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ABSTRACT OF THE DISSERTATION 

Quantitative electrophysiology as a biomarker of Autism Spectrum Disorder 

by 

Kevin Anthony McEvoy 

Doctor of Philosophy in Neuroscience 

University of California, Los Angeles, 2014 

Professor Shafali S. Jeste, Chair 

 

Autism Spectrum Disorders (ASD) are a collection of neurodevelopmental disorders with 

features of impairments in two domains: social communication, and restrictive repetitive 

behaviors/interests.  Quantitative electroencephalography (QEEG) holds promise as a 

translational method for investigating abnormal neural oscillatory activity in ASD. Use of QEEG 

in ASD research is increasing, however discrepancies exist among the types of methods, artifact 

handling, and analyses researchers use. To facilitate comparing results across researchers, a solid 

foundation for use of QEEG in ASD research is needed. This dissertation builds a framework for 

using QEEG in future studies on children with ASD through a detailed description of data 

processing, artifact effects, statistical analysis methods, and differences in QEEG measures 

between children with ASD and typically developing controls. Chapter 2 presents a systematic 

approach to establishing clean, artifact-free data, and investigates the effect of artifacts on QEEG 

band power measures in children. We demonstrate that: (1) data quality is similar between a 

diverse group of children with ASD and a control group of typically developing children (TD), and 

(2) group differences in QEEG measures are not confounded by group differences in artifacts.  

Chapter 3 focuses on incorporating individual diversity observed in ASD into frequency band 
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power analyses. It first demonstrates the need for including phenotypic information in QEEG 

analyses, and then describes frequency band power differences between typically developing 

children and children with ASD. 
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Chapter 1: Introduction 

1.1 Autism Spectrum Disorders 

Autism Spectrum Disorders (ASD) are a collection of neurodevelopmental disorders with 

features of impairments in two domains: social communication, and restrictive repetitive 

behaviors/interests (American Psychiatric Association, 2013). The most recent reports from the 

CDC show that prevalence estimates continue to increase, and currently an estimated 1 in 68 

children has an ASD (1 in 42 boys; 1 in 189 girls). Regardless of the reason for the increased 

prevalence, there is a need for more research for accurate diagnosis, optimal treatment, and the 

pathophysiology of the disorder. Given that early diagnosis improves long term outcome (Lord, 

1995) (Rodgers, 1996), it is essential to improve early diagnosis. Despite the fact that reliable 

diagnosis can be made by the age of 24 months (Kleinman et al., 2008; Lord et al., 2006), the most 

recent CDC reports indicate the median age at which diagnosis is made is not until 53 months of 

age (CDC ADDM Network, 2014).  

Delayed language acquisition is a common indicator of the disorder, and the absence of 

first words or phrases is the most common initial concern reported by caregivers of children with 

ASD (Wetherby et al. 2004). While early language function is a key prognostic factor for 

individuals with ASD (Lord and Ventner 1992), the heterogeneity in language outcomes remains 

exceptionally large, with estimates of 30% to 50% remaining nonverbal (Anderson et al. 2007; 

Tager-Flusberg and Kasari, 2013). Language abnormalities range from impaired pragmatics, to 

difficulties with syntax and semantics, to phonological processing deficits (Groen et al. 2008). 
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Behavioral measures have been successful at characterizing various levels of verbal abilities, but 

because they can only capture overt behaviors, they unfortunately struggle to subtype children with 

similar language levels. For example, they are unable to differentiate preverbal from nonverbal 

children. In addition, behavioral measures alone cannot address the underlying neural mechanisms 

and pathways that underlie the deficits and delays of language impairment. Innovative use of 

physiologic measures and translational methods are therefore required to provide insight into 

biologic processes of language function in ASD. 

A current approach to understanding these processes is through identification of 

biomarkers, or objectively quantifiable indicators of biologic states. One physiologic measure that 

has shown promise in other developmental and adult neuropsychiatric disorders is through 

measurement of neural activity as recorded by electroencephalography (EEG). As a biomarker, 

quantitative EEG (QEEG) is a measure of neural oscillatory activity while an individual is at rest 

or engaged in a task. Research has demonstrated it is effective in suggesting optimal treatments 

(Leuchter et al., 2009), early disorder detection (Bosl, Tierney, Tager-Flusberg, & Nelson, 2011), 

identifying subgroups within a disorder (Clarke et al., 2011), monitoring treatment outcomes 

(Dawson et al., 2012), monitoring typical brain function over development (Marshall, Bar-Haim, 

& Fox, 2002), and even predicting functional outcomes (Gou, Choudhury, & Benasich, 2011). The 

utility of QEEG is not limited to these clinical applications. As a measure more proximal to the 

source of deficits in ASD, it can also provide insight into pathways to language impairment in 

ASD. Even though a relatively small number of studies have used QEEG to examine ASD, the 

findings suggest several ways it could be useful as a biomarker of the disorder. However, because 

of differences between methods, questions asked, and even subject populations, the results of these 
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studies often appear to conflict. If QEEG can be used as a biomarker for ASD, an initial framework 

of QEEG measures in ASD needs to be established. 

1.2 Quantitative Electroencephalography 

Uses 

Quantitative EEG measures neural oscillatory activity primarily related to postsynaptic 

activity in the neocortex. Its main clinical use is in characterizing epileptiform and seizure activity, 

the risk of which is increased in ASD (Tuchman & Rapin 1997, 2002). It is also used to study 

sleep disturbances, where the incidence is also increased in ASD (Chez et al., 2006). As a research 

tool, QEEG has a well-established history for studying neural activity in typically developing 

children (Marshall, Fox, etc.) and neurotypical adults (Basar, Basar-Eroglu, Karakas, & 

Schurmann, 2001), as well as in neuropsychiatric disorders such as depression (Cook & Leuchter, 

2001; Loo et al., 2009), schizophrenia , and ADHD (Loo et al., 2009; Uhlhaas & Singer, 2010).  

Advantages 

The exquisite millisecond temporal resolution of the recordings make EEG well suited to 

studying precise timing differences in neural activity between different groups or experimental 

manipulations. Consequently, the majority of experimental EEG research looks at time-locked, 

event related changes in the amplitude or latency of recorded neural electric activity, so-called 

event-related potentials (ERP). By averaging the time-locked signal over many repetitions of the 

same event, this method enhances the signal related to a specific event, while removing what is 

often thought of merely as background “noise.” However, this ongoing background activity is far 

from being noise. Many studies have demonstrated that EEG activity prior to an event predicts 
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subsequent ERP measurements (Gruber et al., 2005; Mazaheri et al., 2009). In vivo studies on 

animals also demonstrate the importance of on-going neural activity, for example by showing that 

the neuronal firing rates are affected by the rhythmic fluctuations in the electrical potential in their 

local environmental background, referred to as “up-and-down states.” In humans, QEEG is used 

to study this background activity most often while subjects are at rest, but an increasing number 

of studies are also studying non-time locked changes in the neural activity while subjects are 

engaged in an activity, for example executive function tasks. An additional advantage of QEEG 

over event related experiments is that QEEG, by its very nature, measures ongoing neural activity 

without requiring sensory stimulation or overt behaviors. Not only does this allow the scientific 

questions to investigate neural activity in a more natural state than in time-locked, event related 

designs, but it is also a practical advantage because it enables studying difficult populations, for 

example infants and children with developmental disorders such as ASD. Compared to 

technologies such as fMRI or PET, QEEG has additional practical advantages of EEG, including: 

relatively cost effective, lower startup cost, increased availability, ease of use, and is noninvasive. 

Even though the scientific questions should not be driven by the practical advantages of a method, 

they are important considerations when searching for biomarkers with clinical utility. 

Frequency Bands 

Investigation of neural oscillatory activity is accomplished by first decomposing the time-

varying changes of the EEG signal into a measure of how much each frequency contributes to the 

overall signal. Stating it differently, the signal is transformed from a measure that changes over 

time (i.e. time-domain) to a measure that changes over frequencies (i.e. frequency-domain). Next, 

the measured amount of each frequency (i.e. power) at each sequential frequency step is averaged 

across groups of neighboring frequencies (i.e. frequency bands) and used in statistical tests, for 
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example to determine how neural activity differs across hemispheres, groups, or experimental 

conditions.  The range of frequencies within a frequency band all share physiologic properties, and 

research has demonstrated that power in different bands and regions of the scalp relate to various 

sensory and cognitive processes. The most commonly studied bands are delta (1-3 Hz), theta (4-7 

Hz), alpha (8-12 Hz), beta (13-35 Hz), and gamma (>35 Hz). Delta activity is most often associated 

with deep sleep, but research has also suggested it plays a role in motivation, attention, and low-

level processes such as salience detection and perception (Knyazev, 2012). Increased power in the 

theta band is associated with memory and recall (Klimesch et al., 1996). Alpha band activity is 

prominent over occipital scalp regions. In many adults it can be reliably induced during wakeful 

resting with eyes closed, which led to its interpretation as an ‘idling rhythm’ (Basar et al., 2000). 

It is commonly believed that increased alpha activity is also involved in inhibitory functions 

(Uhlhaas et al, 2009). The beta band is not studied as often as the other bands, but studies suggest 

it is involved in motor behaviors and alertness (Neuper & Pfurtscheller, 2001). In recent years, a 

great deal of research has focused on the gamma band because it is believed to play a role in several 

higher cognitive processes including language, memory, attention, and object representation 

(Benasich et al., 2008; Basar et al., 2000; Tallon-Baudry et al., 1999). 

Power Measures 

The power measure reported is most commonly based on either of two closely related 

calculations. The first, referred to as absolute power (measured in μV2) is the raw measure of 

power at each frequency averaged across all frequencies within a band. The second type of power 

measure, referred to as relative power, is the percentage of power within a frequency band relative 

to all other frequency bands, and it is simply calculated by dividing each band’s absolute power 

by the sum of the absolute power across all frequency bands. Relative power is helpful in 
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standardizing absolute power differences across subjects, which may be particularly useful in 

studies on developmental populations because differences in skull thicknesses can have a large 

effect on absolute power estimates.  However, because there is a known (1/f) logarithmic nature 

of the EEG power spectrum (Buzsaki & Draguhn, 2004), differences in relative power across 

frequency bands and groups may be more difficult to interpret than in absolute power.  

