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1 Introduction

Low-energy phenomenology has long been crucial to the search for new particles in and
beyond the Standard Model (SM). It is well known that the presence of heavy particles can
be inferred before they become directly accessible through their indirect effect on low-energy
processes. With the apparent absence of new physics (NP) around the electroweak (EW)
scale, and the appearance of low-energy hints of deviations from the SM predictions [1, 2],
indirect searches are progressively taking a more prominent role in the Beyond the Standard
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Model (BSM) program. Typically, when exploring the low-energy physics of BSM models,
one matches the models onto the SM Effective Field Theory (SMEFT) [3, 4], the appropriate
Effective Field Theory (EFT) for weakly-coupled models in the absence of light new states.
The SMEFT is then run down to lower energies using its known Renormalization Group (RG)
equations [5–8] until the EW scale. To compute the effects on, e.g., flavor observables, the
EFT is further matched to the Low-Energy Field Theory (LEFT) [9–11] and evolved down
to the appropriate energies with the LEFT RG equations [12].

Many tools have already been developed to automate these computations within
the SMEFT-to-LEFT framework [13–28], making these computations accessible to the
community at large. Moreover, much work has been done to develop suitable methods for
one-loop matching of arbitrary BSM models to their EFTs with the functional approach [29–
51], resulting in several partial one-loop EFT matching results [52–55] as well as tools to
automate the tedious and demanding task of evaluating functional supertraces at the center
of the functional matching procedure [56, 57]. A new generation of tools is now aiming at
solving the more generic problem of completely automating one-loop matching and running
using diagrammatic [58] and functional methods [59].

Despite the recent progress, the incorporation of one-loop corrections in the EFT
matching, crucial in many phenomenological analyses, still presents a great challenge. These
calculations are typically carried out using dimensional regularization (DR) due to its
convenience and simplicity. Nevertheless, loop computations using DR need to account for
several subtitles such as the presence of evanescent operators.1 In d = 4−2ε dimensions, the
Lorentz algebra is infinite-dimensional and the four-dimensional operator bases for the EFT
do not span the operator space in d dimensions. Conversely, d-dimensional operators cannot
be expressed in terms of the four-dimensional basis operators using standard relations such
as Fierz identities, since these are valid only in strictly four dimensions. In short, reducing
the d-dimensional EFT to a suitable four-dimensional basis leaves remnants — evanescent
operators — which cannot be neglected although they vanish in the four-dimensional limit.
The evanescent operators can formally be considered of O(ε) and do not contribute to
tree-level amplitudes. However, when inserted in loop amplitudes, they yield additional
finite contributions, which need to be accounted for beyond leading-order computations. It
turns out that it is not necessary to keep track of all the evanescent operators throughout
EFT calculations. In physical amplitudes, the evanescent operators give finite contributions
only when picking out the poles of the loop diagrams. Their impact is therefore local
and can be compensated by suitable counterterms. This lets us define renormalization
schemes completely free of all contributions from evanescent operators, which are effectively
eliminated from the EFT.

Evanescent operators were originally studied in the context of next-to-leading order
(NLO) calculations of anomalous dimensions in the Weak Effective Hamiltonian [60–62] and
have since been included in many other NLO computations of SM processes. Recently, they
have also been encountered in one-loop basis changes in the LEFT [63–65]. However, con-

1The presence of evanescent operators is not related to the issue of extending four-dimensional objects
such as γ5 and εµνρσ to d dimensions and presents a separate, independent challenge [60].
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tributions from evanescent operators are easily missed when performing one-loop matching
computations, in particular when matching NP models onto the SMEFT. Modern matching
techniques rely on the method of regions [66, 67] to greatly simplify the computations.
These eliminate the need for computing EFT contributions by considering only ultravio-
let (UV) loops in the hard region [46, 47], where the loop momentum is of the order of the
heavy scales. Nevertheless, to determine the EFT action in a scheme where the evanescent
contributions can be disregarded, the additional computation of finite counterterms is
required. The finite counterterms of such non-minimal schemes cancel certain loops in the
EFT by construction. Thus, a loop computation in the EFT is necessary to determine
them. Once the counterterms have been calculated, the renormalized couplings can be
recovered as the difference between the bare couplings and the counterterms. A simple
procedure to recover the physical EFT action SSEFT, with no contributions from evanescent
operators, is given by the following prescription:

i) Compute the bare EFT action, SEFT, using the method of regions.

ii) Decompose the operator basis into a physical and an evanescent part. This decompo-
sition is not unique, thus requiring a prescription for the projection to the physical
basis.

iii) Remove the evanescent part from the tree-level EFT action, S(0)
EFT, to construct its

physical counterpart, SS(0)
EFT .

iv) The one-loop physical EFT action, SS(1)
EFT , is obtained by shifting the one-loop bare

action S(1)
EFT with the difference between one-particle irreducible (1PI) loops generated

by the tree-level actions S(0)
EFT and SS(0)

EFT , which compensates for the finite contributions
from the evanescent operators.

In the last step, it is sufficient to extract the 1/ε UV poles from the loop integrals, since the
insertion of evanescent operators contributes with a factor ε. This renders the computation
entirely elementary.

In this paper we work our way from the specific to the abstract in the treatment of
evanescent operators in generic EFTs. In section 2, we examine a concrete example of an
evanescent contribution to the dipole operators showing up in the matching of the Two-
Higgs-Doublet Model (2HDM) to the SMEFT Warsaw basis [4]. This example illustrates
the main rationale behind the treatment of evanescent operators and demonstrates the
computation with both diagrammatic and functional methods. We also discuss the dipole
contributions from other evanescent operators arising from leptoquark extensions of the SM
model and emphasize the possible ambiguities resulting from the treatment of γ5 in these
cases. Next, in section 3, we give prescriptions for the evanescent operators in the SMEFT
up to dimension six, and we classify the redundant operators beyond the Warsaw basis
needed to account for the evanescent contributions from any tree-level NP mediator. We
then present all possible one-loop evanescent SMEFT contributions, which can be readily
applied to any BSM study and are provided in the supplementary material. Finally, we
discuss the details of two evanescence-free renormalization schemes and demonstrate how
to account for evanescent operators in running and matching computations. The methods
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Figure 1. Feynman diagrams generating the dipole part of e → `B and e → `W amplitudes.
Note that the Higgs boson cannot connect to the fermion inside the loop because of hypercharge
conservation.

described here are valid for all orders in the EFT expansion and apply to any EFT. We
conclude in section 5. Appendices A and B provide further details concerning how to shift
the EFT action in the presence of O(ε) terms and on two-loop running in the presence of
evanescent operators, respectively.

2 Evanescent operators: two practical examples

2.1 Lepton dipoles in the Two-Higgs-Doublet Model

We begin this section with the 2HDM, where the SM is extended with a second Higgs
doublet transforming as Φ ∼ (1,2)1/2 under the SM gauge group. The Lagrangian of the
model reads

L ⊃ LSM +DµΦ†DµΦ−M2
Φ Φ†Φ−

(
yprΦe `pΦer + h.c.

)
, (2.1)

where we omitted the possible Yukawa couplings with other SM fermions and the rest of
the scalar potential, as these terms do not enter in the ensuing discussion. Our conventions
for the SM Lagrangian are given in section 3.1.

To demonstrate the impact of evanescent operators, we consider the matching to the
leptonic dipole operators, which generate lepton flavor-violating processes like `→ `′γ and
can place important constraints on the flavor structure of the model. Before we discuss
the EFT calculation, we compute the one-loop amplitude using the full model. If we work
at fixed order (namely, if we neglect RG resummation), this provides our reference result
that the EFT needs to reproduce. Evaluating the Feynman graphs shown in figure 1 and
neglecting irrelevant Dirac structures, we obtain the following amplitudes:

iAer→`pB = −gY
192π2M2

Φ

[
2(2Y`+YΦ)[yey†ΦeyΦe]pr+(2Ye−YΦ)[yΦey

†
Φeye]

pr
](
ūσµνPRu

)
qµε∗ν ,

iAer→`pW = gL
384π2M2

Φ
[yΦey

†
Φeye]

pr(ūσµνPRu)qµε∗ν , (2.2)

where ye is the lepton Yukawa of the SM Lagrangian, Yi are the hypercharges, u the lepton
spinors, and εµ the polarization vector of the gauge boson. These expressions can be found
in two ways: first, one can directly evaluate the graphs for generic on-shell kinematics and
expand them around the limit of large MΦ � pi, where pi denotes any external momentum.
A simpler way to compute them is to expand the loop integrand around their relevant
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Figure 2. Feynman diagrams generating dipole matrix elements in the EFT. The crossed circle
denotes an insertion of the four-lepton operators found from integrating out the second Higgs doublet
Φ at tree-level.

integration regions for the loop momentum k, which in this case means the hard region
(where k ∼ MΦ � pi) and the soft region (MΦ � k ∼ pi). Doing so reveals that the
amplitude is given by the hard region only. This can easily be seen by noting that the
soft-region expansion of the relevant topologies is of the form∫ ddk

(2π)d
1

k2 −M2
Φ

1
(k + q)2

1
k2

∣∣∣∣∣
soft

= − 1
M2

Φ

∫ ddk
(2π)d

1
(k + q)2

1
k2 + . . . , (2.3)

where q is the momentum of the gauge boson and the dots denote higher powers in the
expansion. Since q2 = 0, the loop is scaleless and the soft region vanishes. As a consequence,
the expressions in (2.2) map directly onto the matching coefficients of the dipole operators

[QeB]pr = ¯̀
pσµνerHB

µν , [QeW ]pr = ¯̀
pσµνer τ

IHW Iµν , (2.4)

where τ I denotes the Pauli matrices. We find that

[CeB]pr = gY
384π2M2

Φ

[
2(2Y` + YΦ) [yey†ΦeyΦe]pr + (2Ye − YΦ) [yΦey

†
Φeye]

pr
]
,

[CeW ]pr = − gL
768π2M2

Φ
[yΦey

†
Φeye]

pr .
(2.5)

Because of the correspondence between the dipole matching coefficients and the full
amplitudes, there are no further contributions to the process from one-loop matrix elements
with tree-level EFT operators. Integrating out the heavy scalar at tree level yields, among
others, the operator and matching coefficient2

[R`e]prst = (¯̀
per)(ēs`t) , [c`e]prst = yprΦey

∗ts
Φe

M2
Φ

. (2.6)

Inserting this operator into the Feynman graphs shown in figure 2, one indeed finds that
the one-loop amplitude of the EFT vanishes. This can easily be anticipated without a
direct computation: the first two graphs are the EFT analogue to the soft region we have
computed before. The only scale the loop probes is the virtuality of the photon, which
vanishes on-shell. The last two graphs (the second topology), on the other hand, generate
only a scalar current, which cannot contribute to the dipole.

