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Associations between gut microbiota and
incident fractures in the FINRISK cohort

Check for updates

Louise Grahnemo 1,12, Oleg Kambur2,12, Leo Lahti 3, Pekka Jousilahti 2, Teemu Niiranen2,4,5,
Rob Knight6,7,8,9, Veikko Salomaa 2, Aki S. Havulinna 2,10 & Claes Ohlsson 1,11

The gut microbiota (GM) can regulate bone mass, but its association with incident fractures is
unknown. We used Cox regression models to determine whether the GM composition is associated
with incident fractures in the large FINRISK 2002 cohort (n = 7043, 1092 incident fracture cases,
median follow-up time 18 years) with information on GM composition and functionality from shotgun
metagenome sequencing. Higher alpha diversity was associated with decreased fracture risk (hazard
ratio [HR] 0.92 per standard deviation increase in Shannon index, 95%confidence interval 0.87–0.96).
For beta diversity, the first principal component was associated with fracture risk (Aitchison distance,
HR 0.90, 0.85–0.96). In predefined phyla analyses, we observed that the relative abundance of
Proteobacteria was associated with increased fracture risk (HR 1.14, 1.07–1.20), while the relative
abundance of Tenericutes was associated with decreased fracture risk (HR 0.90, 0.85–0.96).
Explorative sub-analyses within the Proteobacteria phylum showed that higher relative abundance of
Gammaproteobacteria was associated with increased fracture risk. Functionality analyses showed
that pathways related to amino acidmetabolism and lipopolysaccharide biosynthesis associatedwith
fracture risk. The relative abundance of Proteobacteria correlated with pathways for amino acid
metabolism, while the relative abundance of Tenericutes correlated with pathways for butyrate
synthesis. In conclusion, the overall GM composition was associated with incident fractures. The
relative abundance of Proteobacteria, especially Gammaproteobacteria, was associated with
increased fracture risk, while the relative abundance of Tenericutes was associated with decreased
fracture risk. Functionality analyses demonstrated that pathways known to regulate bone health may
underlie these associations.

Fragility fractures are commonly caused by osteoporosis, a disease char-
acterized by lowbonemass and altered bonemicroarchitecture1. One in two
women and one in four men will at some point suffer an osteoporotic
fracture2. Lowbonemineral density (BMD) is themajor causal risk factor for
fractures3,4. In addition, fracture risk is influenced by bone quality para-
meters and non-skeletal factors such as neuromuscular control and cog-
nition, which influence the risk of falling5.

The gut microbiota (GM) can regulate bone mass in rodents and
humans6–9. Previous human studies on the association between GM com-
position and bone mass parameters have yielded inconsistent results10–16.
The inconsistent results may be explained by the small sample sizes and the
cross-sectional settings of the previous studies. Orwoll et al.15 estimated that
large sample sizes (n > 6000) are required to account for multiple testing
when evaluating associations between the many taxa present at genus/
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species levels and bone mass parameters. However, a recent targeted study
including both a large discovery cohort and a replication cohort identified
three bacterial species reproducibly associated with appendicular lean
mass17. It is unknown if theGMcomposition is associatedwith risk of falls or
bone quality parameters that also may influence fracture risk in humans.
Furthermore, to our knowledge, the associations between GM composition
and incident fractures have not been evaluated in a prospective setting.

Thus, previous studies evaluating the associations between GM com-
position andbonehealth have been small andoftennot adjusted for relevant
covariates. The present study is substantially larger than previous studies,
enabling adjustment for several important covariates. The overall aim of the
present study was to determine whether the GM composition is associated
with incident fractures, adjusted formultiple relevant covariates, in the large
prospective FINRISK 2002 cohort (n = 7043, 1092 fracture cases). In this
cohort, GM composition and functionality were quantified using meta-
genome sequencing, and the median follow-up time was 18 years.

Results
Alphaandbetadiversitymeasureswere associatedwith incident
fracture risk
We first used the FINRISK 2002 cohort to determine whether measures of
the overall GM composition were associated with risk of incident fractures
(main outcome, n = 1092, Fig. 1, Table 1). Using the main model (adjusted

for age, gender, medications, antibiotics, and previous fractures), we
observed that higher alpha diversity was associated with decreased risk of
fractures (HR 0.92 per standard deviation increase in Shannon index, 95%
confidence interval 0.87–0.96, P = 0.006, Fig. 2a). For beta diversity, prin-
cipal component (PC) 1 of the Aitchison distance was associated with
fracture risk (HR0.90, 95%CI0.85–0.96,P = 0.0007; Fig. 2b, Supplementary
Table 1). These findings demonstrate that the overall GM composition, as
determined by alpha and beta diversity measures, was associated with
incident fracture risk.

Proteobacteria and Tenericutes were associated with incident
fracture risk
To avoid the challenge with multiple testing described by Orwoll et al.15

when evaluating the associations for multiple taxa with bone health para-
meters, we only performed predefined association analyses for the 10 most
abundant phyla with incident fracture risk (Supplementary Table 2–3).
Following conservative Bonferroni correction (p < 0.05/10 = 0.005
required), the relative abundance of Proteobacteria was associated with
increased fracture risk (HR1.14, 1.07–1.20,P = 1.0 × 10−5),while the relative
abundance of Tenericutes was associated with decreased fracture risk (HR
0.90, 0.85–0.96, P = 5.4 × 10−4) (Fig. 2c, d, Supplementary Table 3). Fol-
lowing adjustment formultiple testing, all proportional hazard assumptions
were met for the four main findings of the study (Supplementary Table 4).
The effect sizes of the associations of Proteobacteria and Tenericutes with
fractures (main model) were similar after further adjustments for smoking,
hormone replacement therapy, alcohol use, physical activity (extended
model), and diet (diet model; Supplementary Table 5). In sensitivity ana-
lyses, we excluded individuals with antibiotic treatment, previous fractures,
inflammatory bowel disease, other major diseases (cardiovascular disease,
cancer, diabetes), or fractures within two years after the baseline, with
similar results (Supplementary Table 6).