Challenges & Artifacts 

Despite the scientific and practical reasons encouraging the use of QEEG to investigate 

deficits and biomarkers in ASD, challenges also exist, especially when the target population 

includes children with a developmental disorder. Given that children with ASD, by definition, 

have impairments in social communication, it can be difficult for some children to remain 

compliant during an experiment. This can result in a decreased quantity of acquired data. The 

quality of the data is also affected because QEEG is susceptible to contamination by several 

physiologic artifacts. Of all EEG artifacts, three of the most common are due to eye blinks, 

horizontal eye movements (i.e. saccades), and muscle activity (electromyographic or EMG). 

Various methods and techniques have been developed to handle these types of artifacts in data 

acquired from adults, but not all are possible or applicable to data collected from children. 

Furthermore, the effect each of these artifacts has on measurements of band power in different 

scalp regions is unknown for developmental populations.  

1.3 Use of QEEG in ASD Research 

Compared to developmental disorders such as Attention Deficit Hyperactivity Disorder, 

where there is a rich literature examining neural oscillatory activity through QEEG, studies on 
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ASD are relatively sparse. With only a handful of reported studies, it is not surprising that 

conflicting results are found across researchers. Two recent reviews provide excellent summaries 

of published results (Billeci et al. 2013; Wang et al. 2013), and discuss potential reasons for the 

mixed findings. The reasons for the mixed findings can be summarized as due to differences in: 

(a) the target ASD population, (b) the state of the subject during recording, and (3) the selection 

of outcome measures.  

Target ASD Population 

The ASD population studied can vary in several important ways and is particularly 

important because of the heterogeneity within diagnosed individuals. A finding of reduced band 

power reported in one study may appear to conflict with the increased band power by another 

study, but the characteristics of the subjects in the ASD samples are often different (e.g. age, IQ, 

level of impairment, etc.), as is the case with studies with studies by Cantor et al., 1986 and 

Mathewson et al., 2012. The study by Cantor and colleagues reported lower relative alpha power 

in a group of young, very impaired children with ASD (IQ = 37 ±11; Age: 4-12 yo). Mathewson 

and colleagues on the other hand, reported a higher relative alpha power in ASD, but subjects in 

the ASD sample were much higher functioning adults (IQ = 101 ±19; Age: 19-52 yo). Attempting 

to make conclusions regarding all individuals with ASD based on the results of these two studies 

is not possible. A major goal of this dissertation, is to lay a foundation built on how QEEG 

measures vary within the spectrum of ASD. 

Subject State 

Differences in what a subject is doing during an EEG recording, for example sitting at rest 

versus engaged in a task, contribute to conflicting results because band power measures are known 

to change depending on a subject’s state, both cognitive and physical. Quantifying a subject’s EEG 

7 
 



during different cognitive states allows for comparisons of neural activity at different levels of 

engagement and cognitive functioning, for example when a subject is at rest versus a short-term 

memory task. Two example studies using this approach in ASD include a “Go/No-Go” task (Chan 

et al., 2011), and sustained visual attention tasks (Oberman et al., 2005). The most common method 

for adjusting a subject’s physical state during EEG recordings is to have subjects rest with eyes-

closed versus eyes-open.  Studies in ASD have used eyes-open (e.g. Chan et al., 2007), eyes-closed 

(e.g. Coben et al. 2008), and in rare occasions both eyes-open and close conditions (e.g. Pop-

Jordanova et al., 2010). Recording a subject under an eyes-closed condition is beneficial because 

it produces a more stable (i.e. less variable) signal over time in adults and children (Corsi-Cabera, 

2007; Vuga, 2008). Minimizing subject-level variability is advantageous in research questions that 

compare measures within the same subject, such as changes over time due to a drug or hemispheric 

differences. Yet when the research question is interested in group differences, then eyes-closed 

conditions may limit the ability to detect differences because it is more important to minimize the 

variability at the group-level. It has even been proposed that controlling the visual input during 

eyes-open conditions increases the coherent information across subjects, but in eyes-closed 

conditions the controlled coherent information is replaced by subject specific noise 

(Thuraisnigham, 2007). Reducing variability in the measure of interest (i.e. band power) across 

subjects is particularly important in ASD studies because of the phenotypic variability already 

present.  

Outcome Measures 

The two most commonly reported EEG measures in ASD research are of relative (e.g. 

Cantor et al., 1986) and absolute power (Stroganova et al., 2007). Even though these two power 

types are related, they are not directly comparable. When results are reported from these different 
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types of power measures, it is difficult to determine if the true cause of conflicting results. Other, 

more advanced QEEG measures are also available. In the ASD literature, some of these include 

coherence (Duffy & Als, 2012), phase synchronization (Thatcher et al., 2009), and multiscale 

entropy (Bosl et al., 2011). The complexity and diversity of these studies have provided valuable 

contributions, resulted in novel, interesting directions for future research, and demonstrated the 

benefit of QEEG research in ASD. However, they have also introduced some confusion through 

conflicting results. What is currently needed in the ASD literature is a reliable knowledgebase 

against which future QEEG measures and research can be compared.  

1.4 Overview of Dissertation 

This dissertation establishes a strong foundation for the use of QEEG in future studies on 

children with ASD through (1) a detailed description of artifact detection and effects, (2) a strategy 

for embracing the inherent diversity within ASD, and (3) an analysis QEEG measures in ASD 

across bands, scalp regions, and power types. 

• Chapter 2 presents a systematic approach to establishing clean, artifact-free data, and 

investigates the effect of artifacts on QEEG band power measures in children. We demonstrate 

that: (1) data quality is similar between a diverse group of children with ASD and a control 

group of typically developing children (TD), and (2) group differences in QEEG measures 

are not confounded by group differences in artifacts. This chapter is a modified and extended 

version of a manuscript accepted for publication. 

• Chapter 3 establishes a foundation band power measures in a diverse group of children with 

ASD. It starts with an investigation on the benefits of including phenotypic information in 
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QEEG analyses, and then uses the results to identify band power differences between typically 

developing children and children with ASD.   
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Chapter 2: Effects of Artifacts on EEG Measures 

2.5 Introduction  

Quantitative electroencephalography (QEEG) has served as a powerful tool to study both 

typical and atypical brain development and function, informing the understanding of processes 

such as perception, cognition, and cortical connectivity (For review see: Saby and Marshall, 2012; 

Uhlhaas et al., 2010). With a temporal resolution that facilitates quantification of subtle changes 

in state and function over time, QEEG holds tremendous promise as a quantitative biomarker of 

clinical phenomenon such as the change in brain function over discrete time points in development 

(Marshall et al., 2002), the effects of intervention in developmental disorders (Dawson et al., 

2012), prediction of functional outcomes (Gou et al., 2011), early disorder detection (Bosl et al., 

2011), disease progression (Luckhaus et al., 2008), and subgroup (Clarke et al., 2011) and group 

(Barry et al., 2010) differences in childhood psychiatric disorders. QEEG holds particular appeal 

as a metric of individual variability in neurodevelopmental disorders, such as autism, where 

behavioral output is limited and sometimes unable to capture phenotypic and functional 

heterogeneity (Cantor and Chabot, 2009; Saby and Marshall et al., 2012).  

Scientific merits notwithstanding, it is the practical benefits of QEEG that often motivate 

its use in the study of developmental populations, as it is non-invasive, less vulnerable to motion 

artifact, and more readily available in clinical settings (Keil et al., 2014; Saby and Marshall, 2012; 

Webb et al., 2013).  Moreover, cognitive processes such as attention, memory, cognitive inhibition, 

and feature binding can be characterized without requiring an overt behavioral response. However, 

these practical benefits also lead to greater challenges in data acquisition and quality, as the target 
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populations of interest (infants, young children, atypically developing children) may also generate 

the most artifact, resulting in an insufficient amount of useable, clean EEG data (Slifer et al., 2008; 

Webb et al., 2013). Unlike studies in adults where recording duration often exceed 10 minutes 

(Barry et al., 2007; Bonfiglio et al., 2013; Hagemann and Naumann, 2001; Leuchter et al., 2012), 

in infants and children a total of 2 minutes of data are often gathered, with fewer than 30 seconds 

of clean data remaining after artifact rejection (John et al., 1980; Marshall et al., 2002; Tierney et 

al., 2012).  

Physiologic EEG Artifacts 

Three of the most common internal sources of artifact include eye blinks, saccades, and 

contraction of face, jaw or neck muscles (electromyographic noise or EMG). Studies in adults have 

investigated techniques for handling these artifacts individually, such as independent component 

analysis (ICA; Jung et al., 2000) and regression methods (Gratton et al., 1983). In the study of 

developmental populations, ICA is often impractical because it requires substantial amounts of 

data (e.g. at least 10 minutes with 128 channels and a sampling rate of 500 Hz; Onton et al., 2006). 

When the amount of available data is already limited, there may not be enough artifacts of a given 

type for clear component selection (Keren, Yuval-Greenberg, and Deouell, 2010). Down sampling 

the number of channels (e.g. 128 to 64) is one proposed method for overcoming minimum data 

requirements; however, it does not necessarily make artifact related components more identifiable. 

Furthermore, component selection in ICA increases in difficult when multiple artifact types exist 

in the data. Regression methods in either the time or frequency domains can also be problematic 

because the regression requires removal of electrooculographic (EOG) channels that may also 

include relevant EEG signals along with the artifact (Jung et al., 2000). When ICA or regression 

methods are not possible, another traditional strategy for addressing artifacts includes the removal 
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of contaminated sections of data from analysis.  This strategy can result in the removal of large 

quantities of data that may, in fact, contain valuable signal worth preserving. 

Little is known about the contribution of artifacts (blinks, saccades, EMG) to the 

calculation of EEG power in children, despite the fact that developmental populations are the most 

likely to generate the highest noise:data ratio. Previous studies have provided valuable information 

about the effect of varying degrees of muscle contraction and its spatial spread on QEEG 

measurements, but these studies have included only adult subjects (Freeman et al., 2003; 

Goncharova et al., 2003). Finally, as has been addressed in several papers, the lack of uniformity 

in methods of data processing and cleaning contributes to difficulties in replicating and comparing 

findings (Keil et al., 2014; Picton et al., 2000; Pivik et al., 1993; Webb et al., 2013).  Such a 

challenge holds particularly true in studies of infancy and early childhood, where no consistent 

parameters for data cleaning or processing have been established.   

