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ABSTRACT OF THE DISSERTATION

Instability of the Two-Stream Electron-Beam System

By

Katherine Evans

Doctor of Philosophy in Mathematics

University of California, Irvine, 2019

Professor Alexander Figotin, Chair

The physical phenomenon of amplification in traveling wave tubes can be understood math-

ematically as a result of system instability or exponentially growing eigenmodes. We study

here instability in the uncoupled multi-stream electron beam model, focusing primarily on

properties and solutions of the characteristic equation associated with the beam. In partic-

ular, we show that in general the zeroes of the characteristic function are distinct. Then, in

the two-stream case, we construct a series representation of frequency-dependent solutions

to the electron beam characteristic equation near the frequency at which these solutions

transition from non-real (unstable eigenmodes) to real (oscillatory eigenmodes).
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List of Symbols and Acronyms

β̄ electron beam parameter

γ̄ TWT-system parameter

θ̄ MTL integral parameter

q̄ slow-wave structure

βs = σB
4π
ω2
ps electron beam parameter associated with s-stream

ω̆ dimensionless frequency

∆B(u) e-beam function

∆T (u) MTL function

E(t, z) =
∑

sEs(t, z) total axial electric field

(a, b) = a ∗B =
∑
as ∗ ab scalar product of vectors a and b with complex valued

entries as and bs, respectively

E electric

field

J current

n̊s electron constant density for a stationary state, time and

space independent constant density

v̊s electron constant velocity for a stationary state, time

and space independent constant

D(u, γ̄) TWT-system characteristic function
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DB(u) normalized characteristic function of the e-beam

DT (u) normalized characteristic function of the MTL

DB(u) characteristic functions of the electron beam

DT (u) characteristic functions of the MTL

ω frequency which is assumed to be real in most of the

cases

ω → <(k(ω)) dispersion relation for an unstable modal branch

ωps plasma frequency of s-stream

ωps
2 = 4πn̊se2

m
the square of the electron plasma frequency associated

with density n̊s

ωw pulse (wave-packet) shifted frequency

<(ζ),=(ζ) respectively the real and the imaginary parts of a com-

plex number ζ

σ conductivity

σB the area of the cross-section which is the same for every

electron s-stream

θs MTL parameters

ζ∗ complex conjugate to a complex number ζ

A∗ adjoint (Hermitian adjoint) to a matrix A, that is

(a,Ab) = a∗Ab = (A∗a, b) and [A∗]ij = A∗ji (for a non-

square matrix A the scalar products (·, ·) are associated

with relevant (different) spaces)

a∗ Hermitian conjugate to a vector a, that is if a is a column

vector then a∗ is row vector with components [a∗]s = a∗s

aT vector transposed to vector a, that is if a is a column

vector then aT is row vector; aT = a∗ for a with real

entries
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AT matrix transposed to matrix A

b coupling (between the MTL and the electron beam) vec-

tor

C MTL matrix of mutual capacitance that can be position

dependent, that is C = C(z)

Es(t, z) axial generated electric field for s-stream

hω space-charge function

I(z, t) = {Ij(z, t)} currents associated with MTL

k wave number which can be a complex number

K(u) = Ω(u)
u

TWT-system wavenumber function (complex-valued)

kω-node instability node of the dispersion-instability graph

L MTL matrix of mutual inductance that can be position

dependent, that is L = L(z)

m electron mass

nB number of electron streams in the electron beam

nT number of transmission lines in the MTL

ns charge wave density

Ns(t, z) electron volume density for s-stream

Q(z, t) = {Qj(z, t)} charges associated with MTL

q(z, t) = {qs(z, t)} charges associated with electron streams

u = ω
k

phase velocity which can be a complex number

uen energy phase velocity

ugr wave-packet group velocity

uw wave-packet (pulse) phase propagation velocity

V (z, t) = {Vj(z, t)} voltages associated with MTL

v = O(u) the absolute value of ratio v/u of quantities v, v is

bounded by a finite positive constant
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v = o(u) quantities v and u satisfy lim v/u = 0

v̊s charge wave velocity

v̊s(t, z) axial velocity for s-stream

ws MTL characteristic velocities

z axis of TWT

e-beam electron beam

MSB system multi-stream e-beam system

msb-system multi-sream e-beam system of equations

MTL multi-transmission line

RF radio frequency

SWS slow-wave structure

TL transmission line

TWT traveling wave tube

TWT-system multi-stream electron beam coupled to the MTL
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Chapter 1

Introduction

1.1 Overview

Our main goal is to understand amplification due to system instability in traveling wave

tubes (TWTs), vacuum electronic devices consisting of an electron beam interacting with

a slow-wave structure (SWS) used to amplify radio-frequency (RF) signals. The TWT’s

ability to amplify radio-waves across long distances, to reach high signal amplitude with low

noise, and to handle large bandwidth high-frequency signals makes it an ideal system for

data transmission in satellites and space probes. There is a long history of modeling these

devices beginning as early as the 1930s and 1940s ([25], [7]); however, one of the simplest

yet effective models of a TWT was given by J. R. Pierce in 1950. He constructed a one-

dimensional, linear model of a TWT system that is still used for some design estimates today

[22],[23].