2In what follows and throughout the manuscript, we denote the Wilson coefficients of the SMEFT
operators in the Warsaw basis with the letter ‘C’ while we use ‘c’ for the ones of the redundant operators.
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We denote the operator with the letter R to show that it is redundant, by which we
mean that it is not part of the Warsaw basis [4]—the most commonly used SMEFT basis.
By means of Fierz identities, it can be transformed into an operator of the Warsaw basis:

[R`e]prst
d=4= −1

2(¯̀
pγµ`t)(ēsγµer) ≡ −

1
2[Q`e]ptsr , (2.7)

which does contribute to the dipole amplitudes. However, this identity has the crucial caveat
that it is valid only in d = 4. In DR with d = 4− 2ε, it is broken starting at O(ε). While
the difference is irrelevant at tree level, insertions of the two operators into divergent loop
integrals yield different results. As we will demonstrate now, these evanescent contributions
can be absorbed by a finite shift of the action or, equivalently, by the introduction of finite
counterterms.

First, we define the evanescent operator as the difference between the redundant and
the four-dimensionally reduced object:

[E`e]prst = [R`e]prst + 1
2[Q`e]ptsr . (2.8)

Next, we check whether this operator produces non-zero loop matrix elements to the
dipole transitions.3 This amounts to evaluating the diagrams in figure 2 once more, but
this time with insertions of E`e instead of R`e. As the evanescent operator is formally of
order O(ε), its only relevant contribution (in the four-dimensional limit) stems from the
UV poles of divergent loop integrals, and thus it is necessarily local. An economic way to
compute this contribution is to expand the loop integrand in the hard region and introduce
a fictitious mass Λ that also scales as the hard momentum k ∼ Λ� pi. After performing
the integration in k, one sets Λ → 0. Following this prescription, we find the first two
diagrams in figure 2 to vanish identically, meaning the term proportional to R`e exactly
cancels the one proportional to Q`e. We do, however, find a contribution from the third
and fourth diagrams in figure 2:

iA(E)
e→`B = − igY (Y` + Ye)

2 [c`e]prstytse
(
ūσµνPRu

)
qµε∗ν ε

∫ ddk
(2π)d

1
(k2 − Λ2)2 ,

iA(E)
e→`W = − igL4 [c`e]prstytse

(
ūτ IσµνPRu

)
qµε∗ν ε

∫ ddk
(2π)d

1
(k2 − Λ2)2 .

(2.9)

The result is of the form that we anticipated in that the Dirac algebra gives rise to a factor
of ε, which in turn multiplies a UV-divergent integral. We can compensate these artificial
contributions by adjusting the matching coefficients for the dipole operators QeB and QeW :

∆[CeB]pr = 3gY ytse
128π2 [c`e]prst , ∆[CeW ]pr = − gLy

ts
e

128π2 [c`e]prst . (2.10)

3We choose to focus on the dipole operators, as these are necessarily loop generated in any UV theory [68]
and, thus, the corrections due to contributions by evanescent operators are potentially of O(1). Nevertheless,
the evanescent contributions considered here also produce corrections to other Warsaw basis operators not
discussed in this example.
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After supplementing the matching coefficients with these shifts, we can drop R`e in favor of
the SMEFT operator Q`e following identity (2.7). The difference in the one-loop matrix
elements of the EFT is now correctly accounted for by the shifted matching coefficients.

The above example highlights the importance of correctly handling evanescent operators.
The complete basis transformation consists of both a redefinition of the operators as well as
their couplings, and performing only one leads to incorrect results. Especially for operators
that are generated by the UV theory at the loop level, this amounts to potentially large
errors. In our particular example, the basis transformation introduced a one-loop matrix
element in the EFT that we knew cannot exist. In the new basis, therefore, we needed to
subtract this new contribution by adjusting the matching coefficients, such that the new
term was canceled when the EFT matrix element at one-loop is taken. Thus, the basis
transformation is: ∣∣∣∣∣∣∣∣

[R`e]prst −→ −1
2 [Q`e]ptsr

[CeB,W ]pr −→ [CeB,W ]pr + ∆[CeB,W ]pr
...

(2.11)

where the dots denote the shifts to all operators that we have not considered here, and
whose full expression can be found in the supplementary material. Missing the last step
would not only have meant making an O(1) mistake: upon inserting the tree-level matching
condition (2.6) in the shifts (2.10), one finds that the new contributions ∆CpreB,W do not
even have the same flavor structure as the results in (2.5). Specifically, we have:

ytse [c`e]prst = yprΦe
M2

Φ
tr
(
ye y

†
Φe
)
. (2.12)

Thus, a consistent treatment of evanescent operators is crucial when matching NP models
to the SMEFT and deriving predictions from the results.

2.2 Dipoles from evanescent operators and reading point ambiguities

As a second example, we study the effects of evanescent operators from EFT basis transfor-
mations among the following four-fermion operators:

[R`uqe]prst = (¯̀
ipur)εij(q̄jset) , [Ruce`qc ]rtps = (ūcret)εij(¯̀

ipq
c
js) ,

[Q(1)
`equ]ptsr = (¯̀

ipet)εij(q̄jsur) , [Q(3)
`equ]ptsr = (¯̀

ipσµνet)εij(q̄jsσµνur) .
(2.13)

The redundant operators R`uqe and Ruce`qc are generated at tree level by integrating out
the scalar leptoquarks R2 ∼ (3, 2)7/6 and S1 ∼ (3, 1)−1/3, respectively, while the Q(1,3)

`equ

operators are in the Warsaw basis. These operators are related by the Fierz transformation

(
[R`uqe]prst

[Ruce`qc ]rtps

)
=
(
−1

2 −
1
8

−1
2 +1

8

)[Q(1)
`equ]ptsr

[Q(3)
`equ]ptsr

+
(

[E`uqe]prst

[Euce`qc ]rtps

)
, (2.14)
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Figure 3. One-loop diagrams giving evanescent contributions to the dipole operators QeB and QeW .

where the four-dimensional identity is supplemented with the addition of the evanescent
operators Eprst`uqe and E

rtps
uce`qc , defined by the difference of the operators in the two bases

[E`uqe]prst ≡ [R`uqe]prst + 1
2[Q(1)

`equ]ptsr + 1
8[Q(3)

`equ]ptsr ,

[Euce`qc ]rtps ≡ [Ruce`qc ]rtps + 1
2[Q(1)

`equ]ptsr − 1
8[Q(3)

`equ]ptsr .
(2.15)

This makes (2.14) the proper generalization of the four-dimensional Fierz identity to
d = 4− 2ε dimensions. As mentioned, the evanescent operators can be removed in favor of
a shift of the Warsaw Wilson coefficients. To derive this shift, we need to compute all UV
divergent one-loop diagrams with an insertion of E`uqe or Euce`qc .

Once again, we focus on the corrections to the lepton dipole operators QeB and QeW for
concreteness. The relevant Feynman diagrams are shown in figure 3, where the crosses denote
insertions of the evanescent operators E`uqe or Euce`qc . Alternatively, these contributions
can also be computed following the path-integral methods described in [51, 57]. For the
calculation at hand, this amounts to evaluating the following functional supertrace:4

∆S(1)
EFT ⊃ −i STr

[
∆qX

E
q̄u∆uX

H
ūq

] ∣∣∣
hard

. (2.16)

Here, the subscript hard indicates that we are only interested in the UV poles of the loop
integrals. As in the previous example, we extract these UV poles by taking the hard-
momntum region defined by a fictitious mass Λ that is added to all particle propagators.
This way, the functional propagators read ∆q,u = 1/(i /D − Λ) in position space. The
interaction terms are given by

XH
ūq = − δ2LSM

δqis δūr
= [y∗u]srεij HjPL ,

XE
q̄u = − δ2LE

δur δq̄is
= [c`uqe]prst εij

[
|et)(¯̀

jp|+
1
2(¯̀

jpet) + i

8(¯̀
jpσµνet) γµγν

]
+ [cuce`qc ]rtps εij

[
|`cjp)(ēct |+

1
2(¯̀

jpet)−
i

8(¯̀
jpσµνet) γµγν

]
,

(2.17)

with |·) and (·| denoting open fermion lines, LE = cprst`uqeE
prst
`uqe + crtpsuce`qc E

rtps
uce`qc + h.c., and

LSM as defined in (3.1).
4A supertrace is the generalization of the usual operator trace to the case of operators with mixed bosonic

and Grassmann components.
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Applying the Covariant Derivative Expansion (CDE) [29–31] to the supertrace above,
we readily obtain5

−iSTr
[
∆qX

E
q̄u∆uX

H
ūq

] ∣∣∣
hard
⊃ 1

2 STr
[
∆qγ

µ

(
gL
τ I

2 W
I
µν+gY YqBµν

)
∂νk∆qX

E
q̄u∆uX

H
ūq

]∣∣∣∣
hard

+ 1
2 STr

[
∆qX

E
q̄u∆uγ

µgY YuBµν∂
ν
k∆uX

H
ūq

] ∣∣∣
hard

. (2.18)

Each of the supertraces gives contributions that are analogous to the corresponding Feynman
diagrams in figure 3, with the added benefit of having manifestly covariant expressions.
Acting with the momentum derivatives, ∂k, substituting the X terms, and evaluating the
Dirac traces in naive dimensional regularization (NDR) (see section 3.3.2 for details), we find6

−i STr
[
∆qX

E
q̄u∆uX

H
ūq

] ∣∣∣
hard
⊃ [y∗u]sr

(
[c`uqe]srpt − [cuce`qc ]rtsp

) ∫
ddx (¯̀

pFµνσρσet)H

× 3i
32 [ 2(d− 2) gµρgνσ + (d− 6) iεµνρσ]

∫ ddk
(2π)d

1
(k2 − Λ2)2

⊃ 3
64π2 [y∗u]sr

(
[c`uqe]srpt − [cuce`qc ]rtsp

) ∫
ddx (¯̀

pFµνσµνet)H ,

(2.19)

with Fµν = gY (Yu +Yq)Bµν − gL τ
I

2 W
I
µν , and where we ignored terms that do not contribute

to the dipole operators. In the last line, we have used the four-dimensional identity

εµνρσσ
ρσ = −2iσµνγ5 . (2.20)

Instead, we could have used any other identity differing from the one above by an O(ε)
term, which would have resulted in a different evanescent contribution. As we discuss in
section 4, any such choice for the projection to the four-dimensional basis is valid provided
that it is consistently applied in all loop computations within the EFT.

