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ABSTRACT Malaria remains a leading cause of morbidity and mortality in Burkina 
Faso, which utilizes artemether–lumefantrine as the principal therapy to treat uncom
plicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine–pyri
methamine plus amodiaquine in children during the transmission season. Monitoring 
the activities of available antimalarial drugs is a high priority. We assessed the ex vivo 
susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting 
with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were 
derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to 
characterize known drug resistance-mediating polymorphisms. Isolates were generally 
susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 
7.9–24), monodesethylamodiaquine (22, 14–46) piperaquine (6.1, 3.6–9.2), pyronaridine 
(3.0, 1.3–5.5), quinine (50, 30–75), mefloquine (7.1, 3.7–10), lumefantrine (7.1, 4.5–12), 
dihydroartemisinin (3.7, 2.2–5.5), and atovaquone (0.2, 0.1–0.3) and mostly resistant 
to cycloguanil (850, 543–1,290) and pyrimethamine (33,200, 18,400–54,200), although 
a small number of outliers were seen. Considering genetic markers of resistance to 
aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y 
(95%) sequences. For markers of resistance to antifolates, established PfDHFR and 
PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% 
of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were 
absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate 
artemisinin partial resistance were not detected. Overall, our results suggest excellent 
susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance 
to antifolates used to prevent malaria.

KEYWORDS Plasmodium falciparum, susceptibility, antimalarial drugs, ex vivo, Burkina 
Faso

M alaria, primarily due to Plasmodium falciparum, remains a leading cause of 
morbidity and mortality in Burkina Faso, with about 37% of clinic consulta

tions and 15% of deaths reported as due to malaria in 2021 (1). Since 2005, arte
misinin-based combination therapies (ACTs), initially artemether–lumefantrine (AL) 
and artesunate–amodiaquine (AS-AQ), and more recently including dihydroartemisi
nin–piperaquine (DP) and artesunate–pyronaridine, have been approved to treat 
uncomplicated malaria (2–4). Following World Health Organization (WHO) recommen
dations for the Sahel sub-region (5), seasonal malaria chemoprevention (SMC) with 
sulfadoxine–pyrimethamine–amodiaquine (SP-AQ) during the malaria transmission 
season has been widely utilized in children under 5 years of age (6). Most studies have 
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reported excellent efficacy of ACTs in treating uncomplicated malaria in Burkina Faso 
(7–10), but one recent trial reported suboptimal efficacies of AL and DP (11), 
although these results may have been influenced by methodological factors (12). Since 
the implementation of SMC in 2014, studies have demonstrated excellent efficacy in the 
prevention of uncomplicated malaria, hospital admissions, and deaths in Burkina Faso 
(13–16).

The emergence and spread of P. falciparum resistant to artemisinin, ACT partner 
drugs, and components of SMC is of great concern, although the prevalence of highly 
resistant parasites has generally been lower in West Africa than in eastern and south
ern Africa (17). Mutations in PfK13 that have mediated artemisinin partial resistance, 
manifesting as delayed parasite clearance and abnormal ring survival assays in South
east Asia (18) and, more recently, in East Africa (19–24), have not been reported in 
Burkina Faso (11, 25, 26). Resistance to amodiaquine, associated with the PfCRT K76T 
and PfMDR1 N86Y mutations, has been uncommon in Burkina Faso in recent years 
(27–29), and resistance to lumefantrine or piperaquine, the latter associated with novel 
PfCRT mutations and duplication of plasmepsin genes in Southeast Asia, has not been 
described (27). Regarding resistance to the SP component of SMC in Burkina Faso, some 
resistance-mediating mutations in the target proteins dihydrofolate reductase (PfDHFR) 
and dihydropteroate synthase (PfDHPS) have been common, but mutations mediating 
high-level resistance, notably PfDHFR I164L and PfDHPS K540E and A581G, have been 
detected rarely (30).