There was a low degree of correlation between Proteobacteria and
Tenericutes (Kendall’s tau-b coefficient =−0.17), and the effect sizes where
similar when including both phyla in the same Cox regression model
(Proteobacteria—individually: HR 1.14, 1.07–1.20; combined: HR 1.12,
1.07–1.20, Tenericutes—individually: HR 0.90, 0.85–0.96; combined: HR
0.92, 0.87–0.98).

Proteobacteria consists mainly of Gammaproteobacteria, Betaproteo-
bacteria, and Deltaproteobacteria; together these three classes had a com-
binedmean relative abundanceof 3.17%out of the 3.23% forProteobacteria.
Gammaproteobacteria and Deltaproteobacteria were statistically sig-
nificantly associated with increased risk of fractures, and for Betaproteo-
bacteria, a similar trend was observed (Supplementary Table 7). The
combined relative abundance of Gammaproteobacteria, Betaproteo-
bacteria, and Deltaproteobacteria was robustly associated with increased
risk of fractures (HR 1.12; 1.06–1.19, P = 6.5 × 10−5, Supplementary
Table 7).

Furthermore, we used principal component analysis to uncondition-
ally explore the genera that contributed themost to the associations between
the overall GM compositional parameters and fractures. These genera
analyses showed that both PC1 and PC2 were associated with the risk of
fractures (Supplementary Table 8, Supplementary Fig. 1). Interestingly, the
top 20 most contributing genera of PC2 were all Proteobacteria that
belonged to the Gammaproteobacteria class and the Enterobacteriaceae
family (Fig. 3). Among these, themost commongenerawere the pathogenic
genera Escherichia (1.6% mean relative abundance), Shigella (0.13% mean
relative abundance), and Klebsiella (0.13% mean relative abundance
(Fig. 3a)).

The Tenericutes phylum (0.010% mean relative abundance) consists
entirely of the class Mollicutes (0.009%mean relative abundance, HR 0.89,
0.84–0.94), with the orders Mycoplasmatales (0.004% mean relative abun-
dance, HR 0.93, 0.88–0.99), Acholeplasmatales (0.003% mean relative
abundance, HR 0.91, 0.86–0.96), and Entomoplasmatales (0.002% mean
relative abundance, HR 0.90, 0.85–0.95) as the major contributors to the
association with decreased fracture risk.

Agreed to participate 
n=8 783

Donated fecal sample 
n=7 231 

Did not donate 
fecal sample

n=1 552

Complete phenotype 
n=7 102

Incomplete phenotype 
data

n=129

High-quality GM data 
n=7 082 

Exclusions due to low 
read count (<50K) 

n=20

Present study cohort 
n=7 043 

Exclusions due 
to pregnancy

n=39

FINRISK 2002 cohort 
n=13498 

Declined to participate 
n=4 715

Fig. 1 | Flow chart. Numbers of excluded and included participants.
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Explorative analyses of the 25 most abundant genera and the 25 most
abundant species suggested that two genera, Parabacteroides and Lachno-
clostridium, and three species, Oscillibacter sp. ER4, Parabacteroides dis-
tasonis, and Dorea longicatena, were associated with the risk of fractures
passing the FDR threshold (Fig. 3b, c, Supplementary Tables 9–10). In
sensitivity analyses, we excluded individuals with antibiotic treatment,
previous fractures, inflammatory bowel disease, or fractures within two
years after the baseline, with similar results (Supplementary Table 11). The
proportional hazard assumption was met for Lachnoclostridium, Para-
bacteroides, Dorea longicatena, and Parabacteroides distasonis but not for
Oscillibacter sp. ER4 (Supplementary Table 12). Since the proportional
hazard assumption was not met for Oscillibacter sp. ER4, one should be

cautious in the interpretation of the observed association between this taxa
and fracture risk.

Gender-stratified analyses
Explorative gender-stratified analyses showed that the Shannon index
associated with fractures in women (n = 3855, cases n = 650, HR 0.88;
0.82–0.95) but not inmen(n = 3188, casesn = 442,HR0.99; 0.90–1.08) (Fig.
2a). However, we did not observe any statistically significant interaction
between Shannon index and gender (P = 0.098 for the interaction). The
associations for Proteobacteria, Tenericutes, and beta diversity with fracture
risk were statistically significant in women but not in men; however, the
trends for these associations in the less powered male sub-cohort were

Table 1 | Study characteristics

Variable All (n = 7043) Cases (n = 1092) Controls (n = 5951)

Age (years), mean (SD) 49.6 (12.9) 53.2 (12.8) 48.9 (12.8)

Women, n (%) 3855 (54.7) 650 (59.5) 3205 (53.9)

Medication use, n (%) 2925 (41.5) 559 (51.2) 2366 (39.8)

Antibiotic treatment—6months, n (%) 980 (13.9) 157 (14.4) 823 (13.8)

