMD MI210 GPU, which
supports different metrics and interfaces, it posed a challenge
to identify equivalent features and related interfaces for data
acquisition. After exploring various interfaces and metrics, we
confirmed that the AMD rocprof interface provides the nec-
essary low-level architectural features that are equivalent to the
features used in our approach. Table 7 illustrates the mapping
between the NVIDIA DCGM and AMD rocprof interfaces for
the features employed in our approach. We utilized the AMD
rocm-smi interface to obtain a list of supported frequency con-
figurations and power consumption data. The same interface
was also used to modify the GPU core frequency. For measur-
ing the execution time, we used wall-clock time.

Table 7: Feature mapping between NVIDIA DCGM and AMD rocprof.

NVIDIA DCGM

FP_ACTIVE (sum of FP64_ACTIVE, FP32_ACTIVE,
FP16_ACTIVE, and TENSOR-ACTIVE)

DRAM_ACTIVE

AMD rocprof
sum of VALUBusy and SALUBusy

MemUnitBusy

Table 8: Accuracy of power and performance models.

GPU Power Model
95.2%

94.4%

80.8%

96%

97.9%

80.8%

96.1%

94.5%

86.5%

Performance Model
96.9%

85.5%

95.9%

98.2%

91.4%

96.4%

97.2%

93.9%

99%

Application
NAMD
LAMMPS
LSTM
NAMD

NVIDIA GV100

NVIDIA GA100

AMD MI210

6.2. Estimation of Power and Performance

In this section, we not only evaluate the portability of the
models to real applications but also evaluate the portability to
unseen GPU architectures. Real applications, like SPEC AC-
CEL, are unseen by the power and performance models. The
model features for the MI210 were calculated using the feature
mapping shown in Table 7. For the real applications, the power
and execution time are estimated similarly to that for SPEC AC-
CEL presented in Section 5.

Figure 10 provides a comparison of power consumption es-
timated by the proposed power model and measured power us-
age for NAMD, LAMMPS, and LSTM on NVIDIA GV100,
GA100, and AMD Instinct MI210. The accuracy of the power
models for NAMD, LAMMPS, and LSTM on these GPUs
are shown in Table 8. On average, power usage estimation
for HPC applications was achieved with accuracy > 95% on
both GPU architectures. As we observed in SPEC ACCEL

13

benchmarks, LSTM overestimated power consumption due to
its lower floating-point and memory activities.

Figure 11 compares execution time estimated by the pro-
posed performance model and measured execution time for
NAMD, LAMMPS, and LSTM on NVIDIA GV100, GA100,
and AMD Instinct MI210. The accuracy of the performance
models on these GPUs is shown in Table 8. These applica-
tions showed > 91% accuracy except LAMMPS, which showed
comparatively low accuracy due to overestimation. We selected
the OpenCL-based SPEC ACCEL benchmark suite, which is
a standard application suite for measuring GPU performance.
Compared to OpenCL, CUDA benchmarks are more optimized
for NVIDIA GPUs; however, our selected features (floating-
point activity, memory activity, and frequency) are agnostic of
OpenCL, CUDA, or HIP. In addition to SPEC ACCEL, our
approach predicted power and performance with accuracy be-
tween 80% and 99% for CUDA and HIP-based real HPC appli-
cations (i.e., LAMMPS, NAMD).

Summary: These results confirm that the inter-architecture
and inter-vendor accuracy difference is negligible. The overall
accuracy also confirms the feasibility of the selected features in
estimating power and time on a new GPU architecture (same
vendor) and a GPU architecture from another vendor.

6.3. Optimal Frequency Selection
6.3.1. Optimal Frequency for NVIDIA GPUs

The optimal frequencies selected for real applications were in
alignment with the optimal frequencies selected for the SPEC
ACCEL benchmark applications. Figure 12 shows DVFES pro-
files selected with measured(M)-EDP, estimated(E)-EDP, M-
ED?P, and E-ED?P for NAMD, LAMMPS, and LSTM, along
with the power and execution time for each supported DVFS
configuration. Table 9 provides a list of estimated and measured
optimal frequencies for these applications. For each applica-
tion, as expected, estimated optimal frequencies using ED*P
were always higher than the optimal frequencies using EDP.
The selection of higher frequencies leads to lower performance
degradation. Also, all selected optimal frequencies for real ap-
plications were always less than the GPU maximum frequency.
Due to a slight overestimation of power usage, the estimated
optimal frequencies for LAMMPS and NAMD were slightly
less than or close to their measured optimal frequencies. As a
consequence of the overestimation of the execution time, the
estimated optimal frequencies for LSTM were observed to be
higher than its measured optimal frequencies. This observation
was consistent with SPEC ACCEL benchmarks.

Concerning the inter-architectural portability of the selected
optimal frequency, the difference between the optimal frequen-
cies selected via ED?P for an application on GV 100 and GA100
is minimal (< 1%). For example, E-ED?P selected the same op-
timal frequency (i.e., 1095 MHz) for NAMD on both GV100 and
GAI100. It validates the portability of the selection of the opti-
mal frequency technique across difterent GPU architectures. It
is pertinent to mention that the optimal frequency is kernel or
algorithm-specific. Therefore, an application involving multi-
ple kernels may lead to the selection of different optimal fre-
quencies throughout the application’s execution lifecycle.