In analyses between typical and atypical populations, it is critical to measure any possible 

systematic differences in artifacts between groups. For instance, one might hypothesize that 

children with delayed development would demonstrate more eye movements or EMG artifact than 

typically developing children. However, studies do not consistently examine this variable in 

studies using QEEG. Of note, several recent studies in fMRI have shown that head motion leads 

to systematic biases in the analysis of functional connectivity, and that that children with autism 

do generate more motion artifact than typically developing controls (Deen and Pelphrey, 2012; 

Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). Such a systematic bias can 

result in the erroneous appearance of weaker long-range connections in children with autism. 

These seminal studies have led to rigorous efforts for consistent motion correction in fMRI data 
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processing across studies and sites in studies of typical and atypical development. Similar methods 

will be critical with EEG artifacts in developmental populations.  

Approach  

We took a systematic approach to study the potential effects of artifact on EEG power in a 

cohort of young typically developing (TD) children and children with ASD, with the goal of 

guiding artifact rejection methods in EEG data processing. We focused on three common 

physiologic artifacts, namely blinks, saccades, and EMG, and we compared the estimation of mean 

spectral power within these artifacts to the mean spectral power contained in artifact-free data 

within characteristic frequency bands including theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz), 

and gamma (35-45 Hz). We asked whether certain power types, regions or frequency bands would 

be more vulnerable to the inclusion of ocular or EMG artifacts. In these main analyses, EEG from 

only the TD group was analyzed. As a final analysis, artifacts and their effects are compared 

between the TD group and the ASD group to determine if the having a developmental disorder 

interacts with the effects of artifacts. 

2.6 Methods  

2.6.1 Participants  

Our research examined two groups of children: a target group of children with ASD and a 

control group of typically developing children (TD). There is no reason to assume that the 

electrophysiologic signal produced by, for example, an eye blink is different or would impact band 

power measures differently for children with ASD compared to TD controls. However, to avoid 

making this assumption, the results reported in sections 2.7.1 to 2.7.3 are based on EEG data 
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acquired only from the TD group. In section 2.7.4 this assumption is tested by comparing the TD 

and ASD groups. Therefore, a full description of both groups is given here, even though the 

majority of the results are from the TD group’s data. Except as noted elsewhere, the details of the 

subjects, data acquisition, and processing provided in this methods section applies to data used in 

subsequent chapters as well. 

For the ASD group, children were recruited from a UCLA treatment program, the Early 

Childhood Partial Hospitalization Program (ECPHP). ECPHP is an intensive, short-term (3 moths) 

day treatment program for young children (ages 2-6) diagnosed with ASD. Initial diagnosis of 

ASD is made by a child psychiatrist, developmental pediatricians, independent clinical 

psychologists, or California State Regional Center. If there is any question about the accuracy of 

the diagnosis, a reevaluation is performed and combines clinical history with diagnostic 

assessments, for example Autism Diagnostic Observation Scale (Lord et al., 1989), or Autism 

Diagnostic Interview-Revised (Le Couteur, Lord, Rutter, 2003). 

For the TD group, children were recruited using birth records provided by Los Angeles 

County. Families with children in the targeted age range were mailed invitations to participate. 

Interested families returned a postcard and were later contacted via telephone for a screening 

interview. Children were excluded from the study if they had a history of neurological 

abnormalities, birth-related complications, developmental delays, need for special school services, 

uncorrected vision impairment, or a diagnosis of a psychiatric condition such as ADHD, OCD, or 

bipolar disorder.   

A total of 114 were enrolled in the current study. The target group consisted of children 

with a diagnosis of ASD (n = 67), and were compared to a control group of typically developing 

children (TD, n = 47) (see Table 2.1). The groups did not differ in age (ASD: mean = 50.7 mo, 
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range =26.5 - 73.6 mo; TD: mean = 50.3, range = 24.4 – 75.2), but there was a significantly higher 

percentage of girls in the TD (45%, n = 21) than ASD (24%, n =16) group (χ2(1) = 5.5, p < .05).  

Full ethical approval for the research was obtained through the University of California 

Institutional Review Board (IRB#:11-000355), and all parents provided written consent for the 

study. 

2.6.2 Cognitive Assessments 

On the day of the testing session, each child was assessed with the Vineland Adaptive 

Behavioral Scales survey (Sparrow et al., 2005), and either the Mullen Scales of Early Learning 

(Mullen, 1995) or Differential Abilities Scale-II (Elliott, 1993), depending on his or her age and 

developmental level. As part of the standardized behavioral testing performed prior to entry into 

ECPHP, children in the ASD were also assessed on a combination of the Wechsler Preschool and 

Primary Scale of Intelligence (WPPSI-IV), the Preschool Language Scale-4 (PLS-4), and the 

Clinical Evaluation of Language Fundamentals-4 (CELF-4; Semel, Wiig, & Secord, 2003). To 

facilitate comparison across assessments, only standardized scores (or t-scores converted to 

standard scores) were used to obtain estimates of each child’s IQ, verbal IQ, non-verbal IQ, and 

receptive and expressive language ability. Several studies support the validity for this method of 

combining standard scores across cognitive assessments (Bishop, Guthrie, Coffing, & Lord, 2011; 

Kasari, Freeman, & Paparella, 2006). The standard scores on all cognitive assessments were 

significantly different between the ASD and TD groups (see Table 2.1 and Figure 2.1). 

2.6.3 EEG Recording  

Prior to the day of EEG recording, parents of children were asked about their child’s 

preferences and interests, such as favorite movie or toy. This information was used on the day of 

the experiment to make the recording session as comfortable and enjoyable as possible for each 
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child. For example, children were offered a snack or shown a favorite video during placement of 

the EEG net. 

EEG data were recorded using a 128-channel HydroCel Geodesic Sensor Net (Electrical 

Geodesics Inc., Eugene, OR). To improve each child’s comfort, four of the electrodes, channels 

125-128 had been removed from the net. These electrodes were originally located below and lateral 

to the eyes (Figure 2.2). Placement of electrodes conformed to the International 10-20 System 

(Jasper, 1958). A combination of a Net Amps 300 amplifier and Net Station 4.4.5 software on a 

Macintosh Pro PC was used to record the EEG (Electrical Geodesics Inc., Eugene, OR). Data were 

filtered online with an analog band pass elliptical filter between 0.1 to 100 Hz. The high impedance 

nature of this system allows us to accurately record a child’s EEG while keeping impedances below 

100 KΩ (Ferree et al., 2001). The EEG was sampled at 250 Hz. Data were referenced online to a 

vertical reference in a location equivalent to Cz. Two minutes of “resting-state” EEG was recorded 

while children watched a video of bouncing bubbles in a dark, sound-attenuated room. Children  

were  either  seated  in  a  chair  or  on  a  caregiver’s  lap.  A video time-locked to the EEG was 

acquired in order to assist in subsequent data processing.    

2.6.4 Data Preprocessing 

EEG data were processed offline through a series of steps in order to categorize segments 

of data by artifact: blinks, saccades, EMG, or “Other” (see Figure 2.3 for examples). Segments 

were categorized as “Other” if they contained drift, motion artifact because of net manipulation or 

pulling, or multiple artifact types. Segments that did not fall into one of these categories were 

determined to be clean, and hereafter are referred to as “artifact-free” segments. The full series of 

processing steps included the following:  
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(1) We applied a 1-50 Hz band-pass filter with a narrow roll-off (.3 Hz) and strong 

attenuation (gain = -60 dB).  

(2) We segmented the data into 1.024 second sequential, non-overlapping epochs, which 

resulted in 256 samples per segment. The segment length was chosen to optimize 

inputs to the Fast Fourier Transform (FFT), which uses inputs of 2n samples 

(Drongelen, 2007).   

(3) We reviewed the filtered file to identify channels with gross abnormalities caused, for 

example, by an electrode losing contact after recording began. Channels identified as 

abnormal were then replaced by an interpolated signal using the Net Station software’s 

“Bad Channel Replacement” (BCR) waveform tool, which uses spherical splines to 

approximate the signal from the remaining electrodes (Fletcher et al., 1996; Perrin et 

al., 1987; Srinivasan et al., 1996). The electrodes most commonly requiring this 

interpolation included those located along on the periphery of the net, either seated on 

the neck or surrounding the ears. No channels in our regions-of-interest (ROI) required 

bad channel replacement at this step (Figure 2.2).   

(4) We then identified channels whose maximum to minimum voltage exceeded 150 µV 

within individual segments. Any segment with greater than 15% of electrodes 

exceeding this threshold, was placed in the “Other” category.  These automated 

rejection criteria are based on common practices in developmental populations (for 

example, see Jeste et al. 2014) 

(5) We manually reviewed all remaining segments and placed them into one of the five 

previously described categories: blinks, saccades, EMG, other, or artifact-free. A 

minimum of 30 seconds of clean data was required for inclusion into analysis, and this 
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threshold was based on prior studies in infants and young children (Marshall et al., 

2002; Swingler et al., 2011; Tierney et al., 2012). Of the 32 children in the study, 2 

subjects were removed from analysis because they provided fewer than 30 segments 

of clean data, leaving a sample of 30 children (40% girls; mean age = 53.6 mo; SD = 

13.3 mo).  

(6) Segments underwent an additional BCR operation. In contrast to the first BCR, which 

replaced a channel’s data for the entire recording, this step was performed on a 

segment-by-segment basis.  Per segment, data were interpolated for a maximum of 18 

channels (15% of the 124 channels).  

The final processing steps before spectral decomposition and frequency band power 

calculations included (7) baseline correction, (8) re-referencing to the average of all channels, (9) 

export of Net Station data to Matlab (Mathworks Inc., Natick, MA) and then (10) removal of each 

segment’s DC trend using Matlab’s DETREND function.  

2.6.5 Artifact Detection Strategies 

Several strategies, described below, were used to aid in artifact detection. The most 

effective strategy (#1 below) was the traditional method of correlating the expected 

electrophysiologic signal produced by an artifact with its expected spatial location. This method 

sometimes leads to missed artifact selection. Therefore other strategies were also employed, as 

listed below. The strategies listed below are not mutually exclusive. They were used in 

combination to guide decision making during artifact detection. Finally, when no clear segment 

categorization could be made using all available resources and strategies, segments were 

categorized as “Other.” The purpose in detailing each of these strategies is to promote transparency 
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in artifact detection, and provide methods that can be shared across researchers to foster 

collaborative efforts. The strategies employed include:  

1. Spatial location: An electrode’s scalp location was used to identify and distinguish 

artifacts. For example, the electrophysiological signal produced by blinks should 

be maximal in electrodes located above the eyes, whereas the signal from saccades 

should be maximal in lateralized frontal electrodes, with opposite polarities on the 

left and right. However, we observed several variations of this pattern. For example, 

the signal produced by a saccade for some individuals only appeared in electrodes 

ipsilateral to the individual’s gaze. Similarly, some individuals would demonstrate 

a saccade simultaneous to a blink, producing a combined artifact that was more 

challenging to identify or quantify. 