The evaluation of the traces in NDR leads to another subtlety in the present example
due to the loss of cyclicity in some of the Dirac traces. The contributions from the redundant
operators R`uqe and Ruce`qc do not contain any Dirac traces and can be unambiguously
computed in NDR. However, determining the contribution from the Warsaw operator
Q

(3)
`equ requires the computation of a trace over six Dirac matrices and γ5, introducing a

reading-point ambiguity. The ambiguous traces in this computation are of the form

tr
[
γαγργσγαγ

µγνγ5
]

= 4i(4− d) εµνρσ ,
tr
[
γργσγαγ

µγνγ5γ
α] = −4i(4− d) εµνρσ .

(2.21)

It is clear that the evaluation of the supertraces depend on where one starts reading the
Dirac traces. While we obtained a non-zero dipole contribution for the supertrace (2.16),

5After the CDE the functional propagators are effectively reduced to the Feynman propagators, which in
momentum space read ∆q,u = 1/(/k − Λ), with k being the loop momentum.

6Throughout this paper we use the convention where ε0123 = +1.
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a vanishing contribution to the dipole operators is found when evaluating instead the
supertrace

STr
[
∆uX

H
ūq∆qX

E
q̄u

]
, (2.22)

with an associated change in reading point for the Dirac traces. We find the same results in
the diagrammatic approach whenever the reading points are chosen consistently with those
in the supertraces. As justified in section 3.3.2, any prescription is valid in the present case
as long as it is applied consistently. That means that the reading-point ambiguity in the
computation of the one-loop shifts due to evanescent operators has to be the same as the
reading point used for the ambiguous one-loop computations within the EFT.

Once we account for the reading-point ambiguity and keep the projection in (2.20) for
simplicity, we find the following evanescent shift to the dipole operators

∆L(1)
EFT⊃

3
64π2 (1−ξrp) [y∗u]pr

(
[c`uqe]srpt−[cuce`qc ]rtsp

)[
gY (Yu+Yq) [QeB]st− gL2 [QeW ]st

]
,

(2.23)

where we have introduced the parameter ξrp to encode the result dependence on the choice
of reading points. This parameter takes the value ξrp = 0, whenever the Dirac traces are
read starting from the Higgs interaction or the propagator coming after it. The value
ξrp = 1, and, thus, ∆S(1)

EFT = 0, is found for any other reading point. As a result of the
accidental cancellation, the dipole calculations in [69, 70] do not need to be corrected as
long as any of the reading points yielding ξrp = 1 and the identity in (2.20) are used in the
corresponding EFT computations too. For convenience, we recommend ending all Dirac
traces at the EFT operators as a consistent reading point also in the SM broken phase.

3 Evanescence in the SMEFT

The Warsaw basis [4] has become the standard basis for SMEFT studies. It is also the
only basis for which the one-loop RG equations [5–7] and the one-loop matching to the
LEFT [10] are known. Although matching computations often yield EFT operators that
are not in the Warsaw basis, it, therefore, becomes desirable to translate them to this basis.
The necessary basis translations have to be performed in d dimensions and one needs to
account for the evanescent contributions starting at one-loop order. Here, we compute
once and for all, the one-loop evanescent contributions resulting from the matching of any
weakly-coupled BSM extension to the Warsaw basis. Our result can easily be applied in
any (partial or full) one-loop SMEFT matching computation.

3.1 The SMEFT in the physical basis

We begin with the mandatory presentation of our conventions for the SM Lagrangian:

LSM = −1
4G

A
µνG

µν A − 1
4W

I
µνW

µν I − 1
4BµνB

µν + (DµH)†(DµH) + µ2(H†H)− λ

2 (H†H)2

+
∑

ψ=q,u,d,`,e
ψ̄i /Dψ −

(
ypru q̄pH̃ur + yprd q̄pHdr + ypre

¯̀
pHer + h.c.

)
, (3.1)
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where we keep the gauge-fixing and ghost Lagrangians implicit. The matter content is
defined as per usual, with p and r denoting flavor indices. The conjugated Higgs doublet
is given by H̃ i = εijH∗j , where εij is the anti-symmetric SU(2) tensor defined by ε12 = +1
and εij = −εji. The covariant derivative is given by

Dµ = ∂µ − igsTAGAµ − igLtIW I
µ − igY Y Bµ , (3.2)

where the SU(3)c and SU(2)L generators are given by TA = λA/2 and tI = τ I/2, respec-
tively, with λA being the Gell-Mann matrices and τ I the Pauli matrices. For the U(1)Y
hypercharge, Y , we use the same convention as ref. [4]. The corresponding gauge couplings
are dubbed gs, gL, and gY , respectively. The field strength tensors read

GAµν = ∂µG
A
ν − ∂νGAµ + gsfABCG

B
µG

C
ν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ + gLεIJKW
J
µW

K
ν , (3.3)

Bµν = ∂µBν − ∂νBµ ,

where fABC and εIJK are the SU(3)c and SU(2)L structure constants, respectively.
For the SMEFT Lagrangian, we add a tower of higher-dimensional effective operators

to the SM Lagrangian (3.1). In this work, we will consider only operators of mass dimension
six, for which we adopt the Warsaw basis:

LWarsaw = LSM +
∑
i

CiQi , (3.4)

with i running over all the dimension-six operators listed in ref. [4]. The dual tensors are
defined by X̃µν = 1

2 εµνρσX
ρσ, with the ε0123 = +1 convention.

3.2 The SMEFT in d-dimensions and projection to the physical basis

The Warsaw basis is a physical, on-shell basis of the SMEFT. That is, it is a basis in
four spacetime dimensions, as it is constructed using four-dimensional relations like Fierz
and Dirac-tensor-reduction identities, as well as field redefinitions, to eliminate redundant
operators. However, most loop-level computations in the SMEFT are performed using
DR with d = 4 − 2ε space-time dimensions. In d 6= 4 dimensions, the operators of the
Warsaw basis (or any other physical SMEFT basis) do not constitute a proper basis, and
new operators have to be added to complete the basis. These redundant operators are
related to the ones in the physical basis by the application of intrinsically four-dimensional
relations. Their elimination in favor of physical operators gives rise to evanescent operators,
which vanish in d = 4 dimensions but generate non-vanishing contributions at higher loop
orders. In non-integer dimensions, the basis is infinite-dimensional, but working to a finite
order in the loop expansion involves only a finite number of redundant operators.

In this subsection, we present the complete list of tree-level-generated redundant
operators for the Warsaw basis and describe a practical prescription for a physical projection
from the d-dimensional operator space.7 This implicitly defines all the relevant evanescent
structures, which are the subject of this paper.

7The method presented here can also be applied to other SMEFT bases.
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(L̄R)(R̄L) & (L̄R)(L̄R) (R̄cR)(R̄Rc)
R`e (¯̀

per)(ēs`t) Rece (ēcper)(ēsect)
R`u (¯̀

pur)(ūs`t) Rucu (ūcαpuβr)(ūβsucαt)
R`d (¯̀

pdr)(d̄s`t) Rdcd (d̄cαpdβr)(d̄βsdcαt)
Rqe (q̄per)(ēsqt) Recu (ēcpur)(ūsect)
R

(1)
qu (q̄pur)(ūsqt) Recd (ēcpdr)(d̄sect)

R
(8)
qu (q̄pTAur)(ūsTAqt) Rucd (ūcαpdβr)(d̄βsucαt)

R
(1)
qd (q̄pdr)(d̄sqt) R′ucd (ūcαpdβr)(d̄αsucβt)

R
(8)
qd (q̄pTAdr)(d̄sTAqt)

R`uqe (¯̀
ipur)εij(q̄jset)

(L̄cL)(L̄Lc) (R̄cR)(L̄Lc)
R`c` (¯̀c

ip`jr)(¯̀
js`

c
it) Rucdqqc (ūcαpdβr)εij(q̄βisqcαjt)

Rqcq (q̄cαipqβjr)(q̄βjsqcαit) Ruce`qc (ūcper)εij(¯̀
isq

c
jt)

R′qcq (q̄cαipqβjr)(q̄βisqcαjt) Baryon number violating
Rqc` (q̄cip`jr)(¯̀

jsq
c
it) Rqcqqc` εαβγεijεkl(q̄cαipqβjr)(q̄cγks`lt)

R′qc` (q̄cip`jr)(¯̀
isq

c
jt) Rucudce εαβγ(ūcαpuβr)(d̄cγset)

Table 1. Scalar-type four-fermion operators that are redundant in d = 4 dimensions.