Antibiotic treatment—1month, n (%) 275 (3.9) 46 (4.2) 229 (3.8)

Prevalent fractures, n (%) 610 (8.7) 174 (15.9) 436 (7.3)

Current smoker, n (%) 1641 (23.4)a 253 (23.4)b 1388 (23.4)a

Hormone replacement therapy, n (%) 959 (13.6)b 194 (17.8) 765 (12.9)b

Alcohol intake (g/week), median (IQR) 36.0 (9.0–103.5)c 30.6 (2.7–105.6)d 36.0 (9.0–102.9)c

High alcohol intake, n (%) 585 (8.7)c 102 (9.9)d 483 (8.4)c

Physical activity level, n (%) c a d

basically sedentary 1464 (21.1) 240 (22.5) 1224 (20.9)

light excercise level 3910 (56.4) 609 (57.1) 3301 (56.2)

moderate to high excercise level 1562 (22.5) 217 (20.4) 1345 (22.9)

Healthy food choice score, mean (SD) 200.2 (88.3)e 205.7 (86)c 199.3 (88.7)e

CRP (ng/ml), median (IQR) 1.1 (0.5–2.6)a 1.3 (0.6–3)b 1.1 (0.5–2.5)a

Shannon diversity index, mean (SD) 3.40 (0.43) 3.37 (0.43) 3.40 (0.43)

Follow-up time (years), median (IQR) 17.8 (14.0–17.9) 9.0 (2.5–13.5) 17.8 (17.7–17.9)

Missing individuals:
a21–50,
bLess than 20,
c146–284,
d66–90,
e1124–1362.
SD standard deviation, IQR, interquartile range

Fig. 2 | Gut microbiota composition is associated
with the risk of incident fractures.Associations for
a alpha diversity (Shannon index), b the first prin-
cipal component of Aitchison distance (beta diver-
sity), c the relative abundance of Proteobacteria, and
d the relative abundance of Tenericutes in the entire
cohort (n = 7043 [1092 fractures], men (n = 3188
[442 fractures]), or women (n = 3,855 [650 frac-
tures]). Cox regressions were adjusted using the
main model. Data are hazard ratios (HRs) and 95%
confidence intervals (CIs).

a b
Shannon index Beta diversity

0.8 0.9 1.0 1.1 1.2 1.3 0.8 0.9 1.0 1.1 1.2 1.3
HR HR

c d
Proteobacteria Tenericutes

0.8 0.9 1.0 1.1 1.2 1.3 0.8 0.9 1.0 1.1 1.2 1.3
HR HR

• All • Men • Women • All • Men • Women

• All • Men • Women • All • Men • Women
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similar as observed in women (Fig. 2b–d). For analysis of women alone, no
major differences for the associations with fractures were observed after
further adjustment for menopause state (Supplementary Table 13).

Associations between phyla and hip fractures
Further explorative sub-analyses demonstrated that Proteobacteria was
associated with increased (HR 1.13, 1.04–1.23) and Tenericutes with
decreased (HR 0.90, 0.82–0.99) risk of MOF (hip, humerus, forearm, and
vertebral fractures,n = 458)with similar effect sizes as observed for fractures
at any bone site (Supplementary Fig. 2a, b). The effect sizes were also similar
or stronger for hip fractures (n = 136) but only statistically significant for
Tenericutes (Supplementary Fig. 2a, b).

GM composition is associated with the inflammatory
marker CRP
AsGMhasbeen shown toaffect inflammation6,18,19, awell-known inducer of
bone loss, we tested whether the identified GM composition parameters,
associated with fracture risk in the present study, also associated with the
inflammatory marker CRP. Relative abundance of Proteobacteria was
associated with increased levels of CRP (P = 6.7 × 10−7), while Shannon
index (P = 9.4 × 10−11) and relative abundance of Tenericutes
(P = 3.2 × 10−9) were associated with decreased levels of CRP

(Supplementary Table 14). Furthermore, Aitchison PC1 was strongly
associatedwithCRP levels (P = 1.2 × 10−17, SupplementaryTable 14). For all
these GM composition parameters, their associations with incident frac-
tures and CRP were in the same direction. Next, we explored whether the
strengths of the associations for these GM composition parameters with
incident fractures were attenuated by adjustment for CRP; however, the
strengths were largely unchanged (Supplementary Table 15).

GM functional groups are associated with fracture risk
We identified 3017 functional groups, of which 785 (26.0%)were associated
with risk of fractures (FDR < 0.05; Supplementary Table 16). Most of the
functional groups associated with fractures (775/785) were associated with
decreased risk of fractures (Supplementary Table 16). These functional
groupswere frequentlywithin the biological categoriesofmetabolism, in the
process of amino acid metabolism. This finding was more evident among
the top 25 associations (Fig. 4a, Supplementary Table 17). Among the
functional groups associated with increased risk of fractures, the strongest
association belonged to the biological category of glycan biosynthesis and
metabolism, in theprocess of lipopolysaccharide (LPS) biosynthesis (Fig. 4b,
Supplementary Table 18).

To identify mechanisms that may mediate the observed associations
for Proteobacteria and Tenericutes with fracture risk, we determined the
relationships between the relative abundances of Proteobacteria and
Tenericutes, functional groups, and risk of fractures. Interestingly, we found
that 119 out of the 150 (79.3%) functional groups most strongly correlated
with the relative abundanceofProteobacteria and147out of the 150 (98.0%)
functional groups most strongly correlated with the relative abundances of
Tenericutes were also statistically significantly (P < 0.05) associated with
fracture risk (Supplementary Tables 19, 21). Using binomial tests, we found
a strong enrichment for functional groups associated with fractures among
the 150 functional groups most strongly associated with Proteobacteria
(P = 3.2 × 10−42) and Tenericutes (P = 2.5 × 10−81), suggesting that these
functional groups may be involved in the associations for Proteobacteria
and Tenericutes with fracture risk.

