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An Automated and Portable Method for Selecting an Optimal GPU Frequency

Ghazanfar Alia, Mert Sidea, Sridutt Bhalachandrab, Nicholas J. Wrightb, Yong Chena

aTexas Tech University, 2500 Broadway, Lubbock, 79409, TX, USA
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t

onsumption poses a significant challenge in current and emerging graphics processing unit (GPU) enabled high-performa
ng systems. In modern GPUs, dynamic voltage frequency scaling (DVFS) appears to be a reliable control to regulate pow
tion and performance. However, the DVFS design space is large - hence, brute-force approaches are infeasible to se
al frequency. Furthermore, no single frequency can be universally optimal for applications with varying computatio

es. Thus, the application’s complexity and the availability of a wide range of frequency settings are a challenge in select
mal frequency configuration for a given GPU workload. To that end, this paper proposes a systematic approach t
of three steps. The feature characterization study identifies the fine-grain GPU utilization metrics that influence the pow
tion and execution time of a given workload. To understand the performance, power, and energy consumption behavior
ad across GPU’s DVFS design space, we derived analytical power and performance models using the identified fine-gr

. It is shown that the same set of GPU utilization metrics can estimate both the power consumption and execution ti
ing agnostic of changes to frequency and input sizes. Applying a power control with the single objective of reducing pow
se performance degradation, leading to more energy consumption. A multi-objective approach is proposed to select
GPU DVFS configuration for a workload that reduces power consumption with negligible degradation in performance. T
n was conducted using SPEC ACCEL benchmarks and three real applications - NAMD LAMMPS, and LSTM on NVID
GA100, and AMD MI210 GPUs. On average, real applications showed 29.6% energy savings with a performance l
on GA100 and 22.6% energy savings with a performance loss of 4.7% on GV100. Moreover, the proposed models
to real applications, GPU architectures, and vendors, and require metric collection at only the default frequency rat
supported DVFS configurations. Additionally, we conducted a comparison between our models and the GPU assem
ons (PTX)-based static models. The results revealed a significant reduction in the average error rates, with a decrease fr

3.1% for power models and from 29.4% to 5.2% for performance models.

s: GPU frequency selection, DVFS, GPU power modeling, GPU performance modeling, energy delay product,
jective function, energy efficiency

duction ment strategies that can lower power consumption with a m
mum impact on execution time.

There are several challenges to designing efficient pow
management strategies for GPUs. First, the complexity
GPU workloads in terms of their utilization of computatio
resources can lead to diverse power consumption needs. S
ond, GPUs offer a wide array of power consumption contr
and understanding the impact of these power controls on pow
consumption and performance is non-trivial. For example,
NVIDIA GA100 (Ampere) and GV100 (Volta) GPUs prov
81 core DVFS configurations in the range of 210 - 1410 M
and 167 DVFS configurations in the range of 135 - 1380 M
respectively. While this flexibility is certainly favorable for s
ing power, it also makes the GPU’s DVFS design space m
complex in selecting a DVFS configuration that provides
timal power consumption and execution time simultaneou
Given the complexity of different workloads and power c
trols, it is not realistic for HPC system architects and operat
to select the optimal GPU frequency manually.

Limitations of state-of-art approaches: Many studies h

 new era of post-Moore’s law, GPUs are likely to be cru-
ccelerating computing capacity for current and future 
rformance computing (HPC) systems. While GPUs are 
ant, they increasingly consume a significant amount of 
For example, today, a single advanced GPU consumes 
p to 500 W [1] which is close to a traditional HPC 
]. As such, the power consumption of HPC systems 
th GPUs is limited by power. An exascale system built 
rrent generation GPUs expects to consume more than 
red 20 MW power budget [3] (e.g., the Frontier [4]), 
thout considering the infrastructure and cooling over-
Furthermore, HPC data centers have been more con-
bout performance historically; however, in more recent 
e to the “dark silicon” phenomenon [5], there has been 
gm shift toward striking a balance between power and 
n time [6]. For example, literature [7] estimated that a 
ease in power consumption of the Summit supercom-
uld generate savings of around 1 million dollars. There-
s increasingly critical to develop GPU power manage-

https://www.sciencedirect.com/science/article/pii/S0167739X23002613
https://www.elsevier.com/open-access/userlicense/1.0/
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to improve GPU power, performance, and energy ef-
[8, 9, 10, 11, 12, 13, 14]. The major research areas

DVFS space exploration, optimal frequency determina-
lytical and machine learning (ML) based models using
n metrics, and static code analysis. However, the ex-
proaches have some caveats: (1) features derived us-

c code analysis or utilization metric are not always best
tative of a workload (often workload or architecture-
, and (2) multi-objective functions provide a range of
uencies rather a definitive optimal frequency [15, 7].

rimental methodology and artifact availability: To
these challenges, the Optimal GPU Frequency Selec-
] has been proposed to automate the selection of the
DVFS configuration for a workload that requires three
First, characterization and identification of the GPU
that directly influence power and performance. We
mutual information technique to prune the features

evant to power and performance. Second, modeling of
nd performance behaviors across DVFS design space
e model-based estimation of a workload’s power and
n time using the workload’s utilization requirements.
he determination of the optimal DVFS configuration
the estimated power and execution time profiles across

S configurations. Flexible optimal frequency selection
es were devised using multi-objective functions. These
es included energy-delay product (EDP) [6, 17, 18, 19]

rgy-delay-square product (ED2P). EDP takes the opti-
f both energy and execution time (delay) into consid-
imultaneously while selecting the optimal frequency.
ovides double-weight to the execution time.
ugh the Optimal Frequency Selection has been previ-
scribed, a methodology to make it portable across dif-
PU architectures and real applications have remained
ped. In this study, we approached this by perform-
collection for real applications on new GPU architec-
eral inter-architectural analyses, and an extension of

er model. In particular, we analyze the portability of
res selected in study [16] on the NVIDIA GA100 GPU.
er model proposed in [16] is extended to mitigate inter-

tural power consumption variations. The application-
rtability is evaluated by estimating optimal frequencies
applications using the models developed with micro-
arks. The GPU architecture-level portability is evalu-
estimating the optimal frequencies of real applications
00 using the models developed with micro-benchmarks
00. We provided more evaluation data (selected fre-
, energy savings, changes in performance), useful in-
nd example usage of our methodology in a produc-
ironment. The source codes, including data collection,
ontrols, data analysis, and implementation of analytical
are publicly available [20].
nsights and contributions: Overall, this study makes
wing contributions.

tures Portability: The initial characterization of fea-
s using micro-benchmarks in study [16] confirms the
act of GPU utilization features on power usage, energy,

and execution time. In this study, we evaluate the porta
ity of features in terms of different input sizes, other G
architectures, and vendors. We observe that the selec
features are portable across architectures and vendors.

2. Models portability: Based on the characterization stu
analytical models for execution time and power were p
posed in the study [16]. We evaluated the portability
the models using real-world HPC and machine-learn
workloads (application-level portability), NVIDIA GA1
GPUs (architecture-level portability), and AMD MI2
GPUs (vendor-level portability). The metric collect
is required only at the GPU’s maximum DVFS confi
ration for a given workload. These metrics are used
estimate a workload’s power and performance for the
maining DVFS configurations using the proposed mod
We evaluated the portability of the proposed method
ogy in study [16] for real-world applications. On NVID
GV100, using real-world applications, these models e
mated power and performance up to 95.2% and 96.9%,
spectively. Furthermore, we have evaluated the portabi
of the models across different GPU architectures and v
dors. The power and performance models, developed
ing GV100’s data (thermal design power (TDP) of 250W
estimated power and execution time of real applications
GA100 (TDP of 500 W) with accuracies of up to 97.
and 98.2%, respectively. To evaluate vendor-level po
bility, we have mapped the feature set utilized in constru
ing the models from NVIDIA to a corresponding feat
set available in AMD. The power and performance m
els, utilizing data from GV100, accurately estimated
power consumption and execution time of real appli
tions on the AMD Instinct MI210 GPU, achieving ac
racies of up to 96.1% and 99%, respectively.

3. Energy-performance trade-offs: The efficacy of
multi-objective optimal functions is evaluated. The
ergy profiles chosen by the ED2P-based optimal freque
achieved an energy saving of up to 29.6% with a perf
mance loss of 5.2% for real applications on GA100.