To characterize current resistance trends, we measured ex vivo susceptibilities 
to important antimalarials, characterized genetic polymorphisms relevant to drug 
resistance, and assessed associations between these parasitological and genetic 
measures of drug resistance in fresh clinical isolates collected in Bobo-Dioulasso in 2021 
and 2022.

RESULTS

Study samples

We collected 118 P. falciparum isolates in 2021 and 100 in 2022 in Bobo-Dioulasso, 
located in the Houet province of the southwest region of the country and the second 
largest city in Burkina Faso. The median age of subjects was 13 years, and 59% of the 
subjects were male (Table 1). The mean parasitemia of samples was 3.1%.

Ex vivo drug susceptibility

Of the 218 isolates, 158 (72.4%) successfully grew in culture and yielded drug suscepti
bility data. We measured ex vivo susceptibilities to 11 antimalarial drugs (Fig. 1; Table 
2). Analyses of Dd2 and 3D7 reference strains yielded IC50 values consistent with 
those reported previously (31) (Table 3). Except for the antifolates pyrimethamine and 
cycloguanil, median isolate IC50 values were in the low-nanomolar range and similar 
to those for the drug-susceptible control strain 3D7, indicating potent activity (Fig. 1; 
Tables 2 and 3). For chloroquine, eight of 157 tested isolates (5.1%) had IC50 values at 
or above 100 nM, a value generally considered the threshold for chloroquine resistance 
(32). Considering piperaquine, no isolate showed the biphasic dose–response curves 
associated with piperaquine resistance in southeast Asia (33). Results differed for the 
PfDHFR inhibitors pyrimethamine and cycloguanil, with IC50 values consistent with 
widespread antifolate resistance and known genotypes of parasites circulating in Africa.

TABLE 1 Baseline characteristics of patients and samples

Year Number of samples Sites Gender N (%) Age, median years (min–max) Parasitemia (mean ± SD)

Hamdalay Sakaby M F

2021 118 97 15 62 (59) 44 (42) 12 (3–60) 3.1 ± 3.2
2022 100 52 48 59 (60) 40 (40) 13 (5–37) 2.9 ± 4.1
Total 218 149 63 121 (59) 84 (41) 13 (3–60) 3.1 ± 3.7
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We tested for pairwise correlations between ex vivo drug susceptibilities (Fig. 2). 
Correlations were seen between results for aminoquinolines; the strongest correla
tion was between pyronaridine, a compound structurally related to the quinolines, 
and monodesethylamodiaquine (MDAQ), the principle active metabolite of amodia
quine (Spearman’s rank-order coefficient 0.52; P < 0.001). Modest correlations were 
observed between results for lumefantrine and mefloquine (0.42), quinine and its analog 
mefloquine (0.38), and the antifolates cycloguanil and pyrimethamine (0.41). All other 
pairwise associations were relatively weak.

Resistance-mediating genetic polymorphisms

We sequenced genes associated with altered drug susceptibility from 200 isolates (Fig. 3); 
the number of successfully sequenced samples for each allele is shown in Table S1. 
Among genetic markers of resistance to aminoquinolines, most samples had wild-type 
PfCRT K76T and PfMDR1 N86Y sequences. Other known PfCRT/PfMDR1 resistance 
mutations were not seen. The PfMDR1 Y184F mutation was common, as seen previously, 
but this mutation appears to be associated with parasite fitness, not drug resistance (34). 
For markers of resistance to antifolates, previously common PfDHFR (N51I, C59R, and 
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FIG 1 Ex vivo drug susceptibilities. Each black point represents the result for a single isolate. Points for the 3D7 (green) and Dd2 (red) control strains represent 

means. Bars and whiskers represent median IC50 values and IQRs respectively.
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S108N), and PfDHPS (S436A and A437G) mutations were highly prevalent (Fig. 3; Tables 4 
and S1). The PfDHPS I431V and A613S mutations, which have been seen previously in 
West Africa (29), were found at low prevalence, and key markers of high-level resistance 
(PfDHFR I164L; PfDHPS K540E) were absent or rare (PfDHPS A581G) (Fig. 3; Tables 5 and 
S1). Considering polymorphisms in PfK13, the principal marker of artemisinin partial 
resistance, only three propeller domain mutations were identified, each in one isolate 
(C532S, V534L, and E606D). None of these PfK13 polymorphisms are validated or 
candidate markers of artemisinin partial resistance (35), and all have been reported as 
rare mutations elsewhere in West and Central Africa (17, 36).