3.2.1 Tree-level-generated redundant operators

Since the aim of this paper is to determine the one-loop contributions from the presence
of evanescent operators, we focus on redundant operators that arise from the tree-level
exchange of NP particles. We consider all possible tree-level mediators of spin 0, 1/2,
and 1 (excluding antisymmetric rank-2 tensors). The most general Lagrangian (with up
to dimension-five interactions) for these mediators, and their tree-level matching to the
Warsaw basis, can be found in ref. [71]. It follows that spin-1/2 mediators do not generate
redundant operators at tree level, and only operators mediated by NP scalars and vectors
need to be considered in our analysis. The complete list of tree-level-generated redundant
operators for the Warsaw basis is given in tables 1 and 2. The list of mediators generating
these operators is presented in table 3.

3.2.2 Reduction of Dirac structures

In four dimensions, the Dirac structures

{Γi ⊗ Γ̃i} ≡ {PL ⊗ PL, PR ⊗ PR, PL ⊗ PR, PR ⊗ PL, γµPL ⊗ γµPL, γµPR ⊗ γµPR,
γµPL ⊗ γµPR, γµPR ⊗ γµPL, σµνPL ⊗ σµνPL, σµνPR ⊗ σµνPR} , (3.5)

constitute a basis for all four-fermion structures. These are the only structures appearing
in the Warsaw basis. In one-loop SMEFT amplitudes, we encounter a number of additional
structures in d dimensions, which will have to be reduced to this basis (as a first step) to
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(L̄L)(L̄L) (L̄cR)(R̄Lc)
R

(3)
`` (¯̀

pγµτ
I`r)(¯̀

sγ
µτ I`t) R`ce (¯̀c

pγµer)(ēsγµ`ct)
R

(1,8)
qq (q̄pγµTAqr)(q̄sγµTAqt) R`cu (¯̀c

pγµur)(ūsγµ`ct)
R

(3,8)
qq (q̄pγµτ ITAqr)(q̄sγµτ ITAqt) R`cd (¯̀c

pγµdr)(d̄sγµ`ct)
R

(1)
`q (¯̀

pγµqr)(q̄sγµ`t) Rqced`c (q̄cpγµer)(d̄sγµ`ct)
R

(3)
`q (¯̀

pγµτ
Iqr)(q̄sγµτ I`t) Rqce (q̄cpγµer)(ēsγµqct )

(R̄R)(R̄R) Rqcu (q̄cαpγµuβr)(ūβsγµqcαt)
R

(8)
uu (ūpγµTAur)(ūsγµTAut) R′qcu (q̄cαpγµuβr)(ūαsγµqcβt)

R
(8)
dd (d̄pγµTAdr)(d̄sγµTAdt) Rqcd (q̄cαpγµdβr)(d̄βsγµqcαt)

Reu (ēpγµur)(ūsγµet) R′qcd (q̄cαpγµdβr)(d̄αsγµqcβt)
Red (ēpγµdr)(d̄sγµet) Baryon number violating
R

(1)
ud (ūpγµdr)(d̄sγµut) Rdc`qcu εαβγεij(d̄cαpγµ`ir)(q̄cβjsγµuγt)

R
(8)
ud (ūpγµTAdr)(d̄sγµTAut) Ruc`qcd εαβγεij(ūcαpγµ`ir)(q̄cβjsγµdγt)

(L̄L)(R̄R) Rqceucq εαβγεij(q̄cαipγµer)(ūcβsγµqγjt)
R`qde (¯̀

pγµqr)(d̄sγµet)

Table 2. Vector-type four-fermion operators that are redundant in d = 4 dimensions.

project onto the physical basis. The simplest way to handle this reduction is to define the
evanescent operators via gamma-tensor product decomposition [61, 62, 72]: any bilinear
structure X1⊗X2 can be expressed in terms of the four-dimensional basis elements {Γi⊗ Γ̃i}
and an evanescent operator E(X1, X2), which is explicitly defined by the decomposition
using the NDR scheme for γ5

X1 ⊗X2 =
∑
i

bi(X1, X2) Γi ⊗ Γ̃i + E(X1, X2) . (3.6)

Contracting both sides of the above equation with the d = 4 basis elements {Γj ⊗ Γ̃j},

Trd (ΓjX1Γ̃jX2) =
∑
i

bi(X1, X2) Trd (ΓjΓiΓ̃jΓ̃i) +O(ε2) , for j = 1, . . . , 10 , (3.7)

yields a system of equations, which can be solved to find the coefficients bi(X1, X2).8 Here,
Trd(4) denotes the trace in d(4) dimensions. Equivalently, we find

Eαβ,γδ(X1, X2) (Γ̃j)βγ(Γj)δα = O(ε2) , (3.8)

where the evanescent structure E(X1, X2) is written in terms of its spinor indices α, β, γ, δ.
This implicitly defines evanescent contributions E(X1, X2) from the reduction of the Dirac

8Throughout the paper, we use the NDR prescription for the d-dimensional traces (see section 3.3.2).
For the projection to the physical basis through gamma reduction, this does not introduce an ambiguity
associated with the reading point of the γ5-odd part of the traces because the Lorentz indices are fully
contracted, ensuring a vanishing Levi-Civita tensor.
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Scalar field Operators Scalar field Operators
(1,1)0 − (3,1) 2

3
Rdcd

(1,1)1 R`c` (3,1)− 4
3

Rucu, Recd, Rucudce

(1,1)2 Rece (3,2) 1
6

R`d

(1,2) 1
2

R`e, R
(1)
qu , R

(1)
qd (3,2) 7

6
R`u, Rqe, R`uqe

(1,3)0 − (3,3)− 1
3

Rqcq, R
′
qcq, Rqc`, R

′
qc`, Rqcqqc`

(1,3)1 R`c` (6,1) 1
3

Rqcq, R
′
qcq, Rucd, R

′
ucd, Rucdqqc

(1,4) 1
2

− (6,1)− 2
3

Rdcd

(1,4) 3
2

− (6,1) 4
3

Rucu

(3,1)− 1
3

Rqcq, R
′
qcq, Rqc`, R

′
qc`, Recu, Rucd, (6,3) 1

3
Rqcq, R

′
qcq

R′ucd, Rucdqqc , Ruce`qc , Rqcqqc` (8,2) 1
2

R
(8)
qu , R

(8)
qd

Vector field Operators Vector field Operators
(1,1)0 − (3,2) 1

6
R`cu, Rqcd, R

′
qcd, Ruc`qcd

(1,1)1 R
(1)
ud (3,2)− 5

6
R`cd, Rqce, Rqcu, R

′
qcu, Rqced`c , Rdc`qcu, Rqceucq

(1,2) 1
2

− (3,3) 2
3

R
(3)
`q

(1,2)− 3
2

R`ce (6,2)− 1
6

Rqcd, R
′
qcd

(1,3)0 R
(3)
`` (6,2) 5

6
Rqcu, R

′
qcu

(1,3)1 − (8,1)0 R
(1,8)
qq , R

(8)
uu , R

(8)
dd

(3,1) 2
3

R
(1)
`q , Red, Rlqde (8,1)1 R

(8)
ud

(3,1) 5
3

Reu (8,3)0 R
(3,8)
qq

Table 3. Contributions from BSM scalars (top) and vectors (bottom) to the redundant operators.
Operators that violate baryon number are highlighted in red.

algebra. In particular, for the relevant one-loop SMEFT structures at dimension six, we
find the relations

γµγνPL ⊗ γνγµPL = (4− 2ε)PL ⊗ PL + σµνPL ⊗ σµνPL ,

γµγνPL ⊗ γνγµPR = 4(1− 2ε)PL ⊗ PR + E
[2]
LR ,

γµγνγλPL ⊗ γλγνγµPL = 4(1− 2ε) γµPL ⊗ γµPL + E
[3]
LL , (3.9)

γµγνγλPL ⊗ γλγνγµPR = 16(1− ε) γµPL ⊗ γµPR + E
[3]
LR ,

γµγνσλρPL ⊗ σλργνγµPL = 16(3− 5ε)PL ⊗ PL + 2(6− 7ε)σµνPL ⊗ σµνPL + E
[4]
LL .

Analogous expressions are found for the opposite chirality terms. Here, E[2]
LR = 6ε PL ⊗

PR + σµνPL ⊗ σµνPR, which can be obtained from the identity γµγν = gµν − i σµν , while
all other evanescent operators are defined directly by (3.9). Other choices for the basis
{Γi ⊗ Γ̃i} and/or γ5 schemes yield different definitions for the evanescent operators and
different coefficients for the ε-terms. In the literature (see e.g. [10]), the O(ε) coefficients
in (3.9) are often kept generic (often denoted by aev, bev, . . . ) to allow for other definitions
of the evanescent operators. Different values for these coefficients require different finite
counterterms to compensate the effect of evanescent operators in evanescence-free schemes,
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and thus correspond to different renormalization- or γ5-schemes [62]. In (3.9), we fix the
O(ε) coefficients to be consistent with the NDR scheme. In the ensuing computations, we
also use the relation

εµνρσσ
ρσ = −2iσµνγ5 + E(ε)

µν , (3.10)

which defines the evanescent structure E(ε)
µν .

3.2.3 Fierz transformations

In the SMEFT, there is additional redundancy among the fermion bilinears due to Fierz
relations [73], which relates operators with rearranged fermion lines. We use the following
four-dimensional basis Γn for the Dirac algebra [74] (and its dual Γ̃n):9

Γn = {PL, PR, γµPL, γµPR, σµν} , Γ̃n = {PL, PR, γµPR, γµPL,
σµν
2 } , (3.11)

which satisfy the orthogonality relation

Tr4 (Γm Γ̃n) = 2 δnm . (3.12)

Also in four dimensions, the fermion bilinears satisfy the Fierz identities

(X1)⊗ [X2] = 1
4 Tr4 (ΓnX1Γ̃mX2) (Γ̃n]⊗ [Γm) , (d = 4) (3.13)

for any Dirac structures X1 ⊗X2. The resulting identities are needed to map the SMEFT
operators to a physical basis. As the Fierz identities (3.13) hold only in four dimensions,
the residues from their application in d dimensions define additional evanescent operators:

(X1)⊗ [X2] = 1
4 Tr4 (ΓnX1Γ̃mX2) (Γ̃n]⊗ [Γm) + EFierz(X1, X2) (d 6= 4). (3.14)

Together, the gamma reduction and Fierz identities let us cast any two- and four-fermion
operator in the Warsaw basis plus an evanescent remnant. This is sufficient to define our
prescription for the projection from the d-dimensional set of (semi-)fermionic operators to
the Warsaw basis.