Since the 1950s, many authors have extended and generalized Pierce’s model to aid in design

optimization as well as to better understand physical phenomena such as amplification and

e-beam energy transfer. There are several nonlinear theories of TWT systems (see [26],
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[14], and [29], for example) that treat beam-wave dynamics in detail, though they are quite

complex and typically require heavy numerical analysis.

In 2013, A. Figotin and G. Reyes constructed the first Lagrangian field theory model of a

TWT that generalized Pierce’s theory to include possibly inhomogeneous MTL coupled with

the beam which was modeled in the same vein as Pierce’s electron beam [10]. This theory

allowed the authors to study amplification and energy transfer and more complex slow-wave

structures while keeping the simplicity and constructiveness presented in the Pierce model.

As such, the MSB model of the TWT system studied in the remainder of this text begins

with the original Pierce model and its generalization to an MTLB system by [10].

The idea to generalize representation of the e-beam to multiple streams of electrons has

been studied by several authors including [8],[4], [3], and [28]. In 2018, A. Figotin further

extended this theory to include multi-stream flows in the electron beam. This development

allows the model to account for electron plasma phenomena such as electron debunching,

two-beam instability, Landau damping, and more. Development of an analytic theory of

the TWT-system studies the system Lagrangian, field equations, characteristic equation and

eigenmodes of the multi-stream MTLB.

Our focus in this thesis is on the two-stream MSB system. Two-stream instability is a subject

in plasma physics which has been studied extensively by various authors such as [6], [20],

[2], [18], [19], [21], [24], [28].

A TWT consists of an electron beam interacting with a slow-wave structure (SWS), and

as established by A. Figotin and G. Reyes in [10], the TWT can be modeled by the multi-

stream e-beam system (MSB) in which we represent the e-beam by multiple streams of

electrons (MSB) and the SWS by a multi-transmission line (MTL). Our primary topics of

interest here are solutions to characteristic equations associated with the electron beam in

the uncoupled system and their properties. We study system instability arising from non-

6



real, frequency-dependent solutions (phase velocities) to the characteristic equation of the

MSB system. As these solutions can be real or non-real depending on the given frequency,

the spectral theory of the MSB system is not commonly considered. However, making

use of Lagrangian formulation of the MSB system, we are nonetheless able to study the

transition from stable oscillatory solutions (corresponding to real eigenvalues) to unstable

exponentially growing solutions (corresponding to non-real eigenvalues). In particular, we

show that solutions near the transition point at which solutions become real or-nonreal, can

be represented analytically by a Puiseux series. Moreover, we show that non-real solutions

must have bounded imaginary part.

The structure of the text is as follows: in the remainder of Chapter 1 we briefly describe

the operating principle of a TWT and it’s applications, as well as the historical development

of modeling an e-beam interacting with a wave-guide. In what follows, we analyze the zero

set of the inverse characteristic function associated with the electron beam ∆B(u) showing

that beam parameters can always be chosen to make the zeros distinct (Chapter 3). In

what remains, we focus our studies on the two-stream case (nB = 2) and study analytic

properties of the frequency-dependent solutions to the characteristic equation, DB(u) =

1/ω2. Restricting our attention to the two-stream case is motivated by the fact that a

single-stream e-beam system has no exponentially growing instability until it is coupled

to the MTL, in which case it develops a high frequency instability band. In contrast, a

multi-stream e-beam (in particular, a two-stream e-beam) uncoupled system already has

low frequency instability bands due to multiple electron streams of different stationary phase

velocities. In Chapter 4, we construct a series representation for solutions near the instability

transition node and show that the imaginary part of non-real solutions is always bounded.

In Chapter 5, we consider the case when the two-streams merge.
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1.2 Brief description of TWT’s and their applications

TWT’s are amplification devices consisting of an elongated vacuum tube containing an elec-

tron beam that passes through a radio frequency circuit (slow-wave structure). They are used

in areas such as satellite communication, radar systems, and electronic warfare as electronic

counter measure devices, i.e. to amplify decoy signals.