For the top 25 functional groups correlatedwith the relative abundance
of Proteobacteria and associated with fractures, we found that these func-
tional groups were negatively correlated with the relative abundance of
Proteobacteria and frequently within the process of amino acidmetabolism
(Fig. 4c, Supplementary Table 20). The amino acid-related correlations for
Proteobacteria included a negative correlation for a functional group
involved in the synthesis of branched-chain amino acids (leucine dehy-
drogenase, Supplementary Table 20), a group of amino acids previously
associatedwith bone health parameters20,21. For the top 25 functional groups
correlated with the relative abundance of Tenericutes and associated with
fractures, we found that these groupswere positively correlatedwith relative
abundance of Tenericutes, with the third most strongly correlated group
belonging to the pathway for metabolism of the short-chain fatty acid
butyrate (Fig. 4d, Supplementary Table 22). We also explored the correla-
tion between downstream taxa of Tenericutes and butyrate metabolism
(K00100) and found strong correlations with class (Mollicutes: r = 0.52,
P < 5.9 × 10−323) and order (Mycoplasmatales: r = 0.35, P = 8.9 × 10−204;
Acholeplasmatales: r = 0.36, P = 2.3 × 10−214; Entomoplasmatales: r = 0.38,
P = 1.3 × 10−242) levels. For the relative abundance of Gammaproteo-
bacteria, the strongest positive correlation was for a functional group
belonging to the process of LPS biosynthesis (K03280, r = 0.37, FDR-
adjusted P = 2.8 × 10−226).

Discussion
Although the GM can regulate bone mass6,8,9, it was unknown if GM
composition is associated with incident fractures. Here, we demonstrated
that the overall GM composition was associated with incident fractures in
the large prospective FINRISK 2002 cohort. We observed that measures of
both alpha and beta diversitywere associatedwith fracture risk. At the phyla
level, the relative abundance of Proteobacteriawas associatedwith increased
fracture risk, while the relative abundance of Tenericutes was associated

Franconibacter 
Enterobacter 
Cronobacter 

Klebsiella 
Pluralibacter 

Yokenella 
Escherichia 

Cedecea 
Buttiauxella 
Citrobacter 

Mangrovibacter 
Leclercia 
Kluyvera 

Atlantibacter 
Shimwellia 
Siccibacter 
Kosakonia 

Trabulsiella 
Salmonella 

Shigella 
-4 -2 0 

Contributions (%) 

HR
0.8

Parabacteroides distasonis
Oscillibacter sp. ER4

Dorea longicatena

0.7 0.9 1 1.1 1.2 1.3 1.4

HR

Parabacteroides
Lachnoclostridium

0.80.7 0.9 1 1.1 1.2 1.3 1.4

a

c

b

Fig. 3 | Principal component of genera as well as individual common taxa
associated with fracture risk. a The 20 most contributing genera of the second
principal component. b, c Among the 25 most common genera and species, b two
genera and c three species were associated with any fracture using Cox regressions
adjusted using the main model with FDR correction (Supplementary Tables
9 and 10). b, cData are hazard ratios (HRs) and 95% confidence intervals (CIs). n =
7043 (1092 fractures).

https://doi.org/10.1038/s41522-024-00530-8 Article

npj Biofilms and Microbiomes |           (2024) 10:69 4



withdecreased fracture risk.Theassociationbetween theProteobacteria and
fracture riskwasdrivenbygenera of theGammaproteobacteria class and the
Enterobacteriaceae family, including the pathogenic genera Escherichia,
Shigella, and Klebsiella. Furthermore, functionality analyses demonstrated
that pathways known to regulate bone health may underly the identified
associations between GM composition parameters and incident fractures.

Our finding that higher alpha diversity was associated with decreased
fracture risk is in line with a previous study showing that osteoporosis was
associated with decreased alpha diversity12, while another study showed the
opposite16.However, as these twoprevious cross-sectional studies includeda
low number of participants (n < 100), the robustness of these prior findings
are limited. Gender-stratified analyses showed that low Shannon index was
associated with high fracture risk in women but not in men. However,
formal interaction analyses did not show a statistically significant interac-
tion between Shannon index and gender.

Proteobacteria—especially Gammaproteobacteria—has previously
been associated with mortality22 and several diseases such as obesity,
inflammatory bowel disease, and irritable bowel syndrome23, and now also
with incident fractures. A negative effect of Proteobacteria on bone health is
supported by a small study of 104 postmenopausal women, demonstrating
that Proteobacteria and generawithin this phylumwere enriched inwomen
with low BMD12.

Tenericutes are small bacteria devoid of cell walls that may cause
pneumonia and urogenital tract disease24. However, the relative abundance
of Tenericutes phylum was lower in individuals with some inflammation-
related disorders compared with controls25,26. In the present study, the
relative abundance of Tenericutes was associated with decreased risk of
incident fractures, supporting a health-promoting effect of Tenericutes.