Associations between ex vivo susceptibilities and genetic polymorphisms

We tested for associations between ex vivo drug susceptibilities and key genetic 
polymorphisms associated with drug resistance (Fig. 4). The PfCRT K76T mutation was 
significantly associated with decreased susceptibility to the aminoquinolines chloro
quine and MDAQ and increased susceptibility to piperaquine, mefloquine, and lumefan
trine (Fig. 4A). An isolate containing the K76T mutation had the highest IC50 value for 
MDAQ (206 nM) and also had a high IC50 for chloroquine (156 nM). Despite relatively few 
mutant genotypes for comparison, the PfMDR1 N86Y mutation was significantly 
associated with increased susceptibility to lumefantrine and mefloquine (Fig. 4B). Isolates 
containing the common PfMDR1 Y184F mutation had significantly increased susceptibil
ity to quinine (Fig. 4B). Amplification of genes associated with decreased susceptibility to 
mefloquine (pfmdr1) and piperaquine (plasmepsin II–III) in southeast Asia was not 
detected in 175 out of 176 isolates successfully analyzed; one isolate had a depth-of-
coverage suggestive of two plasmepsin II copies. Responses to the antifolates 

TABLE 2 Ex vivo drug susceptibilities (nM) of P. falciparum isolates

Drug N Median IC50 (nM) IQR Min–Max

Chloroquine 157 10 7.9–24 0.8–263
MDAQ 156 22 14–46 0.6–206
Piperaquine 157 6.1 3.6–9.2 0.5–212
Pyronaridine 156 3.0 1.3–5.5 0.1–37
Quinine 160 50 30–75 8.1–638
Mefloquine 154 7.1 3.7–10 0.2–60
Lumefantrine 146 7.1 4.5–12 0.5–41
Dihydroartemisinin 158 3.7 2.2–5.5 0.5–25
Pyrimethamine 158 33,200 18,400–54,200 33–190,000
Cycloguanil 157 850 543–1,290 3.6–8,270
Atovaquone 158 0.2 0.1–0.3 0.01–1.0

TABLE 3 Mean IC50 values (nM) for P. falciparum laboratory control strains

3D7 Dd2

Drug N IC50 ±SD (nM) N IC50 ±SD (nM)

Chloroquine 4 8.9 ± 1.4 4 107 ± 44
MDAQ 5 17 ± 8.1 5 67 ± 42
Piperaquine 5 8.0 ± 7.5 5 8.3 ± 6.0
Pyronaridine 5 3.2 ± 2.8 5 4.7 ± 2.0
Quinine 5 50 ± 30 5 279 ± 108
Mefloquine 4 7.2 ± 4.6 5 7.9 ± 4.8
Lumefantrine 3 7.6 ± 3.6 5 5.4 ± 5.5
Dihydroartemisinin 5 3.3 ± 2.0 5 2.1 ± 1.3
Pyrimethamine 5 82 ± 78 5 48,800 ± 19,000
Cycloguanil 4 5.9 ± 2.3 5 2,090 ± 670
Atovaquone 5 0.2 ± 0.2 5 0.2 ± 0.1
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pyrimethamine and cycloguanil were strongly associated with PFDHR haplotypes, with 
the nine fully wild-type isolates highly sensitive to both drugs (Fig. 4C). Consistent with 
results of earlier research from Uganda (37), PfDHFR double-mutant C59R/S108N isolates 
were more susceptible to both drugs than N51I/C59R/S108N triple-mutant isolates (Table 
4).
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DISCUSSION