TWTs belong to a class of microwave devices (or microwave tubes) that amplify signals via

Cherenkov radiation. As a result of interaction between the electron beam and a properly

designed slow-wave-structure, the kinetic energy of the electrons is converted into electro-

magnetic energy stored in the field [15]. At one end of the TWT, a low-powered radio signal

is fed into the RF cirucit. The signal travels along the tube at about the same speed as

the electron beam, the electromagnetic (EM) field acts upon the beam and causes electron

bunching, producing the space-charge wave. The EM field associated with the wave induces

more current into the RF circuit and enhances the electron bunching. As the EM field builds

up, it is amplified as it passes down the structure until a saturation regime is reached and a

large RF signal is collected at the output.

8



1.3 Pierce’s model of the TLB

In 1951, J.R. Pierce presented a linear, one-dimensional mode describing the interaction of

an electron beam with a surrounding wave guide [22, 23]. In his work, Pierce made the

following assumptions:

1. The modulation of both the electron velocity and the current on the beam (so called a.c.

components) are small compared to the average or unperturbed velocity and current.

2. The beam is thought of as a continuous medium (electron jelly) with no internal stress

and a unique volumetric force acting along it, namely the one resulting from the axial

component of the electric

eld associated to the signal on the waveguide.

3. The action of the beam onto the waveguide amounts to a shunt current instantaneously

induced on the line. This current is equal in absolute value and opposite to the current

on the beam.

Under these assumptions, Pierce’s model can be described by the following system of equa-

tions: ∂zI = −C∂tV − ∂zIB, ∂zV = −L∂tI.

∂t
2Ib + 2u0∂t∂zIb + u0

2∂2
zIb = −σ e

m
ρ0∂t∂zV.

(1.1)

The Pierce model is the simplest one-dimensional model of TWT that accounts for the RF

signal amplification, energy extraction from the e-beam and its conversion into microwave

radiation. The Pierce model consists of (i) an ideal linear representation of the e-beam and

(ii) a lossless transmission line (TL) representing a waveguide structure. The transmission

line is assumed to be homogeneous, that is with uniformly distributed capacitance and
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inductance. This model captures significant features of the wave amplification and the

beam-wave energy transfer remarkably well, and is still used for basic design estimates.

1.4 Lagrangian formulation of Pierce’s model

Development of the multi-transmission line-beam (MTLB) theory is motivated by the ease in

which a Lagrangian framework of the system gives insight into the amplification regimes and

energy transfer in TWT-systems. In 2013, Figotin and Reyes constructed a Lagrangian field

theory generalizing and extending the Pierce theory to the case of possibly inhomogeneous

MTL coupled to the ebeam [10]. The e-beam was treated there essentially in the same

vein as Pierce’s model. The construction of a Lagrangian framework allowed for keeping

the simplicity and constructiveness of the Pierce model, while allowing for more complex

slow-wave structures.

The Lagrangian formulation of the TLB system is given by

L (z, ∂tQ, ∂zQ, ∂tq, ∂zq) =
L

2
(∂tQ)2 − 1

2
C−1(∂zQ+ ∂zq)

2 +
ξ

2
(∂tq + u0∂zq)

2. (1.2)

The corresponding Euler-Lagrange equations are:

 L∂2
tQ− ∂z[C−1∂z](Q+ q) = 0;

ξ(∂t + u0∂z)
2q − ∂z[C−1∂z](Q+ q) = 0,

(1.3)

where

ξ =
4π

ω2
pσ

=
m

σeρ0

> 0. (1.4)
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The Lagrangian formulation of the TLB is then easily generalized to the MTLB Lagrangian

formulation. Let V (z, t) = {Vi(z, t)}ni=1 denote the n-dimensional vector-column of voltages

on the first n conductors with respect to the ground and I(z, t) = {Ii(z, t)}ni=1 the vector-

column of currents flowing on them and set:

Q(z, t) = {Qi(z, t)}ni=1, Qi(z, t) =

∫ t

Ii(z, s) ds. (1.5)

Let L = L(z), C = C(z) denote the positive, symmetric n × n matrices of self- and mutual

inductance and capacity. We view the Lagrangian of the coupled system as L = LTb + B,

where LTb represents the Lagrangian of the MTL and LB represents the Lagrangian of the

beam itself:

LB =
ξ

2
(∂tq + u0∂zq)

2. (1.6)

Then, the Lagrangian of the coupled system is given by:

L =
1

2
{(∂tQ,L∂tQ)− (∂zQ+ ∂zqB,C

−1[∂zQ+ ∂zqB])}+
ξ

2
(∂tq + u0∂zq)

2, (1.7)

where ( , ) stands for the scalar product in Rn and B is the n-dimensional vector-column

with all components being the unity, i.e.