For the 25 most common genera and species, explorative analyses
showed that two genera and three species were associated with the risk of
fractures passing the FDR threshold. Our finding that Parabacteroides and
Parabacteroides distasonis were associated with increased fracture risk is in

line with some small studies suggesting that higher relative abundance of
Parabacteroides is associated with osteoporosis (control subjects n = 31–64,
osteoporotic subjects n = 42–44)12,27 and that higher relative abundance of
Parabacteroides distasonis is associated with lower BMD (n = 499)11. In our
study, Lachnoclostridium was also associated with increased fracture risk,
similarly to a small study suggesting that osteoporotic women (n = 34) had
higher relative abundance of Lachnoclostridium than control subjects
(n = 51)28. Furthermore, Dorea longicatena has previously been associated
with increased lean mass in the large HUNT cohort (n = 5196)17, a finding
thatmay help to explain the association between high relative abundance of
Dorea longicatena and decreased fracture risk in the current study. Apart
from determining associations between the most common genera and
species, we also determined the genera that contributedmost to the first and
second principal components. The principal component analysis was not
restricted to common genera. Except for Escherichia, the most contributing
generawere not common, and thus the 2 genera and the 3 species associated
with fracture risk in our explorative analyses did not belong to the most
contributing genera of the first or second principal component.

Inflammation is known to cause bone loss mainly by increasing bone
resorption29. Inflammation-induced bone loss is driven by pro-
inflammatory cytokines that can induce the formation of CRP, a clinical
marker of inflammation29,30. It has also been reported that high CRP is
associated with increased risk of incident fractures31. As inflammation has
been shown to be affected by the GM6,18,19, we tested whether the GM
composition was associated with CRP. The relative abundance of Proteo-
bacteria—associated with increased fracture risk—was associated with
increased CRP levels, while the relative abundance of Tenericutes and the
Shannon index—associated with decreased fracture risk—were associated
with decreased CRP levels. In line with our results, low GM diversity has
previously been associated with increased CRP levels32. Together, these
findings imply that our observed associations between GM composition
parameters and fracture risk may be mediated via CRP. However, when we
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Fig. 4 | Functionality plots. Functionality plots using a the top 25 functional groups
associated with decreased fracture risk (main model, Supplementary Table 17), b all
10 functional groups associated with increased fracture risk (main model, Supple-
mentary Table 18), c the top 25 functional groups (all negatively) correlated with the
relative abundance of Proteobacteria and also associated with fracture risk (Sup-
plementary Table 20), and d the top 25 functional groups (all positively) correlated
with the relative abundance of Tenericutes and also associated with fracture risk
(Supplementary Table 22). The node size is determined by the average estimates of

the functional groups (Kyoto Encyclopedia of Genes and Genomes orthology [KO]
groups) assigned to that node. Estimates are 1/hazard ratio for negative associations
(a), hazard ratio for positive associations (b), and absolute Pearson’s r for correla-
tions (c,d). Labels are shown for nodes with a size ≥ 200.Different colors indicate the
different functional layers: biological categories (dark blue), biological processes
(light blue), pathways (green), module (red), and KO groups (yellow). Labels for
pathways known to regulate bone health are highlighted in bold black. n = 7043
(1092 fractures). LPS lipopolysaccharide.
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included CRP as a covariate in the fracture models, the effect sizes were
largely unaffected, indicating that other factors are more important for the
observed associations.

Our functionality analyses demonstrated that pathways related to
amino acid metabolism were associated with fracture risk. The relative
abundance of Proteobacteria was negatively correlated with the synthesis of
branched-chain amino acids, known to associate with bone health
parameters20,21; thus, this findingmay contribute to the observed association
between higher relative abundance of Proteobacteria and increased fracture
risk. In line with these data, circulating levels of several amino acids have
been reported to associate with decreased fracture risk20, and a recent
Mendelian randomization studydemonstrated that high levels of genetically
determined valine and isoleucine, two branched-chain amino acids,
increase BMD21.

In the present study, functional analyses also showed that LPS bio-
synthesis was related to increased fracture risk and increased relative
abundance of Gammaproteobacteria. LPS is a strong inducer of inflam-
mation, resulting in elevated levels of proinflammatory cytokines and,
thereby, inflammation-induced bone loss33. Gram negative bacteria such as
Gammaproteobacteria are the source of LPS which enters the circulation in
increased amounts when the gut permeability is increased34. Based on these
findings, we propose that high levels of Gammaproteobacteriamay increase
circulating LPS and, thereby, result in inflammation-induced bone loss,
contributing to the increased fracture risk observed in the present study.

Some GM species ferment fibers into short-chain fatty acids like
butyrate. These bacterial metabolites have been shown to provide benefits
for the host. In mice, short-chain fatty acids have been shown to increase
both bone and muscle mass35,36, and in humans, high circulating butyrate
levels have been causally associated with increased lean mass37. Both low
bone andmuscle mass are associated with increased fracture risk38,39. In our
study, high relative abundance of Tenericutes was associatedwith decreased
fracture risk. This finding might be explained by the fact that Tenericutes,
including the downstream class Mollicutes and orders Mycoplasmatales,
Acholeplasmatales, and Entomoplasmatales, correlated with enhanced
butyrate metabolism and, thereby, promote musculoskeletal health. This
notion is supported by the present finding that the relative abundance of
Tenericutes was positively associated with butyrate biosynthesis.