2. Re-referencing:  Temporarily switching the reference electrode within a segment 

helped to localize the source of an artifact. For example, switching to an average 

reference of all electrodes can help identify movement artifacts, whereas an average 

reference of all electrodes outside of the default reference can help identify a poor 

reference electrode in otherwise clean data. Also, referencing data as linked, bipolar 

pairs, can be used to enhance the visualization of eye movements.  

3. Filters: Temporary filters can be used to minimize the signal from neural or other 

sources, while maximizing signals from the artifact in question. For instance, a 1-6 

Hz band-pass filter can enhance the visualization of the signal from eye movements 

by smoothing out a distracting signal from faster sources, such as muscle or alpha 

generators. Similarly, a high pass filter (e.g. > 20 Hz) can help to distinguish EMG 

independent of, or related to blink/saccades.  
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4. Topologic spectral maps:  By combining techniques (1) and (3), this strategy relies 

on the anatomical location of a signal generator and the characteristic frequency 

band of an artifact’s signal. For example, the signal generated by EMG should be 

maximal in electrodes adjacent to muscles and an EMG signal should increase 

power in frequencies above 20 Hz (i.e. beta and gamma bands).  

5. Current source density: Calculating the surface Laplacian within a segment 

enhances information that is maximally specific to each electrode relative to its 

closest neighbors. Since the surface Laplacian is the second order spatial derivative, 

this method acts as a spatial band-pass filter that removes shared information. As 

such, it represents a reference-free method that enhances signals from superficial 

sources, while minimizing shared signals originating from deeper neuronal sources 

(Nunez and Srinivasan 2006). This technique can help to identify artifacts that are 

channel specific (e.g. channel pops) from artifacts whose signal spreads across 

electrodes (e.g. EMG). 

After segment categorization, EEG data from all subjects who provided a minimum of 30 

artifact-free segments were kept in subsequent analysis. This resulted in final sample sizes of 54 

for the ASD group (girls = 20%; mean age = 50.8 mo; SD = 13.6 mo) and 42 for the TD group 

(girls = 48%; mean age = 51.9 mo; SD = 14.4 mo) (see Table 2.2). The number of subjects that 

were removed from further analysis due to an insufficient amount of artifact-free data was not 

significantly different (χ2(1) = 1.6, ns) between the ASD (n = 13) and TD (n = 5) groups. 

2.6.6 Constant EMG  

During the manual detection of artifacts, the signal in a small number of channels for some 

subjects appeared to contain low amplitude EMG that was constant throughout the recording. 

21 
 



Using the previously mentioned strategies, further investigation determined this signal to be a form 

of muscle related artifact entirely separate from what is classically thought of as EMG, for example 

the rhythmic, large amplitude signal produced by chewing. This low amplitude, constant EMG 

(referred to hereafter as constant EMG) was most often observed in channels whose electrode 

locations corresponded to the periphery of the EEG net, especially the forehead. Additional 

analyses of the power spectrum of the signal recorded by these electrodes indicated the oscillatory 

activity recorded by these electrodes was extremely different than that of all other electrodes within 

the same individual. By watching video time-locked to the EEG recording, it appeared that this 

constant EMG artifact may be due to the EEG net slightly stretching the skin away from a 

completely relaxed state, which resulted in small, localized muscle contractions. This is supported 

by observations of the constant EMG artifact disappearing after, for example, a subject scratching 

his or her forehead in the region of the artifact. The constant EMG was not related to a subject’s 

state. In fact, several subjects whose data appeared to contain this artifact sat quietly at rest 

throughout the entire recording, and the signal recorded in other channels was artifact-free. Despite 

this, data contaminated by this constant EMG could not be included in analysis. However, rather 

than simply removing all data from children with this artifact, only the data regions or channels 

affected by constant EMG were removed. A strategy was developed to determine which channels 

or regions should have data removed without bias. This strategy included heuristics to visually 

identify potential contamination by constant EMG, and subsequent statistical tests as confirmation. 

Full details of this strategy are described in the supplementary materials.  

Statistically speaking, removal of data for specific regions from the analysis means that 

these subjects provided incomplete or unbalanced data. This prevents the use of certain statistical 

tests, as discussed in chapter 3. For the current chapter however, the analysis on the effects of 
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artifacts was limited to the EEG data acquired from children with complete data for all ROIs. 

Therefore, all EEG data included in the current analysis (TD subjects only) did not contain constant 

EMG, and the resultant sample size included 32 children ages 2 – 6 years old (40% girls; mean 

age = 52.9 mo.; SD = 13.7 mo). See Table 2.3 for the number of subjects with constant EMG by 

region 

2.6.7 Spectral power calculations  

We investigated frequency band power for 9 regions-of-interest (ROI; Figure 2.2). Regions 

were selected so that left, midline, and right portions of frontal, central, and posterior scalp were 

represented during analysis. Each region contained data from four electrodes, except for the 

midline-central region which contained five. We calculated estimates of the mean power spectral 

densities (PSD) separately for each artifact type (blinks, saccades, EMG) and for the artifact-free 

data. Due to the variability in the type of data in the “other” category, we did not include segments 

categorized as “other” in our analysis. Table 2.2 provides details on the number of segments per 

category.   

Transformation of the EEG signal from the time-domain to the frequency-domain was 

accomplished using Welch’s method and custom scripts written in Matlab.  For each 256-sample 

segment, FFTs were calculated on 128-point Hamming windows with 50% overlap, yielding a 

frequency resolution of 0.5 Hz. We calculated absolute and relative power for the theta (4-7 Hz), 

alpha (8-12 Hz), beta (13-30 Hz), and gamma (35-45 Hz) frequency bands.  Absolute power was 

calculated by summing power estimates at every 0.5 Hz increment within each frequency band. 

Relative power represents the power contained within a frequency band relative to the total power 

contained in all bands. As such, we calculated relative power by dividing the absolute power for 

each band by the total absolute power across all unfiltered frequencies, specifically 1-50 Hz.  By 
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averaging across all electrodes within each ROI, final power values used for statistical analysis 

were obtained for each segment, within each category, and for each subject. Values for all power 

estimates were log transformed to achieve normality. 

2.6.8 Statistical Analysis  

Analysis was focused on the log-transformed absolute and relative power estimates of 

theta, alpha, beta, and gamma bands.  As a preliminary analysis to investigate time trends across 

the 2 minute recording, we plotted all subject-specific response trajectories versus time segments 

per power band, and fitted population loess smooths. Both population and subject level smooths 

did not indicate a time trend. However, differences in subject-specific intercepts were apparent. 

The eight (4 Bands * 2 Power Types) log-power bands were modeled with a linear mixed model 

(LMM) using artifact type, region, and their interaction as predictors. To test that the results were 

not due to age, a subsequent analysis included predictors for age and an age*artifact interaction. 

While these additional predictors were significant for some bands, the results did not change. Since 

the focus of this manuscript is on the effects of artifacts, not age, results are reported only for the 

simplified model. A random intercept was included (using SAS PROC MIXED) to account for 

subject-specific heterogeneity observed in the temporal loess smooths (SAS Institute, Cary, NC).  

In addition to accounting for within-subject correlations, the LMM allows for unequal numbers of 

repetitions among subjects. In other words, the LMM controls for different number of segments 

per category both within (e.g. Subject A: Nartifact-free = 75, NBlink = 10) and between subjects (e.g. 

Subject B: Nartifact-free = 50, NBlink = 40). Such modeling allowed for the determination of mean 

power in artifact and artifact-free segments independent of the amount of data in a given subject. 

Mean band powers from the artifact- free category and each of the 3 artifact categories were 

compared for each of the 9 regions and all 8 power bands (using LSMEANS), amounting to 27 
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tests per model. We have adjusted using SAS PROC MULTITEST for multiple testing in all 

models (216 tests) controlling the false discovery rate (FDR).    

2.7 Results  

In sections 2.7.1 through 2.7.3, we present results as comparisons between the mean 

relative and absolute power for artifact-contaminated and artifact-free segments within each 

frequency band of interest for typically developing (TD) children. In 2.7.4 the findings from the 

TD group are compared to a group of children with ASD. These results are independent of the 

amount of artifact in the recording. Bar graphs in Figure 2.4, 2.5, and 2.6 represent the difference 

in mean power such that positive and negative values represent higher and lower means for the 

artifact-contaminated segments compared to the means of the artifact-free segments, respectively. 

Given the large number of comparisons (2 Power Types * 4 Frequency Bands * 9 ROIs * 3 Artifact 

Types = 216 Comparisons), we have limited the narrative of the results to the most clinically 

meaningful or relevant trends within the corrected significant results. For completeness and for 

future reference, we do provide a list of all mean power values and significance values in Table 

2.4.  

2.7.1 Blinks - Figure 2.5 

Mean absolute and relative power was significantly different between blink segments and 

artifact-free data in all frequency bands. In the theta band, for both absolute and relative power, 

blink segments had significantly higher power than artifact-free segments, with the most 

significant differences in frontal regions. In the alpha band, the difference in power varied based 

on both region and power type. Specifically, the mean relative alpha power in blinks was 
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significantly lower than artifact-free segments across all ROIs, with the mean absolute alpha power 

in blinks higher in frontal ROIs and lower in central ROIs. Beta power seemed least affected by 

blinks, particularly in absolute power, although some differences were evidenced in frontal relative 

beta power between blinks and artifact-free segments. Finally, and somewhat surprisingly, in the 

gamma band, blinks did significantly differ from artifact-free segments. They demonstrated higher 

mean absolute gamma and lower mean relative gamma power than artifact-free segments. These 

differences were most prominent in the midline regions.  