E x%xXx Measured ++4 Estimated x%Xx Measured ++4+ Estimated xXx Measured ++4 Estimated
% 6.5 U T T T T T 1 6.5 U 1 1 1 1 1 1 6.5 U 1 1 1 1 1 1
E 50 5.0 5.0

i 3.5 35 3.5 EEEE BRI RIS BRI

§ 20l 1 1 1 1 1 1 20l 1 1 1 1 1 1 20L 1 1 1 1 1 1
2 ""510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
& GV100-NAMD-GPU Frequency (MHz) GV100-LAMMPS-GPU Frequency (MHz) GV100-LSTM-GPU Frequency (MHz)

E x%Xx Measured ++4 Estimated x%Xx Measured ++4 Estimated xXx Measured ++4 Estimated
% 6.5 U T T T T T L 6.5 U 1 1 1 1 1 (e 6.5 U 1 1 1 1 1 1
£ so 5 5.0 Brecceteecaeeeceesecects geereeseter

i 35 3.5 B

§ 20l 1 1 1 1 1 20l 1 1 1 1 1 1 20L 1 1 1 1 1 1
2 7510 660 810 960 1110 1260 1410 510 660 810 960 1110 1260 1410 510 660 810 960 1110 1260 1410
& GA100-NAMD-GPU Frequency (MHz) GA100-LAMMPS-GPU Frequency (MHz) GA100-LSTM-GPU Frequency (MHz)

g =3 Measured X2 Estimated [*®3 Measured KA Estimated [¥3 Measured KA Estimated
= 6F 4 6F T 4 6F T T T =
e 5L] sk a6 a3] s | 3o a1 4.8 a1 a8 |
221 4 2} 4 2F[eco coo 000 i
» 1+ - 1fpe - 1}lpooo coo o0 -
g0 ollacodl oLllocodl 20 all 2ooll

H 500 500 800 1700

& MI210-NAMD-Configured Frequency (MHz) MI210-LAMMPS-Configured Frequency (MHz) MI210-LSTM-Configured Frequency (MHz)

Figure 10: Comparison of power estimated by the proposed power model and measured power for applications on NVIDIA GV100, GA100, and AMD MI210.

-'g: x%xx Measured Estimated xxx Measured Estimated x%x Measured Estimated
N 4.2 T T T T T 4.6 ~ T 1 1 1 1 1 1 4
T 40k 4 Ry 6 L
£ S 42 7 - - -
E 38 - a0 R m
S 36 — ' N > N
2 - 38 R - -
< 34 S - e 2 A o
0 3> 1 1 W s | 3;3 | ! ! 1 B e ST |) okt i i 1
.E 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380 510 655 800 945 1090 1235 1380
GV100-NAMD-GPU Frequency (MHz) GV100-LAMMPS-GPU Frequency (MHz) GV100-LSTM-GPU Frequency (MHz)

) x%x Measured Estimated xxXx Measured Estimated x%x Measured Estimated
& 38 T T T T T 4.2 T T T T T T T T T T
5 36L 1 4F LY T

3.4 g - 8 .
§ 32 b % R 4 sof i
2 gg - T = gg L by 3.5 R o
o 26 1 1 1 Py 38 ll 1 1 1 1 1 2.0 1 1 1 1 1
.E 510 660 810 960 1110 1260 1410 510 660 810 960 1110 1260 1410 510 660 810 960 1110 1260 1410

GA100-NAMD-GPU Frequency (MHz) GA100-LAMMPS-GPU Frequency (MHz) GA100-LSTM-GPU Frequency (MHz)
-'g: =3 Measured Estimated [Z®3 Measured Estimated [F¥3 Measured Estimated
26 T T 6F T T T m [T3 -
© 5 4.4 . 5 . 5 .
£ 2 4 2k 33 5, 4 2 -
o 3 ooo © 0 o - 3 2.3 2.4 2.3 24 - 3 -1
22 LX) looo - 2000 - 2 -
=1 000 0 o a1 1_Fno oeo] an 1 1 .
['3) I ooo oLlleaod 20l cooll olCleood
.E 800 1700 500 800 1700 500
MI210-NAMD-Configured Frequency (MHz) MI210-LAMMPS-Configured Frequency (MHz) MI210-LSTM-Configured Frequency (MHz)

Figure 11: Comparison of time estimated by our performance model and measured time for applications on NVIDIA GV 100, NVIDIA GA100, and AMD MI210.

250

350 100 T T T T
x
% % M-EDP
s0f % %
- x
200 5 ol
s 201 % i
S 150 2001 60 1
=
] b 6
g 100 4 180F i b w0l]
(72
o 100 - eece 1
50 - 4 o0 20 - 4
0| i
L L 0 L L 0 \ .
00 2000 3000 4000 5000 60.00 1000 3000 5000 7000 90.00 110.00 2400 2600 2800 30.00 3200 34.00
(NAMD) Time (S) (LAMMPS) Time (S) (LSTM) Time (S)

Figure 12: The optimal DVFS profiles selected with measured(M)-EDP, estimated(E)-EDP, measured(M)-ED?P and estimated(E)-ED?P for NAMD, LAMMPS,
and LSTM shown along with the power and execution time for each supported DVFS configurations on GV100 and GA100.

14

Table 9: The measured EDP, estimated EDP, measured ED?P, and estimated
ED?P optimal frequencies for real applications.

GPU Application | M-EDP | E-EDP | M-ED’P | E-ED?P
GV100 NAMD 1072 1012 | 1095 1095
(Optimal LAMMPS | 1072 1050 | 1125 1140
Frequency (MHz)) | LSTM 652 975 652 1057
GA100 NAMD 1155 1020 | 1215 1095
(Optimal LAMMPS | 1110 1065 | 1215 1155
Frequency (MHz)) | LSTM 310 975 310 1065

Table 10: Average energy saving and change in execution time for real applica-
tions using measured and estimated optimal frequencies achieved via EDP and
ED?P approaches on NVIDIA GV100 and GA100.