Our study has several strengths including the large size of the cohort
(n = 7043)with ahighnumber of incident fracture cases (n = 1092), the long
follow-up time (18 years), and the shotgun metagenome sequencing.
However, our study also has limitations. Our study mainly included parti-
cipants of north European descent, limiting the generalizability across
populations. For FINRISK, in general, there are differences between parti-
cipants and non-participants; lower socioeconomic class and existing health
issues are associated with non-participation40,41. Also, younger people have
been less likely to participate. Non-participation related to not giving stool
samples has not been studied. Our stool samples were stored in−20 °C for
15 years, and small changes in relative abundances of some rare taxa cannot
be excluded. However, the main features of microbiome are known to be
fairly stable in different conditions42–45, and our analyses were focused on
common taxa. Furthermore, all samples were processed similarly, and it is
unlikely that prolonged storage could distort the associations with future
fractures during the follow-up. Although our shallow shotgunmetagenome
sequencing provides enhanced taxonomic resolution over 16 S sequencing,
the taxonomic resolution is still lower than for deep metagenome sequen-
cing. However, shallow metagenome sequencing has been shown to highly
correlate with deep metagenome sequencing data46. As Orwoll et al. sug-
gested that large sample sizes are needed to determine associations between
GM and bone health parameters15, we restricted the predefined analysis to
the overall GM composition (alpha and beta diversities) and the ten most
abundant phyla to avoid challenges with multiple testing. Subsequently, we
may have missed associations for rare phyla. In addition, as we only had
information on the GM at baseline, we could not consider changes of the
GM during follow-up. Also, baseline BMD data are missing in FINRISK;
therefore, we could not determine if the identified taxa are associated with

fracture risk independently of BMD. Although the present study is the
largest thus far within the bone field, even larger studies ormeta-analyses of
several cohorts are needed to study associations at the species level, espe-
cially for dichotomous outcomes such as incident fractures. Another lim-
itation is that we do not provide direct causal evidence for the role of
Proteobacteria or Tenericutes on fracture risk.

In conclusion, the overall GM composition was associated with inci-
dent fractures in the FINRISK 2002 cohort. The relative abundance of
Proteobacteria, especially Gammaproteobacteria, was associated with
increased fracture risk, while the relative abundance of Tenericutes was
associated with decreased fracture risk. Functional analyses demonstrated
that pathways known to regulate bone health may underly these associa-
tions. When additional large-scale cohort studies with metagenome
sequence data and a substantial number of incident fractures are available,
meta-analyses of available studies should be performed to validate the
present findings across populations. These future large-scale meta-analyses
will also give the opportunity to perform well-powered studies to identify
specific species associated with incident fracture risk.

Methods
Study participants
In Finland, the FINRISK cohort study have collected data on risk
factors for cardiovascular disease every 5 years since 197247. In the
current study, we used the FINRISK 2002 cohort for which permanent
Finnish residents (at least 1 year of residency and a personal identifi-
cation code) were eligible to participate if they were 25–74 years of age
and living in one of six different regions in Finland: North Karelia,
Northern Savo, Oulu, Lapland, Turku and Loimaa, or Helsinki and
Vantaa. Eligible participants were randomly selected (stratified by
gender, determined by the social security number, and 10 year age
groups) through the National Population Information System (http://
www.vrk.fi/en). In 2002, 13498 individuals were invited and 8783
participated, of which 7231 participants donated fecal samples, and
among these, 7102 participants had sufficient phenotype data for the
main model used in the present study. Next, we excluded 20 partici-
pants that had low-read counts (<50 K) and, finally, additionally 39
participants that were pregnant at baseline. The resulting 7043 eligible
participants were all included in the current study to maximize power
(Fig. 1). Baseline visits took place during a 3 month period in the
beginning of 2002 (2002 January 13–2002April 19). All relevant ethical
regulations were followed when performing the study. The Coordi-
nating Ethics Committee of the Helsinki University Hospital District
(Helsinki, Finland) approved the study protocol for FINRISK 2002
(ref. no. 558/E3/2001), and all participants provided written informed
consent.

Questionnaires
Participants responded to questionnaires regarding their physical activity,
alcohol anddietary intake, smoking status, anduse of hormone replacement
therapy. Thephysical activitywas assessed as the general level of leisure time
physical activity, coded as: (1) basically sedentary; (2) light exercise; (3)
moderate to high level conditioning activity, like running, skiing etc., or
competitive sports. Alcohol consumption was quantified as the average
weekly pure alcohol use in grams during the past 12months. To indicate
very high intake as a risk factor, the alcohol consumption variable was
dichotomized, with alcohol consumption ≥231 g/week coded as 1 and <231
as 0 (as implemented in the Finnish version of the fracture risk calculator
FRAX, https://frax.shef.ac.uk/FRAX/tool.aspx?lang=fi). Current smokers
were defined as participants that smoked daily at baseline. Healthy dietary
intake was calculated as a healthy food choice score by adding the food
propensity questionnaire responses for intake of food items recommended
in the Nordic Nutrition Recommendations48: fish; poultry, fruits; berries;
fresh, non-sweetened berry and fruit juices; vegetables (including beans and
lentils); nuts and seeds; low-fat cheeses; salad dressings and oils; and fiber-
rich breads49.
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Medication
Several medications are known to affect the gut microbiota50. Therefore, we
defined the participants as users or non-users of medications starting with
ATC codes51 A (alimentary tract and metabolism), B (blood and blood
forming organs), C (cardiovascular system), G (genito urinary system and
sexhormones),H (systemichormonal preparations, excl. sexhormones and
insulins), L (antineoplastic and immunomodulating agents), N (nervous
system), or P (antiparasitic products, insecticides and repellents) based on
their prescribed drug purchases within 3months before baseline. Similarly,
antibiotic treatment was defined as purchases of antibiotics (ATC codes
starting with J01) within 6months before baseline for adjustments in
models. In addition, we performed sensitivity analyses inwhich participants
that purchased antibiotics within 1month before baseline were excluded
from the analyses. Data were obtained from the National Prescribed Drug
Purchase Registry.