4. Comparison with state-of-the-art models: We c
ducted a comparison between our models and the G
assembly instructions (PTX)-based static models [7]. T
results revealed a significant reduction in the average
ror rates, with a decrease from 19.7% to 3.1% for pow
models and from 29.4% to 5.2% for performance mode

Limitations of the proposed approach: The models requ
a given workload to be run at the maximum frequency to
quire utilization metrics. The models can only be used in as
ciation with DVFS. Other power controls, like power cappi
are beyond the current scope of this work.

This paper is organized as follows. Section 2 provides
background and motivation of this research. Section 3 descri
the experimental setup. Section 4 presents an overview of
methodology, data collection, feature analysis, analytical m
eling, and explains the multi-objective algorithm for select
the optimal frequency. Section 5 and 6 present the evaluat
results. Section 7 provides a comparison of models with sta

2



of-the-a
son in Se
and Sect

2. Moti

This s
power, a
workloa
tions are

2.1. Imp

DVFS
ulate po
ferent fr
observed
depends
GPU wo
different
DVFS c
and STR
the pow
memory
supporte
showed
and thus
the rang
510 - 13
noting th
vide mu
GV100
quency,

Figur
time, en
per seco
compute
power is
frequenc
when th
to the m
degrada
1250 - 1
able opp
shows th
fective t
scaled d
configur
can be r

The e
with DV
mance d
configur
configur
is neglig
frequenc
and perf

atic
et-

t of
in-
red
M

een
the

the
gu-
and
FS
ses

e,
ons
rly
he

) is
FS
ws

and
me
ion
lso
not
atic
ot-
for

fre-
of

FS
in

. In
FS

and
ads
ges
in-
on
est
the
ur-
um

er

ers
the
rt research. We discuss other related work and compari-
ction 8. Section 9 provides sample deployment options
ion 10 discusses concluding remarks.

vation

ection discusses the impact of DVFS on performance,
nd energy patterns on compute- and memory-intensive
ds. It also explains why multi-objective optimal func-
needed to select the optimal DVFS configuration.

act of DVFS on Compute-Intensive workload

technique is one of the widely used techniques to reg-
wer and performance by clocking the GPU core to dif-
equency configurations. Several previous works [10, 9]

that the impact of DVFS on power and execution time
on GPU architecture and application intensity. Hence,
rkloads with different computational intensities show
power and execution time behaviors for a given core

onfiguration. As a preliminary step, we tested DGEMM
EAM [21, 22] GPU micro-benchmarks to understand

er and execution time characteristics of compute- and
-intensive applications. Even though we have tested all
d GPU configurations, configurations below 510 MHz
high performance penalties leading to a higher power
are infeasible. Hence, we only use configurations in

e of 510 - 1410 MHz (61 configurations) for GA100 and
80 MHz (117 configurations) for GV100. It is worth
at unlike some previous GPU architectures, which pro-
ltiple memory frequency configurations, GA100 and
support a single high bandwidth memory (HBM) fre-
i.e., 1593 MHz and 877 MHz, respectively.
e 1 (a) to (d) show variations in power, execution
ergy, and execution time (floating-point operations
nd (FLOPS)) across 117 DVFS configurations for the
-intensive workload (i.e., DGEMM). It is observed that
approximately a direct linear function of GPU core

y. Performance degradation of up to 3x was observed
e GPU core frequency was changed from the maximum
inimum frequency. We also noted that performance

tion is negligible for the frequencies in the range of
380 MHz. These frequencies can potentially be a vi-
ortunity for energy-performance trade-offs. Overall, it
at for compute-intensive applications, DVFS is an ef-
echnique to scale power. The power behavior can be
own to less than half of the GPU’s TDP at the lower
ation (e.g., 510 MHz). On the other hand, the power
amped up to its TDP limit at the maximum frequency.
xecution time exhibits an indirect nonlinear relationship
FS configurations, as shown in Figure 1 (b). Perfor-
egradation of up to ∼3x was observed when the DVFS
ation was swayed from the maximum to the minimum
ation. We also noted that the performance degradation
ible in the ∼1250 - 1380 MHz frequency range. This
y range can potentially be viable options for energy
ormance trade-offs for compute-intensive workloads.

Figure 1 (c) shows that energy is a parabolic (i.e., quadr
relationship) function of DVFS configuration. The energy m
ric for each DVFS configuration was computed as a produc
power (a) and execution time (b). In general, the global m
imum energy point across DVFS configurations is conside
the optimal frequency where the compute-intensive DGEM
can save energy up to ∼15.8%.

Figure 1 (d) shows nearly a direct linear relationship betw
FLOPS and DVFS configurations. Like the execution time,
increment in FLOPS after 1250 MHz is insignificant.

To summarize, we can infer two main corollaries. First,
power consumption is highly dependent on the DVFS confi
ration. Second, an application’s performance (both time
FLOPS) does not improve after reaching a particular DV
configuration. Hence, any further increase in frequency cau
increased in power without noticeable performance gain.

2.2. Impact of DVFS on Memory-Intensive workload

Figures 1 (e) to (h) show variations in power, execution tim
energy, and bandwidth across supported DVFS configurati
for STREAM. Like DGEMM, power for STREAM is nea
linear with DVFS configuration as shown in Figure 1 (e). T
power at the maximum DVFS configuration (1380 MHz
∼100W and can be reduced up to ∼50W at the minimum DV
configuration (510 MHz) used in this study. Figure 1 (f) sho
an indirect nonlinear relationship between execution time
DVFS configurations. It is worth noting that the execution ti
does not change for over 800 MHz. Thus, this configurat
is optimal for the execution time. This phenomenon is a
reflected in Figure 1 (h) showing that the bandwidth does
improve after ∼ 800 MHz. Figure 1 (g) depicts the quadr
relationship between the frequency and energy. It is worth n
ing that the frequency providing the lowest energy point
STREAM (with energy savings of ∼33%) is not the same
quency as DGEMM, suggesting that the optimal frequency
an application is driven by its computational intensity.

The HBM data rate is nearly a direct linear function of DV
configuration as demonstrated in Figure 1 (h). The increase
GPU frequency also speeds up the data rate of the HBM
alignment with (f), bandwidth does not improve after a DV
configuration.

Two key takeaways: First, the execution time, power,
energy patterns of compute- and memory-intensive worklo
indicate - (a) the change in GPU frequency effectively chan
the execution time, power, and energy metrics. (b) The
tensity of the change in these metrics is highly dependent
the workload’s computational intensity. Second, the low
DVFS configuration consumes the lowest power. However,
same configuration degrades performance at maximum. F
thermore, the maximum configuration can provide maxim
performance; on the other hand, it may not be optimal for pow
and energy saving.

2.3. Can One DVFS Configuration Fit All?

The optimal DVFS configuration for an application ref
to a GPU operating frequency that reduces the power at

3
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Power, execution time, energy, and FLOPS variations across different frequency configurations for DGEMM (upper) and STREAM (lower), respectiv

no performance degradation (ideally) or achieves the
e-off between performance degradation and reduction
r and energy. However, empirical results in Figures 1
(c) show that the optimal execution time and optimal
onsumption are exhibited by different DVFS configura-

an application. Furthermore, these configurations are
able across applications (Figure 1 (b) and (f) or (c) and
mparatively, the optimal execution time was achieved
r frequencies than the frequencies that delivered the op-
ergy, and optimizing one objective can adversely affect
r. Thus, selecting the optimal frequency automatically
rbitrary application is not a trivial task due to conflict-
ria of high performance and low power and energy.
ervation supports a need for a multi-objective solution
ultaneously considers both execution time and power
tion for an application to determine the optimal DVFS

ation, which is the ultimate objective of this work.

rimental Setup

get Applications

s study, we used three real applications, two micro-
arks, and 19 industry benchmark applications in the
CCEL suite.

eal Applications
study, we used three GPU-enabled real-world applica-

cluding: (1) Nanoscale Molecular Dynamics (NAMD)
, a large biomolecular systems simulation program;
e-scale Atomic/Molecular Massively Parallel Simula-

MPS) [25, 26], a particle simulator that models solid-
ft matter, and coarse-grained materials; and (3) Long
m memory (LSTM) [27] algorithm, a TensorFlow-
8] implementation of binary sentiment classification of
vie review dataset [29]. The domains for these appli-
re shown in Table 1

enchmark Applications
proposed models were validated using the SPEC
® benchmark suite [30]. The application domains for
hmarks in the SPEC ACCEL are shown in Table 2.