GPU | Approach | Energy Saving | Performance
M-ED’P | 127.4% 1 -0.6%
E-ED’P 1 29.6% 1 -52%

GAIO0 T EDP [131.7% 1 =3.4%
E-EDP 730.2% 1 —8.8%
M-ED?P 125% 1 —-4.9%
E-ED’P 1 22.6% 1 -4.7%

GV100 rEDP [7127.1% 1-6.6%
E-EDP T 24.6% 1 -9.8%

6.3.2. Optimal Frequency for AMD MI1210

The AMD MI210 GPU offers three frequency configurations:
Minimum (500 MHz), Auto (800 MHz), and Maximum (1700
MHz). The Minimum and Maximum frequency configurations
are allowed to be set in manual performance mode, while the
Auto configuration is applied in auto performance mode. In
the Auto mode, the frequency starts at 800 MHz as a baseline
and dynamically increases based on the workload’s computa-
tional intensity and GPU’s TDP limit.

During our evaluation of real applications on the MI210, we
observed that the Minimum configuration resulted in reduced
power consumption (see Fig. 10 for MI210 power evaluation).
However; it also led to significant performance degradation
(see Fig. 11 for MI210 performance evaluation). On the other
hand, both Auto and Maximum frequencies exhibited similar
power and performance behaviors. This behavior was con-
sistent across memory- and compute-intensive benchmarks as
well. Consequently, the frequency configurations available for
the MI210 GPU are not suitable for balancing power and per-
formance trade-offs effectively.

Furthermore, we noted a distinction between AMD and
NVIDIA GPUs in terms of frequency and voltage configura-
tions. While AMD GPUs offer three frequency options and al-
low users to adjust multiple voltage configurations, NVIDIA
GPUs only allow frequency adjustments and manage voltage
internally without user configurability. Based on this observa-
tion, we hypothesize that a combination of frequency and volt-
age configurations specific to a workload could potentially yield
improved energy-performance trade-offs for AMD GPUs. In
future research, we plan to investigate and study the selection
of optimal voltage and frequency configurations for maximiz-
ing performance while minimizing energy consumption.

15

6.4. Energy and Performance Evaluation

In this section, we evaluate the energy savings and change
in execution time in regard to real applications across GV100
and GA100 architectures. Figure 13 shows energy savings and
change in execution time for NAMD, LAMMPS, and LSTM
applications achieved with (a) measured and estimated opti-
mal frequencies achieved using EDP and ED?P approaches on
GV100 and (b) measured and estimated optimal frequencies
achieved using EDP and ED?P approaches on GA100. Over-
all, the real applications’ energy saving and change in execu-
tion time are listed in Table 10. In contrast to SPEC ACCEL
benchmarks, NAMD and LAMMPS applications showed per-
formance degradation even with the measured optimal frequen-
cies. For NAMD, the measured and estimated optimal frequen-
cies selected via ED?P approach showed exactly the same en-
ergy saving (i.e., 25%) and performance loss (i.e., 10%) on
GV100. For LAMMPS, the measured and estimated optimal
frequencies selected via ED*P approach showed slightly vari-
able energy savings (i.e., 23% and 21%) at the same perfor-
mance loss (i.e., 9%) on GV100. On the other hand, LSTM
saved 28% and 26% of energy on GA100 and GV 100, respec-
tively, with no performance loss. It indicates that an application
with higher computational activities (e.g., NAMD, LAMMPS)
is likely to save energy at the cost of some performance loss
compared to an application with lower computational activity
(e.g., LSTM). In other words, applications with higher compu-
tational activity are less likely to have sweet spots of DVFS con-
figurations, reducing energy without any performance penalty.
More adaptive approaches could take ED?P execution time as a
baseline and scale the execution time to the desired level. These
performance-centric approaches would ensure minimal perfor-
mance degradation while saving energy.

Another important observation is that the proposed approach
is able to determine optimal frequency even when there was
lower accuracy in estimating power or execution time. For ex-
ample, LSTM with comparatively lower accuracy (i.e., 80.8%)
in the estimation of power consumption on both GPU architec-
tures showed significant energy savings with no performance
loss. Based on the energy savings and performance degradation
for SPEC ACCEL benchmarks and real applications, ED?P is
shown to be a better choice as it offers better power and ex-
ecution time trade-offs. These energy savings for real-world
applications across GPU architectures further confirm the ef-
fectiveness of our approach.

7. Comparison to State of The Art

7.1. Overview

We compared our approach with Guerreiro et al. [7], which
is a state-of-the-art research and method. Guerreiro et al. pro-
posed GPU predictive models, which were trained using a
dataset created by sequencing the GPU assembly (i.e., PTX)
instructions of the workloads. These models intend to predict
changes in execution time, power, and energy consumption and
select the minimum-energy frequency configuration.

F"¥] Energy (E-EDP) [GV100]
Time (E-EDP) [GV100]

EEH Energy (M-EDP) [GV100]
721 Time (M-EDP) [GV100]

[~ Energy (E-ED?P) [GV100]
E= Time (E-ED?P) [GV100]

Energy (M-ED?P) [GV100]
=1 Time (M-ED?P) [GV100]

25 25

§ 20 N g

: 10 - % E

2 oL ;_]
: =

S -10 | S— B
12 -1 -10

20 - -18 b

—or 1 1 1]

NAMD LAMMPS LSTM

(a) Energy savings and change in execution time achieved with measured and estimated optimal frequencies achieved using EDP and ED?P for applications on GV100.