2.7.2 Saccades - Figure 2.6 

The mean power differences between saccades and artifact-free segments followed the 

same general pattern as that of blink segments, with two main distinctions: (1) the magnitude of 

mean power difference was smaller between saccades and artifact-free segments and (2) 

significant differences were found in fewer ROIs, particularly central and posterior ROIs.  In the 

theta band, the mean absolute and relative power estimates were higher in saccades than in artifact-

free segments.  The largest differences in absolute power occurred across frontal regions, but 

interestingly, relative theta power in the same areas showed no significant differences. In the alpha 

and beta band, the differences between saccade segments and artifact-free segments mirrored those 

of blinks. Finally, we found significant differences in mean relative gamma power only in frontal 

ROI’s for saccades compared to artifact-free segments. The mean absolute gamma power, on the 

other hand, was significantly greater in saccade segments for all midline and central ROIs.  

2.7.3 EMG - Figure 2.7 

As expected, EMG segments had the highest amount of high frequency power, but they 

showed significantly different power estimations in all frequency bands compared to artifact-free 

segments. In the theta band, EMG segments had higher mean absolute power than artifact-free 
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segments in  all  ROI’s   except for midline-central, and had higher mean relative power in the 

posterior regions. In the alpha band, mean relative power in EMG segments was lower in all 

regions, while the mean absolute power was unaffected. In the beta band, EMG segments had 

higher mean absolute and relative power than artifact-free segments in all lateral regions, with 

some smaller differences seen in the midline ROIs. Finally, in the gamma range, EMG segments 

showed significantly higher mean absolute and relative power than artifact-free segments in all 

regions, most prominently in the lateral regions.     

2.7.4 Artifacts in ASD vs. TD 

The mean number and percent of segments categorized as artifact-free, blink, saccade, or 

EMG were not significantly different between the ASD and TD groups. Segments categorized as 

“other” did significantly differ, with the ASD group having on average 11% (approximately 20 

segments) more than the TD group (p < .001). The total number and percent of artifact-

contaminated segments (i.e. the sum of the number of segments in the blink, saccade, EMG, and 

other categories) was not different between groups. Table 2.2 provides the mean, standard 

deviation and range in number of segments by category for each group. Figure 2.4 illustrates the 

same information and provides the average percentages for each category. The effect each type of 

artifact had on power measurements did not significantly differ in the ASD and TD groups for any 

power type, band or ROI. 

2.8 Discussion  

 In QEEG studies of young children or developmental populations, participants are often 

excluded from analysis due to an insufficient amount of artifact-free data.  While some studies 
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have suggested that artifacts, such as blinks, may be included in the analyses with the assumption 

that they do not affect particular types of power estimations or power bands (Grasser et al., 1985; 

Hagemann and Naumann, 2001; Iacono and Lykken, 1981), there have been no studies that have 

directly investigated the potential effect of artifacts on EEG power analysis in young children. The 

present study was motivated by the goal of characterizing and quantifying the potential effect of 

artifacts, namely blinks, saccades and EMG, on power estimations in young children, when data 

quantity does not allow for the use of ICA and other blind source separation (BSS) techniques.  In 

order to address this goal, we used a modeling approach that allowed us to compare equal units of 

artifacts with artifact-free data in order to understand differences in power that are independent of 

the amount of data available.  By calculating the difference in mean power, we could then consider 

whether the inclusion of the artifact within the data could affect the power calculation. In other 

words, a significant difference in mean power in a specific band between an artifact and artifact-

free data would suggest that the addition of that artifact to the artifact-free data would affect the 

calculation of power. The extent of the effect would depend on the total amount of data gathered 

and the amount of artifact present.   

In this study we have demonstrated that in young children, eye blinks, saccades, and EMG 

contain oscillations of all frequencies and, therefore, could affect the calculation of mean power 

of both high and low frequency bands, but that the nature and direction of the differences depends 

on power type, region, and frequency band of interest. Therefore, data processing and cleaning 

needs to be sensitive to the oscillations of interest for a given analysis, with the most conservative 

approach being the removal of all EMG and ocular artifact from data. Unfortunately, such an 

approach leads us to the problem of excluding participants who provide insufficient clean data. 

The two most robust findings in our study are the following: (1) First, eye movements have 
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significantly higher relative and absolute theta power than artifact-free data. This result is 

particularly relevant for studies that induce lateral eye movements and blinks, such as a dynamic 

visual stimulus (bubbles) during resting-state recordings.  The inclusion of blinks in these data will 

likely result in a spurious increase in the estimation of theta power. (2) Second, the high frequency 

nature of EMG activity results in higher beta and gamma power in EMG segments than in artifact-

free segments, with the greatest difference found in lateral regions that are nearest to facial and 

neck muscles. Notably, given the lack of significant difference in absolute alpha power, we would 

conclude that the alpha band does not seem to be affected by EMG, suggesting that in experiments 

where head and neck movements are difficult to avoid, absolute power in the alpha band may be 

a more stable target variable. While these results may be intuitive, a quantification of these power 

differences can help justify the inclusion or exclusion of certain artifact segments in data 

processing.  

Relative vs. Absolute Power  

There is tremendous variability in the literature regarding the choice of power type, with 

studies targeting absolute (e.g. Tierney et al., 2012) or relative power (e.g. Marshall et al., 2002), 

or both (e.g. Barry et al., 2010), sometimes without an explicit reason provided for the choice. 

Justifications in favor of relative power include more robust test-retest reliability and less 

vulnerability to differences in skull thickness which, in turn, may facilitate the analysis of 

individual differences in early development (Benninger et al., 1984; John, 1980; Nunez and 

Shrinivasan, 2006). Absolute power, on the other hand, can be easier to interpret since it reflects 

the actual power value for one given band, without dependence on power in other ranges 

(Pizzagalli, 2007).  Sometimes, the choice of power type is contingent upon methods used in prior 

studies, particularly when there is a goal is replication or direct comparison of results.  
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A direct comparison of the extent of artifact effects on absolute vs. relative power (i.e. 

which is more susceptible to artifacts) is beyond the scope of this work. However, if inclusion of 

artifact contaminated data in analysis is unavoidable, we support the notion that absolute power is 

a more intuitive measure and may be less prone to erroneous conclusions, such as false positives, 

false negatives, or null findings. This is demonstrated through the hypothetical data provided in 

Table 2.5, and similarly demonstrated through our results for blink artifacts in the alpha and theta 

bands.  

Using hypothetical data, Table 2.5 illustrates three scenarios of how artifact contaminated 

data may have higher absolute power in separate bands (i.e. each band will appear to have greater 

absolute power), but the relative power for each band may higher or lower (i.e. bands may appear 

to have greater or less power). In each of the scenarios, absolute theta and alpha power are higher 

than in the artifact-free data (scenario 0). Relative power however, may appear higher for both 

theta and alpha bands (scenario 1); higher for theta, but lower for alpha (scenario 2); or lower for 

theta, and higher for alpha (scenario 3). This is because relative power reflects the absolute power 

in one frequency band in relation to the absolute power in all other bands.  Even if the absolute 

power is higher in two bands for artifact contaminated data, the direction of change (i.e. higher or 

lower) in relative power is unknown. Additionally, note that power band ratios (e.g. theta/alpha) 

are equivalent for absolute and relative power. This is easily explained by considering how relative 

power is calculated because the denominators used in relative power calculations cancel out in a 

ratio of relative powers. In other words, the ratio of two bands in absolute (µV2) or relative (%) 

power have no units. 

The example given by this hypothetical data is similar to our findings for mean power in 

Blink segments. Blink segments have higher absolute power in frontal regions for both theta and 
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alpha bands; however, the increase in the absolute power for the theta band is relatively greater 

than the increase in the alpha band, thus, the relative alpha power is decreased. The important 

distinction is that power in the alpha band is not lower in the presence of blinks, it simply did not 

increase as much relative to power in other frequency bands, primarily the theta band. This is an 

important distinction that is scarcely discussed in the literature. A summary of our 

recommendations for selection of power type and frequency bands is provided in Table 2.6. 

Regional effects 

Our data also show that artifacts might lead to increased or decreased mean power 

depending on the scalp region. These differences reflect the regional differences in the presence 

of artifacts such as eye movements and EMG. For instance, an eye blink creates a large amplitude, 

slow frequency (typically < 5 Hz) deflection in the EEG signal that is most prominent in frontal 

ROIs (Iacono and Lykken, 1981). Thus, absolute power in the slow theta band is expected to 

increase especially in frontal ROIs. Even when the mean power measurements in all regions trend 

in the same direction, the extent to which the regions are affected may not be the same. Such a 

phenomenon is evidenced in our data by greater differences between EMG and artifact-free data 

in mean gamma power in lateral ROIs compared to midline ROIs.    

Artifacts in ASD vs. TD  

The fact that there were no group differences in the effect on power measures for each type 

of artifact strengthens the confidence in the results from the TD group. Furthermore, as mentioned 

in the methods section, there is no reason to assume that an electrical signal produced by a 

physiologic artifact would be different in a neurodevelopmental disorder, such as ASD. This result 

however, should not be applied to disorders with known anatomic abnormalities such as tuberous 
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sclerosis, TSC, where the presence and location of tubers in the brain may alter the propagation of 

both the neural and myogenic signals. 

The lack of significant differences in the overall quantity of artifacts, or by type of artifact, 

between the two groups is similarly encouraging. However, there was a significant difference in 

the number of segments categorized as “other.” After segments were categorized, re-viewing the 

EEG time-locked video of the child during the recording suggested that “other” segments were 

often due to: 1) gross movements, such as a child standing up or turning his or her head, or 2) a 

child touching or pulling the EEG net. This was true for children in both groups, but because there 

were significantly more “other” segments in the ASD group, these two behaviors may be more 

frequent in children with ASD or other developmental disorders. It should be noted that this finding 

may partially be due to segments in the “other” category occasionally containing a combination of 

artifact types, for example a blink and EMG, or a blink followed by a saccade. Support for this is 

demonstrated by the slightly lower average number of blink, saccade, and EMG segments in the 

ASD group (see Table 2.2). Even so, this reason does not entirely explain the highly significant 

difference. 

Future directions   

In the analysis of resting-state oscillations, artifacts may, in fact, serve as a proxy for the 

child’s emotional or cognitive state, regardless of whether a child has a developmental disorder.  