3.2.4 Reduction of bosonic structures

The application of identities involving the Levi-Civita tensor, which is an intrinsically
four-dimensional object, can also produce bosonic evanescent operators. For instance, in
the SMEFT at mass-dimension six, the relation

εµ1µ2µ3µ4εν1ν2ν3ν4 = −24 δµ1
[ν1δ

µ2
ν2δ

µ3
ν3δ

µ4
ν4] , (3.15)

valid only in d = 4 dimensions, is required to reduce operators of the form XX̃2 or X̃3,
with X (X̃) being a (dual) field-strength tensor. Similarly, the Schouten identity

0 = gµνεαβγδ + gµαεβγδν + gµβεγδνα + gµγεδναβ + gµδεναβγ , (3.16)
9This is not a unique basis definition. However, it is a convenient choice when dealing with Warsaw

operators.
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is needed to remove redundant bosonic operators in the SMEFT at dimension eight [75].
As before, the extension of these identities to d dimensions requires the inclusion of new
evanescent operators. While none of these identities are necessary for the evanescent
contributions computed in this paper, we recommend defining the resulting evanescent
operators directly from the four-dimensional identities, as we did with the relation in (3.10).

3.3 Evanescent contributions to the physical SMEFT Lagrangian

The rules of the last section for reducing operators let us define a projection P to bring
operators to the physical (Warsaw) basis. With the full set of relevant redundant operators,
the evanescent Lagrangian simply reads

LE =
∑
i

ci (Ri − P Ri) , (3.17)

where the index i runs over all operators in tables 1 and 2. In our case, this involves only
Fierz identities, following the prescription defined in subsection 3.2.3. In what follows, we
describe how to determine the shifts to the Warsaw operators that are needed to remove
the evanescent Lagrangian, and present our results at the end.

3.3.1 Functional evaluation of the evanescent shifts

The one-loop evanescent shifts to the Warsaw operators are obtained from the computation
of all possible one-loop amplitudes with one insertion of the evanescent operators in (3.17).
Following the approach of [51, 57], these are determined from the evaluation of the following
power-type supertraces:

∆S(1)
EFT = − i2

∞∑
n=1
P STr

[
(∆XSM)n−1∆XE

] ∣∣∣∣
hard

, (3.18)

where ∆ and X denote particle propagators and interactions, respectively. In position space,
the functional propagators read

∆−1
i =


−D2 − Λ2 (scalar)
i /D − Λ (fermion)

−gµν(−D2 − Λ) (vector)
, (3.19)

whileXSM(E) correspond to SM (evanescent) interactions, defined from functional derivatives
of the corresponding Lagrangians as

XSM
ij = δij∆−1

i −
δ2LSM

δϕjδϕ̄i
, XE

ij = − δ2LE
δϕjδϕ̄i

, (3.20)

with ϕi,j running over all SM fields.10 As in the example in section 2.2, the subindex
“hard” in the supertrace indicates that only the hard part of the loop integrals is relevant to
determine the UV poles. These are extracted by adding the fictitious UV mass Λ to all
particle propagators and taking the hard region defined by this mass.

10In contrast to what we did in the example in section 2.2, we take complex fields and their conjugates as
two independent degrees of freedom. This prescription, which is along the lines of that in [46, 51, 57], yields
a doubling of the complex fields contributions, explaining the different prefactors between (2.16) and (3.18).
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(a) (b) (c) (d) (e) (f)

Figure 4. Supertrace topologies needed to evaluate the one-loop evanescent contributions to the
Warsaw matching. The crossed circles denote evanescent operator interactions whereas black dots
denote the SM ones. Solid, wavy, and dashed lines represent fermionic, gauge, and scalar fields,
respectively.

Since we are working to dimension six in the EFT expansion, the sum in (3.18) gets
truncated at n = 3. The only supertraces appearing in this sum are

(a) : STr(∆ψX
E
ψψ) , (b) : STr(∆ψX

SM
ψψ∆ψX

E
ψψ) ,

(c) : STr(∆ψX
SM
ψψ∆ψX

SM
ψψ∆ψX

E
ψψ) , (d) : STr(∆ψX

SM
ψψ∆ψX

SM
ψψ∆ψX

SM
ψψ∆ψX

E
ψψ) ,

(e) : STr(∆ψX
SM
ψA∆AX

SM
Aψ∆ψX

E
ψψ) , (f) : STr(∆ψX

SM
ψψ∆ψX

SM
ψφ∆φX

E
φψ) , (3.21)

where ψ, A, and φ span the SM fermions, vector bosons, and scalars, respectively. These
supertraces can be depicted diagrammatically, in a similar way as with Feynman diagrams,
by drawing the ∆ and X terms as propagators and interactions, respectively. We show
the diagrammatic depiction for these supertraces in figure 4, where the letter in front of
each supertrace in (3.21) corresponds to the letter of the corresponding diagram. These
supertraces are evaluated following the procedure described in ref. [57], and we use the
CDE [29–31] to preserve gauge covariance. This implies that the diagrams in figure 4 should
be understood as being dressed by arbitrary gauge boson emissions, with each of these
emissions corresponding to higher orders in the CDE. For the computations at hand, only
topologies (a)–(c) contain higher-order CDE terms or, equivalently, gauge boson emissions.

3.3.2 γ5 prescription for d-dimensional Dirac traces

As we calculate the one-loop contribution from the evanescent operators, we inevitably
encounter the recurring problem of how to treat γ5 in DR. This is often cast as a choice
between mathematical consistency — using, e.g., the ‘t Hooft-Veltman scheme [76, 77]—or
manifest gauge invariance at intermediate stages of the computation. Here we will use
the NDR scheme, which is of the latter kind, as this is the standard in most matching
computations, and it will make our results compatible with these. It also simplifies many
intermediate calculations.

We define the d-dimensional Dirac algebra to satisfy{
γµ, γν

}
= 2gµν ,

{
γµ, γ5

}
= 0, γ2

5 = 1, (3.22)

where γ5 is taken to be completely anti-commuting. We further take γ5 to satisfy the usual
four-dimensional identity (with ε0123 = +1)

tr
[
γµγνγργσγ5

]
= −4i εµνρσ , (3.23)
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while traces with fewer than four (or any odd number of) other γ-matrices vanish. This
choice for the continuation of the Dirac algebra is known to be inconsistent with the cyclic
property of the Dirac trace [78]. The ambiguity does not occur in (3.23). However, starting
with γ5 in the presence of six other γ-matrices, there is a loss of cyclicity. That is,

tr
[
γµ1γµ2 · · · γµ2nγ5

]
= tr

[
γµ2 · · · γµ2nγ5γµ1

]
+O(ε), for n ≥ 3. (3.24)

This ambiguity is what causes the difference between the two traces in (2.21).
It was argued in [57] that the NDR prescription for γ5 can be used to achieve unam-

biguous results for one-loop matching computations. Indeed, renormalizable UV theories
do not suffer from any ambiguity at one-loop order. The main challenge comes from the
expansion of regions, where new IR divergences result in finite, ambiguous contributions
to the matching coefficients. However, as long as the same reading points (whatever they
might be) are used to evaluate the corresponding one-loop amplitudes in the EFT, the
ambiguities cancel. To be precise, by “reading point” we refer to which γ matrix is the last
in the (non-cyclic) trace.

For our computation of the evanescent contributions, ambiguities resulting from the
NDR prescription can occur only as a result of a fermion loop with six or more regular
γ-matrices (bearing in mind that all SM fermions are chiral by nature). Of the six covariant
topologies in (3.21), only (a)–(d) can result in a Dirac trace, depending on the evanescent
operator in question. Each propagator contributes one γ-matrix, while the scalar Higgs
insertions do not give rise to any. Furthermore, the CDE of the fermion propagators
up to nth order in the covariant derivatives can contribute up to 2bn/2c γ-matrices [57].
Diagrammatically, this corresponds to needing a γ-matrix from a gauge vertex and the
extra fermion propagator associated with it to get a field strength tensor in an amplitude.

Restricting the computation to dimension six in the SMEFT, we can determine the
maximal number of γ-matrices that are involved in each of the covariant topologies: the
propagators in topology (a) up to third order in the CDE admit up to 3 γ-matrices; for
(b) up to second order, the number is 4; for (c) to first order there can be 3; and for (d)
at leading order, there is up to 4. Thus, the only ambiguous contributions involve two
γ-matrices in the evanescent operators, which can only come from redundant operators
Fierzing to

Q
(3)prst
`equ = (`ipσµνer)εij(qjsσµνut), (3.25)

as it is the only tensor current in the Warsaw basis. Finally, there cannot be any ambiguous
γ5 contributions from the (d) topology, since there are only two external Lorentz indices
(from the external tensor bilinear). The Levi-Civita tensor from the γ5 trace cannot be
contracted to a Lorentz scalar in this case without tracing to zero. Accordingly, only
the second-order CDE of topology (b) with an evanescent operator involving Q

(3)prst
`equ

can give ambiguous contributions depending on the reading point of the trace. It was
remarked already in the one-loop SMEFT-to-LEFT matching computation [10] that the
dipole contributions stemming from Q

(3)prst
`equ are problematic when using a naive Dirac

algebra. The authors of [10] made the choice of calculating the contribution from this one
operator in the ‘t Hooft-Veltman scheme to render it unambiguous, whereas the rest of the
computation was performed in NDR.
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To dimension six, SMEFT amplitudes are linear in the EFT operators. As remarked al-
ready, there is no ambiguity in evaluating one-loop amplitudes with the redundant operators.
We can, thus, decompose the unambiguous amplitude from a generic redundant operator R as〈

R
〉(1)

SM
=
〈
R− PR

〉(1)
SM

+
〈
PR

〉(1)
SM
, (3.26)

where the 〈 · 〉(1)
SM denotes the one-loop amplitude of the operator in the presence of SM

interactions. The first term on the right-hand side is the one-loop amplitude of the evanescent
operator associated with R, and the second term the one-loop amplitude from the tree-level
operators in the Warsaw basis. Since the left-hand side is unambiguous, we find that it
is meaningful to apply our NDR scheme to the contributions on the right-hand side too, as
long as the ambiguous Dirac traces are evaluated in the same manner in the evaluation of the
evanescent operator as will be used later in the evaluation of one-loop amplitudes in the EFT.
This can be done by fixing the same reading point for all traces involving the problematic
operators. As mentioned in the example in section 2.2, we recommend fixing the NDR
ambiguity associated with evanescent operators involving Q(3)

`equ by choosing the reading point
where all Dirac traces end at the dimension-six operator. This choice selects ξrp = 1 in (2.23).