B = (1, 1, . . . , 1)T . (1.8)

11



The corresponding second-order Euler-Lagrange equations are given by:

 L∂2
tQ− ∂z[C−1(∂zQ+ ∂zqB)] = 0;

ξ[∂2
t q + tu0∂t∂zq + u2

0∂
2
zq]− (BT , ∂z[C

−1(∂zQ+ ∂zqB)]) = 0.
(1.9)

In short, the Lagrangian approach allowed for extension of the Pierce model in two directions:

a) replacing the transmission line by a multi-transmission line (MTL) and b) removing the

homogeneity assumption, thus considering general nonhomogeneous systems consisting of

a multi-transmission line (MTL) coupled to an electron beam. This system is referred to

as a MTLB system. Extension to multiple transmission lines is motivated by the fact that

general MTLs can approximate with desired accuracy real wave-guide structures which can

be homogeneous (uniform) as well as inhomogeneous. Again, in [10], the electron beam was

treated essentially the same as in Pierce’s model. however, in the following chapter, this

assumption is generalized by representing the electron beam by a finite number of electron

streams.

Chapter 2 describes the multi-stream e-beam (MSB), the model used in our studies for the

remainder of the text. Construction of the MSB is described in complete detail in [9], while

here we only briefly summarize its key features and assumptions.
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Chapter 2

Summary of the MSB model

Generalization of the MTLB system to the MSB system allows for analysis of several phe-

nomena including, for example, space charge effects and high frequency instability regimes in

the coupled system. For our purposes here, the most significant feature of the MSB system is

its ability to model system instability in the uncoupled system. As we will see in Chapter 4,

exponentially growing instability is absent in the single-stream uncoupled case, but present

in the two-stream uncoupled system.

In this chapter we formulate the essential definitions and notation used in the remainder of

the text as well as the Lagrangian formulation of the MSB system.

2.1 Parameters and notation for MSB

Here, we provide the relevant quantities and notation used throughout the text. We assume

the electron beam consists of a finite number of nB electron streams, indexed by s with

1 ≤ s ≤ nB. We assume the state of the electron beam can be viewed as a small perturbation

of a steady state described by a constant (independent of space and time) number of electron

13



densities n̊s and steady velocities v̊s satisfying

0 < v̊1 < . . . < v̊nB . (2.1)

The state of the beam is described by the corresponding pairs of small perturbations, ns =

ns(t, z) and vs = vs(t, z) of the stationary state. We define the electron stream parameters

by

βs =
σB
4π
ωps

2, ω2
ps =

4πn̊se
2

m
, 1 ≤ s ≤ nB. (2.2)

where e > 0 is the electron charge, m is the electron mass, and ωps
2 are plasma frequencies,

and σB is the area of the cross-section of the beam. We also write the normalized electron

stream parameters by

β̂s =
βs

β
, β =

nB∑
s=1

βs. (2.3)

To model the electron beam interacting with the MTL, we use the following column vector

of stream charges :

q(z, t) = {qs(z, t)}nBs=1. (2.4)

As for the MTL, we assume it consists of nT transmission lines and use the following nT -

dimensional column vector of charges:

Q(z, t) = {Qj(z, t)}nTj=1. (2.5)

We use nT × nT symmetric, positive-definite inductance and capacitance matrices L = L(z)
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and C = C(z) to model material properties of the MTL.

Vector representations of quantities appearing in the system Lagrangian are as follows:

q =


q1

...

qnB

 , ψB =


β̂1

(u−v̊1)2

...

β̂nB
(u−v̊nB )2

 Q =


Q1

...

QnT

 . (2.6)

To couple the e-beam to nT -many transmission lines, we define the coupling vector with

constant entries bs for 1 ≤ s ≤ nT :

b =



b1

b2

...

bnT


, 0 ≤ bs ≤ 1, (2.7)

where bs = 0 means that the e-beam is not coupled to the s-th transmission line and bs = 1

means that the e-beam is fully coupled to it.

Now we can define the MTL parameters by

θs = w2
s

∣∣(es, L1/2b
)∣∣2 , θ̄ =

nT∑
s=1

θs. (2.8)

The normalized parameters are given by

θ̂ =
θs
θ̄
,

nT∑
s=1

θ̂ = 1, (2.9)

where 1 ≤ s ≤ nT .
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2.2 Lagrangian formulation for MSB model

The Lagrangian framework for the TWT-system is given by:

LTB = LTb + LB, (2.10)

where LTb represents the Lagrangian of the MTL and LB represents the Lagrangian of the

beam. Each of these components are defined by:

LTb({∂tQj, ∂zQj}) =
1

2
(∂tQ,L∂tQ)− 1

2
(∂zQ+ ∂z q̄b, C

−1[∂zQ+ ∂z q̄b]),

LB({qs, ∂tqs, ∂zqs}) =

nB∑
s=1

1

2βs
(∂tqs + v̊s∂zqs)

2 − 2π

σB
q̄2, q̄ =

nB∑
s=1

qs.
(2.11)

Here, (·, ·) denotes the scalar product in the Euclidean space RnT , the parameters βs are as

above, and b is the nT -dimensional coupling column vector defined above. The constant RSC

denotes the plasma frequency reduction factor.