Table 1: The real applications used in our evaluations.

Benchmark Language Domain

NAMD C++/Charm++

Parallel molecular dynamics
code for large biomolecular
systems

LAMMPS C++
Large Atomic Simulations,
Molecular Simulations

LSTM Python Binary classification, Senti-
ment Analysis

Table 2: The SPEC ACCEL benchmarks suite containing 19 OpenCL ena
benchmarks.

Benchmark LanguageDomain
tpacf C++ Astrophysics
stencil C++ Thermodynamics
lbm C++ Fluid Dynamics
fft C Signal processing
spmv C++ Sparse Linear Algebra
mriq C Medicine
histo C Silicon Wafer Verification
bfs C Electronic Design Automation, Graph Traversals
cutcp C Molecular Dynamics
kmeans C++ Dense Linear Algebra, Data Mining
lavamd C N-Body, Molecular Dynamics
cfd C++ Unstructured Grid, Fluid Dynamics
nw C++ Dynamic Programming, Bioinformatics
hotspot C Structured Grid, Physics Simulation
lud C++ Dense Linear Algebra, Linear Algebra
ge C++ Dense Linear Algebra, Linear Algebra
srad C Structured Grid, Image Processing
heartwall C Structured Grid, Medical Imaging
bplustree C Graph Traversal, Search

3.2. Target Systems

In this study, we collected the utilization metrics
SPEC ACCEL, DGEMM, and STREAM, real applicati
(LAMMPS, NAMD, and LSTM) using NVIDIA Amp
A100 GPU node at the National Science Foundation (NSF
Chameleon CHI@UC site [31], AMD Instinct MI210 node
AMD site, and Volta V100 GPU node at High Performa
Computing Center of Texas Tech University, managed by
Slurm Scheduler [32]. Table 3 lists the configurations of th
systems. To avoid any interference from other jobs, all our
periments were run on nodes that were exclusive. All exp
ments were performed using an NVIDIA GV100 with CU
version 11.2 and driver version 450, and GA100 with CU
version 11.5 and driver version 465. For MI210, we u
ROCm 5.4, rocprof 2.0, and rocm-smi 5.4. Data analysis
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Table 3: Platforms used for our evaluations.

te Platform CPU Memory OS GPU GPU Memory GPU T
on@UC Dell PowerEdge XE8545 2 x 64 cores × AMD EPYC 7763 512 GB CentOS 8 GA100 SXM4 80 GB HBM2e 500 W
on@UC Dell PowerEdge C4140 2 x 24 cores × Intel Xeon Gold 6230 128 GB CentOS 7 GV100 PCIe 32GB HBM2 250 W
@TTU Dell PowerEdge R740 2 x 20 cores × Intel Xeon Gold 6242 384 GB CentOS 8 GV100 PCIe 32GB HBM2 250 W
er@AMD SUPERMICRO AS-4124GS-TNR 2 x 64 cores × AMD EPYC 7742 528 GB Ubuntu 18.04 MI210 PCIe 64GB HBM2e 300 W

g was performed using Python 3.10.1 64-bit.

odology

section introduces the overall methodology, data col-
rocess, feature analysis, power modeling, performance
g, and the multi-objective approach to selecting the op-
quency.

ompute-Intensive
Kernel 

GPU

GPU's Utilization Metrics

kernels
ss all  
S configs

Memory-Intensive
Kernel 

er Model Performance
Model

Feature  Analysis

elated Metrics Performance Related Metrics

GPU

Run workload  
at maximum 
DVFS config

Workload 

GPU's Utilization Metrics

Estimate power
across all DVFS

configs

Estimate exec.
time  across all
DVFS configs

Estimate energy
across all DVFS

configs

Multi-objective
optimal functions

Optimal DVFS config

(a) Model Development (b) Optimal DVFS Config Selection

a) Functions related to power and performance models development.
ons related to the selection of the optimal frequency for a workload
roposed models and multi-objective techniques.

erview

ethodology consists of two phases: (1) building analyt-
els for power and execution time and (2) selecting the
frequency selection for a given workload using multi-
e optimal functions based on estimated power and exe-
me using analytical models.
e 2 (a) shows the process of building analytical models
r and execution time, which are built using workloads’

lization metrics across GPU’s DVFS design space. The
g functions were involved in developing power and per-
e models: workload execution across GPU’s DVFS de-
ce, metric collection, feature analysis, and model con-
. For developing models, we used utilization metrics of
EMM (representative of compute-intensive workloads)
EAM (representative of memory-intensive workloads)

enchmarks. The GPU’s utilization metrics were col-
cross the GPU’s DVFS design space for the entire ex-
duration at the sampling interval of 20 ms. To miti-
istical errors such as run-to-run variations, these bench-
ere run three times for each frequency. As demon-

n Figure 1, extensive analyses were performed to under-
e impact of different frequencies on power, execution

time, energy, bandwidth, and FLOPS. The metrics were ch
acterized to find their relationship with power and execut
time, as shown in Section 4.3. Finally, power and performa
models were constructed empirically using the features wh
showed the highest correlations with power and execution tim
respectively. One of the main objectives of these models is
portability and applicability of this methodology to a wide
riety of applications and other GPU architectures. We m
eled GPU architectural characteristics, which are instrumen
in mitigating the changes in power and execution time fo
target GPU architecture. These models do not require readju
ment based on the target GPU architecture.

As shown in Figure 2 (b), to determine the optimal G
DVFS configuration, the following steps are involved. Fi
a workload was run three times for data collection. As perf
mance is paramount to HPC workloads, we collected GP
utilization metrics at the GPU’s maximum DVFS configu
tion. Furthermore, the power and performance profile at
maximum configuration was used as a reference point for
power and performance profile at the selected DVFS configu
tion. GPU’s metrics were collected at a sampling interval of
ms for each run of the workload. Second, the workload’s pow
and execution time were estimated via the proposed power
performance models, respectively. These estimations were p
formed for each GPU DVFS configuration using the workloa
utilization metrics acquired at the maximum frequency. T
model-based estimation of power and execution time acros
GPU’s supported DVFS configurations eliminates the need
the execution of a workload across these different DVFS c
figurations. The energy for a workload was computed using
estimated power and execution time for each DVFS configu
tion. Finally, multi-objective functions were used to determ
the optimal frequency among the GPU’s supported frequenc
These multi-objective functions use EDP and ED2P, which
tablish energy-performance trade-offs by simultaneously tak
energy savings and performance degradation into account. T
EDP function computes the score for each frequency by m
tiplying the energy and execution time of the DVFS configu
tion. The DVFS configuration with the lowest score is de
mined as the optimal frequency. The ED2P function is sim
to EDP; however, ED2P applies more weight to the execut
time. The ED2P always selects a higher DVFS configurat
than the EDP for a given workload. Thus, it is useful in
abling performance-centric energy-saving trade-offs.

4.2. Data Collection

We collected 12 GPU utilization metrics (seemingly relev
to power and performance) for DGEMM, STREAM, SP
ACCEL benchmarks, and three real applications (LAMM
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and LSTM) across 117 DVFS configurations on the
GV100. The same metrics were collected for real

ions across 61 DVFS configurations on the NVIDIA
We used the state-of-the-art NVIDIA Data Center

anager interface (DCGMI) [33] interface for metric ac-
. The same interface was used to change the DVFS
ation of the GPU. Table 4 provides the description of
cted metrics. As described above, metrics related to

and STREAM were used to build the power and per-
e models. The metrics related to the SPEC ACCEL
applications were used as the measured data in the

alidation demonstrated in Sections 5 and 6. Section 6
luates the inter-architectural portability of the proposed
and the selection of the optimal frequency mechanism
e real applications.