Biomarker analysis
High sensitive-CRP was quantified in serum samples using the Architect
ci8200 Chemistry Analyzer (Abbott Laboratories, USA).

Fracture assessment
We recorded both previous fractures that occurred before the baseline
collection of the samples for GM analyses and incident fractures that
occurred after the collection of the samples for GManalyses. In the analyses
of fracture risk, we only evaluated incident fractures, but we adjusted for
previous fractures. Fractures were assessed from the start of the register in
1969 or birth date of each participant, whichever occurred later, to the
diagnosis of fracture, death, or the end of follow-up (31 December 2019)
using International Classification of Diseases (ICD) codes in registries
(Supplementary Table 23). The fracture data in these registries are derived
from medical records. Each permanent resident in Finland is given a per-
sonal identity number, which can be linked to public health records and
registers. This enables the linking of study data with broader health records.
The records ensure practically complete coverage of all significant health
events for an individual’s lifetime in Finland. Only those few participants
who moved permanently abroad before health events or 31st of December
2019 were lost to follow-up. The reliability of Finnish health records has
been verified52,53. Incidence of any fracture was the primary endpoint, while
hip and major osteoporotic fractures (MOF) were secondary outcomes.
MOF were defined as a fracture of the hip, spine, wrist, or humerus.

Assessment of major diseases
To identify participants as having prevalent inflammatory bowel disease,
cancer, cardiovascular disease, or diabetes, we used (1) ICD codes from the
Care Register for Health Care (hospital discharges and specialized out-
patient care), (2) Anatomical Therapeutic Chemical (ATC) codes from the
Drug Reimbursement and Purchase Registers, (3)NordicMedico Statistical
Committee (NOMESCO) codes, (4) Finnish hospital league codes, (5)
national heart patient codes, or (6) reimbursements from Kela (The Social
Insurance Institution of Finland). Unless otherwise specified, codes
matching the start of the specified code are used to identify individuals with
disease. Individuals with inflammatory bowel disease were defined by
havingCrohn’s disease (ICD-10K50, ICD-9 555, or ICD-8 5630), ulcerative
colitis (ICD-10: K51, ICD-9: 556 but not 5564 A, or ICD-8: 5631 or 569), or
by receiving a special reimbursement forCrohn’s disease or ulcerative colitis
fromKela (codes 208 or 209). Individuals with cancer were defined by ICD-
10 codes (C0–C3,C40–C43,C45–C49, orC5–C9) or ICD-8/9 codes (14–16,
170–172, 174–179, 18–19, or 200–208). Individuals with cardiovascular
disease were defined by having experienced stroke (ICD-10 I161 or
I163–164 but not I636; ICD-9 431, 4330 A, 4331 A, 4339 A, 4340 A, 4341 A,
4349 A, or 436; or ICD-8 code 431, 433, 434, 436 but not 43101 or 43191),
coronary artery disease (CAD; ICD-10: I200 or I21–121, ICD-8/9: 410 or
4110), or procedures related to CAD (NOMESCO codes FNF, FNG,
TFN40, FN1AT, FN1BT, FN1YT, FNA, FNB, FNC, FND or FNE; Finnish
hospital league codes 5311–5315; national heart patient codes exactly

matching 82–84, 11, 25, 111–113, or 119 or starting with AN2–AN4, ANA,
ANB, AA, AA2, AA3, or AAX). Individuals with diabetes were defined by
ICD-10 codes E10–E14, ICD-8/9 code 250, Kela drug reimbursement code
103 or 215, purchases of diabetes medication (ATC A10), minimum three
purchases if no other register code was found.

Fecal sample collection, DNA extraction, and library collection
During the baseline survey, stool samples were collected by willing parti-
cipants at home using an ad hoc kit constructed in-house in the Finnish
Institute for Health and Welfare (THL) with detailed instructions and a
scoop method. No preservative was used in the sampling tubes (50ml
Falcon tubes). The participants mailed their samples overnight between
Monday and Thursday under Finnish winter conditions (from January
through March 2002) to the laboratory of THL where the samples were
immediately frozen at −20 °C. Special care was taken to avoid delayed
transit at the post office over the weekend. The stool samples were stored
unthawed at−20 °C until they were transferred in 2017 to the University of
California, SanDiego formicrobiome sequencing, as previously described54.
In brief, fecal DNAwas extracted using theMagAttract PowerSoil DNAKit
(Qiagen) and Earth Microbiome Project protocols55. The library was gen-
erated by a miniaturized version of the Kapa HyperPlus Illumina-
compatible library prep kit (Kapa Biosystems)56. DNA extracts were nor-
malized to 5 ng per sample using an Echo 550 robot (Labcyte, Inc.). Enzy-
matic fragmentation, end-repair, and adapter-ligation were performed
using a Mosquito HV robot (TTP Labtech, Ltd). Following barcoding and
amplification, the libraries were sequenced on an Illumina HiSeq 4000
instrument, producing on average 900,000 reads per sample.