[°~3 Energy (E-EDP) [GA100]
Time (E-EDP) [GA100]

E Energy (M-EDP) [GA100]
771 Time (M-EDP) [GA100]

[~ Energy (E-ED?P) [GA100]
E= Time (E-ED?P) [GA100]

Energy (M-ED?P) [GA100]
"1 Time (M-ED?P) [GA100]

Change (%)

-1

1
NAMD

LAMMPS

1
LSTM

(b) Energy savings and change in execution time achieved with measured and estimated optimal frequencies obtained with EDP and ED?P for applications on GA100.

Figure 13: Energy savings and change in execution time achieved with (a) measured and estimated optimal frequencies achieved using EDP and ED?P approaches on
GV100 and (b) measured and estimated optimal frequencies achieved using EDP and ED?P approaches on GA100 for NAMD, LAMMPS, and LSTM applications.

Among the real workloads used in our evaluations (6.2),
only executables of LAMMPS and NAMD support CUDA PTX
code. We used the cuobjdump tool to acquire the PTX code
of LAMMPS and NAMD using the same CUDA executables
which were used in collecting the utilization metrics. These
executables were built on NVIDIA GA100 GPU. Finally, the
gpuPTXParser [7] tool was used to parse the PTX code and to
generate the dataset for LAMMPS and NAMD.

We used the gpuPTXModel [7] tool to train power, time,
and energy models using 126 benchmarks for training and 14
benchmarks on GTX Titan X. We used LAMMPS and NAMD
for testing using their statistical PTX dataset and performance
counters on GA100, including one memory and 61 core fre-
quency configurations along with power, energy, and time
across these frequency configurations. The PTX dataset was
used for predicting the power, energy, and time of real applica-
tions on GA100 using the models trained on GTX Titan X.

7.2. Model Comparison

‘We compared the efficacy of the models proposed in [7] and
models proposed in this study. In particular, we compared the
prediction accuracy, quality of optimal frequency, and modeling
complexity and cost.

The models trained with 126 benchmarks on the GTX Titan
X GPU showed errors of 18.9%, 16.7%, and 16.5% for pre-
dicting power, performance, and energy, respectively, for the

16

14 validation benchmarks on the same GPU. We predicted the
execution time, power, and energy of real applications on the
GA100 using the same models trained on the GTX Titan X. The
error rates are shown in Table 11. Our power and performance
models showed on average ~6X improvements compared to the
state-of-the-art model in [7]. This prediction accuracy is crucial
for enabling real savings. For example, a 5% decrease in power
consumption at the scale of the Summit supercomputer could
generate savings of ~1 million dollars [7].

7.3. Optimal Frequency Comparison

Guerreiro et al. [7] and our approach use different methods in
determining the optimal frequency for a given workload. Guer-
reiro et al. manually configured a lower-bound optimal fre-
quency (e.g., 80% of the supported maximum frequency). In
their study, the maximum frequency is implicitly considered
as an upper-bound optimal frequency. A Pareto-optimal is de-
fined using the energy consumption of the frequencies within
the lower- and upper-bounds. Their study considers a frequency
configuration with the lowest power consumption as an opti-
mal frequency. However, we observed the following caveats in
their selection of optimal frequency. First, manually picking
a (lower-bound) frequency for all workloads may potentially
obstruct the selection of an energy-efficient optimal frequency,
especially for memory-bound workloads. Second, our observa-

tions indicate that a frequency showing the lowest energy is not
necessarily a performant frequency (see Fig. 1 - b, c, f, g).

In our study, as explained in Section 4.6, we addressed these
concerns as follows. First, our method does not require man-
ual lower-bound optimal frequency. It rather searches the en-
tire DVES design space for the optimal frequency. Second,
we do not select an optimal frequency, merely exhibiting the
lowest energy. Instead, our algorithm selects the optimal fre-
quency that shows minimum energy with little to no perfor-
mance degradation.

Table 11: Comparison of our models with the state of the art.

LAMMPS
Guerreiro et al. [7]
21.8%
24.4%

NAMD
Guerreiro et al. [7]
17.6%
34.4%

App

Model
Power
Time

Our Work
2.1%
8.6%

Our Work
4%
1.8%

8. Other Related Work and Comparison

Existing analytical models depend on acquiring some fea-
tures (e.g., voltage) that involve complex and costly procedures.
Moreover, these features do not necessarily influence power and
performance effectively across different computational intensi-
ties; therefore, the applicability and accuracy of these models
are often limited [41, 42, 43, 44, 45, 46].

Static code-based models analyze GPU assembly instruc-
tions and try to establish their relationship with performance,
power, and energy [7, 15]. Braun et al. [13] characterized PTX
code and attempted to predict execution time and power; how-
ever, their study does not explore DVFES configurations.

DVFS is the preferred control for scaling power and perfor-
mance. Several state-of-the-art studies target only performance
or power consumption across different DVFS configurations.
Wang et al. [12] proposed a DVFS-based model. However, its
scope is limited to the application’s performance. Nabavinejad
et al. [47] implemented batchDVFS approach, which lever-
aged the batch size of the DNN inference and DVFS technique
to control the power and performance. Nevertheless, the scope
of this work is limited to DNN workloads. Guerreiro et al. [48]
proposed DVFS-based power and performance models; how-
ever, they do not offer an optimal DVFS configuration. Simi-
larly, Dutta et al. [11] provided a DVFS-based ensemble ma-
chine learning framework that only predicts power usage for a
target GPU frequency. Wu et al. [8] attempted to define clusters
of kernels exhibiting similar power and performance patterns
across GPU’s DVES design space. Then, it used machine learn-
ing techniques to map a new kernel to one of the clusters. As
the models are based on coarse-grained performance counters;
thus, prediction accuracy is limited. Such models will result
in the selection of a sub-optimal GPU profile. In contrast, our
work proposes a fine-grain and comprehensive approach to pre-
dict power, execution time, and energy with better accuracy and
to select a performance-aware optimal frequency.