Table 4: Feature Description

ure Description

r usage
Last measured power draw for the entire
board. [From DCGMI.]

active

Fraction of cycles where data was sent to or
received from device memory. It reports a
value between 0 and 1 that represents an av-
erage activity over a time interval. For ex-
ample, an activity of 0.2 indicates that 20%
of the cycles read from or write to device
memory over the time interval. [DCGMI.]

active

Fraction of cycles where the FP64 (double
precision) pipe was active. It reports a value
between 0 and 1 that represents an average
over a time interval. [DCGMI.]

active

Fraction of cycles where the FP32 (single
precision) pipe was active. The value is
defined similarly to fp64 active feature.
[DCGMI.]

ngine active

Overall graphics engine activity. The value
(between 0 and 1 represents an average over
a time interval. [DCGMI.]

pp clock
Application level SM clock frequency
(MHz). [DCGMI.]

ctive

Fraction of time at least one warp was active
on a multiprocessor, averaged over all multi-
processors. Warps both performing actively
computing and waiting on memory requests
are considered active. The value [0:1] repre-
sents an average over a time interval. Usu-
ally, a value of 0.8 or higher indicates effec-
tive usage of GPU. [DCGMI.]

ccupancy

Fraction of resident warps on a multiproces-
sor, relative to the maximum number of con-
current warps supported on a multiproces-
sor. The value [0:1] represents an average
over a time interval. The higher occupancy
does not always represent optimum GPU us-
age. [DCGMI.]

tx bytes Bytes sent by PCIe. [DCGMI.]
rx bytes Bytes received by PCIe. [DCGMI.]

utilization

Fraction of time the compute pipe was busy.
The value represents an average over a time
interval. [DCGMI.]

time
Execution time of a specific benchmark ker-
nel. Sourced as wall time.
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Figure 3: Dependency between GPU’s utilization metrics, power and tim

4.3. Feature Engineering

In this section, we discuss the process of selecting fi
grained features which directly impact power and execut
time. Furthermore, we analyze the impact of different DV
configurations and input sizes on the selected features, and
portability of these features across GPU architectures.

4.3.1. Selection of the Fine-Grain Features
Feature analysis was performed to choose features that

rectly impact an application’s power usage and execution tim
These features are critical to developing accurate, reliable,
scalable analytical models for power and execution time e
mation. We used the Mutual Information (MI) technique [
35, 36] to identify the features correlated with power and
ecution time. MI estimates distances using nonparametric
nearest neighbors algorithm. This approach shows an unbia
correlation, which is more effective than the correlation (
ten algorithm-specific) shown by a machine learning algorith
As a representative of compute-intensive and memory-intens
applications, the feature analysis used the dataset for DGEM
and STREAM benchmark applications only. Figure 3 sho
the dependency between power usage and run time, and ot
GPU utilization features. The feature with a higher mutual c
relation value (close to 1) is indicative of a higher dependen
Out of these features, we observed that fp active, sm app clo
and dram active are the most prominent features that influe
both power usage and execution time.

The fp active and dram active are instrumental in und
standing the computational intensity of a workload. In gene
compute-intensive applications show higher fp active than
memory-intensive applications as depicted in Figure 4 wh
floating-point activity (fp active) for DGEMM is higher t
STREAM. While DGEMM is also shown to have consid
able memory activity (dram active), the value for STREA
is much higher. Moreover, we observed that the inclusion
gpu utilization does not improve the prediction accuracy,
the pcie * metrics did not provide any significant improvem
for our models either.

The sm app clock is used to scale the power and exe
tion time of an application. For both benchmarks, power
creases (as depicted in Figure 1-(a) and (e)) with sm app cl
while the execution time increases (as illustrated in Figure 1
and (f)). It shows that a change in GPU frequency chan
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ay. Therefore, it can be deduced that the GPU metrics
, dram active, and sm app clock are reliable features
olling an application’s power usage and time.

pact of DVFS on Computational Activities
rther investigated the impact of changes in DVFS con-
ns on the computational activities (i.e., fp active

m active) of memory- and compute-intensive appli-
DGEMM and STREAM were tested by changing the

onfigurations at maximum input sizes on GA100 and
rchitectures. As demonstrated in Figure 4, the floating-

tivity is almost unaffected by the change of DVFS con-
ns for both compute- and memory-intensive applica-
wever, memory-activity shows variations for both ap-
s. We also observed that DGEMM exhibited different
usage behaviors across GV100 and GA100. We will

the rationale behind this deviation later.

DGEMM Max Activity
GV100
GA100

STREAM

600 800 1000 1200 1400
Core Frequency (MHz)

DGEMM

600 800 1000 1200 1400
Core Frequency (MHz)

0.0
0.2
0.4
0.6
0.8
1.0

STREAM

Impact of DVFS on the computational activities (i.e., fp active and
ve) of memory- and compute-intensive applications.

pact of Input Size on Computational Activities
vestigated the impact of changes in input sizes on the
tional activities of memory- and compute-intensive ap-
s. DGEMM and STREAM were tested using differ-
t sizes at the maximum core frequency on GA100 and
architectures, as depicted in Figure 5.
the case of changes in frequency, we observed similar
concerning the change of input sizes on computational
s. The floating-point activity is approximately unaf-
y the change of input sizes for both applications on both
hitectures. The memory activity of DGEMM showed
s within and across both architectures. Unlike in the
case, the memory activity of STREAM was observed
stly unaffected by the change in input sizes on both ar-

res. In addition, our preliminary analyses confirm that
e in input sizes of memory and compute-intensive ap-
s does not change their power signature [37].

eatures Portability Across GPU Architectures
alyzed the portability of fp active and dram active

by memory-intensive (STREAM) and compute-
(DGEMM) kernels across GV100 and GA100 archi-
Figure 4 and Figure 5 corroborate five findings con-

to portability of these features across GPU architec-
1) floating-point activity for memory- and compute-

kernels was reported the same on both architectures

and were unaffected by the change in DVFS configuration
the change in input size; (2) memory activity is nearly un
pacted by the change in input size for a memory-intensive k
nel; (3) memory activity to some extent showed variation w
the change in DVFS configuration for both kernels; and (4) n
uniform memory activity patterns on GV100 and GA100
DGEMM benchmark.

While GA100 memory frequency (i.e., 1593 MHz) is s
nificantly higher than the GV100 memory frequency (i.e., 8
MHz), results showed comparatively low memory activity
GA100 for DGEMM. We investigated this deviation by look
into the architectural characteristics of both GPUs. We fou
that GA100 is enhanced with double-precision tensor co
which support double-precision matrix multiply-accumu
(DMMA) instruction. A single DMMA instruction (on GA1
is equal to eight traditional FP64 instructions (on GV100) [3
This architectural enhancement enables GA100 to save sig
icant memory space and bandwidth. The reduction in mem
activity for DGEMM on GA100 ( Figure 4) is due to its supp
for Double-Precision Tensor Cores capability.

Summary: MI technique confirms fp acti

dram active, sm app clock as the top three featu
exhibiting a strong relationship with power and execution tim
sm app clock (DVFS configuration) is a hardware feat
of the target GPU. fp active is unaffected by the change
sm app clock, the change in the input size, and the cha
of GPU architecture. dram active is slightly affected by
change in sm app clock, the change in the input size, and
change in GPU architecture. Overall, fp active and dram ac
of an application can uniquely identify power and execut
time signature for a given GPU sm app clock.

4.4. Power Modeling

To develop a power model, it is essential to consider the
pects of applications and architectures that directly influe
power. Our empirical analysis indicates that the floating-po
and memory activities directly impact the (dynamic) powe
a given core frequency. This implies that the floating-point
memory activities are reliable features to identify an appli
tion’s power signature. The power is shown to increase appro
mately in a linear manner up to the GPU’s TDP, depending up
the application’s activity. With these underlying basics, we
floating-point activity (FPact), memory activity(DRAMact),
core frequency ( f ) to model activity-driven power (P f ) beh
ior of an application as shown in Equation 1.