In a recent behavioral study, Oh et al. (2012) found that the spontaneous eye blink rate increased 

during an attentional task (the Stroop) compared to a resting period, suggesting that blinks may be 

a proxy for heightened attention or cognitive effort. Whitman et al. investigated the effect of EMG 

on high frequency oscillations in adults and found that cognitive tasks were associated with greater 

EMG activity, which, in turn, could confound the calculation of gamma power. We would propose 
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that, in children, particularly those with atypical development, there can be tremendous variability 

in emotional and cognitive states even during “resting-state” recordings, with some children 

requiring additional cognitive control to remain compliant during testing. Such effort or vigilance 

may theoretically be reflected in their power estimations, such as with higher frontal theta power, 

but also may be reflected in a higher blink frequency or greater EMG activity. As we continue to 

expand our interpretation of resting-state oscillations as biomarkers of specific clinical profiles, 

we may consider artifacts as a clue to the etiology of the spectral power characterizing subgroups 

or individuals, and we can quantify their presence before discarding them from data processing. 

Conclusion  

 The use of QEEG as a biomarker of typical and atypical development holds promise as a 

tool to better define more subtle differences between individuals and subgroups within clinical 

populations, where behavioral measures may not be able to capture clinical heterogeneity. 

However, only through rigorous and consistent methods for data processing and artifact removal 

can we truly trust the data at the individual level.  

In this chapter we have provided considerable detail about our data collection, 

preprocessing, artifact identification (without the use of traditional methods such as ICA), and data 

analysis, in part to reinforce the need for detailed methodological descriptions that will facilitate 

common practices across study sites and clinical populations. We highlight the need for 

transparency regarding the choice of relative or absolute power, regions of interest, and frequency 

band, as each of these variables are differentially vulnerable to artifacts and their interpretation, 

therefore, depends on the methods used to identify and remove artifacts. 
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2.9 Tables 

Table 2.1: Descriptive and behavioral scores for all enrolled subjects in the ASD and TD groups. 
Reported values are the group means ± standard deviations, and the group range. 

Measure ASD (n=67) TD (n=47) 

Age in months 50.7 ± 13.5, (26.5 – 73.6) 50.3 ± 15.1, (24.4 – 75.2) 

Boys : Girls* 46 : 21 26 : 21 

IQ** 76.4 ±25.8, (45 – 136) 119.3 ± 14.3, (93 – 153) 

Verbal IQ (VIQ)** 79.9 ± 23.9, (55 – 136) 119.1 ± 14.3, (96 – 148) 

Non-verbal IQ (NVIQ)** 80.7 ± 24.9, (45 – 131) 111.5 ± 13.3, (88 – 149) 

Receptive language (RL)** 77.7 ± 23.9, (50 – 139) 115.5 ± 15.7, (85 – 160) 

Expressive language (EL)** 79.2 ± 24.7, (50 – 144) 119.4 ± 13.4, (94 – 152) 

*p < .05, ** p << .01 
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Table 2.2: Number of segments by category. Values reported for the ASD and TD columns represent 
group means ± standard deviations, with the range in parentheses. Groups only significantly differed 
in segments categorized as “Other” (p < 0.001). The last column is the total number of segments per 
category (percent of total in parentheses. Of note, the relatively high number of saccades is due to 
bouncing of bubbles in the video shown during EEG acquisition. 

Category ASD (n=54)  TD (n=42) Total (%) 

Artifact-Free 63.3 ± 25.6 (23 – 158)  73.9 ± 27.2 (27 – 155) 2269 (51.0) 

Blink 14.5 ± 13.3 (1 – 65)  15.6 ± 13.7 (0 – 84) 353 (7.9) 

Saccade 19.2 ± 14.2 (0 – 77)  21.1 ± 16.5 (2 – 81) 557 (12.5) 

EMG 17.3 ± 17.4 (0 – 72)  22.5 ± 25.6 (0 – 152) 735 (16.5) 

Other* 46.0 ± 31.2 (1 – 144)  25.6 ± 22.3 (0 – 87) 534 (12.0) 

Total 161.5 ± 48.2 (87 – 290)  158.7 ± 48.5 (115 – 315) 4448 (100) 
* p < .001       

 

Table 2.3: Number of regions of interest removed by group, due to constant EMG 

Missing by ROI ASD TD 

Left frontal 8 5 

Right frontal 6 1 

Left posterior 0 0 

Right posterior 2 0 
 

  

35 
 



Table 2.4: Mean of log transformed power estimates for segments of EEG data from the Artifact-Free, 
Blink, Saccade, and EMG categories. Values are given for absolute (uV2) and relative (%) power in 
the theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (35-45 Hz) frequency bands for each 
of the 9 ROIs investigated (see figure 1). Bold values for the Blink, Saccade, and EMG categories 
indicate significant differences in mean power from the Artifact-Free category. Figures 2.4 – 2.6 
display graphical representations of these power differences. All significant differences are corrected 
for multiple comparisons. 
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Table 2.5: Demonstration of differential artifact effects on absolute versus relative power 

Scenario % Increase in Power 
from Artifact-Free 

Power 
Type Theta Alpha Beta Total 

Power 
Theta/Alpha 

Ratio 
0 None (Artifact-Free) Absolute 70 25 5 100 2.8 
  Relative 70.0% 25.0% 5.0% 100% 2.8 
        

1 20% theta & alpha Absolute 84 30 5 119 2.8 
  Relative 70.6% ↑ 25.2% ↑ 4.2% 100% 2.8 
        

2 25% theta, 20% alpha Absolute 87.5 30 5 122.5 2.92 
  Relative 71.4% ↑ 24.5% ↓ 4.1% 100% 2.92 
        

3 20% theta, 25% alpha Absolute 84 31.25 5 120.25 2.69 
  Relative 69.9% ↓ 26.0% ↑ 4.2% 100.0% 2.69 

Hypothetical data demonstrating different possible effects of artifacts on absolute and relative power measurements. This table 

provides one example of how an artifact may have greater absolute power (µV2) in multiple bands (theta and alpha in scenarios 

1-3) compared to artifact-free data (scenario 0), but the effect on relative power (%) measurements is unclear. 
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Table 2.6: General recommendations for selectionof power type and frequency band. 

 Whenever possible, authors should report findings for both absolute and relative power. If 

discrepancies between the two power types are observed, possible reasons and implications 

should be discussed. 

 Using careful manual artifact detection methods detailed in this manuscript, it is possible to 

quantify individual artifact types (blinks, saccades, and EMG) and then to separate them from 

clean, artifact free, segments of data. The separation of artifacts allows for the flexibility of 

either including or excluding them based on the type of analyses being performed. 

 If there is a risk of data contamination due to blinks or saccades, investigations of absolute and 

relative power in theta and alpha bands, and relative power for the beta and gamma bands, in 

frontal regions should be avoided (Figure 2 & 3). Posterior gamma power is least likely to be 

affected by eye movement artifact. 

 If there is a risk of data contamination due to EMG, investigations of absolute and relative 

power in absolute and relative beta and gamma bands, in all regions should be avoided (Figure 

4). Posterior alpha power is least likely to be affected by EMG artifact.  

 If the results for only one power type can be reported (e.g. due to space limitations) and 

multiple frequency bands are compared, absolute power is preferred because the potential 

effects of artifacts on relative power for each frequency band are more unpredictable. 

 Artifacts themselves may provide insight into the state of a child which can, in turn, inform 

individual differences in power. 
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2.10  Figures 

Figure 2.1: Range in standard scores for cognitive assessments for the ASD and TD groups. 
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Figure 2.2: Nine regions-of-interest (ROI) were selected to provide maximal spatial coverage of the 
left (red), midline (green), and right (blue) portions of frontal (diamonds), central (stars), and posterior 
(squares) scalp regions. All ROIs contain 4 electrodes, except for the midline-central ROI which 
contains 5 electrodes. The approximate 10-20 system electrode equivalents and the channel numbers 
for the regions are: F3 = 23, 24, 27, 28; Fz = 5, 11, 12, 16; F4 = 3, 117, 123, 124; C3 = 35, 36, 41, 
42; Cz = 7, 31, 80, 106, Ref; C4 = 93, 103, 104, 110; P3 = 51, 52, 59, 60; Pz = 62, 71, 72, 76; and P4 
= 85, 91, 92, 97. Channels 125 – 127 (marked with an X) were originally located below or lateral to 
the eyes, but were removed to make wearing the net more comfortable for children. Interpolated signals 
were calculated most often for electrodes located along edge of a net.  

 

Figure 2.3: Representative examples of a (A) blink, B) saccade, and C) EMG artifact. 
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Figure 2.4: Mean and percentages for segments categories for the ASD and TD groups 
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Figure 2.5: Differences in mean power for the Blink and Artifact-Free categories (i.e. PowerBlink – 
PowerArtifact-Free).  Positive values represent higher power in the Blink category. Figure 2.6 and 2.7 
display the same information (i.e.  PowerArtifact – PowerArtifact-Free) for saccade and EMG artifacts, 
respectively. Power values were log transformed (see Table 2.4) prior to calculation of differences. All 
significant differences (*) are p < 0.05 and corrected for multiple comparisons. 
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Figure 2.6: Differences in mean power for the Saccade and Artifact-Free categories (i.e. PowerSaccade 
– PowerArtifact-Free).  See the caption of Figure 2.5 for details. 
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Figure 2.7: Differences in mean power for the EMG and Artifact-Free categories (i.e. PowerEMG – 
PowerArtifact-Free).  See the caption of Figure 2.5 for details. 
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Chapter 3: Modeling ASD Phenotypes  

& EEG Band Power 

3.1 Introduction 

The primary aims of this dissertation are 1) to assess the current use of resting-state QEEG 

band power measures for studying children with ASD, and 2) investigate differences from 

typically developing controls. The previous chapter addressed this by assessing how artifacts may 

affect band power measures, and if they could be responsible for any observed group differences. 

Attention is now turned to how behavioral measures of individuals affect differences in band 

power between the two groups. Standardized assessments of behavior are a means of quantifying 

individual differences in phenotypes and cognitive abilities. Measures of QEEG band power also 

quantify aspects of phenotypic differences, but from a physiologic perspective. With the broad 

spectrum of phenotypes observed across children with ASD, it is likely that different phenotypes 

and behaviors will differentially affect band power. Nearly all studies of band power in individuals 

with ASD limit their analysis strictly to band power differences, ignoring the diversity across ASD. 

Without accounting for phenotypic variability, band power differences could erroneously be 

attributed to the disorder, when in reality should be attributed to a behavior commonly associated 

with the disorder, such as language impairments.  