The Euler-Lagrange equations associated with the Lagrangian eq. (2.10) and eq. (2.11) above

are the following system of second order equations:

L∂2
tQ− ∂z[C−1(∂zQ+ b∂z q̄)] = 0, q̄ =

nB∑
s=1

qs,

1

βs
(∂t + v̊s∂z)

2qs +
4π

σB
q̄ − (b, ∂z[C

−1(∂zQ+ b∂z q̄)]) = 0, 1 ≤ s ≤ nB.

(2.12)

Taking the Fourier transform in the time and space variables t and z, respectively, yields:

(k2C−1 − ω2L)Q̂+ k2C−1bˆ̄q = 0,

4π

σB
[ˆ̄q − ω−2

ps (ω − v̊sk)2q̂s] + k2[(b, C−1b)ˆ̄q + (b, C−1Q̂)] = 0,
(2.13)

where ω and k denote the frequency and wave number, respectively. The vectors Q̂ = Q̂(ω, k)
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and q̂ = q̂(ω, k) are the Fourier transforms of the system vector variables Q(t, z) and q(t, z).

2.3 Characteristic equations for MSB

To analyze solutions of the above Euler-Lagrange equations, we will define three character-

istic functions, each capturing various structural features of the MTLB system components.

Our primary focus is to study mathematical properties of some of the characteristic functions

associated with the e-beam and their solutions in the uncoupled system.

The first characteristic function associated with the e-beam is the inverse characteristic

function of the electron beam, defined here as:

∆B(u) =

nB∑
i=1

β̂s
(u− v̊s)2

= 1B
TψB, u =

ω

k
. (2.14)

where the β̂s and v̊s are as above, 1B denotes the nB-dimensional constant column vector

with entries identically 1, and u is the complex valued phase velocity.

We will also consider the frequency dependent space charge function hω, as it relates to

eq. (2.16). It quantifies the debunching effects and is defined by:

h = hω =
4πRsc

2

σβω2
=

1

βω̆2
, ω̆ =

ω

Rsc
2ωp

. (2.15)

Here, Rsc is the plasma frequency reduction factor which accounts for the finite domain of

the beam, geometric features of the MTL, and debunching effects.
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The other characteristic equation associated with the e-beam is given by:

DB(u) = u−2∆B(u) =
1

ω̆2
. (2.16)

We refer to the above equation as the normalized characteristic function of the e-beam or

the normalized e-beam function.

While we only present results concerning the uncoupled system in this text, for completeness

we give the definitions of the characteristic function associated with the MTL. The MTL

characteristic function is given by:

∆T (u) = u2

nT∑
s=1

θ̂s
ωs2 − u2

. (2.17)

When coupling the e-beam to the MTL, we obtain the TWT-system. Consequently, com-

bining the respective characteristic functions we obtain the following TWT characteristic

equation for phase velocity u:

γu−2∆T (u) + u−2∆B
−1(u) =

1

ω̆2
. (2.18)

where γ = θβ represents the MTLB system parameter.

When γ = 0, the above characteristic equation reduces to eq. (2.16) and represents the

uncoupled system, which is the subject of our studies here.

In what follows, we analyze the zero set of eq. (2.14), solutions to eq. (2.16) in the two-stream

case (nB = 2), and in particular, those solutions which give rise to system instability.
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2.4 Eigenmodes of the system

The system eigenmodes of the MSB system are of the form:

Q(z, t) = Q̂(k, ω)e−i(ωt−kz), q(z, t) = q̂(k, ω)e−i(ωt−kz), (2.19)

where Q̂ and q̂ are the Fourier transforms of Q and q, respectively. As amplification in the

TWT is a result of instability in the MSB system, we are particularly interested in spatially

exponentially growing eigenmodes, i.e. those eigenmodes that correspond to non-real wave

numbers k. Moreover, using the dispersion relation u = ω/k, we see that u is non-real if and

only if k is non-real.

Using the notation in the previous section and the characteristic functions defined there, we

have the following closed form representation of Q̂(u) and q̂(u):

q̂ = a0ψB(u), q̂s = a0[ψB]s(u) = a0
β̂s

(u− v̊s)2
, for 1 ≤ sleqnB, (2.20)

and

Q̂ = −a0∆B(u)(C−1 − u2L)−1C−1b, (2.21)

where the phase velocity u is a solution to eq. (2.18). Thus, non-real solutions u to the TWT

characteristic equation correspond to exponentially growing eigenmodes and consequently,

system instability.