Prompt therapy of malaria with ACTs and regular administration of SP plus amodiaquine 
as SMC are key components of malaria control in Burkina Faso. Considering artemisinin, 
genomic studies have identified multiple PfK13 polymorphisms that are validated or 
candidate resistance markers in eastern Africa, with foci in Rwanda (19, 38), Uganda (20–
22), and Ethiopia/Eritrea (23, 24). These markers have been associated with clinical and 
laboratory evidence of artemisinin partial resistance, but not with loss of ACT treatment 
efficacy (19, 20, 22, 23, 38). Considering antifolates, multiple mutations associated with 
a moderate level of resistance to the components of SP have been common across 
Africa; one key mutation (PfDHPS K540E) is common in eastern, but not West Africa; 
and additional mutations associated with high level resistance (PfDHFR 1I64L; PfDHPS 
A581G) have shown increasing prevalence in some regions in East Africa. Our new 
results from Burkina Faso are consistent with these findings, with potent ex vivo activity 
of all tested drugs, except the PfDHFR inhibitors pyrimethamine and cycloguanil and 
prevalence of resistance markers consistent with other recent findings from West Africa 
(27, 29, 39, 40). These results offer confidence that for now, current regimens will 
continue to offer good treatment and preventive efficacy in Burkina Faso.

For malaria treatment, a number of recent studies have shown sub-optimal efficacies 
for ACTs, in particular artemether–lumefantrine. Importantly, studies in Burkina Faso (11), 
Angola (41), DRC (42), and Uganda (43) showed PCR-corrected AL treatment efficacies 
< 90% at some study sites. Most relevant to this study, treatment efficacies in children 
were 74% and 76% for artemether–lumefantrine and 89% and 84% for dihydroartemisi
nin–piperaquine in Nanoro and Gourcy in Burkina Faso, respectively (in the north of 
country, a different region than in the current study) in 2017–18 (11). Importantly, all 
of these reports of inadequate treatment efficacies were in regions without noteworthy 
prevalence of artemisinin resistance mediating PfK13 mutations. The low treatment 
efficacies may have been due to inadequate compliance with treatment regimens, 
especially for twice-daily dosing of artemether–lumefantrine; methodological issues 
leading to spurious results (12, 44); analytical details affecting outcome assignments 
(45); or resistance determinants independent of PfK13 mutations. Importantly, there has 
been inconsistency in molecular methods to correct treatment outcomes, potentially 
explaining some reports of relatively low efficacies (46). Overall, despite encouraging 

TABLE 4 PfDHFR haplotypes in Burkina Faso isolates and antifolate susceptibilities

Median IC50 nM (N)c

PfDHFR haplotypea N (%) Cycloguanil Pyrimethamine

N51-C59-S108b 9 (5) 7.9 (6) 51 (7)
51I-C59-108N 3 (2) 316 (3) 20,910 (3)
N51-59R-108N 16 (9) 558 (15) 21,700 (15)
51I-59R-108N 148 (84) 935 (112) 36,840 (112)
aIsolates with mixed and mutant haplotypes were combined.
bWild-type haplotype.
cIC50 data were not available for all isolates that were genotyped.

TABLE 5 Prevalence of PfDHPS haplotypes in Burkina Faso isolates

PfDHPS haplotype (N = 148)

Amino acids I431V-S436A-A437G-K540E-A581G-A613S N (%)

ISAKAA (wild type) 3 (2)
ISGKAA 57 (39)
IYGKAS 1 (0.7)
IAGKAA 49 (33)
IAGKAS 16 (11)
IAAKAA 15 (10)
IAAKAS 2 (1.4)
VAGKGS 5 (3.4)
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ex vivo and genomic results from our study, reports from Africa of both unacceptably 
low treatment efficacies for ACTs in regions without PfK13 mutations and of increasing 
prevalence of resistance mediating PfK13 mutations are of great concern.