At this stage, the reader might rightly be worried about whether the NDR treatment
used here is compatible with the SMEFT-to-LEFT matching result [10] for loops with Q(3)

`equ.
Since the difference between the ‘t Hooft-Veltman scheme used in that computation and our
prescription is O(ε) for the Dirac traces, any discrepancy must be related to the UV pole of
the diagram. We have verified that our reading point prescription with ξrp = 1 happens to
give the same result. This means that the two calculations are compatible and can be used
directly in the same multi-scale analysis, which greatly simplifies the use of these standard
results. It should be emphasized that there was a priori no reason that this should have
been the case. It also implies that NDR BSM-to-SMEFT matching computations can be
compatible with the SMEFT-to-LEFT matching results.

Finally, we would be remiss if we did not point out that this whole discussion could
have been avoided simply by making a minor tweak to the Warsaw basis. Substituting
Q

(3)
`equ in favor of R`uqe, would entirely circumvent the γ5-related ambiguity in one-loop

dimension-six computations. Such a change would make it easier to ensure compatibility
between different SMEFT computations, and ease the use of NDR.

3.3.3 Results for the evanescent contributions in the SMEFT

The one-loop evanescent contributions from the projection of the operators in tables 1 and 2
onto the Warsaw basis are computed, following the procedure described above, using a
modified version of Matchete’s proof of concept [59]. The resulting expressions, consisting
of d-dimensional replacement rules for the redundant operators valid at one-loop order,
are too lengthy to be shown here. Instead, we opt for providing them as supplementary
files. The supplementary material contains a PDF file with these replacement rules, as well
as a Mathematica notebook with an interface to navigate around and look up individual
operator contributions. The results in Mathematica format can also be used for automating
the substitutions in cases when complicated expressions with multiple redundant operators
are involved.
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4 Evanescence-free renormalization schemes

Evanescent operators appear in most NLO EFT computations, not only in the SMEFT
or LEFT context. Seeing as the literature mainly discusses their treatment in specific
applications, we proceed to present a general prescription for handling these operators in
generic one-loop matching and two-loop running computations. In particular, the methods
described in this section apply beyond the example of evanescence in the SMEFT discussed
in section 3.

4.1 Matching and projecting to the physical basis

In matching computations, we generically consider some UV theory SUV[Φ, φ] with heavy
and light degrees of freedom Φ and φ, respectively. At the energy scale set by the masses M
of the heavy states, the UV theory is matched to an appropriate EFT, SEFT[φ], to facilitate
computations at energy scales E �M . The effective action — the generating functional
for all 1PI amplitudes — of the UV theory is reproduced by the EFT effective action up to
a certain order in a double expansion in loop order and inverse powers of M . The master
formula for off-shell matching of a UV theory to its EFT up to one-loop order reads11

SEFT[φ] = S
(0)
UV [Φ̂[φ], φ] + S

(1)
UV [Φ̂[φ], φ] + Γ(1)

UV

[
Φ̂[φ], φ

]∣∣∣
hard

+O(~2) . (4.1)

Here, the term Φ̂[φ] denotes the solution of the heavy-field equations of motion from S
(0)
UV as

a series in 1/M , and the tree-level EFT action S(0)
EFT is determined by replacing the heavy

fields by this solution in S
(0)
UV . For renormalizable UV theories, the one-loop action S

(1)
UV

consists exclusively of the counterterms required to renormalize the theory. Conversely, if
the UV theory is itself an EFT, S(1)

UV can contain additional finite contributions that are
one-loop order. Finally, the term ‘Γ(1)

X ’ denotes all contributions to the effective action
stemming from one-loop diagrams with vertices associated with the tree-level action S(0)

X .
The soft part12 of the one-loop diagrams in the UV theory is reproduced one-to-one by
one-loop EFT diagrams, meaning that the loop contribution to the EFT action is given
by the hard part of the UV loops (along with tree-level contributions with vertices from
S

(1)
UV) [46, 47].

The matching procedure recovers a d-dimensional EFT action. Generally, we cannot
expect to recover a four-dimensional operator basis in the matching: simply put, there
will be additional irreducible Dirac and Lorentz structures. Only by choosing a physical
operator basis and defining a projection prescription for extracting the physical part of the
EFT operators can we separate out the evanescent contributions. Schematically, this choice
defines a decomposition

Od = P Od + EP Od , (4.2)
11We use the superscript ‘(`)’ to denote `-loop contributions while the loop-order is given by the ~ power,

with ~0 being tree level. The full action is S = S(0) +S(1) + . . . and similarly for other perturbative quantities.
12The method of regions [66, 67] describes how loop integrals in DR can be decomposed in momentum

regions, which are identified by the singularities of the internal propagators. In the present case, the relevant
regions are hard and soft, with the loop momentum k satisfying k ∼M and k ∼ E, respectively.
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of the d-dimensional operators Od, where P is the projector onto the physical space and
EP ≡ id−P extracts the evanescent piece, formally of rank ε. This induces a decomposition
O = PP ⊕EP on the operator space into physical and evanescent parts. Despite the infinite
dimensionality of the evanescent space, only a finite number of evanescent operators is
needed at a given loop order, making higher-order calculations tractable. It is the choice of
P that defines the evanescent prescription used in a computation.

With the basis choice implicit in the evanescent prescription P, it becomes sensible
to discuss renormalization-related questions, such as counterterms. We can define the
operator KP that extracts all 1/ε poles of UV origin13 in the coefficients of both physical
and evanescent basis operators. This assumes that a basis has been chosen also for EP ,
but we leave this unspecified, since the evanescent poles are irrelevant for the purposes of
one-loop matching. The pole part satisfies

[
P, KP

]
= 0, which would not generically be

the case for
[
P ′, KP

]
, since transforming one basis to another involves O(ε) terms. For

this reason, one must take particular care when subtracting poles for renormalization.
Having introduced a definition of the divergent part suitable for the full set of d-dimensional
operators, we can show that the EFT matching automatically preserves the renormalization
of the UV theory:

KPS(1)
EFT[φ] = KP

[
S

(1)
UV [Φ̂[φ], φ] + Γ(1)

UV

[
Φ̂[φ], φ

]∣∣∣
hard

]
= −KPΓ(1)

UV

[
Φ̂[φ], φ

]∣∣∣
soft

= −KPΓ(1)
EFT[φ] .

(4.3)

The first equality results from the direct application of the master formula in (4.1), while
the second equality follows from proper renormalization of the UV theory and the fact that
the sum of hard and soft regions amounts for the full contribution. The last equality results
from the identification of the soft part of Γ(1)

UV with the loop contributions generated by
tree-level EFT operators.

We observe that the poles in S
(1)
EFT automatically cancel the divergent piece of the

loops generated by tree-level EFT operators. Thus, S(1)
EFT contains the counterterms for the

divergent EFT amplitudes and, thus, SEFT constitutes the bare EFT action. Any separation
of the couplings and counterterms to obtain the EFT in a suitable renormalization scheme
requires additional calculations in the EFT — effectively the soft part of the UV theory
— to determine the exact quantity to be canceled by the counterterms. This complicates
direct matching to EFTs in non-MS/MS schemes, such as ones with finite compensation of
the evanescent operators [60, 62].

4.2 Defining a suitable evanescent renormalization scheme

Modern matching computations rely on the method of regions to directly identify the hard
part of the loops in the UV theory as the relevant contribution to the EFT action. No

13This includes all UV poles, as well as all poles that are artificially generated by the application of the
method of regions. The infrared poles must be removed by an appropriate definition of physical observables,
and not by the introduction of counterterms. Thus, they are not relevant to our discussion here.
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EFT loops or soft loops in the UV theory are computed in the process of the matching.
Unfortunately, this prevents matching directly to an evanescent scheme where physical
contributions from evanescent operators are exactly compensated by finite counterterms [60,
62], as the equality of evanescent loops with local operators belongs to the soft part
of the effective action. This finitely compensated scheme, which we will refer to as C,
constitutes the traditional scheme for handling evanescent operators. We will obtain a
practical prescription for how to bring the EFT to the evanescent scheme and demonstrate
that it is physically equivalent to an evanescent subtracted scheme S, where a suitable
evanescence-free action is constructed.14

As mentioned, the matching formula (4.1) produces a bare d-dimensional EFT action.
After having settled on a prescription for the projection to the physical basis P, it is
decomposed as

LEFT = LEFT(ḡ, η̄) = Lkin + ḡaQ
a + η̄iE

i , (4.4)

with Qa ∈PP and Ei ∈ EP for the physical and evanescent operators, respectively, and
similarly for the bare physical and evanescent couplings, ḡa and η̄i (g and η denote the
renormalized couplings). As a consequence of the matching, even the renormalized part of
the bare couplings will have contributions at all loop orders. At this stage, the d-dimensional
effective action of the EFT is given by