Failing to account for the variability in ASD is likely to result in different findings across 

research groups. Recent literature reviews highlight this problem of conflicting results in ASD 

research on resting-state QEEG (Billeci et al., 2013; Cantor & Chabot, 2009; Wang et al., 2013). 
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As the reviews discuss, identifying a pattern of QEEG differences that are unique to ASD is 

hampered by relatively few studies, many of which differ drastically in ASD population studied 

(e.g. high functioning adults vs. low function children), data processing strategies, and the QEEG 

measures investigated (e.g. type of power calculation, frequency bands, regions of interest, etc.). 

Despite these differences, the aim of these studies were the same. Specifically, they sought to 

determine if measures of QEEG band power are different in individuals with and without ASD, 

i.e. a main effect of ASD. If consistent differences were discovered, this would indeed be a very 

important finding; however, no single pattern of differences has been identified. This may be due 

to the large degree of heterogeneity observed across both individuals with ASD, and across 

experimental designs. One strategy for dealing with the heterogeneity is to include phenotypic 

measures in statistical models. Thus, the current chapter investigates the effect of including 

behavioral assessments in statistical analysis of band power measures in ASD, and if differences 

can be attributed to the behavior, the disorder, or even both. 

Therefore, we first determine that individual phenotypic measures are significant 

predictors of band power measures in children with ASD and should be included in statistical 

analyses. We then apply this principle to investigation of group differences across frequency 

bands.  

Incorporating phenotype in analyses 

Traditional statistical methods used to investigate band power are not well suited for 

incorporating phenotype data into the analysis. Most QEEG studies rely on repeated measure 

ANOVAs (analysis of variance), one of several statistical tests within general linear models 

(GLM), to test for significant differences. A major assumption of many statistical tests is 

independence between variables. The band power measures from QEEG typically violate this 
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assumption because of the high correlation between the multiple measures from individual 

subjects, for example across multiple regions of interest (ROIs). Repeated measure ANOVAs, 

however, specifically test the differences in means between related dependent variables, which 

make them appropriate. In addition to being relatively straight forward to implement and interpret 

results, extensions of this method offer other advantages. In an orthogonal two-way repeated 

measure ANOVAs, two sets of independent variables can be included, for example separate ROIs 

for each hemisphere.  

A repeated measure ANOVA also makes assumptions, which can limit its usefulness - for 

example, it cannot handle unbalanced data (i.e. missing or incomplete data). In the present study, 

this would force many subjects to be removed from analysis for both the ASD (n = 13) and TD (n 

= 5) groups. These subjects needed to be excluded from analysis in select ROIs because it 

contained low amplitude, constant muscle. From a statistical standpoint, this means many children 

from both groups have incomplete data (see supplementary info). For the ASD group in particular, 

measures on cognitive assessments for some of the children with incomplete data suggested they 

were quite cognitively impaired. These children represent an important cohort within ASD. Rather 

than remove these children from analysis and lose otherwise clean data, multilevel modeling was 

used for tests of significance.  

Multilevel modeling (MLM), also referred to as hierarchical linear modeling, is a powerful, 

generalized form of GLMs. The flexibility of MLMs enable it to account for missing data and to 

overcome some of the other assumptions made by various GLM tests, such as independence 

between predictors and homogeneity of regression slopes (Field, 2009). Where the GLM relies on 

ordinary least squares (OLS) to determine the fit of model parameters, MLM can use link functions 
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to overcome assumptions violated in GLMs (e.g. non-normal data), and iterative methods (e.g. 

maximum-likelihood estimation) to determine the fit of a model.  

Because it allows the inclusion of both fixed (e.g. main effects) and random effects (e.g. 

subject specific differences), MLM is able to address questions not suitable for repeated measure 

ANOVAs. A multilevel model approach that examines band power differences between children 

with ASD and TD controls, provides a unique strategy to account for the individual, subject 

specific differences which may have contributed to the mixed findings reported in research 

literature. By including sources of variability in analyses, MLM can directly test if observed 

differences are due to the disorder or phenotypes observed in the disorder.  

The models used in this chapter were built through a recommended series of steps (adapted 

from Peugh, 2010): 

1. Clarify the research question 

2. Choose the parameter estimation method 

3. Assess the need for MLM 

4. Build the level-1 model 

5. Build the level-2 model 

6. Determine multilevel effect sizes 

7. Test competing multilevel models 

We begin by comparing four different models built using this approach and describe the 

full model used for the remainder of the analyses. Next we apply the full model to all frequency 

bands, and determine which model parameters were significant predictors of band power 

measures.   
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3.2 Methods 

3.2.1 Participants and Data 

The data for the current analysis were gathered from the same population used in the 

previous chapter. See section 2.2 above for details of data acquisition and processing methods. 

Only children who contributed a minimum of 30 seconds of clean, artifact-free data were included 

in the current analysis (N = 96; ASD: n = 54; TD: n = 42). Measures for phenotype were based on 

language and cognitive assessments reported in the previous chapter (see Table 2.1). 

The previous chapter noted that a band’s power is influenced by other bands when relative 

power calculations are used. As such, this chapter focuses on calculations of absolute power only. 

Consistent with our recommendations in the previous chapter however, the results for relative band 

power are provided in Table 3.4 and Table 3.5 for reference, with notable differences mentioned 

in the discussion section. The frequency range for the bands investigated were: delta (1-3 Hz), 

theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (35-45 Hz) bands. Power 

measurements were taken from 4 regions of interest (ROI): left-frontal, right-frontal, left-posterior, 

and right posterior (Figure 3.1). Relative to the previous chapter, fewer ROIs were investigated, 

but each included additional electrodes, thus covering a larger portion of the scalp. We reduced 

the number of ROIs analyzd in order to decrease the number of parameters used in statistical 

comparisons, while maintaining a maximal spatial sampling of the neural activity across the scalp.  

3.2.2 Statistical Models & Analysis 

Statistical modeling and analysis were performed in SPSS (IBM SPSS Statistics for 

Windows, Armonk, NY). Model parameter estimates were calculated using the MIXED procedure, 
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with bootstrapping (1000 samples with replacement per model) to improve the accuracy of 

confidence intervals and standard errors.   

The importance of including phenotype data (e.g. age, language function, etc.) is 

demonstrated through a statistical comparison of four progressive models of absolute frontal theta 

power (Table 3.1). Two models can be compared when all parameters from one of the models are 

nested (i.e. a subset) within the larger model.  The difference between each model’s deviance (i.e. 

– 2 Log Likelihood) and degrees of freedom can then be used in chi squared (χ2) tests to determine 

if the larger model is a significantly better fit of the data. The results provided in Table 3.1 list χ2 

tests for (a) Model 1 compared directly to each of the larger models, and (b) each model to the 

model nested immediately before it, meaning Model 2 vs. 1, Model 3 vs. 2, and Model 4 vs. 3. 

Model 3.  

 

Level-1: 𝑌𝑌𝑖𝑖𝑖𝑖 =  𝛽𝛽0𝑗𝑗 + 𝛽𝛽1𝑗𝑗𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 

Level-2: 𝛽𝛽0𝑗𝑗 =  𝛾𝛾00 + 𝛾𝛾01𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗 + 𝛾𝛾02𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 + 𝛾𝛾03𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗 + 𝑢𝑢0𝑗𝑗 

Level-2: 𝛽𝛽1𝑗𝑗 = 𝛾𝛾10𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + 𝛾𝛾11𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗 

Full Model: 

𝑌𝑌𝑖𝑖𝑖𝑖 =   𝛾𝛾00 + 𝛾𝛾01𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗 +  𝛾𝛾10𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + �𝛾𝛾11𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗� 

+ 𝛾𝛾02𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 + 𝛾𝛾03𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗 + 𝑢𝑢0𝑗𝑗 + 𝑟𝑟𝑖𝑖𝑖𝑖 

 

Each model is composed of a response variable and predictor variables at two levels, 

within-subject and between-subject. The response variable (Yij) is the measured band power within 

a hemisphere i (level-1; left = 0, right =1) for each child j (level-2). To account for the high 
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correlation between power measures from separate hemispheres within the same subject, a random 

effect (𝑢𝑢0𝑗𝑗) was included, which allows intercepts to vary across subjects. The remainder of the 

parameters assessed are fixed effects, and include: 

• GROUP (γ01): dichotomous variable; indicates the group assignment (ASD = 0, TD = 

1). 

• HEMI (γ10): dichotomous variable; indicates the hemisphere of the power measurement 

(0 = left, 1 = right). Note, a parameter indicating if a measured power corresponded to 

a frontal versus posterior ROI was not needed because each were analyzed in separate 

models. 

• GROUP*HEMI (γ11): interaction term; used assess group differences in power 

asymmetry. 

• AGE (γ02): continuous variable; represents a child’s age in months at the time of the 

recording. Preliminary analysis of correlation indicated that a child’s age had a strong 

negative correlation with absolute power across all bands and for both groups. Even 

though age did not correlate with relative power, age is still included in the models for 

relative power analysis to prevent confusion. 

• LANG (γ03): continuous variable; measure of a child’s expressive language ability 

based on standardized scores from behavioral assessments.  

• IQ (γ04): continuous variable; standardized scores from IQ assessments. 

Data from frontal and posterior ROIs were analyzed in separate models since a comparison 

of power between these regions was not of interest. Although it is possible to include frontal and 

posterior ROIs in the same model, the correlation between measures obtained from single subjects 

is complex.  For example, power measured in the left-frontal ROI typically correlates more with 
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its contralateral equivalent (i.e. the right-frontal ROI) than with its ipsilateral (i.e. the left-posterior 

ROI). Without including a covariance structure to account for this relationship, statistical 

assumptions will be violated and the residuals of the model are likely to correlate.  

After assessing the models, the full model used throughout the remainder of the chapter is 

Model 3. Results from the full model are reported for 20 separate analyses, corresponding to each 

of the 5 frequency bands, 2 power types, and 2 sagittal regions (frontal and posterior). Each 

model’s threshold for significance was adjusted for multiple testing by controlling for the false 

discovery rate (FDR). 

To facilitate comparisons across frequency bands, power measures were mean centered 

within each ROI and regions. For example, measures of absolute theta power in the left-frontal 

ROI from all subjects were averaged, and this value was then subtracted from each individual 

measure of the theta power in the left-frontal ROI (𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗 − 𝑋𝑋�). It is important to note that 

this technique only adjusts estimate of the intercept (γ00), essentially scaling it and the standard 

error. The estimate and significance for other parameters is unaffected.  