Numerous studies attempt to develop machine learning-
based models to predict the application’s power and execution
time. However, the portability of the ML-based model is a con-
cern. For example, a real HPC application’s execution time is

17

unbounded and can vary based on input sizes. Therefore, an
ML-based model trained with a particular input size cannot ef-
fectively predict the application’s execution time with different
input sizes or an unseen application. Multi-objective solutions
mainly involve two approaches. First, the Pareto-optimal uses
a set of solutions that any member of the solution set does not
dominate. Second, optimal decision-making techniques narrow
down to a single solution from the available set. EDP [6], ED?P,
and MCDM [49, 50, 51] are the prominent decision-making
techniques. Guerreiro et al. [7], and Fan et al. [15] use PTX-
based assembly code to extract features related to GPU perfor-
mance, power, and energy across DVES configurations using
ML-based models. These studies leverage the Pareto-optimal
mechanism to find the optimal set of DVFS configurations.
While PTX-based code modeling is promising as it does not re-
quire prior application execution, it is challenging to determine
utilization, especially for memory access patterns.

Summary: This research differentiates itself from the previ-
ous studies on several aspects as highlighted in Table 12. First,
as the low-level application’s utilization metrics and architec-
ture’s scaling features are used in developing the analytical
models, no static source code analysis and ML-based model-
ing are required. Second, the multi-objective algorithm can use
EDP, ED?P, or potentially other functions to determine the op-
timal frequency. We have observed that changing the objective
function has no impact on the underlying analytical models. On
average, these frequencies save one-fifth of the energy with lit-
tle to no performance loss. Third, it is one of the first studies
that evaluate the portability and feasibility of optimal frequency
selection with the state-of-the-art NVIDIA GA100 GPU. On
GA 100, our models showed accuracy up to 98% and saved one-
fourth of the energy consumption of real applications. Finally,
unlike the majority of the prior works, we use two HPC appli-
cations and one real ML application in our evaluation to further
demonstrate our proposed approach’s effectiveness.

Table 12: Comparison of this study against the state-of-the-art

Study Analytical | Static | ML | Real Apps | Cross-GPU | Multi-Objective
Guerreiro et al. [7] X v v X v X
Fan et al. [15] X v v X X X
Wu et al. [8] X X v X X X
Our Work v X X v v v

9. Use in HPC Production Environment

The proposed techniques can be integrated into the HPC
production environment via two methods. The first is the of-
fline method that involves executing the desired application
at the maximum frequency to acquire the utilization metrics
(i.e., floating-point and memory activities) to estimate the ap-
plication’s power and execution time across the DVFS config-
urations supported on the target GPU. Afterward, the optimal
DVES configuration is determined and stored in a database.
When the same application is scheduled for execution, the
workload manager (e.g., Slurm) fetches the application’s op-
timal configuration (as a part of the Slurm Prolog mechanism)

and interjects the optimal frequency into the job script. The op-
timal frequency is applied to the target GPU at the application’s
execution time. This method requires the user to submit the job
using an identifiable job name. Furthermore, the DVFS con-
figuration cannot be readjusted during the execution lifecycle
of the application. This method is useful for applications with
uniform computational activity. We have a template that auto-
mates selecting the optimal frequency for a given application
with minimal user input.

The second method is the online method which does not re-
quire any prior execution or identity of the application. The
application’s utilization metrics are collected periodically dur-
ing its execution. When the application’s utilization metrics
change, power and execution time are estimated across the
GPU’s DVFS configurations, and the new optimal DVFS con-
figuration is determined accordingly. The optimal configuration
is enforced directly using GPU’s native interface (e.g., dcgmi,
nvidia-smi). This method is suitable for applications compris-
ing multiple kernels (or phases).

10. Conclusions and Future Work

Power consumption presents an increasingly critical chal-
lenge in current and emerging GPU-enabled HPC systems and
is the dominant constraint for exascale systems and beyond. Ar-
guably, it is imperative to develop effective GPU power man-
agement approaches to lower power while maintaining mini-
mal impact on execution time. The DVES is a reliable con-
trol for regulating power and execution time; however, the
DVES design space for GPU is large; therefore, brute-force ap-
proaches are infeasible in selecting the optimal power and ex-
ecution time. The problem is further compounded by the fact
that it is impractical to actually measure power and execution
time across all DVFS configurations in the GPU’s DVFS de-
sign space. Furthermore, the selection of a DVFS configuration
(among the DVFS design space) that is optimal in terms of both
energy and performance is non-trivial. To address these chal-
lenges in a more systematic manner, we came up with an ap-
proach that involves three key steps: (1) identification of GPU
utilization metrics that influence both the power and execution
time of a given workload; (2) development of analytical mod-
els to estimate power and execution time across GPU’s DVES
design; and (3) selection of optimal frequency using multi-
objective optimal functions. To evaluate the efficacy of the pro-
posed approach, we acquired metrics using the state-of-the-art
NVIDIA DCGM interface for 24 workloads including two HPC
applications, one real ML application, 19 benchmark applica-
tions from SPEC ACCEL, and two micro-benchmarks.

Through feature characterization, we have identified key fea-
tures that directly cause power consumption and change in the
execution time of applications with different computational in-
tensities. We empirically developed reliable and scalable mod-
els using the identified feature set. The multi-objective ap-
proach took optimal performance and optimal energy into con-
sideration simultaneously and selected an energy-efficient op-
timal DVFS configuration. The accuracy of analytics-based
power and performance models for estimating SPEC ACCEL

18

benchmark applications were up to 99% and 98% for the esti-
mation of power and execution time, respectively. On average,
the energy savings for SPEC ACCEL benchmark applications
were over 25%, with no performance degradation on GV100.
Similarly, the real applications showed over 22.6% energy sav-
ings with a performance degradation of 4.7% on GV100.

