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PANEL DATA AND EULER EQUATIONS

ETHAN LIGON

1. INTRODUCTION

Dynamic rational expectations models featuring agents with addi-
tively time-separable utility functions typically yield some sort of mar-
tingale restriction which may be used for either testing the model or
estimating its parameters. While different models may yield a variety
of these sorts of restrictions, the one most commonly observed is the
Euler equation.

Martingale restrictions are exceptionally useful in a time series con-
text, since the martingale property delivers a very useful sort of in-
dependence. However, as noted by Chamberlain (1984), this indepen-
dence property does not extend to the analysis of panel data. Most
panels have many agents observed over a small number of time peri-
ods. For these data, the most natural asymptotic theory would hold the
number of time periods (7") fixed, while letting the number of agents
(N) approach infinity. However, when working with the Euler equation
or similar restrictions, this procedure will yield inconsistent estimators
whenever there are important aggregate components to the innovations
observed by each agent (Pakes 1994).

This paper develops a characterization of estimators that rely on
N — oo, but which hold T fixed. In particular, we show that limiting
estimator is a random variable, and show how to calculate its distribu-
tion when there are overidentifying restrictions. When the distribution
of the limiting estimator is nondegenerate, the estimator cannot be
consistent, but knowledge of this distribution permits us to engage in
the usual sort of inference and hypothesis testing.

2. MODEL

Suppose that we have a dataset of observations on /N agents over the
course of T" periods. An economic model implies that

Vit = f(zit, bo) + wit,
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where 7 = 1,2,..., N indexes agents, t = 1,2,...,T indexes time, and

by is a vector of unknown parameters, assumed to lie in some compact

parameter space B C RF. Observations on a single agent may be

written as a vector w; = (Yi1, - - -, Yi, Thys- - - Thps Zhgs - - - Zep_1), Where

the z;’s are ¢-vectors of instrumental variables, which generate the

sequence of o-algebras {F;;}1—,'. We assume that the u; are stationary.
We wish to test the hypothesis that

(1) E(u;t|Fir—1) = 0.

Such conditional moment restrictions arise from a wide variety of dy-
namic economic models. In particular, the Euler equation found in
work on the permanent income hypothesis yields precisely this sort of
restriction, where the u; may be regarded as agents’ forecast errors.

Define hlt(b) = (yzt—f(l‘zt, b))zit—l; note that hzt(bO) = UjtZt—1- Then
an implication of (1) is

(2) Ehi(by) = 0.

In order to estimate by, it seems natural to proceed by constructing
a sample counterpart to (2). In thinking about asymptotic proper-
ties there are two possible limits we can think of taking, in N and in
T, rather than the usual one. Accordingly, we construct our sample
moments in two steps. First, we define a set of T functions h;(b) by
1 XN
he(b) = plim — ) k(D).

N—o0 N —
=1

We assume that h;(b) exists and is finite for all b € B. Furthermore, we
assume that the conditions of some central limit theorem are satisfied

(cf. White (1984)), and that

1 N
(3) VN (ﬁ ;hit(bo) - ht(bo)) = N(0,2:(bo)).

The second step in the construction of our sample moment involves
averaging over time. Define

(@ 9r(6) = 7 " ht).

Since the one-sided conditional moment restrictions (1) imply that
{hit(bo), Fir} is a martingale difference sequence, we can apply Chow’s
law of large numbers to show that as T — oo, gr(by) converges to
zero with probability one. As a consequence generalized method of
moments (GMM) estimators will be consistent as 7' grows large.
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However, it is often the case that panel datasets have N consider-
ably larger than 7. In these circumstances, it would be nice to have
an estimator which was consistent as N — oo, holding 7" fixed. Un-
fortunately, theory often suggests that we may observe considerable
cross-sectional dependence (Chamberlain 1984). For example, macroe-
conomic innovations or the use of consumption insurance (Mace 1991)
would be expected to induce dependence across agents’ forecast errors.
Accordingly, for any particular ¢, hy(by) may be quite different from
zero, even though Eh,(by) = 0; as a consequence, estimators based on
this moment condition will not be consistent in general.!