Taxonomic profiling
We analyzed shotgun metagenomic sequences using a pipeline built with
the Snakemake bioinformatics workflow library (https://github.com/
biocore/oecophylla)57. We trimmed the sequences for quality and adapter
sequences using Atropos58 and removed host reads by genome mapping
against the human genome assembly GRCh38 with Bowtie259. We assigned
sequences to taxonomy using SHOGUN v1.0.560 against a database con-
taining all complete bacterial, archaeal, and viral genomes available from
NCBI RefSeq as of version 82 (May 8, 2017). SHOGUN calls Bowtie2 to
align sequencing data against reference genomes. For each query sequence,
up to 16 hits were returned to maximize the inclusion of closely related
organisms to which the query sequence matches equally or similarly well
(i.e., they all have a chance of being the true positive). As a trade-off, this
behavior could potentially result in a larger number of organisms than
Bowtie2’s default behavior, which returns one hit per query. We then
processed the results to estimate the relative abundance of taxa.

Functional profiling
Functional profiles were calculated from a combination of observed and
predicted Kyoto Encyclopedia of Genes and Genomes orthology (KO)
group annotations from the RefSeq genomes following the default para-
meters of the SHOGUN tool, as previously described60. Briefly, the final KO
table represents aweightedaverageofdirectlyobserved functional genes and
those estimated to be present but unsampled, based on their predicted
presence within an observed genome.

Statistics
Software. Data was statistically analyzed using R (version 3.6.3, https://
www.R-project.org/), while data was visualized using R, GraphPad Prism
(version 9.5.1), or FuncTree (Yamada Lab, Tokyo Institute of Technol-
ogy, Tokyo, Japan61).

Variable calculations and transformations. Prior to analyses, the
microbiome data was filtered to exclude taxa representing viruses,
archaea, or plasmids, along with taxa present in <3 subjects. The abun-
dance data was then compositionally transformed for the analyses, except
for alpha diversity. Shannon index was used as the measure of alpha
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diversity, calculated directly from the filtered taxa count data at the
species level using the R packages microbiome (version 1.8.0) and vegan
(version 2.5.7). Aitchison distancewas used as ameasure of beta diversity,
calculated using the R packagesmicrobiome and vegan after centered log-
ratio (CLR) transformation to reduce the distribution skewness. Principal
component analysis was performed on Aitchison distance and CLR-
transformed taxa abundances using the R-package stats (version 3.6.2).
Individual taxon abundances (phylum, class, order, family, genus, and
species) were CLR-transformed. For the pathway analysis, the predicted
KO groups were used. For each sample, the relative KO group abun-
danceswere gathered from the strain-level data and log10-transformed to
reduce the skewness. CRP was divided into quartiles. For relevant com-
parisons between effect sizes, we standardized the exposure and con-
tinuous outcome variables.

Statistical analyses. We assessed associations between GM metrics
(composition and function) and risk of fractures using Cox regression. In
all models, age was used as the time scale62 and gender as stratum. Several
covariate adjustments were used. In the main model, we adjusted for
established factors strongly associated with GM composition and/or
fracture risk (medication, antibiotics, and previous fractures). In the
extended model, we also adjusted for several other covariates that also
may confound the association between GM composition and fracture
risk (main model plus smoking, hormone replacement therapy, alcohol
use, and physical activity). Diet is a major determinant of the GM
composition, but information ondietwas only available in a subsample of
the present cohort. Therefore, we added a third model also adjusted for
diet (the dietmodel – extendedmodel plus diet), including lower number
of subjects. For associations between GMmetrics and CRP quartiles, we
used linear regressions adjusted using the following covariates: age,
gender, medication, antibiotics, and previous fractures. We assessed
Pearson’s correlation between functional groups and gut microbial
composition. Our predefinedmain exposures were the 10most abundant
phyla. To correct for multiple testing, we used conservative Bonferroni
correction for associations between the 10 most abundant phyla eval-
uated and fracture risk (P ≤ 0.005 [0.05/10] was considered statistically
significant). For the large number of explorative analyses of functionality
and at the genus and species levels, we used Benjamini-Hochberg mul-
tiple testing false discovery rate correction (FDR; corrected P < 0.05 was
considered statistically significant). All tests were 2-sided.

To visualize relative importance of functional pathways related to
fracture risk or taxa, we used FuncTree61 to create separate plots for positive
(plot basedonhazard ratio [HR]) andnegative associations (plot basedon1/
HR) and positive and negative correlations (plots based on absolute values
for Pearson’s r).

Handling of missing data. We did not impute missing values. In the
main model (adjusting for age, gender, medication, antibiotics, and
previous fractures), we included 7043 individuals of which 1092 had
sustained a fracture, while the extended model (further adjusting for
smoking, hormone replacement therapy, alcohol use, and physical
activity) included 6641 participants of which 998 had sustained a frac-
ture, and the diet model (further adjusted for diet) included 5460 parti-
cipants of which 809 had sustained a fracture. The extended and diet
models included fewer participants as they were missing information on
one or more of the covariates used in these models: 35 for smoking, 3 for
hormone replacement therapy, 284 for alcohol use, 107 for physical
activity, and 1362 for diet.

Data availability
The FINRISK 2002 data described in the manuscript are available from the
Finnish Institute for Health and Welfare Biobank based on a written
application as instructed on the website of the Biobank (https://thl.fi/en/
web/thl-biobank/for-researchers/application-process). The phenotype data
are not publicly available because they contain information that could

compromise research participant privacy/consent. The metagenomic data
are available from the European Genome-Phenome Archive (accession
number EGAD00001007035).
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