One of our primary interests is understanding the transition from an unstable to stable

(oscillatory) TWT system in the two-stream case, which we describe in chapter 4. In the

next chapter we study the zero set of eq. (2.14), that is, the phase velocities u for which

ω = 0.
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Chapter 3

The zero set of the inverse

characteristic e-beam function

While we are primarily concerned with the two-stream MSB system, in this chapter we

establish a more general fact about the inverse characteristic function ∆B given by eq. (2.14)

for any finite number of streams nB. More specifically, we show that for almost every choice

of positive beam parameters βs, the zeros of ∆B are distinct. Moreover, in the proof we

see that in the two-stream case, no further conditions on β1 and β2 are needed, i.e. for any

positive β1 and β2, the zeros of ∆B are always distinct when nB = 2.

In general, one can show that the zero set of a nontrivial, real-valued polynomial in sev-

eral variables has Lebesgue measure zero and apply this result to the discriminant of the

characteristic function ∆B. Thus one can conclude that if its discriminant is not identically

0, then the roots of ∆B are distinct almost everywhere; however, in practice, showing that

the discriminant of a general polynomial is nontrivial is not easy to do explicitly. Instead,

in section 3.1 we formulate our main result on the nondegeneracy of the roots of ∆B and

provide an alternative line of argument using induction and Rouche’s theorem to show that
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the roots of eq. (2.14) are distinct for almost every choice of βs, 1 ≤ s ≤ nB. In the last

section, we provide a detailed analysis and computation in the nB = 2, 3 cases and provide

explicit conditions on the parameters βs to guarantee distinct roots of ∆B.

3.1 Main result on the nondegeneracy of roots

For some electron stream parameters βs, the roots of eq. (2.14) may not be distinct, in which

case we say the roots are degenerate. We claim that this is not the case in general.

Theorem 3.1.1 (Nondegeneracy of the roots of ∆B). Let nB be a positive integer, fix

0 < v̊1 < . . . < v̊nB and denote

∆B(u) =

nB∑
s=1

βs
(u− v̊s)2

. (3.1)

Let B = {(β1, . . . , βnB) ∈ RnB : βs > 0, for 1 ≤ s ≤ nB,∆B(u) = 0 has repeated roots}.

Then the Lebesgue measure of B (in RnB) is zero.

Proof. We first note that the roots of ∆B(u) = 0 are precisely the roots of the polynomial

equation

p(u) =

nB∑
i=1

βi
∏
j 6=i

(u− v̊j)2 = 0. (3.2)

Now, p is a polynomial of degree 2(nB−1), so it has 2(nB−1) roots. Moreover, since each of

βs are positive, the summands βs
(u−v̊s)2 are also positive, so the roots of ∆B(u) are all non-real.

Moreover, this also means that the poles of ∆B(u) are different from the roots of ∆B(u) (and

hence the roots of p(u)), since the poles of ∆B(u) are the fixed real values v̊1, . . . , v̊nB .
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We proceed to prove the theorem by induction. When nB = 2,

∆B,2(u) =
β1

(u− v̊1)2
+

β2

(u− v̊2)2
. (3.3)

Rationalizing ∆B,2 and equating it with zero yields the polynomial equation p(u) = (β1 +

β2)u2 − 2(β1v̊2 + β2v̊2)u+ (β1v̊
2
2 + β2v̊

2
1) = 0. Computing the discriminant of p, we have

discrimp = −4(̊v1 − v̊2)2β1β2, (3.4)

which is nonzero if neither β1 nor β2 is zero. Thus, since β1, β2 are assumed to be positive,

B2 = {(β1, β2) ∈ R2 : ∆B,2 = 0 has repeated roots} = ∅, and hence B2 has measure 0.

Inductively, assume that the Lebesgue measure of

B̃ = {(β2, . . . , βnB) ∈ RnB−1 : βs > 0 for 2 ≤ s ≤ nB, g(u) = 0 has repeated roots} (3.5)

in Rnb−1 is zero, where

g(u) =

nB∑
s=2

=
βs

(u− v̊s)2
. (3.6)

.

Fix any (β2, . . . , βnB) /∈ B̃, i.e. fix a set of parameters βs for 2 ≤ s ≤ nB for which the roots

of g are distinct. Denote these roots by z1, . . . z2(nB−2). To prove the result, we use Rouche’s

Theorem (see Theorem A.1.1 in the Appendix).

Since the roots of g are distinct, for each zi, choose a small disk Di containing zi so that

Dj ∩ Di = ∅ if i 6= j. Moreover, choose the disks small enough so that none of the poles

v̊1, . . . , v̊nB are in any of the disks Di. This can be done because the roots zi of ∆B(u) are

non-real, but the poles vi are real.
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Fix β̂ > 0 and denote f(u) = β̂
(u−v̊1)2 . For each of the disks Di above, choose Ki so large that

|Kig| > |f | on the boundary of Di. Then take K = maxKi, so that |Kg| > |f | on each Di.