Regarding malaria chemoprevention, multiple mutations associated with moderate 
resistance to both components of SP have circulated in West Africa, including Burkina 
Faso, for many years (30, 47, 48). Despite the prevalence of these mutations, SMC 
has demonstrated excellent preventive efficacy in multiple countries, including Burkina 
Faso (16, 49–52). The strong efficacy of SMC with SP-AQ may have been facilitated by 
increasing susceptibility of parasites to AQ, with loss of resistance genotypes in Burkina 
Faso despite inclusion of artesunate–AQ in national treatment guidelines until recently. 
Remarkably, despite the heavy selective pressure of widespread coverage of SMC, we did 
not see selection of the PfDHFR I164L and PfDHPS K540E and A581G mutations (47, 48), 
all of which mediate a higher level of resistance to SP. These results are consistent with 
those from a broad survey of antifolate mutations in West Africa conducted in 2015–18 
(30).

This study had some limitations. Ex vivo drug susceptibility assays are inherently 
imprecise, and IC50 results may be affected by varied growth in culture and the inability 
to repeat assays to improve precision. Additionally, to improve reliability, we limited our 
study to isolates with high parasitemias (≥ 1%); these results might not reflect those 
for low-density infections. Finally, in high malaria transmission settings, P. falciparum 
infections are typically polyclonal, and our ex vivo susceptibility values often represent an 
average of results for clones competing in culture.

In summary, our results suggest a stable situation regarding antimalarial drug 
resistance in Burkina Faso. However, reasons for concern include growing prevalence 
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of mutations mediating artemisinin partial resistance and increasing antifolate resistance 
in other parts of Africa, reports of decreased ACT treatment efficacy in Burkina Faso and 
elsewhere, and the likelihood that continued use of ACTs to treat malaria and SP-AQ for 
SMC may eventually lead to decreased susceptibility of circulating malaria parasites to 
important antimalarials. Thus, continued surveillance for ex vivo and genomic markers of 
decreased P. falciparum susceptibility to current antimalarial regimens is a high priority.

MATERIALS AND METHODS

Sample collection

P. falciparum isolates were collected from patients aged 6 months or older presenting at 
the health centers of Hamdalaye and Sakaby, both in Bobo-Dioulasso, during the malaria 
transmission seasons in 2021 and 2022. Patients presenting with fever (axillary tempera
ture ≥37.5°C) or history of fever in the last 24 h were screened for P. falciparum malaria 
using a rapid diagnostic test (RDT; SD Bioline); those with positive RDT results had a 
Giemsa-stained thin blood smear evaluated to confirm the diagnosis before enrollment. 
The study protocol and all related documents were approved by the Comité d’Ethique 
Institutionnel pour la Recherche en Santé of the IRSS.

Subjects with P. falciparum mono-infection based on a thin blood smear with ≥1% 
parasitemia and providing informed consent were enrolled, and 3–5 mL of venous blood 
was collected in EDTA vacutainer tubes. Informed consent was provided by parents or 
guardians for children under 10 years of age; assents were also provided for children 
10–16 years of age. Patients reporting use of antimalarial drugs in the previous 30 
days were excluded to avoid the possibility of collecting parasites under drug selection. 
Parasitemia was determined from thin smears by counting 1,000 or more erythrocytes. 
Four blood spots were placed on Whatman FTA cards (Cytivia) for subsequent molecular 
analysis. Samples were transported within 18 h of collection to the laboratory of the 
Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l’Ouest in 
Bobo-Dioulasso.

Sample processing for ex vivo assays

Samples were usually analyzed the same day as collection; samples collected late in 
the day were stored at 4°C overnight and assayed the following day. We previously 
demonstrated that overnight refrigeration of freshly collected isolates had a minimal 
impact on IC50 values (53). Blood was centrifuged at 2,000 rpm for 10 min at room 
temperature, plasma and buffy coat were removed, and the erythrocyte pellet was 
washed three times with RPMI 1640 media (Thermo Fisher Scientific). The pellet was 
resuspended in complete medium consisting of RPMI 1640 with 25 mM HEPES, 24 mM 
NaHCO3, 0.1 mM hypoxanthine, 10 µg/mL gentamicin, and 0.5% AlbuMAX II (Thermo 
Fisher Scientific) to produce a hematocrit of 50%.