3. EXAMPLE

In this section we develop an example inspired by Hansen and Sin-
gleton (1982). Suppose that we wish to estimate risk aversion using
a panel of N agents observed over six periods. We assume that each
agent 7 has preferences over own consumption given by

E ZﬂtU(Cz‘t) Fio
t=0

where (3 is the discount factor, and where agents’ momentary utility
from consumption, U(c), is of the CES form

clfbo -1

1-— bo
Here ¢ is consumption and by is the coefficient of relative risk aversion.
To make our example simple, we assume that all agents hold some asset
with return R; at time ¢; we might think of this asset as being some

sort of market portfolio.?2 Accordingly, we expect agents’ consumptions
to satisfy the Euler equation

Ule) =

cir \"
E ﬁRtH( ”) Ful —1=0

Cit+1

INot all cross-sectional dependence produces inconsistent estimators, of course.
A sufficient condition for consistency is that the data generating process for {h;;}
be stationary and ergodic. We might imagine sorts of ‘local’ dependence—perhaps
due to weather shocks or regional price variation—which while inducing some cross-
sectional dependence would still satisfy these conditions; see Conley (1996). On the
other hand, the existence of markets available to all of the agents in an economy is
apt to yield data generating processes which are both non-stationary (e.g., agent’s
marginal utilities of consumption may obey a martingale) and non-ergodic.

2We also assume that if R; is the return on the the market portfolio, then the
returns on the primitive assets do not span the set of possible states— we want our
agents to face some idiosyncratic as well as aggregate uncertainty.
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FiGure 1. Sample path of GMM estimator with no ag-
gregate shocks and by = 1. The dotted lines are conven-
tionally estimated 95 per cent confidence intervals.

[cf. Hansen and Singleton (1982)]. We choose as instruments ¢ linearly

independent, JF;-measurable, covariance stationary variables zJ,_;, j =
1,...,q. Then define

Cit—1 b 1
ﬁRt (7) —1 Zitfl

hit(b) =

—- ' b
PRy (Cif) — 1|z

so that Eh;(by) = 0 is a pair of unconditional moment conditions. In

the absence of any sort of aggregate shocks, gr(by) = 7 Zthl hy(by) = 0,

so the usual GMM estimator is consistent. Let gnr(b) = 7 S SN hir(b)
be our estimator of the moment conditions, and let by denote our
estimator of by.; Figure 1 displays a particular sample path for the es-
timator when by = 1. Here the solid line is the sample path of the
estimator, while the dotted lines describe a conventionally calculated

95 per cent confidence interval.?

3The confidence interval is constructed by assuming that the estima-
tor byt is normally distributed with Ebyr = by, and estimated variance

-1
1 |9gnT(bNT) —19gnT(bNnT)
NT [ g VNT (ONT) b :
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However, let us suppose that aggregate shocks matter in this econ-
omy. In particular, let ¢; denote per capita consumption at time ¢ in

bo
the economy as a whole, and assume that SR, (th—:l> — 1 is normally

distributed with mean zero and variance 02.* Furthermore, we as-

sume that the sampling process is such that plimy_, % Zfi 1 Cit = Ci;
this is sufficient for plimy_, %sz\; hit(b) = hy(b). It follows that
hi(bo) is normally distributed with mean zero and covariance matrix
V= O'gEZit_lz;t_l.

A particular draw from N (0, V/T) using a (pseudo-) random number
generator yields the following values for the aggregate shocks:

{hl (bO)a h2(b0)7 SRR hT(bO)}

B —0.0361 0.1453 0.0944 —0.0054 0.0134
B —0.0361) 7\ 0.0819/ >\ 0.0113 ) * \ —0.0001 /) * \ 0.0001 / |~

The global mean of these shocks is g7(by) = (3:9123). While one might
think that this isn’t too different from zero,® there’s considerable vari-
ation in the hy(by); a different draw might easily have yielded gr(bo)
quite different from zero. Indeed, even in the present case, the limit-
ing estimator as N — oo is decidedly inconsistent, as Figure 2 shows.
In fact, the estimated confidence interval never includes by = 1, and
never overlaps with the confidence interval estimated in the absence of
aggregate shocks.