By Rouche’s theorem, the difference in zeros and poles of f + Kg and Kg are the same in

each Di. Now, since the disks Di contain exactly one zero and no poles of ∆B(u), we know

that f +Kg and Kg have exactly one root in each Di. Note that f +Kg also has the same

number of roots as g on Di, since g = 0 exactly when Kg = 0.

By the above, we have accounted for 2(nB − 2) distinct roots of f + Kg, but f + Kg is a

polynomial of degree 2(nB−1). Now, since each summand of f+Kg is positive, if f+Kg = 0,

every root must be complex. Thus, the remaining two roots of f+Kg are complex and must

be complex conjugates. So the roots of f +Kg are distinct.

Now, taking β1 = β̂/K, the argument above implies that for (β1, . . . , βnB) ∈ RnB , the roots

of ∆B(u) are distinct, since ∆B(u) = 0 exactly when K∆B(u) = 0 and K∆B(u) = f +Kg.

The argument above holds for any choice of (β2, . . . , βnB) /∈ B̃. Thus for any β̂ > 0, the

parameters (β1, . . . , βnB) will produce repeated roots of ∆B(u) if and only if (β2, . . . , βnB) ∈

B̃.

Let B = {(β1, . . . , βnB) ∈ RnB : βs > 0,∆B(u) has repeated roots } and mk denote the

Lebesgue measure in Rk. We have:

mnB(B) =

∫
R
mnB−1(Bx) dm1(x) =

∫
R

0 dm1(x) = 0, (3.7)

where Bx = {(β2, . . . , βnB) : (x, β2, . . . , βnB) ∈ B}.
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3.2 Analysis for the two-stream and three-stream cases

While discrimp is a polynomial of the parameters βi, vi for 1 ≤ i ≤ nB, for simplicity, we

denote β = (β2, . . . βnB , v̊1, . . . , v̊nB), so that we may view the discriminant as a polynomial

in β1, β:

discrimp(β1, β) =
3n−5∑
k=1

ck(β)βk1 . (3.8)

We analyze in detail the cases when nB = 2, 3 in section 3.2.1 and section 3.2.2. Moreover,

we find explicit conditions on 0 < βs for 1 ≤ s ≤ nB that guarantee discrimp = 0, i.e., that

guarantee that the roots of p(u) are distinct.

3.2.1 The two-stream case

When nB = 2 we have,

∆B(u) =
β1

(u− v̊1)2
+

β2

(u− v̊2)2
, (3.9)

and

p(u) = (β1 + β2)u2 − 2(β1v̊2 + β2v̊2)u+ (β1v̊
2
2 + β2v̊

2
1). (3.10)

Since p is a polynomial of degree 2, we expect the discriminant of p to be a polynomial in

β1 of degree 3(2)− 5 = 1. Indeed,

discrimp(β1, β) = 4(β1v̊2 + β2v̊2)2 − 4(β1 + β2)(β1v̊
2
2 + β2v̊

2
1)

= (−4(̊v1 − v̊2)2β2)β1.

(3.11)
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So c1(β) = −4(̊v1− v̊2)2β2. In this case, we see that discrim(p) = 0 exactly when v̊1 = v̊2 or

β1 or β2 is zero. Since we have assumed that 0 < v̊1 < v̊2 and that β1, β2 > 0, discrimp 6= 0

for any choice of positive βs. Thus, in the two-stream case, the zeroes of ∆B are always

distinct.

Computing the roots of ∆B in the nB = 2 explicitly, we obtain the complex conjugate roots

u0 and ū0 given by:

u0 = β̂2(̊v1 − v̊2)

(
1± i

√
β̂1/β̂2

)
. (3.12)

3.2.2 The three-stream case

Now, for nB = 3, we have:

∆B(u) =
β1

(u− v̊1)2
+

β2

(u− v̊2)2
+

β3

(u− v̊3)2
(3.13)

and

p(u) = (β1 + β2 + β3)u4 + ((−2β2 − 2β3)̊v1 + (−2β1 − 2β3)̊v2 − 2̊v3(β1 + β2))u3

+ ((β2 + β3)̊v2
1 + (4̊v2β3 + 4̊v3β2)̊v1 + (β1 + β3)̊v2

2 + 4β1v̊3v̊2 + v̊2
3(β1 + β2))u2

+ ((−2̊v2β3 − 2̊v3β2)̊v2
1 + (−2̊v2

2β3 − 2̊v2
3β2)̊v1 − 2̊v3β1v̊2(̊v2 + v̊3))u

+ (̊v2
2β3 + v̊2

3β2)̊v2
1 + β1v̊

2
3 v̊

2
2.