ΓEFT = S
(0)
EFT + S

(1)
EFT + Γ(1)

EFT +O(~2) . (4.5)

Having specified a physical basis, only the physical part P ΓEFT of the effective action is
relevant to the four-dimensional limit of amplitudes. To make this observation manifest,
and to avoid carrying around cumbersome evanescent operators in all future computations,
we look for an EFT action SSEFT with exclusively physical couplings that reproduces the
physical part of the effective action. The action in the S scheme is parametrized as

SSEFT(g) = SEFT
(
g + δSg(g), δSη(g)

)
, (4.6)

where the counterterms δSg and δSη cancel the UV divergences of the physical and evanescent
terms, respectively. The S scheme constitutes an evanescence-free version of MS, and its
finite part is physical, namely P(1−KP)SSEFT = (1−KP)SSEFT. The corresponding effective
action is

ΓSEFT = S
S(0)
EFT + S

S(1)
EFT + ΓS(1)

EFT +O(~2) . (4.7)

Evidently, SEFT and SSEFT are not identical. However, we require that the EFT in the
physical basis reproduces the physical projection of the originally matched EFT action SEFT.
Namely, we enforce the requirement

P ΓSEFT = P ΓEFT . (4.8)
14The arguments presented here can also be used to remove O(ε) terms from the action, as may have been

introduced from some choices of physical basis prescription. Alternatively, it can be used for transforming
the EFT from one evanescent scheme to another, which is the situation encountered when transforming the
EFT from one basis to another. This is described in appendix A.
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At tree level, we recover the expected relation

S
S(0)
EFT = P S(0)

EFT , (4.9)

meaning that a simple projection of the tree-level result is sufficient to get the tree-level
part of the action made of physical operators. It is at the one-loop level that we encounter
the complications at the center of the issue. Condition (4.8) results in

P SS(1)
EFT = P S(1)

EFT + ∆SS
(1)
EFT , ∆SS

(1)
EFT ≡ P

(
Γ(1)

EFT − ΓS(1)
EFT

)
. (4.10)

The term ∆SS
(1)
EFT is the difference between all one-loop contributions with vertices from

S
(0)
EFT and those same loops with vertices from S

S(0)
EFT . In other words, these are all the loops

with at least one evanescent operator, which we removed from the tree-level S-scheme EFT
action. The evanescent operators have rank O(ε), ensuring that their finite contribution to
the physical part of the effective action can be traced to the UV divergent piece of the loop
integrals. The locality of the loop divergence ensures that ∆SS

(1)
EFT is local. The physical

contributions from the evanescent operators are local at higher-loop orders too, which follows
from an inductive argument due to Dugan and Grinstein [60]: by suitable renormalization
of all subdivergences of amplitudes with evanescent contributions, physical contributions
can be obtained only from the overall divergence of the diagrams, ensuring locality.

It is worth pointing out that the counterterms in SS(1)
EFT automatically renormalize ΓSEFT,

on the physical space defined by P . From the finiteness of ∆SS(1)
EFT and the renormalization

of the full EFT (4.3), it follows that

P KPSS(1)
EFT = P KPS(1)

EFT = −P KPΓ(1)
EFT = −P KPΓS(1)

EFT . (4.11)

The evanescent part of SS(1)
EFT consists of divergent counterterms and does not appear in the

computation of physical amplitudes. At NLO, the counterterms δSη are relevant only in
the two-loop running of the physical couplings in the subtracted S scheme, as we will see in
the next section.

The subtracted S scheme defined above is closely related to the finitely compensated C
scheme for the evanescent operators, where their contributions to physical amplitudes are
compensated by finite counterterms. Contrary to the S scheme, the EFT action in the C
scheme equals the bare action (in this manner, it is a more conventional renormalization
scheme):

SEFT(ḡ, η̄) = SCEFT(g, η) ≡ SEFT
(
g + δCg + ∆Cg, η + δCη

)
, (4.12)

where the counterterms δCg(g, η), ∆Cg(g, η), and δCη(g, η) depend on the renormalized
couplings. The particular feature of the C scheme is the introduction of finite countert-
erms ∆Cg for the physical couplings that compensate the loop contributions involving
evanescent operators. That is, we define

SEFT(∆Cg(1), 0) ≡ P
[
Γ(1)

EFT(g(0), 0)− Γ(1)
EFT(g(0), η(0))

]
= −∆SS

(1)
EFT . (4.13)
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The δCg and δCη counterterms are just the regular MS counterterms, required to cancel the
UV divergences of the theory. Equating the actions SCEFT(g, η) = SEFT(ḡ, η̄) then yields15

g(0) = ḡ(0) , η(0) = η̄(0) ,

g(1) = (1−KP)ḡ(1) −∆Cg(1) , η(1) = (1−KP)η̄(1) ,

δCg(1) = KP ḡ(1) , δCη(1) = KP η̄(1) .

(4.14)

Again, computing the physical part of the effective action in the C scheme,

P ΓCEFT = P SC (0)
EFT + P SC (1)

EFT + P ΓC(1)
EFT +O(~2)

= SEFT
(
g + δCg, 0

)
+ P Γ(1)

EFT(ḡ(0), 0) +O(~2) ,
(4.15)

it is evident that all contributions from the evanescent couplings drop out. The physical
part of the effective action ΓCEFT does not dependent on the renormalized η and agrees with
ΓSEFT by construction. It follows from comparing (4.10) and (4.14) that the renormalized
physical couplings are identical in S and C schemes. We have

SSEFT(g) = SCEFT(g, 0) ∼P SCEFT(g, η) = SEFT(ḡ, η̄) , (4.16)

where ‘∼P ’ indicates that the two actions reproduce the same physical effective action. The
intuition here is clear: the finite renormalization of the evanescent operators in the C scheme,
ensures that they have no physical effect. Hence, the same physics is produced by simply
disregarding the evanescent operators and their counterterms. Indeed, we will proceed to
show that the RG flow of the physical couplings also agrees between both schemes.

Before discussing the running, let us look at what this all means for the SMEFT. The
one-loop shift of the renormalized coefficients in (3.18) due to the presence of evanescent
operators is identified with the shift ∆SS

(1)
EFT, whose functional expression is generalized to

∆SS
(1)
EFT = − i2

∞∑
n=1

1
n
P STr

[
(∆XEFT)n − (∆XS

EFT)n
] ∣∣∣∣

hard
, (4.17)

which holds in any EFT up to arbitrary order in the mass expansion. Hence, the replacement
rules for the redundant SMEFT operators discussed in section 3.3 let us determine the
dimension-six SMEFT action in either S or C schemes.

4.3 Physical two-loop running

The evanescent operators influence the two-loop running of the EFT even when their
coefficients have been set to zero. Indeed, the physical operators can generically flow into
evanescent operators, which then feed back into the physical coefficients again. It was
observed in [60, 62] that by finitely compensating the evanescent couplings, the running of
the physical couplings becomes independent of them. Here we derive the β-functions for
the physical couplings in the S scheme, which turns out to be much simpler to do than in

15Recall that the renormalized couplings have nontrivial one-loop contributions from the matching of the
UV theory to the EFT.
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the C scheme, and we show that they are independent of the evanescent couplings. We
further demonstrate in appendix B that the β-functions are identical to the ones of the C
scheme, cementing the equivalence between them.

We consider here a generic EFT in the d-dimensional operator basis, like in (4.4),
equipped with a physical prescription P and denote the collective set of couplings λI =
(ga, ηi). In renormalization schemes such as S and MS without finite counterterms, the
β-functions of the couplings are given by

βI = dλI
dt = 2

∞∑
`=1

` δλ
(`)
I,1 , (4.18)

where λ(`)
I,1(λ) is the `-loop contribution to the coefficient of the simple ε pole of the asso-

ciated counterterm (more details are provided in appendix B.1). We can then consider the
flow of the Lagrangian LSEFT(g, t) in the subtracted S scheme of section 4.2, denoting the
explicit scale dependence by t. The change in couplings under an infinitesimal change in
RG scale reads

LSEFT(g, t) = LMS
EFT(g, η = 0, t) = LMS

EFT(g + δt βg, δt βη, t+ δt)
∼P LSEFT

(
g + δt(βg + βηK), t+ δt

)
,

(4.19)

where Ki
a denotes the linearized shift in physical coefficient associated with the removal

of evanescent operators from the EFT. At one-loop order it is given by∫
ddxKi

a(g)Qa ≡ ∂

∂ηi
∆SSEFT

∣∣∣∣
η=0

= P ∂

∂ηi
Γ(1)

EFT

∣∣∣∣
η=0

+O(~2) , (4.20)

as follows from (4.10).
Although the RG flow tends to run the Lagrangian back into evanescent space, we

observe that a shift is sufficient to bring it back to a form compatible with the S scheme at
a cost of modifying the naive β-functions. All told, the two-loop β-functions of the physical
couplings in the S scheme are given by

βSa (g) = 2δSg(1)
a,1 + 4δSg(2)

a,1 + 2δSη(1)
i,1K

(1) i
a +O(~3) , (4.21)

and is independent of the evanescent couplings. This expression successfully reproduces the
NLO QCD contribution to the anomalous dimension of the four-quark operators from [79].
Even with a formally infinite operator space, the expression above can be directly applied
since only a finite number of evanescent counterterms are needed at a given order in the
double expansion in loops and operator dimension.

5 Conclusions

EFTs play an ever-prominent role as versatile tools to explore physics beyond the SM.
Despite this, the subject of evanescent operators, present in any NLO EFT analysis, remains
somewhat nebulous in parts of the literature, especially outside the realm of the LEFT. We
hope that the examples and general discussion we provide here clarify the importance of a
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consistent treatment of evanescent operators for BSM studies beyond tree level. Indeed,
evanescent operators provide relevant contributions, which are typically of the same size as
the corresponding matching corrections for observables generated at the loop level.