P f = α · FPact + β · DRAMact + γ · f + C ± λ

where α, β, and γ represent regression coefficients for floati
point activity, memory activity, and core frequency, resp
tively, and C is a constant. These coefficients are estimated
ing metrics data from DGEMM and STREAM benchmarks
is a constant factor that essentially scales up or down power
other GPU architectures. Its value is a ratio of the target GP
core count to the base GPU’s core count. When the core co
of the target GPU is more than the core count of the base GP
the resultant value is calculated by adding this value. Howev
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re 5: Impact of different input sizes on the computational activities (i.e., fp active and dram active) of memory- and compute-intensive applications.

e cores count of the target GPU is less than the cores
the base GPU, the resultant value is estimated by sub-

this value. Moreover, computing the coefficients for the
has no noticeable overhead. In our evaluations, the es-
of power and execution time, along with the selection
timal frequency, took less than a second.

formance Modeling

the execution time of individual kernels is predictable
their computational activities, repetitive tasks and dif-
ta input sizes involved in real-world applications make
n time estimation complicated. The execution time de-

the input size, and literature [39] confirms our obser-
The proposed performance model requires the execu-

e of a workload at the maximum-frequency, and then
el scales the execution time for other frequencies. An-
y point in designing a DVFS-based performance model
sider the impact of frequency scaling on time. Based on
rvations, the execution time exhibits nonlinear inverse
with GPU’s core frequencies, as shown in Figure 1-(b)
To address this challenge, researchers use the applica-
ecution time at maximum core frequency as the appli-
default execution time and linearly estimate the varia-
the execution time for the remaining core frequencies.

ple, recent literature [39] tried to estimate the change
tion time in relation to a change in core frequency by
e application’s default execution time as an input ex-
time. Our evaluation of [39] shows two fundamental
ings. First, the execution time estimation is limited to

-intensive applications. Second, the change in the esti-
xecution time when the frequency is changed from the
ighest frequency is estimated in linear rather than the
onlinear fashion. Therefore, we model these nonlinear

parabolic) behaviors demonstrated in Figure 1-(b) and
econd-degree polynomial function of floating-point ac-
Pact) and change in frequency (∆ f ). The performance
derived using Equations 2, 3, and 4. The performance
intended to estimate nonlinear variations in the appli-

execution time between the highest core frequency and
ining core frequencies.

T f = T fmax + T f∆ (2)

f denotes the execution time at frequency f , T fmax repre-
execution time at the highest frequency, and T f∆ refers

to the change in execution time from the maximum core
quency to the given core frequency f , which is determined
ing Equation 3.

T f∆ = β1 · FPact + β2 · ∆ f + β3 · FPact
2+

β4 · FPact · ∆ f + β5 · ∆ f 2

where FPact refers to the application’s FP activity at maxim
frequency and ∆ f denotes the change in frequency from ma
mum to the given frequency as shown in Equation 4.

∆ f = fmax − f

The β1, β2, β3, β4, and β5 are polynomial coefficients, wh
are estimated using variations in execution time correspond
to changes in frequency configurations and application’s FP
tivity. These estimations were empirically computed using m
rics data from DGEMM and STREAM benchmarks. The inc
sion of FP activity is critical because it reflects the applicatio
computational activity (see Figure 1 (b) and (f)).

4.6. Optimal Frequency Selection
As already discussed in Section 2.3, the optimal frequenc

the one that reduces the power with no performance degradat
(ideally) or achieves the best trade-off between execution ti
and power. The optimal frequency for an application is selec
using a multi-objective approach including EDP [6, 17, 18,
and ED2P. These approaches require energy and execution ti
estimations. The energy is computed for each frequency
using Equation 5 based on the power usage and execution ti
estimated via the proposed power and performance models.

E festimated = P festimated × T festimated

The algorithm for selecting the optimal frequency among s
ported DVFS configurations is straightforward and shown
Algorithm 1. This algorithm takes three lists, including ene
(E), execution time (T), and frequency (F) as input. It outp
the optimal f setting based on the ED2P score. The algorit
involves two major steps: First, the ED2P score for each se
energy and time is computed by multiplying the energy with
square of execution time. Second, the lowest score decides
optimal energy-delay profile out of the given sets of energy
time for the given workload. The frequency (f) correspond
to the lowest score is the optimal frequency and will be selec
as the optimal frequency. The optimal frequency selection
ing EDP is similar to this algorithm. The only difference is t
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m 1 Optimal frequency determination using ED2P

: E1 . . . EN ,T1 . . . TN ,F1 . . . FN . list of energies, run
s, and frequencies

f . optimal frequency

ction Optimal(E[ ],T [ ], F[ ])
EDP← E × T 2 . compute list of EDP scores
min← 0
index← 0
N ← length(ED2P)
for k = 1 to N do . find the minimum EDP score

if ED2Pk < min then
min← ED2Pk

index← K
f ← Findex . optimal frequency

score is calculated instead of the ED2P score, where
gy is multiplied by the execution time (i.e., energy and
given equal weights).

uation with SPEC ACCEL Benchmarks

ection provides evaluation results for 19 benchmark ap-
s in the SPEC ACCEL suite (see Table 2). Their uti-

metrics were unseen by our proposed models.

imation of Power and Performance
ower usage and execution time were estimated for the
CCEL benchmarks across 117 DVFS configurations on
using the proposed power and performance models.
plication’s power was estimated using the frequency

ith the FP and DRAM activities acquired at the max-
requency. Figure 6 compares the estimation power
d by the proposed power model and measured power
benchmark in the SPEC ACCEL. We used the mean
percentage error (MAPE) metric to understand the
of the proposed models. As shown in Table 5,

osed power model estimated power usage for 15 of
chmarks in the SPEC ACCEL with an accuracy of
% (and up to 99.1%). However, the model slightly

ated or underestimated power usage for the bench-
ith significantly low or high computational activi-
r example, hist (FP=0.0005, DRAM=0.0235) and

FP=0.0243, DRAM=0.3197) overestimated power us-
nversely, stencil (FP=0.2781, DRAM=0.7301) un-
ated power usage.
stimating the execution time, only frequency and FP
were used. Figure 7 compares the execution time esti-
y the proposed performance model and measured exe-
me for each benchmark in the SPEC ACCEL. The ex-
time was estimated with an accuracy of more than 90%
to 98.8%) for 15 benchmarks, as shown in Table 5. We
observe any underestimation of execution time. How-
proposed model is likely to slightly overestimate exe-

me for a benchmark exhibiting higher FP activity (e.g.,
, mriq).

5.2. Optimal Frequency Selection
The (measured) M-EDP and M-ED2P optimal frequenc

refer to the optimal frequencies selected via EDP and ED
approaches using measured energy and execution time metr
Similarly, (estimated) E-EDP and E-ED2P optimal frequenc
refer to the optimal frequencies selected via EDP and ED2P
proaches using energy and execution time metrics estimated
the proposed models. Figure 8 shows the optimal frequenc
selected via M-EDP, E-EDP, M-ED2P, and E-ED2P approac
for each benchmark in the SPEC ACCEL on GV100. Tabl
lists M-EDP, E-EDP, M-ED2P, and E-ED2P optimal frequenc
for each SPEC ACCEL benchmark on GV100.

In general, the M-EDP, E-EDP, M-ED2P, and E-ED2P o
mal frequencies for each benchmark were less than the GP
maximum frequency. This observation confirms our hypothe
that the GPU’s maximum frequency is not always optimal. F
ther, E-ED2P optimal frequency selected for each benchm
was always higher than the E-EDP optimal frequency. This o
come affirms our assumption that ED2P approach is usefu
defining more performant trade-offs. We also observed a sy
biotic relationship between models accuracy, and P-EDP
E-ED2P optimal frequencies: (1) A higher accuracy in estim
tion of power usage and execution time for a benchmark l
to the selection of more accurate E-EDP and E-ED2P optim
frequencies (e.g., ge, nw); (2) an overestimated power lead
the selection of comparatively lower E-EDP and E-ED2P o
mal frequencies (e.g., kmean, histo); and (3) an overestima
execution time lead to selection of comparatively higher E-E
and E-ED2P optimal frequencies (e.g., lavamd, mriq). The
tual energy-performance trade-offs are evaluated below.

5.3. Energy and Performance Evaluation
The effectiveness of the optimal frequency is measured

its ability to save energy with minimal performance degra
tion. The change in execution time and energy savings of
optimal frequency are calculated with reference to the GP
highest frequency. The change in execution time can be co
puted using Equation 6:

T Change(%) = 100 ·
(

Tmaximum − Toptimal

Tmaximum

)

where Tmaximum and Toptimal are the measured execution tim
for the application at maximum and optimal frequencies,
spectively. The T Change can be either positive or negative
positive value indicates performance gain, and a negative va
suggests performance degradation using the optimal frequen
The energy savings can be computed using Equation 7:

E S avings(%) = 100 ·
(

Emaximum − Eoptimal

Emaximum

)

where Emaximum and Eoptimal are energy consumed as measu
at the maximum and optimal frequencies, respectively.

Figure 9 shows energy savings and changes in execution ti
achieved with (a) measured and estimated EDP optimal
quencies and (b) measured and estimated ED2P optimal
quencies for each SPEC ACCEL benchmark application.
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Figure 6: Comparisons between evaluated and estimated power for each benchmark in the SPEC ACCEL.
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Figure 7: Comparisons between evaluated and estimated execution time for each benchmark in the SPEC ACCEL.