 

3.3 Results 

Model Assessments 

Using absolute theta power from frontal regions as a demonstration, Table 3.2 lists the 

estimated parameter values for each of the four tested models. In the simplest model (Eq 1), none 

of the fixed effect parameters significantly predicted absolute theta power. In the second model 

(Eq 2), AGE was a significant predictor (F(1, 8.6), p << .001), and compared to the first model, 
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AGE also significantly improved the model’s fit (χ2(1) =8.2, p < 0.005). Including a measure of 

language function, LANG, in the third model (Eq 3) resulted in three of the fixed effects 

significantly predicting absolute frontal theta power: GROUP (γ01 = -0.18, F(1, 3.8), p < .001), 

AGE (γ02 = -0.007, F(1, 8.6), p < .001), and LANG (γ03 = -0.003, F(1, 3.0), p < .005). However, 

IQ was not a significant predictor when included in a model already containing AGE and LANG 

(γ04 = 0.002, F(1, 0.4), ns), as seen in the last model (Eq 4).  

The difference in deviance statistics between the simplest model (Eq 1) and subsequent 

models (Eq 2 – 4) demonstrates that these models were significantly better, meaning they provided 

a better fit of the observed theta power.    (Eq 1 vs. 2: χ2(1) = 8.2; Eq 1 vs 3: χ2(2) = 11.2; Eq 1 vs. 

4: χ2(3) = 11.5, all p < 0.005).  However, models 3 was only a moderate improvement over model 

2 (Eq 2 vs. 3: χ2(1) = 3.0, p =.08), and model 4 was not an improvement over model 3 (Eq 3 vs. 4: 

χ2(1) = 0.4, ns).  

Including a subject-level intercept, a random effect (τ00), accounted for the collinear 

relationship between measures taken from the same subject (i.e. left and right ROIs). It was also 

significant in the full model (Eq 3) for the rest of the frequency bands (Tables 3.3 through 3.6).  

This parameter was highly significant in all models (p < .001), which supports using multilevel 

modeling as our statistical approach. Calculations of the intraclass correlations (ICC) further 

support the need for multilevel modeling. Higher ICC values suggest unequal variations in level-

1 (within subject) and level-2 units (between subject), and can be accounted for in multilevel 

modeling. The ICC for the unstructured model demonstrated that level-2 variation (i.e. between-

subjects) in band power ranged from 56% to 83%, depending on the frequency band. This suggests 

there was a large degree of the variation in band power measures across subjects. 
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Full Model Estimates 

Tables 3.3 and 3.4 list the parameter estimates from the full model for absolute band power 

in frontal and posterior regions, respectively. Estimates for relative power are provided in Tables 

3.5 and 3.6 for reference.  

Across all bands, the predictors in the model were most significant for the theta band. 

Specifically, children with ASD had significantly lower absolute theta power than children in the 

TD group regardless of region (Theta: GROUPFrontal γ01 = -0.18 F(1,~92) = 3.8; GROUPPosterior γ01 

= -0.15, F(1,~96) = 2.4). A similar trend was observed for the delta band, but was not significant 

after adjusting for multiple comparisons (Delta: GROUPFrontal γ01 = -0.12 F(1,~93) = 2.7; 

GROUPPosterior γ01 = -0.13, F(1,~95) = 2.7). Figure 3.2 illustrates the effect of GROUP by showing 

that typically developing children are predicted to have higher absolute power in lower frequency 

bands than children in the ASD group across all scalp regions.  

The expressive language measure, LANG, also significantly predicted absolute theta and 

delta power regardless of scalp region (delta: LANGFrontal γ03 = -0.003 F(1,~93) = 4.1; LANGPosterior 

γ03 = -0.003 F(1,~96) = 4.4; theta: LANGFrontal γ03 = -0.003 F(1,~92) = 3.0; theta: LANGPosterior γ03 

= -0.003 F(1,~96) = 3.8). 

The AGE parameter was a highly significant, negative predictor (p < 0.005 corrected) of 

absolute power in frontal and posterior regions for all bands, except for beta power in frontal 

regions. The negative value of this estimate implies that for every unit increase in age (i.e. 1 

month), a child’s absolute band power1 is expected to decrease, on average, by the estimated value 

for the AGE parameter, respectively for each band. This age related decrease is most important for 

1 N.B. Absolute band power (μV2) values were natural log transformed [loge (μV2)]. Therefore the magnitude of an 
increase or decrease should be back transformed by ex to get the change in absolute power. For example, a change of 
.01 for a natural log transformed power value is actually equal to a change by 1.01 μV2 (e.01 = 1.01).  
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measures of absolute power. For relative power, a child’s AGE was only a significant predictor of 

relative band power for posterior theta (γ02 = -0.001, F(1,~96) = 1.8), frontal beta (γ02 = 0.005 

F(1,~92) = 4.7), and posterior beta (γ02 = 0.005 F(1,~96) = 6.2) (all p < .05 corrected). 

The parameters for the main effect of hemispheric source, HEMI, and the interaction of 

group and hemisphere, GROUP*HEMI, were not significant for any region or band. This means 

1) knowing which hemisphere (left or right) a measured power originates from does not help 

predict the observed power, and 2) children with ASD do not have predictable different power in 

any specific hemispheric region than typically developing children. 

 

3.4 Discussion 

This analyses focused on a model of resting-state band power to determine if having a 

diagnosis of ASD improved band power estimates when individual characteristics (e.g. age, ROI, 

etc.) are also included in the model. The results based on the model used here suggest a child’s age 

was the only significant predictor of resting-state band power. Simply having a diagnosis of ASD 

(i.e. GROUP), without other phenotypic information, was not helpful. This result is not surprising 

due to the large heterogeneity across individuals with ASD. A more complex model, one which 

includes additional measures of ASD severity and characteristics, is likely needed. A more 

accurate model, for example, may include measures of verbal and non-verbal skills, repetitive 

behaviors, IQ, age, gender, genetic markers, etc.  By including additional phenotypic information 

more complex models have the potential to determine if true group differences exist, but are 

potentially masked by a large variability in other characteristics (e.g. language ability) or even 
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their interactions (e.g. ASD and female). Furthermore, by including additional phenotypic 

parameters in a model of resting-state band power, researchers can determine if group differences 

are markers of core ASD deficits or rather a reflection of other traits.  

Clinical diagnosis has embraced the heterogeneity within ASD, best exemplified by the 

changes to the diagnostic criteria seen in the most recent The Diagnostic and Statistical Manual of 

Mental Disorders, Fifth Edition (DSM-5). The previous diagnosis used separate names (e.g. 

Asperger’s disorder, childhood disintegrative disorder, etc.) to subgroup what were believed to be 

diagnostically distinct types of autism, occasionally referred to as “the autisms.” According the 

American Psychiatric Association (APA), “the revised diagnosis represents a new, more accurate, 

and medically and scientifically useful way of diagnosing individuals with autism-related disorders 

(Autism Spectrum Disorder Fact Sheet, APA, 2014).” Other changes to the diagnosis made by the 

DSM-5 account for the spectrum aspect of ASD by requiring specification of various features of 

the disorder that are present in the child, for example with or without language impairment. The 

results, or lack of group differences, reported here support the changed approach to the ASD 

diagnosis because when the heterogeneity within a diverse group of children is ignored they are 

treated as a single, homogeneous group then differences from TD children in band power are not 

observed. 

Even though there are a few examples of researchers acknowledging the heterogeneity 

within ASD by specifically studying subgroups of individuals with ASD (Cantor et al., 1986; 

Dawson et al., 1995; Sutton et al., 2005), the majority of QEEG studies treat all subjects within 

the ASD group as a single group distinct from the control group. Combining everyone with ASD 

into one group relies on a common assumption made by many research studies that the individuals 

in the experimental group (e.g. drug, treatment, disorder, etc.) are more closely related to each 
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other than individuals in the control group (e.g. placebo, no treatment, disorder-free, etc.). 

However, this assumption does not seem appropriate when studying ASD because of the known 

heterogeneity. Instead, one of the main points of this dissertation is that studies on ASD should 

focus on closely related subgroups of individuals (e.g. individuals with language impairment but 

no intellectual impairment – discussed in the next chapter) or specific aspects of the disorder (e.g. 

repetitive behaviors). 
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3.5 Tables 

Table 3.1: Equations used for multilevel model assessments. Equation 1 is the simplest, nested model; 
it includes fixed effect parameters for the intercept (γ00), GROUP (γ01), HEMI (γ10), the interaction of 
GROUP and HEMI (γ11), a random effect that allows the intercept to vary for each subject (u0j), and a 
term for the residual error (rij). The response variable, Yij, represents the observed power measured in 
the left (i = 0) or right (i = 1) hemisphere of subject = j. Equations 2 through 4 progressively add 
additional fixed effects for AGE (γ02), LANG (γ03), and IQ (γ04), respectively (bold). Equation 3 is the 
full model used throughout the rest of this chapter. 
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Table 3.2: Parameter estimates from model building assessment 
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Table 3.3: Parameter estimates for absolute power in frontal regions 
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Table 3.4: Parameter estimates for absolute power in posterior regions 
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Table 3.5: Parameter estimates for relative power in frontal regions 

  

62 
 



Table 3.6: Parameter estimates for relative power in posterior regions 
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3.6 Figures 

Figure 3.1: Four regions-of-interest (ROI) were selected to provide spatial coverage over frontal 
(diamonds) and posterior (squares) portions of the scalp in the left (red) and right (blue) hemispheres. 
All ROIs contain 9 electrodes. The approximate 10-20 system electrode equivalents and the channel 
numbers for the regions are: F3 = 12, 18, 19, 20, 23, 24, 27, 28, 29; F4 = 3, 4, 5, 10, 111, 117, 118, 
123, 124; P3 = 42, 47, 51, 52, 53, 59, 60, 61, 67; and P4 = 77, 78, 85, 86, 91, 92, 93, 97, 98. 
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Figure 3.2: Estimated marginal means of absolute power measures for the ASD (blue dotted line) and 
TD (solid red line groups). Separate graphs are plotted for frontal (top) and posterior (bottom) ROIs 
in the left and right hemispheres. Means were calculated using the full model (Eq 3). * p < 0.05 
corrected, † p < 0.05 uncorrected. 
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