4. INFERENCE WHEN N 1S LARGE

It is likely that estimators that rely on sequential moment restrictions
such as (2) will not be consistent when T is fixed. In this setting
hi(b) is a random variable; in order to obtain estimators with desirable
properties we must place some additional structure on this random
variable. Most earlier work on this problem has assumed that h;(b) is
in fact a constant. Here we permit h;(b) to be a random variable with
a non-degenerate distribution. While this is not enough to deliver a
consistent estimator, it does add enough structure to the problem that
we can conduct meaningful inference.

Assume for now that we observe {h;(b)}, and that h;(by) is dis-

tributed N (0, V (by)). Let Vi(b) = £ 20 hy(b)ha(b) — gr(b)gr (b)' be

4A complete description of the data generating process used in this example,
along with code implementing the dgp, is available from the author.

SA x? test of the hypothesis that Egr(by) = 0 yields a p-value of 0.18, so we
cannot reject the null hypothesis at conventional levels of significance.
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FiGurE 2. Sample path of GMM estimator with aggre-
gate shocks and by = 1. The dotted lines are convention-
ally estimated 95% confidence intervals.

an estimator of V(b).® Accordingly, V7(b)/T is an estimator of the
covariance matrix of gr(b). Since we know that gr(by) is distributed
exactly N(0,V (by)/T), we can write the maximum likelihood estimator
of by as
(5) 7 = argmin Ve (b)Y gr (0) [V ()]~ g (b).
beB

Note that the maximum likelihood criterion function (minus one times
the concentrated log likelihood, modulo a constant) differs from the
natural GMM criterion only by the factor |Vz(b)|!/2.

Call the GMM criterion

Jr(b) = gr(6)' Ve (0)] " g1(b).
Since hy(by) ~ N(0,V (b)), it follows that TVr(by) obeys the Wishart

distribution W(T,V (b)) (Morrison 1962), and that T Jr(by) is drawn
from Hotelling’s generalized T? distribution. Accordingly,

T—-—q+k+1
6This estimator of V(b) is appropriate when h;(b) is serially independent. An
alternative estimator to account for possible serial dependence could be used instead
(e.g., Newey and West (1987)); however, when T is quite small, such adjustments
are likely to be unimportant.
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(Rao (1973), pp. 541-2). As in the usual GMM setting, we know
that T'Jr(bo) is distributed asymptotically Xg—k as T — oo. However,
here we know the exact distribution of T Jr(by) even when 7" is small;
thus, when NV is large, we can use this fact to construct exact tests of
overidentifying restrictions.

Of course, the statistic given by (6) requires that we know by. We’d
prefer to be able to work with a test statistic that depends on an
estimate of by,

) 5:0) = (T g

This test statistic is appropriate if we wish to test the null hypothesis
that Egr(b) = 0, or equivalently the joint hypothesis that Eg;(by) = 0
and by = b. Furthermore, since we know the pdf of F'(¢—k, T—q+k+1),
we can calculate the pdf of the estimator so long as gr satisfies some
regularity conditions (Billingsley (1986), Thm. 19.3).

Returning the example we began in Section 3, Figure 3 displays an
estimate of the pdf of the GMM estimator by. Here we’ve used

9Sr(b)
0b

o) = | 250 1(500) = Srom) 4= T =0+ k1)

to estimate the pdf, where f(-|v1,72) is the pdf for the F' distribution,
with (71, 72) degrees of freedom. Note the correction to the argument in
the F' pdf. In this context by is the GMM point estimate, so S7(br) =
minge g Sy (by). Clearly ¢(br) = 0. Since by has measure zero in B
in this example, this is harmless. As a practical matter, however, the
limits of machine precision cause the pdf of by to be poorly estimated
in some neighborhood of the GMM point estimate. One might correct
for this error by omitting this neighborhood, and interpolating in order
to the pdf instead. With this (possibly corrected) pdf in hand, we can
go about inference in the usual way. For example, using the pdf in
Figure 3, we can construct a confidence interval for by; in this example
a 95 per cent confidence interval is [0.9302,1.0059], which includes by.