M-EDP and E-EDP (Figure 9 (a)) saved energies 36%
% with performance gains 0.3% and 1.2%, respec-
imilarly, M-ED2P and E-ED2P (Figure 9 (b)) collec-

tively saved energies 35.2% and 25.2% with performance ga
1.3% and 2%, respectively. We noted that energy savings
tained with estimated optimal frequencies are less than the
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(a) Energy savings and change in execution time achieved with measured and estimated EDP optimal frequencies for each SPEC ACCEL benchmark application.
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(b) Energy savings and change in execution time achieved with measured and estimated ED2P optimal frequencies for each SPEC ACCEL benchmark application.

Energy savings and change in execution time achieved with (a) measured and estimated EDP optimal frequencies and (b) measured and estimated E
equencies for each SPEC ACCEL benchmark application.

he optimal DVFS at GV100 selected with measured-EDP, estimated-
sured-ED2P and estimated-ED2P for SPEC ACCEL benchmark.

hmark
Optimal Frequency (MHz)

EDP ED2P
Measured Estimated Measured Estimated
907 1020 997 1110

il 1102 1020 1102 1102
907 982 997 1065
1102 1065 1102 1155
1102 990 1102 1072
960 1117 997 1207
1050 982 1102 1057
1200 982 1200 1057
907 1072 997 1162

ns 1072 990 1072 1065
d 990 1132 990 1230

1072 997 1102 1080
997 982 997 1065

ot 907 1057 907 1147
1222 1005 1222 1095
997 982 997 1065
997 1005 1102 1087

wall 997 997 997 1080
tree 907 1012 997 1102

ings attained with the measured optimal frequencies.
on behind this minor undersaving is overestimating the
sage of some benchmarks (as concluded in the previous
. In addition, the measured and estimated energy sav-
similar for the benchmarks having higher accuracy in

the estimation of their power and execution time (e.g., ge, cf
In conclusion, our approach saves energy by one-fourth with
performance degradation for the SPEC ACCEL 19 benchmar
These observations confirm the effectiveness of our approac

6. Portability Evaluation

This section evaluates the portability of the proposed
proach from two perspectives: (1) portability with real-wo
applications, including NAMD, LAMMPS, and LSTM (see
ble 1 for more details about the applications), and (2) portabi
with the state-of-the-art NVIDIA Ampere GPU and AMD
stinct MI210 GPUs (see Table 3 for more details about GPU
These evaluations confirm the suitability and applicability
the approach across various architectures and vendors.

To evaluate real applications, we used the following con
urations. For NAMD, we performed an experiment using
standard Apolipoprotein A1 (ApoA1) dataset, which compri
92,224 atoms of lipid, protein, and water [40]. ApoA1 sim
lates a bloodstream lipoprotein. For LAMMPS, we perform
a standard Leanard-Jones 3D melt experiment. For LSTM,
used a dataset of 50000 movie reviews for binary sentim
classification; 50% of the movie reviews were used for train
and the remaining 50% for testing. In contrast to the ben
marks executed only on the GPU, the real applications run
both CPU and GPU. However, only the corresponding G
metrics are used in our evaluation.
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roposed approach requires floating point and mem-
ities of an application at the GPU’s default frequency,
ith the set of supported frequency configurations, in
estimate power and performance at each frequency.
ired these features using the NVIDIA DCGM interface

GV100 GPU. Since the DCGM interface is supported
IA GA100, these features are inherently portable to
GA100. However, for the AMD MI210 GPU, which
different metrics and interfaces, it posed a challenge

ify equivalent features and related interfaces for data
on. After exploring various interfaces and metrics, we
d that the AMD rocprof interface provides the nec-
w-level architectural features that are equivalent to the
used in our approach. Table 7 illustrates the mapping
the NVIDIA DCGM and AMD rocprof interfaces for
res employed in our approach. We utilized the AMD
mi interface to obtain a list of supported frequency con-
ns and power consumption data. The same interface
used to modify the GPU core frequency. For measur-

xecution time, we used wall-clock time.

: Feature mapping between NVIDIA DCGM and AMD rocprof.

A DCGM AMD rocprof

IVE (sum of FP64 ACTIVE, FP32 ACTIVE,
CTIVE, and TENSOR ACTIVE)

sum of VALUBusy and SALUBusy

CTIVE MemUnitBusy

Table 8: Accuracy of power and performance models.

GPU Application Power Model Performance Model

VIDIA GV100

NAMD 95.2% 96.9%
LAMMPS 94.4% 85.5%
LSTM 80.8% 95.9%

VIDIA GA100

NAMD 96% 98.2%
LAMMPS 97.9% 91.4%
LSTM 80.8% 96.4%

AMD MI210

NAMD 96.1% 97.2%
LAMMPS 94.5% 93.9%
LSTM 86.5% 99%

imation of Power and Performance

s section, we not only evaluate the portability of the
to real applications but also evaluate the portability to

PU architectures. Real applications, like SPEC AC-
e unseen by the power and performance models. The
atures for the MI210 were calculated using the feature
shown in Table 7. For the real applications, the power

ution time are estimated similarly to that for SPEC AC-
sented in Section 5.
e 10 provides a comparison of power consumption es-
by the proposed power model and measured power us-
NAMD, LAMMPS, and LSTM on NVIDIA GV100,
and AMD Instinct MI210. The accuracy of the power
for NAMD, LAMMPS, and LSTM on these GPUs
n in Table 8. On average, power usage estimation
applications was achieved with accuracy ≥ 95% on

U architectures. As we observed in SPEC ACCEL

benchmarks, LSTM overestimated power consumption due
its lower floating-point and memory activities.

Figure 11 compares execution time estimated by the p
posed performance model and measured execution time
NAMD, LAMMPS, and LSTM on NVIDIA GV100, GA1
and AMD Instinct MI210. The accuracy of the performa
models on these GPUs is shown in Table 8. These appli
tions showed ≥ 91% accuracy except LAMMPS, which show
comparatively low accuracy due to overestimation. We selec
the OpenCL-based SPEC ACCEL benchmark suite, which
a standard application suite for measuring GPU performan
Compared to OpenCL, CUDA benchmarks are more optimi
for NVIDIA GPUs; however, our selected features (floati
point activity, memory activity, and frequency) are agnostic
OpenCL, CUDA, or HIP. In addition to SPEC ACCEL,
approach predicted power and performance with accuracy
tween 80% and 99% for CUDA and HIP-based real HPC ap
cations (i.e., LAMMPS, NAMD).

Summary: These results confirm that the inter-architect
and inter-vendor accuracy difference is negligible. The ove
accuracy also confirms the feasibility of the selected feature
estimating power and time on a new GPU architecture (sa
vendor) and a GPU architecture from another vendor.

6.3. Optimal Frequency Selection
6.3.1. Optimal Frequency for NVIDIA GPUs

The optimal frequencies selected for real applications wer
alignment with the optimal frequencies selected for the SP
ACCEL benchmark applications. Figure 12 shows DVFS p
files selected with measured(M)-EDP, estimated(E)-EDP,
ED2P, and E-ED2P for NAMD, LAMMPS, and LSTM, alo
with the power and execution time for each supported DV
configuration. Table 9 provides a list of estimated and measu
optimal frequencies for these applications. For each appli
tion, as expected, estimated optimal frequencies using ED
were always higher than the optimal frequencies using E
The selection of higher frequencies leads to lower performa
degradation. Also, all selected optimal frequencies for real
plications were always less than the GPU maximum frequen
Due to a slight overestimation of power usage, the estima
optimal frequencies for LAMMPS and NAMD were sligh
less than or close to their measured optimal frequencies. A
consequence of the overestimation of the execution time,
estimated optimal frequencies for LSTM were observed to
higher than its measured optimal frequencies. This observat
was consistent with SPEC ACCEL benchmarks.

Concerning the inter-architectural portability of the selec
optimal frequency, the difference between the optimal frequ
cies selected via ED2P for an application on GV100 and GA1
is minimal (< 1%). For example, E-ED2P selected the same
timal frequency (i.e., 1095 MHz) for NAMD on both GV100
GA100. It validates the portability of the selection of the o
mal frequency technique across different GPU architectures
is pertinent to mention that the optimal frequency is kerne
algorithm-specific. Therefore, an application involving mu
ple kernels may lead to the selection of different optimal
quencies throughout the application’s execution lifecycle.
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0: Comparison of power estimated by the proposed power model and measured power for applications on NVIDIA GV100, GA100, and AMD MI21
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: Comparison of time estimated by our performance model and measured time for applications on NVIDIA GV100, NVIDIA GA100, and AMD MI2
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The optimal DVFS profiles selected with measured(M)-EDP, estimated(E)-EDP, measured(M)-ED2P and estimated(E)-ED2P for NAMD, LAMM
shown along with the power and execution time for each supported DVFS configurations on GV100 and GA100.
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he measured EDP, estimated EDP, measured ED2P, and estimated
mal frequencies for real applications.