In this paper, we analyzed the evanescent contributions to the SMEFT in the Warsaw
basis. Only a finite set of redundant operators generated by the tree-level exchange of new
heavy scalars and vectors gives rise to evanescent contributions at one-loop order. Conse-
quently, we were able to compute all possible BSM evanescent contributions using functional
techniques. Our results are provided in the supplementary material in Mathematica and
PDF formats, allowing anyone to easily account for evanescent contributions when matching
UV theories to the SMEFT at one-loop order.

We appreciate that the ongoing challenge of developing comprehensive and reliable
matching frameworks for BSM physics extends beyond the SMEFT as the target EFT.
Accordingly, we have described a generic scheme for handling evanescent operators in
EFTs, generalizing the understanding from flavor physics calculations. This provides a
systematic approach to handling evanescent operators and computing their contribution in
generic EFT matching, which will be useful in a variety of BSM computations. We have
also shown explicitly that the usual approach of compensating evanescent couplings with
finite counterterms can just as well be understood as completely removing the evanescent
operators from the theory. This perspective is particularly helpful when determining the
influence of evanescent operators in β-function computations.

This paper paves the way for the automation of EFT basis reduction and translation
beyond tree level, an essential element in any automated matching (and running) program.
In particular, the results we present here can readily be used to complete the substitution
rules employed in matchmakereft [58] to reduce SMEFT operators to the Warsaw basis. A
fully automated handling of evanescent operators in arbitrary EFT constructions, necessary
for the treatment of more general matching scenarios, is left for future work.
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A Shifting the tree-level EFT action

Depending on the evanescent prescription, the projection operator P may introduce new
O(ε) coefficients multiplying the physical operators. These extra terms give rise to finite
shifts in the effective action when picking out the pole part of loop diagrams. To remove
this extra part from the tree-level EFT, we simply consider a suitably shifted theory

S̃
S(0)
EFT = S

S(0)
EFT +O(ε) . (A.1)

The requirement that P Γ̃SEFT = P ΓSEFT +O(ε), ensuring correct reproduction of the physics,
dictates a finite shift in the one-loop EFT action:

S̃
S(1)
EFT = P S(1)

EFT + ∆̃SS
(1)
EFT , ∆̃SS

(1)
EFT = P

(
Γ(1)

EFT − Γ̃
S(1)
EFT

)
. (A.2)

Regardless of the evanescent prescription P, we can pick S̃S (0)
EFT as the result of using four-

dimensional identities to match to the basis of physical operators. This can be compensated
for with the shift ∆̃SS

(1)
EFT in the one-loop action.

The importance of applying the evanescent prescription consistently at all stages along
the RG flow is often emphasized. If we consider a second evanescent prescription P ′, we
can easily derive the finite change in the one-loop action as

S
S′ (1)
EFT = P ′ SS(1)

EFT + P′
(
ΓS(1)

EFT − ΓS
′(1)

EFT

)
, (A.3)

which ensures that the effective action agrees on the physical space defined by P ′. The first
term, P ′ SS(1)

EFT , is somewhat subtle. The projection P ′ can potentially extract finite pieces
from the old counterterms of SS(1)

EFT . More generally (1−KP ′)KP 6= 0. This is particularly
relevant when the counterterms of an EFT are not explicitly provided. In terms of matching
computations, this is also the reason why one must be careful when dropping ε poles from
the computation when implicit MS renormalization is assumed. More precisely, the poles
can only be dropped after the operators have been decomposed in terms of the relevant
operator basis.

B Two-loop running with evanescent operators

We show in detail that the β-functions of the physical couplings are independent of the
evanescent couplings in the C scheme. This generalizes the arguments of [62] beyond
four-fermion operators.
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B.1 Renormalization group functions

First, we derive generic RG formulas for the renormalized couplings following standard
methods. Let us consider a theory L(λ̄) in a generic renormalization scheme:

λ̄I = µkIε(λI + δλI), δλI =
∞∑
n=0

δλI,n
εn

, (B.1)

allowing for finite counterterms δλI,0. As the bare coupling is an RG invariant, it follows
that

0 = dλ̄I
dt = ε kI(λI + δλI) + β̂I + β̂J∂

JδλI

= ε
[
kI(λI + δλI,0) + β′I + β′J∂

JδλI,0
]

+
[
kIδλI,1 + βI + β′J∂

JδλI,1 + βJ∂
JδλI,0

]
+
∞∑
n=1

1
εn
[
kIδλI,n+1 + β′J∂

JδλI,n+1 + βJ∂
JδλI,n

]
,

(B.2)

where β̂I = ∂tλI = ε β′I + βI . From the first term, we have

β′I = −kI(λI + δλI,0)− β′J∂JδλI,0
= −kIλI − kIδλ(1)

I,0 + ζ δλ
(1)
I,0 +O(~2)

= −kIλI + 2δλ(1)
I,0 +O(~2) ,

(B.3)

with ζ ≡ kIλI∂
I . For the finite part of the β-function, it follows from the second term

of (B.2) that

βI = (ζ − kI)δλI,1 + δλJ,0∂
JδλI,1 + (β′J∂JδλK,0)∂KδλI,1 − βJ∂JδλI,0

= 2δλ(1)
I,1 + 4δλ(2)

I,1 + kJδλ
(1)
J,0∂

Jδλ
(1)
I,1 − (ζδλ(1)

J,0)∂Jδλ(1)
I,1 − 2δλ(1)

J,1∂
Jδλ

(1)
I,0 +O(~3)

= 2δλ(1)
I,1 + 4δλ(2)

I,1 − 2δλ(1)
J,0∂

Jδλ
(1)
I,1 − 2δλ(1)

J,1∂
Jδλ

(1)
I,0 +O(~3) ,

(B.4)

to two-loop order.16

B.2 Running in theories compensated by evanescent counterterms

We examine the running of physical couplings in the C scheme, where the evanescent
operators are compensated by finite counterterms. This is a generalization of the argument of
ref. [62] that evanescent couplings do not contribute to the running of the physical couplings
in the C scheme. The running in the C scheme is compared to the S scheme of section 4.3,
wherein the evanescent couplings are simply eliminated and no finite counterterms are
added. In a nutshell, we have

SS(g) ∼P SC(g, η) = SS(g) + EP SC(g, η)−∆SS(g, η) , (B.5)

where the two Lagrangians produce the same physics in the physical space. Here we wish
to show that the running of the Lagrangian in the S scheme, cf. (4.21),

βSa = 2δSg(1)
a + 4δSg(2)

a − 2δSη(1)
i,1 ∂

iδCg
(1)
a,0

∣∣∣
η=0

+O(~3) , (B.6)

16Note that (ζ − kI) picks up a factor of 2` when working on an `-loop contribution with open index I.
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is reproduced in the full d-dimensional C scheme. Here and throughout, we take the
superscript on the deltas to indicate what scheme the counterterm is taken in. At leading
order, the physical counterterms are independent of the evanescent couplings, as insertions
of evanescent operators increase the order in ε. Hence,

βC (1)
a (g, η) = 2δCg(1)

a,1(g, η) = 2δSg(1)
a,1(g) = βS(1)

a (g) . (B.7)

Before proceeding further, we introduce the shorthand notation

f(g, η) ≡ f(g, η)− f(g, 0) . (B.8)

At the two-loop order, the equivalence of the physical β-functions in the two schemes
is not at all trivial. From (B.4), we have

βC (2)
a = 4δCg(2)

a,1 − 2δCg(1)
b,0∂

bδCg
(1)
a,1 − 2

(
δCg

(1)
b,1∂

b + δCη
(1)
i,1 ∂

i)δCg(1)
a,0 , (B.9)

as δCη(1)
i,0 = 0 since no finite renormalization of the evanescent operators is introduced. It

is a fundamental property of Feynman diagrams that the higher poles are related to the
simple poles. This is incorporated in the finiteness of the β-function.17 In practical terms,
the vanishing of the first pole in (B.2) gives the generic condition

2δλ(2)
I,2 = δλ

(1)
J,1∂

Jδλ
(1)
I,1 , (B.10)

for the counterterms at two-loop order. This condition really speaks to the renormalized
Feynman diagrams, so if we imagine a certain set of two-loop graphs, but now insert
evanescent Lorentz structures in the vertices, the divergence will be reduced by one. Since
the C scheme with its finite renormalization of the evanescent operators contain exactly
the counterterms needed to cancel the finite physical part of any evanescent insertion, the
pole relation will hold for the set of all graphs with evanescent operators but at reduced
order of divergence. We have

2δCg(2)
a,1 = δCg

(1)
b,0∂

bδCg
(1)
a,1 + δCg

(1)
b,1∂

bδCg
(1)
a,0 + δCη

(1)
i,1 ∂

iδCg
(1)
a,0

= δCg
(1)
b,0∂

bδCg
(1)
a,1 + δCg

(1)
b,1∂

bδCg
(1)
a,0 + δCη

(1)
i,1 ∂

iδCg
(1)
a,0 − δ

Bη
(1)
i,1 ∂

iδCg
(1)
a,0

∣∣∣
η=0

,
(B.11)

where we used that δCga,0 = δCga,0, as these counterterms are introduced to compensate for
the evanescent operators. Plugging this back into β-function formula (B.9), it follows from
δCg

(2)
a,1 = δSg

(2)
a,1 + δCg

(2)
a,1 that

βC (2)
a = 4δSg(2)

a,1 − δ
Sη

(1)
i,1 ∂

iδCg
(1)
a,0

∣∣∣
η=0

= βS(2)
a . (B.12)

Thus, not only do SC and SS lead to the same action on the physical subspace, but the RG
evolution of the physical couplings are equal. This is not a trivial result, considering that
the two theories do not agree in d dimensions. Furthermore, this derivation demonstrates
that once the theory has been cast in either the conventional C or our S scheme, one
can safely throw away the evanescent operators (and their counterterms), as they have no
further bearing on physics or the physical RG.

17Even if β-functions can feature divergent terms in some cases, it is always possible to choose them
finite [80].
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