We validated the portability of the selected feature set, ana-
lytical models, and multi-objective approaches on the state-of-
the-art HPC-grade NVIDIA GA100 and AMD MI210 GPUs
using real applications. The power and performance models
developed on GV100 can be used on GA100 with accuracy up
to 97.9%. The same models estimated power and performance
on MI210 GPU with accuracy up to 96.1% and 99%, respec-
tively. The evaluation showed 29.6% energy savings with a per-
formance loss of 5.2%. Additionally, we conducted a compari-
son between our models and PTX-based static models. The re-
sults revealed a significant reduction in the average error rates,
with a decrease from 19.7% to 3.1% for power models and from
29.4% to 5.2% for performance models.

The curated feature set, power and performance estimation
models, and systematic determination of the optimal DVFES pro-
file using the multi-objective approach are together a novel at-
tempt toward building an energy-efficient HPC system. In the
future, we would like to extend our work to create a solution
that encompasses both CPU and GPU to optimize the power
draw of the entire node.

Acknowledgment

The National Energy Research Scientific Computing Cen-
ter (NERSC) is a U.S. Department of Energy Office of Sci-
ence User Facility operated under Contract No. DEACO02-
05CH11231. Results presented in this paper were obtained
using the Chameleon testbed supported by the National Sci-
ence Foundation. This research is supported in part by the Na-
tional Science Foundation under grants CNS-1817094, OAC-
1835892, and CNS-1939140 (A U.S. National Science Founda-
tion Industry-University Cooperative Research Center on Cloud
and Autonomic Computing). The authors thank Mathew Col-
grove (NVIDIA) and Max Katz (NVIDIA) for their assistance
in SPEC ACCEL and GPU metrics, Thomas Brown (TTU)
for reviewing, and Victor Sheng (TTU) and Abdul Serwadda
(TTU) for their comments on modeling.

References
[1] NVIDIA A100 GPU datasheet, https://www.nvidia.com/content/
dam/en-zz/Solutions/Data-Center/al100/pdf/nvidia-a100-
datasheet-nvidia-us-2188504-web.pdf, accessed: 2022-04-08.
Y. Jiao, et al., Power and performance characterization of computational
kernels on the GPU, in: 2010 IEEE/ACM Int’l Conference on Green
Computing and Communications & Int’l Conference on Cyber, Physical
and Social Computing, IEEE, 2010, pp. 221-228.
K. Bergman, et al., Exascale computing study: Technology challenges
in achieving exascale systems, Defense Advanced Research Projects
Agency Information Processing Techniques Office (DARPA IPTO), Tech.
Rep 15.
Top500, Top500, June 2022 Ranking, https://www.top500.org/
lists/top500/2022/06/ (2022).

[2]

[3]

[4

[5]
(6l
(7]

[8

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Shafique, S. Garg, Computing in the dark silicon era: Current trends
and research challenges, IEEE Design & Test 34 (2) (2016) 8-23.

J. H. Laros III, et al., Energy delay product, in: Energy-Efficient High
Performance Computing, Springer, 2013, pp. 51-55.

J. Guerreiro, et al., GPU static modeling using PTX and deep structured
learning, IEEE Access 7 (2019) 159150-159161.

G. Wu, et al., GPGPU performance and power estimation using machine
learning, in: 21st International Symposium on High Performance Com-
puter Architecture, IEEE, 2015, pp. 564-576.

R. A. Bridges, et al., Understanding GPU power: A survey of profiling,
modeling, and simulation methods, ACM Computing Surveys (CSUR)
49 (3) (2016) 1-27.

X. Mei, et al., A survey and measurement study of GPU DVFS on energy
conservation, Digital Communications and Networks 3 (2) (2017) 89—
100.

B. Dutta, et al., GPU power prediction via ensemble machine learning for
DVFS space exploration, in: Proceedings of the 15th ACM International
Conference on Computing Frontiers, 2018, pp. 240-243.

Q. Wang, X. Chu, GPGPU performance estimation with core and memory
frequency scaling, IEEE Transactions on Parallel and Distributed Systems
31 (12) (2020) 2865-2881.

L. Braun, et al., A simple model for portable and fast prediction of exe-
cution time and power consumption of GPU kernels, ACM Transactions
on Architecture and Code Optimization (TACO) 18 (1) (2020) 1-25.

A. Majumdar, et al., A taxonomy of gpgpu performance scaling, in: 2015
IEEE International Symposium on Workload Characterization, 2015, pp.
118-119. doi:10.1109/IISWC.2015.22.

K. Fan, et al., Predictable GPUs frequency scaling for energy and perfor-
mance, in: Proceedings of the 48th International Conference on Parallel
Processing, 2019, pp. 1-10.

G. Ali, S. Bhalachandra, N. Wright, M. Side, Y. Chen, Optimal GPU
Frequency Selection using Multi-Objective Approaches for HPC Sys-
tems, in: 2022 IEEE High Performance Extreme Computing Conference
(HPEC), IEEE, 2022.

J. Park, J. A. Abraham, A fast, accurate and simple critical path monitor
for improving energy-delay product in dvs systems, in: IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design, IEEE, 2011,
pp- 391-396.