GPU Application M-EDP E-EDP M-ED2P E-ED2P
GV100

Optimal
ency (MHz))

NAMD 1072 1012 1095 1095
LAMMPS 1072 1050 1125 1140
LSTM 652 975 652 1057

GA100

Optimal
ency (MHz))

NAMD 1155 1020 1215 1095
LAMMPS 1110 1065 1215 1155
LSTM 810 975 810 1065

Average energy saving and change in execution time for real applica-
measured and estimated optimal frequencies achieved via EDP and

roaches on NVIDIA GV100 and GA100.

U Approach Energy Saving Performance

00

M-ED2P ↑ 27.4% ↓ −0.6%
E-ED2P ↑ 29.6% ↓ −5.2%
M-EDP ↑ 31.7% ↓ −3.4%
E-EDP ↑ 30.2% ↓ −8.8%

00

M-ED2P ↑ 25% ↓ −4.9%
E-ED2P ↑ 22.6% ↓ −4.7%
M-EDP ↑ 27.1% ↓ −6.6%
E-EDP ↑ 24.6% ↓ −9.8%

ptimal Frequency for AMD MI210

MD MI210 GPU offers three frequency configurations:
m (500 MHz), Auto (800 MHz), and Maximum (1700
he Minimum and Maximum frequency configurations
ed to be set in manual performance mode, while the

nfiguration is applied in auto performance mode. In
mode, the frequency starts at 800 MHz as a baseline

amically increases based on the workload’s computa-
tensity and GPU’s TDP limit.

g our evaluation of real applications on the MI210, we
that the Minimum configuration resulted in reduced

onsumption (see Fig. 10 for MI210 power evaluation).
r; it also led to significant performance degradation
. 11 for MI210 performance evaluation). On the other
th Auto and Maximum frequencies exhibited similar
nd performance behaviors. This behavior was con-
cross memory- and compute-intensive benchmarks as
nsequently, the frequency configurations available for

10 GPU are not suitable for balancing power and per-
e trade-offs effectively.

ermore, we noted a distinction between AMD and
GPUs in terms of frequency and voltage configura-

hile AMD GPUs offer three frequency options and al-
rs to adjust multiple voltage configurations, NVIDIA
nly allow frequency adjustments and manage voltage
y without user configurability. Based on this observa-
hypothesize that a combination of frequency and volt-
gurations specific to a workload could potentially yield

d energy-performance trade-offs for AMD GPUs. In
search, we plan to investigate and study the selection
al voltage and frequency configurations for maximiz-
rmance while minimizing energy consumption.

6.4. Energy and Performance Evaluation

In this section, we evaluate the energy savings and cha
in execution time in regard to real applications across GV1
and GA100 architectures. Figure 13 shows energy savings
change in execution time for NAMD, LAMMPS, and LST
applications achieved with (a) measured and estimated o
mal frequencies achieved using EDP and ED2P approaches
GV100 and (b) measured and estimated optimal frequenc
achieved using EDP and ED2P approaches on GA100. Ov
all, the real applications’ energy saving and change in exe
tion time are listed in Table 10. In contrast to SPEC ACC
benchmarks, NAMD and LAMMPS applications showed p
formance degradation even with the measured optimal frequ
cies. For NAMD, the measured and estimated optimal frequ
cies selected via ED2P approach showed exactly the same
ergy saving (i.e., 25%) and performance loss (i.e., 10%)
GV100. For LAMMPS, the measured and estimated optim
frequencies selected via ED2P approach showed slightly v
able energy savings (i.e., 23% and 21%) at the same perf
mance loss (i.e., 9%) on GV100. On the other hand, LST
saved 28% and 26% of energy on GA100 and GV100, resp
tively, with no performance loss. It indicates that an applicat
with higher computational activities (e.g., NAMD, LAMM
is likely to save energy at the cost of some performance l
compared to an application with lower computational activ
(e.g., LSTM). In other words, applications with higher com
tational activity are less likely to have sweet spots of DVFS c
figurations, reducing energy without any performance pena
More adaptive approaches could take ED2P execution time a
baseline and scale the execution time to the desired level. Th
performance-centric approaches would ensure minimal perf
mance degradation while saving energy.

Another important observation is that the proposed appro
is able to determine optimal frequency even when there w
lower accuracy in estimating power or execution time. For
ample, LSTM with comparatively lower accuracy (i.e., 80.8
in the estimation of power consumption on both GPU archit
tures showed significant energy savings with no performa
loss. Based on the energy savings and performance degradat
for SPEC ACCEL benchmarks and real applications, ED2P
shown to be a better choice as it offers better power and
ecution time trade-offs. These energy savings for real-wo
applications across GPU architectures further confirm the
fectiveness of our approach.

7. Comparison to State of The Art

7.1. Overview

We compared our approach with Guerreiro et al. [7], wh
is a state-of-the-art research and method. Guerreiro et al. p
posed GPU predictive models, which were trained usin
dataset created by sequencing the GPU assembly (i.e., PT
instructions of the workloads. These models intend to pred
changes in execution time, power, and energy consumption
select the minimum-energy frequency configuration.
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Energy savings and change in execution time achieved with (a) measured and estimated optimal frequencies achieved using EDP and ED2P approache
d (b) measured and estimated optimal frequencies achieved using EDP and ED2P approaches on GA100 for NAMD, LAMMPS, and LSTM applicati

g the real workloads used in our evaluations (6.2),
cutables of LAMMPS and NAMD support CUDA PTX
e used the cuobjdump tool to acquire the PTX code
MPS and NAMD using the same CUDA executables
ere used in collecting the utilization metrics. These
les were built on NVIDIA GA100 GPU. Finally, the
Parser [7] tool was used to parse the PTX code and to
the dataset for LAMMPS and NAMD.

sed the gpuPTXModel [7] tool to train power, time,
rgy models using 126 benchmarks for training and 14
arks on GTX Titan X. We used LAMMPS and NAMD
g using their statistical PTX dataset and performance
on GA100, including one memory and 61 core fre-

configurations along with power, energy, and time
hese frequency configurations. The PTX dataset was
predicting the power, energy, and time of real applica-
GA100 using the models trained on GTX Titan X.

del Comparison
mpared the efficacy of the models proposed in [7] and

proposed in this study. In particular, we compared the
n accuracy, quality of optimal frequency, and modeling
ity and cost.
odels trained with 126 benchmarks on the GTX Titan
showed errors of 18.9%, 16.7%, and 16.5% for pre-

power, performance, and energy, respectively, for the

14 validation benchmarks on the same GPU. We predicted
execution time, power, and energy of real applications on
GA100 using the same models trained on the GTX Titan X. T
error rates are shown in Table 11. Our power and performa
models showed on average ∼6X improvements compared to
state-of-the-art model in [7]. This prediction accuracy is cru
for enabling real savings. For example, a 5% decrease in pow
consumption at the scale of the Summit supercomputer co
generate savings of ∼1 million dollars [7].

7.3. Optimal Frequency Comparison

Guerreiro et al. [7] and our approach use different method
determining the optimal frequency for a given workload. Gu
reiro et al. manually configured a lower-bound optimal
quency (e.g., 80% of the supported maximum frequency).
their study, the maximum frequency is implicitly conside
as an upper-bound optimal frequency. A Pareto-optimal is
fined using the energy consumption of the frequencies wit
the lower- and upper-bounds. Their study considers a freque
configuration with the lowest power consumption as an o
mal frequency. However, we observed the following caveat
their selection of optimal frequency. First, manually pick
a (lower-bound) frequency for all workloads may potentia
obstruct the selection of an energy-efficient optimal frequen
especially for memory-bound workloads. Second, our obser
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ily a performant frequency (see Fig. 1 - b, c, f, g).
study, as explained in Section 4.6, we addressed these

s as follows. First, our method does not require man-
r-bound optimal frequency. It rather searches the en-

FS design space for the optimal frequency. Second,
ot select an optimal frequency, merely exhibiting the
nergy. Instead, our algorithm selects the optimal fre-
that shows minimum energy with little to no perfor-
egradation.

able 11: Comparison of our models with the state of the art.