5. INFERENCE WHEN NN IS SMALL

When N is small, we don’t observe the probability limits {h;(b)}
which we exploited in the previous section. We can construct estimates
of these by averaging over agents at each time period, but as a conse-
quence we need to adjust our procedures for inference by accounting
for sampling error.
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FIGURE 3. Density of the GMM estimator br.

Let us begin by defining
T N
gnr(b NT Z ; his (b

=1
Using a similar notation, define hy,(b) = & SN hit(b), and note that
plimy_,  hne(b) = ht(b) Then

F3ono) +

We can write this as gNT(b) = gr(b) + gnr(b), where the first term,
gr(b) corresponds to the first bracketed term on the right hand side of
(8), and gnr(b) corresponds to the second.

LSS )~ )

t:lz 1

(8) gNT

1.2
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From the assumption (3) it follows that

T
1
VNgnr(by) = N (0, 7 > Et(b0)> :
t=1
and so we write gnr(bo) ~ N(0,%7(bg)/(NT?)), where Yp(by) =
Zthl Y¢(bg), to indicate that gy (bo) is approximately distributed N (0

Note that this central limit result relies only on N being reasonably
large, regardless of 7.
Now recall that gr(bo) is distributed N(0,V (by)/T’) by assumption.

Accordingly, gnr(bo) ~ N (0,7 *Qnr), where Qnr = V (bo)+ 77 (bo).-

Of course, we wouldn’t ordinarily observe either V' (by) or X;(by). How-
ever, we can estimate {)yr by using

Vir(8) = 7 3 e @b ) = g1 0w (-

Note that EVyr(by) = Qnr, and that Viyr(bo) is a consistent estimator
of V(by) = plimy_, Qv as N — oo. With this covariance matrix
estimator in hand, we might estimate b, via GMM, with a criterion
function

Int(0) = gnr (D) [Vr (b)) gnr (D),

or perhaps via quasi-maximum likelihood,” with a criterion function
[V (B)[Y/% T wr ().

Reprising an argument from the previous section, since hyy(by) ~

Er(bo)

7 NT2

N(0,Qn7), it follows that TVyr(bg) is approximately distributed W (T, Qnr),

and that
T—q+k+1
( q—k
As before, we can’t consistently estimate by; however, we can conduct
inference using the statistic

)JNT(bO) RF(q—kT—q+k+1).

T—q+k+1

Swr(b) = (q_—k) Ty (b).

While we only know the approximate distribution of this statistic, we
can conduct inference as if the distribution were exact; in fact, the
inference will be asymptotically correct as N — oc.

"We term this estimator a quasi-maximum likelihood estimator because gnT
may be only approximately normally distributed.

)
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FIGURE 4. Density of the GMM estimator by .

Figure 4 displays the pdf for the GMM estimator byr when N =
1024; a 95 per cent confidence interval for this estimator is [0.9017, 1.0308].

6. CONCLUSION

When confronted with a panel dataset, researchers should ask them-
selves whether or not aggregate shocks are likely to influence the process
which generated the data. If not, then moment conditions shouldn’t
depend on the date, which can be used as the basis for a simple test
of the null hypothesis of no aggregate shocks. If this test rejects the
null hypothesis, then estimators which rely on a growing cross-sectional
dimension should be presumed to be inconsistent.

1.2
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One possible response to this problem is to develop a complete char-
acterization of the data-generating process, and proceed to use a max-
imum likelihood estimator. The need to completely specify the eco-
nomic environment may often be a serious drawback here; if it were pos-
sible to completely specify the data-generating process, then it would
probably have been wise to use maximum likelihood to begin with,
since by doing soone could realize gains in efficiency relative to GMM.
The appeal of method of moments estimators is that the researcher
is permitted to remain agnostic with respect to many aspects of the
economic environment.

This paper has developed a sort of middle ground. By imposing (or,
better, deriving from the model) some additional structure on the ag-
gregate shock process, one can often proceed to do the usual sorts of
hypothesis testing and inference, despite the inconsistency of the es-
timator. In this paper we’ve focused on the case in which aggregate
shocks are normally distributed; however, extensions to other distribu-
tions are straightforward.
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