R. Gonzalez, M. Horowitz, Energy dissipation in general purpose micro-
processors, IEEE Journal of solid-state circuits 31 (9) (1996) 1277-1284.
V. Mishra, S. Akashe, Calculation of power delay product and energy de-
lay product in 4-bit finfet based priority encoder, in: Advances in Optical
Science and Engineering, Springer, 2015, pp. 283-289.

G. Ali, M. Side, Power Analysis and Prediction Model for
GPU Architectures in HPC Systems, https://github.com/nsfcac/
gpupowermodel (2020).

NVIDIA Corporation, Cuda samples (2013).

URL https://docs.nvidia.com/cuda/cuda-samples/index.
html\#matrix-multiplication--cublas-

T. Deakin, et al., Gpu-stream v2. 0: Benchmarking the achievable mem-
ory bandwidth of many-core processors across diverse parallel program-
ming models, in: International Conference on High Performance Com-
puting, Springer, 2016, pp. 489-507.

NVIDIA Corporation, NGC NAMD Container, https://ngc.nvidia.
com/catalog/containers/hpc:namd (2020).

J. C. Phillips, et al., Scalable molecular dynamics on CPU and GPU ar-
chitectures with NAMD, The Journal of Chemical Physics 153 (4) (2020)
044130.

NVIDIA Corporation, NGC LAMMPS Container, https://ngc.
nvidia.com/catalog/containers/hpc:lammps (2021).

A. P. Thompson, et al., LAMMPS - a flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales,
Computer Physics Communications (2021) 108171.

TensorFlow, Long Short-Term Memory layer - Hochreiter 1997,
https://wuw.tensorflow.org/api_docs/python/tf/keras/
layers/LSTM (2021).

M. Abadi, et al., TensorFlow: Large-scale machine learning on heteroge-
neous systems, software available from tensorflow.org (2015).

URL https://www.tensorflow.org/

A. L. Maas, et al., Learning word vectors for sentiment analysis, in: Pro-

19

[30]

[31]

[32]
[33]
[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

ceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, Association for Com-
putational Linguistics, Portland, Oregon, USA, 2011, pp. 142-150.

URL http://wuw.aclweb.org/anthology/P11-1015

G. Juckeland, et al., Spec accel: A standard application suite for mea-
suring hardware accelerator performance, in: International Workshop on
Performance Modeling, Benchmarking and Simulation of High Perfor-
mance Computer Systems, Springer, 2014, pp. 46—-67.

K. Keahey, et al., Lessons learned from the chameleon testbed, in: Pro-
ceedings of the 2020 USENIX Conference on Usenix Annual Technical
Conference, USENIX Association, USA, 2020, pp. 219—233.

HPCC, High Performance Computing Center (2020).

URL http:www.depts.ttu.edu/hpcc/

NVIDIA Corporation, NVIDIA DCGM (Jul 2021).

URL https://developer.nvidia.com/dcgm

F. Pedregosa, et al., Scikit-learn: Machine learning in Python, Journal of
Machine Learning Research 12 (2011) 2825-2830.

B. C. Ross, Mutual information between discrete and continuous data
sets, PloS one 9 (2) (2014) e87357.

A. Kraskov, et al., Estimating mutual information, Physical review E
69 (6) (2004) 066138.

G. Ali, et al., Evaluation of power controls and counters on general-
purpose Graphics Processing Units (GPUs), in: SC Research Poster,
2020.

G. Gupta, What is a double-precision tensor core? (May 2020).

URL https://blogs.nvidia.com/blog/2020/05/14/double-
precision-tensor-cores/

S. Ramesh, et al., Understanding the impact of dynamic power capping on
application progress, in: 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2019, pp. 793-804.

N. Kashyap, HPC Benchmarks and Applications Performance Study on
Broadwell-EP 4S Processor (2016).

URL https://downloads.dell.com/manuals/all-products/
esuprt_software/esuprt_it_ops_datcentr_mgmt/high-
computing-solution-resources_white-papers59_en-
us.pdf

J. Guerreiro, et al., GPGPU power modeling for multi-domain voltage-
frequency scaling, in: 2018 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), IEEE, 2018, pp. 789-800.

V. Adhinarayanan, et al., Online power estimation of graphics process-
ing units, in: 2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), IEEE, 2016, pp. 245-254.

J. Lim, et al., Power modeling for gpu architectures using mcpat, ACM
Transactions on Design Automation of Electronic Systems (TODAES)
19 (3) (2014) 1-24.

S. Ghosh, et al., Statistical modeling of power/energy of scientific kernels
on a multi-GPU system, in: 2013 International Green Computing Confer-
ence Proceedings, IEEE, 2013, pp. 1-6.

J. Chen, et al., Statistical GPU power analysis using tree-based meth-
ods, in: 2011 International Green Computing Conference and Workshops,
IEEE, 2011, pp. 1-6.

X. Ma, et al., Statistical power consumption analysis and modeling for
GPU-based computing, in: Proceeding of ACM SOSP Workshop on
Power Aware Computing and Systems (HotPower), Vol. 1, 2009.

S. M. Nabavinejad, et al., Coordinated Batching and DVES for DNN In-
ference on GPU Accelerators, IEEE Transactions on Parallel and Dis-
tributed Systems 33 (10) (2022) 2496-2508.

J. Guerreiro, et al., DVFS-aware application classification to improve
GPGPUs energy efficiency, Parallel Computing 83 (2019) 93-117.
doi:https://doi.org/10.1016/j.parco.2018.02.001.

F. Xiao, A multiple-criteria decision-making method based on d numbers
and belief entropy, International Journal of Fuzzy Systems 21 (4) (2019)
1144-1153.

G.-H. Tzeng, K.-Y. Shen, New concepts and trends of hybrid multiple
criteria decision making, CRC Press, 2017.