PPPP

App LAMMPS NAMD
Our Work Guerreiro et al. [7] Our Work Guerreiro et al. [7]

wer 2.1% 21.8% 4% 17.6%
ime 8.6% 24.4% 1.8% 34.4%

r Related Work and Comparison

ng analytical models depend on acquiring some fea-
g., voltage) that involve complex and costly procedures.
r, these features do not necessarily influence power and

ance effectively across different computational intensi-
refore, the applicability and accuracy of these models

limited [41, 42, 43, 44, 45, 46].
code-based models analyze GPU assembly instruc-

d try to establish their relationship with performance,
nd energy [7, 15]. Braun et al. [13] characterized PTX
attempted to predict execution time and power; how-

ir study does not explore DVFS configurations.
is the preferred control for scaling power and perfor-

Several state-of-the-art studies target only performance
r consumption across different DVFS configurations.
al. [12] proposed a DVFS-based model. However, its
limited to the application’s performance. Nabavinejad
47] implemented batchDVFS approach, which lever-
batch size of the DNN inference and DVFS technique
l the power and performance. Nevertheless, the scope
ork is limited to DNN workloads. Guerreiro et al. [48]

d DVFS-based power and performance models; how-
y do not offer an optimal DVFS configuration. Simi-
tta et al. [11] provided a DVFS-based ensemble ma-

arning framework that only predicts power usage for a
PU frequency. Wu et al. [8] attempted to define clusters
ls exhibiting similar power and performance patterns
PU’s DVFS design space. Then, it used machine learn-
niques to map a new kernel to one of the clusters. As
els are based on coarse-grained performance counters;
ediction accuracy is limited. Such models will result
lection of a sub-optimal GPU profile. In contrast, our
poses a fine-grain and comprehensive approach to pre-
er, execution time, and energy with better accuracy and
a performance-aware optimal frequency.
rous studies attempt to develop machine learning-
odels to predict the application’s power and execution
wever, the portability of the ML-based model is a con-
r example, a real HPC application’s execution time is

unbounded and can vary based on input sizes. Therefore,
ML-based model trained with a particular input size cannot
fectively predict the application’s execution time with differ
input sizes or an unseen application. Multi-objective soluti
mainly involve two approaches. First, the Pareto-optimal u
a set of solutions that any member of the solution set does
dominate. Second, optimal decision-making techniques narr
down to a single solution from the available set. EDP [6], ED
and MCDM [49, 50, 51] are the prominent decision-mak
techniques. Guerreiro et al. [7], and Fan et al. [15] use PT
based assembly code to extract features related to GPU perf
mance, power, and energy across DVFS configurations us
ML-based models. These studies leverage the Pareto-optim
mechanism to find the optimal set of DVFS configuratio
While PTX-based code modeling is promising as it does not
quire prior application execution, it is challenging to determ
utilization, especially for memory access patterns.

Summary: This research differentiates itself from the pre
ous studies on several aspects as highlighted in Table 12. Fi
as the low-level application’s utilization metrics and archit
ture’s scaling features are used in developing the analyt
models, no static source code analysis and ML-based mod
ing are required. Second, the multi-objective algorithm can
EDP, ED2P, or potentially other functions to determine the
timal frequency. We have observed that changing the objec
function has no impact on the underlying analytical models.
average, these frequencies save one-fifth of the energy with
tle to no performance loss. Third, it is one of the first stud
that evaluate the portability and feasibility of optimal freque
selection with the state-of-the-art NVIDIA GA100 GPU.
GA100, our models showed accuracy up to 98% and saved o
fourth of the energy consumption of real applications. Fina
unlike the majority of the prior works, we use two HPC ap
cations and one real ML application in our evaluation to furt
demonstrate our proposed approach’s effectiveness.

Table 12: Comparison of this study against the state-of-the-art

Study Analytical Static ML Real Apps Cross-GPU Multi-Objective
Guerreiro et al. [7] 7 3 3 7 3 7

Fan et al. [15] 7 3 3 7 7 7

Wu et al. [8] 7 7 3 7 7 7

Our Work 3 7 7 3 3 3

9. Use in HPC Production Environment

The proposed techniques can be integrated into the H
production environment via two methods. The first is the
fline method that involves executing the desired applicat
at the maximum frequency to acquire the utilization met
(i.e., floating-point and memory activities) to estimate the
plication’s power and execution time across the DVFS con
urations supported on the target GPU. Afterward, the optim
DVFS configuration is determined and stored in a databa
When the same application is scheduled for execution,
workload manager (e.g., Slurm) fetches the application’s
timal configuration (as a part of the Slurm Prolog mechanis
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rjects the optimal frequency into the job script. The op-
quency is applied to the target GPU at the application’s
n time. This method requires the user to submit the job
identifiable job name. Furthermore, the DVFS con-

n cannot be readjusted during the execution lifecycle
plication. This method is useful for applications with
computational activity. We have a template that auto-
lecting the optimal frequency for a given application
imal user input.

econd method is the online method which does not re-
y prior execution or identity of the application. The
ion’s utilization metrics are collected periodically dur-
xecution. When the application’s utilization metrics
power and execution time are estimated across the
VFS configurations, and the new optimal DVFS con-

n is determined accordingly. The optimal configuration
ed directly using GPU’s native interface (e.g., dcgmi,

mi). This method is suitable for applications compris-
iple kernels (or phases).

clusions and Future Work

r consumption presents an increasingly critical chal-
current and emerging GPU-enabled HPC systems and
minant constraint for exascale systems and beyond. Ar-
it is imperative to develop effective GPU power man-

approaches to lower power while maintaining mini-
act on execution time. The DVFS is a reliable con-
regulating power and execution time; however, the
esign space for GPU is large; therefore, brute-force ap-
s are infeasible in selecting the optimal power and ex-
time. The problem is further compounded by the fact
impractical to actually measure power and execution

oss all DVFS configurations in the GPU’s DVFS de-
ce. Furthermore, the selection of a DVFS configuration
the DVFS design space) that is optimal in terms of both
nd performance is non-trivial. To address these chal-

n a more systematic manner, we came up with an ap-
hat involves three key steps: (1) identification of GPU
n metrics that influence both the power and execution

a given workload; (2) development of analytical mod-
timate power and execution time across GPU’s DVFS
and (3) selection of optimal frequency using multi-
e optimal functions. To evaluate the efficacy of the pro-
proach, we acquired metrics using the state-of-the-art
DCGM interface for 24 workloads including two HPC

ions, one real ML application, 19 benchmark applica-
m SPEC ACCEL, and two micro-benchmarks.
gh feature characterization, we have identified key fea-
t directly cause power consumption and change in the
n time of applications with different computational in-
. We empirically developed reliable and scalable mod-
g the identified feature set. The multi-objective ap-
ook optimal performance and optimal energy into con-
n simultaneously and selected an energy-efficient op-

VFS configuration. The accuracy of analytics-based
nd performance models for estimating SPEC ACCEL

benchmark applications were up to 99% and 98% for the e
mation of power and execution time, respectively. On avera
the energy savings for SPEC ACCEL benchmark applicati
were over 25%, with no performance degradation on GV1
Similarly, the real applications showed over 22.6% energy s
ings with a performance degradation of 4.7% on GV100.

We validated the portability of the selected feature set, a
lytical models, and multi-objective approaches on the state-
the-art HPC-grade NVIDIA GA100 and AMD MI210 GP
using real applications. The power and performance mod
developed on GV100 can be used on GA100 with accuracy
to 97.9%. The same models estimated power and performa
on MI210 GPU with accuracy up to 96.1% and 99%, resp
tively. The evaluation showed 29.6% energy savings with a p
formance loss of 5.2%. Additionally, we conducted a comp
son between our models and PTX-based static models. The
sults revealed a significant reduction in the average error ra
with a decrease from 19.7% to 3.1% for power models and fr
29.4% to 5.2% for performance models.

The curated feature set, power and performance estimat
models, and systematic determination of the optimal DVFS p
file using the multi-objective approach are together a novel
tempt toward building an energy-efficient HPC system. In
future, we would like to extend our work to create a solut
that encompasses both CPU and GPU to optimize the pow
draw of the entire node.
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