Ex vivo growth inhibition assays

Drug susceptibilities were measured using a 72 h microplate growth inhibition assay 
with SYBR green detection, as previously described (30). Study compounds (chloroquine, 
monodesethylamodiaquine, piperaquine, pyronaridine, quinine, mefloquine, lumefan
trine, dihydroartemisinin, pyrimethamine, cycloguanil, and atovaquone), supplied by 
Medicines for Malaria Venture, were dissolved in dimethyl sulfoxide (distilled water for 
chloroquine) as 10-mM stocks (50 mM for pyrimethamine) and stored at −20°C. Drugs 
were serially diluted 3-fold in complete medium in 96-well microplates (50 µL per well), 
including drug-free and parasite-free control wells, with concentration ranges opti
mized to capture full dose–response curves (chloroquine and quinine, 10,000–0.5 nM; 
mefloquine and piperaquine, 5,000–0.25 nM; monodesethylamodiaquine, lumefantrine, 
and dihydroartemisinin 1,000–0.05 nM; pyronaridine, 500–0.025 nM; pyrimethamine, 
500,000–25 nM; cycloguanil 50,000–2.5 nM; atovaquone 100–0.005 nM). Cultures were 
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adjusted to 0.2% parasitemia and 2% hematocrit using uninfected O+ erythrocytes, 
obtained from a local blood bank to a total volume of 200 µL per well. Plates were 
maintained at 5% CO2, 5% O2, and 90% N2 for 72 h at 37°C in a humidified modular 
incubator (Billups Rothenberg). After 72 h, plates were stored at −20°C until reading. 
After thawing the plates, wells were resuspended, and 100 µL culture per well was 
transferred to black 96-well plates containing 100 µL per well of SYBR Green lysis buffer 
(20 mM Tris, 5 mM EDTA, 0.008 % saponin, 0.08 % Triton X-100, and 0.2 µL/ml SYBR 
Green I [Invitrogen]), and mixed. Plates were incubated for 1 h in the dark at room 
temperature, and fluorescence was measured with a FLUOstar Omega plate reader (BMG 
LabTech; 485 nm excitation and 530 nm emission). Laboratory control P. falciparum Dd2 
(MRA-156) and 3D7 (MRA-102) strains (BEI Resources) were assayed regularly during the 
study period. IC50 values were derived by plotting the fluorescence intensity against log 
drug concentration and fit to a non-linear curve using a four-parameter Hill equation in 
Prism (GraphPad Software, version 10.1).

Genomic analyses

DNA was extracted from filter paper blood spots using Chelex 100 (Bio-Rad) as previ
ously described (31). All samples were characterized by molecular inversion probe (MIP) 
capture and next-generation sequencing (22). The probes spanned the pfcrt, pfmdr1, 
pfdhfr, pfdhps, and pfK13 genes; the copy number of the plasmepsin II/III and pfmdr1 
genes was assessed from isolates based on the depth of coverage. MIP capture, library 
preparation, and sequencing details were as previously described (54).

Statistical analysis

To quantify associations between ex vivo drug susceptibilities, we calculated correla
tions between median IC50 values using Spearman’s rank-order correlation coefficient 
to account for non-parametric distributions of IC50 values in GraphPad Prism 10.1. 
Associations between transporter or enzyme polymorphisms and ex vivo susceptibil
ities were determined by comparing IC50 values using a Mann–Whitney U test or 
Kruskal–Wallis test with Dunn’s post-hoc test in Prism. Statistical tests were two-tailed, 
and results were considered significant at P < 0.05.
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