T. Florindo, et al., Application of the multiple criteria decision-making
(mcdm) approach in the identification of carbon footprint reduction ac-
tions in the brazilian beef production chain, Journal of Cleaner Production
196 (2018) 1379-1389.

Highlights

Performance-aware optimal frequency selection for GPUs using multi-objective
approaches

Modeling power consumption and performance behaviors across GPU’s DVFS design
space

Accuracy of power and performance models up to 97.9% and 98.2%, respectively
Optimal frequency saved energy by one-fifth for applications on NVIDIA GA100 and
GV100

Correlation between resource utilization, and power consumption and performance

Ghazanfar is a PhD scholar at the Department of Computer Science, Texas Tech University,
Lubbock, Texas, USA. His overall research goals are to develop new methodologies to make
HPC systems more performant, power- and energy-efficient, automated, predictable, and
responsive to evolving computing needs. Prior to his PhD studies, Ghazanfar has been
representing ZTE Corporation at various standards development organizations (SDOs) and has
been an active researcher, contributor and editor in the development of Information and
Communications Technologies (ICT) related specifications (e.g., cloud computing platform,
service delivery platforms and communication service enablers) at International
Telecommunications Union (ITU), Open Mobile Alliance (OMA) and Distributed Management
Task Force (DMTF). He also represented ZTE as a Chair of DMTF Cloud Management Working
Group (CMWG) and worked in the area of standardization of cloud computing technologies to
promote ZTE cloud strategic interests in international SDOs. He attended approx. 60 face-to-face
international meetings and delivered about 300 proposals and technical editor of several
standards at DMTF (CIMI, OVF, DNS service management profile), OMA (Converged IP
Messaging (CPM) enabler), and ITU-T (Y.2025, Y.2240, Y.2214, Q.3610, Q.3611). He received
his MSc degree in Computer Science in 2003 from Quad-e-Azam University (QAU), Islamabad
(Pakistan).His MSc thesis was on the design and implementation of an Internet Protocol-Private
Branch eXchange (IP-PBX).

Mert Side is a Ph.D. Student at Texas Tech University, under the supervision of
Prof. Yong Chen. He earned a bachelor’s degree in Computer Engineering and a
bachelor's degree (double major) in Industrial Engineering, both from Istanbul
Okan University. He has been involved in microarchitectural security projects on
GPUs. He is currently participating in a research project that offers a scalable
global address space extension for High-Performance Computing (HPC)
environments. His research interests include computer architecture and HPCs.

Sridutt Bhalachandra is a staff member in the Advanced Technologies Group (ATG) [NERSC] at the
Lawrence Berkeley National Laboratory. He received his Ph.D. from the Computer Science department
at the University of North Carolina-Chapel Hill in 2018, where he was a research assistant at Renaissance
Computing Institute (RENCI). Before joining Berkeley Lab, he was a postdoctoral appointee in the
Mathematics and Computer Science Division at Argonne National Laboratory.

Nicholas J. Wright is the chief architect and the advanced technologies group lead at the National
Energy Research Scientific Computing (NERSC) center. Most recently, he led the effort to optimize the
architecture of the Perlmutter machine, the first NERSC platform designed to meet needs of both large
scale simulation and data analysis from experimental facilities. His research interests are in performance
analysis of HPC applications and architectures and he has published more than 40 papers in these areas.
Nicholas has a Ph.D. from the University of Durham in computational Chemistry and has been with
NERSC since 2009.

Yong Chen a Professor in the Computer Science Department of the Texas Tech University (TTU) in
Lubbock, Texas. He is the founding Director of the Data-Intensive Scalable Computing Laboratory
(DISCL). He is also the Site Director of the Cloud and Autonomic Computing Center at TTU

(CAC@TTU) sponsored by the National Sciecence Foundation IUCRC (Industry-University
Cooperative Research Centers) Program. His research focuses on data-intensive computing, high-
performance computing, parallel and distributed computing, cloud computing, computer
architectures, and systems software support for high-performance scientific computing/high-end
enterprise computing.

Author contributions

Use this form to specify the contribution of each author of your manuscript. A distinction is made between
five types of contributions: Conceived and designed the analysis; Collected the data; Contributed data or
analysis tools; Performed the analysis; Wrote the paper.

For each author of your manuscript, please indicate the types of contributions the author has made. An
author may have made more than one type of contribution. Optionally, for each contribution type, you may
specify the contribution of an author in more detail by providing a one-sentence statement in which the
contribution is summarized. In the case of an author who contributed to performing the analysis, the author’s
contribution for instance could be specified in more detail as ‘Performed the computer simulations’,
‘Performed the statistical analysis’, or ‘Performed the text mining analysis’.

If an author has made a contribution that is not covered by the five pre-defined contribution types, then
please choose ‘Other contribution’ and provide a one-sentence statement summarizing the author’s
contribution.

Manuscript title: Optimal GPU Frequency Selection for Energy-Efficient High-Performance
Computing

Author 1: Ghazanfar Ali

X Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Worote the paper
Specify contribution in more detail (optional; no more than one sentence)

0 Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 2: Mert Side

O

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 3: Sridutt Bhalachandra

X

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 4: Nicholas J. Wright

X

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 5: Yong Chen

X

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 6:

O

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 7: Enter author name

O

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 8:

O

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 9: Enter author name

O

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 10:

O

Conceived and designed the analysis

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Mert Side

Sridutt Bhalachandra

Declaration of interests

[OThe authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

XThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

Yong Chen reports equipment, drugs, or supplies, statistical analysis, and writing assistance were
provided by E O Lawrence Berkeley National Laboratory.