(3.14)
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a polynomial of degree 4 in u. It’s discriminant, discrimp(β1, β) is a polynomial of degree 4

in β1, with coefficients:

c4(β) = 16(̊v2 − v̊3)8(̊v1 − v̊3)2(̊v1 − v̊2)2β2β3

c3(β) = 48(̊v2 − v̊3)6(̊v1 − v̊3)2(̊v1 − v̊2)2(β2(̊v1 − v̊3)2 + β3(̊v1 − v̊2)2)β2β3

c2(β) = 48(̊v2 − v̊3)4(̊v1 − v̊3)2(̊v1 − v̊2)2(β2
2 (̊v1 − v̊3)4 − 7β2β3(̊v1 − v̊3)2(̊v1 − v̊2)2

+ (̊v1 − v̊2)4β2
3)β2β3

c1(β) = 16(̊v2 − v̊3)2(̊v1 − v̊3)2(̊v1 − v̊2)2(β2(̊v1 − v̊3)2 + β3(̊v1 − v̊2)2)3β2β3.

(3.15)

Notice that each ck contains (̊v1−v̊2)k1 (̊v1−v3)k2 (̊v2−v̊3)k3 for some positive integers k1, k2, k3,

and that c4(β) contains no other polynomial expressions involving the vi. This implies that

c4(β) 6= 0 for any β2, β3 > 0, since 0 < v̊1 < v̊2 < v̊3.

We denote

C = {(β1, β) ∈ R6 : discrimp(β1, β) = 0}. (3.16)

For fixed β, we consider Cβ = {β1 ∈ R : (β1, β) ∈ C}. Then m(Cβ) = 0, because for fixed

β, as a polynomial in β1, discrimp, can have only finitely many roots. Thus, by Fubini’s

theorem,

m6(C) =

∫
m(Cβ) dm5 = 0. (3.17)

Now, having expressing discrimp as a polynomial in β1 according to eq. (3.15) with coeffi-
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cients ci, we see that each coefficient can be thought of as

ci = A(̊v1 − v̊2)k1 (̊v1 − v3)k2 (̊v2 − v3)k3gi (3.18)

where A is some integer and gi is a polynomial in the parameters β2, β3, v̊1, v̊2, v̊2. We will

find precise conditions on the βi to guarantee that each ci > 0.

Since 0 < v̊1 < v̊2 < v̊3, we see that ci = 0 if and only if gi = 0. Take each βi > 0. Then both

g1, g3, and g4 are all positive, so c1, c3, c4 > 0. Viewing g2 as a quadratic in β3 and applying

to quadratic formula, we see that g2 = 0 if and only if

β3 =
7± 3

√
5β2

2

(
v̊1 − v3

v̊1 − v̊2

)2

. (3.19)

Since β3 is positive, we see that in the nB = 3 case, for any β1, β2, β3 > 0 and

β3 6=
7 + 3

√
5β2

2

(
v̊1 − v3

v̊1 − v̊2

)2

, (3.20)

gi > 0. Thus, each ci > 0, which implies that discrimp > 0, i.e. p and ∆B have distinct

roots.
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Chapter 4

Solutions to the e-beam characteristic

function in the two-stream case

Our main equation of interest is the characteristic equation of the e-beam given by eq. (4.13)

when nB = 2. Depending on the value chosen for ω, solutions u to the characteristic equation

can be real or non-real. Thus, we would like to analyze solutions near the critical point uc

at which solutions transition from unstable (non-real) to oscillatory (real). To do so, we

introduce a change of variables that recasts the equation in terms of a new complex variable

s, and consider solutions to TB(s) = ω′2. We represent solutions s near the critical point sc

of TB using a Puiseux series, which allows us to easily observe the dependence of solutions

s on ω and the behavior of =(s) for complex solutions s(ω).

In the following sections, we describe properties of the eq. (4.13) and the singularity behavior

of solutions u(ω) near ωc when the two streams merge. After a change of variables, we

consider a new characteristic equation TB(s) = ω′2 (eq. (4.29)) and use a Puiseux series

to represent solutions near its critical point sc. Lastly, we analyze the imaginary part of

non-real solutions to eq. (4.29).

28



4.1 Properties of the characteristic function of the beam

The goal of this section is to study solutions to the normalized characteristic equation DB(u)

associated with the electron beam when nB = 2:

DB(u) =
1

u2∆B(u)
=

1

ω2
(4.1)

where u = ω/k is complex, k is complex, and ω is real, and

∆B(u) =
β1

(u− v̊1)2
+

β2

(u− v̊2)2
. (4.2)

We want to study complex solutions u = u(ω) to the above characteristic equation that

are not real, since these solutions provide for an instability regime in the MTLB system.

However, it is beneficial to our analysis of non-real solutions u to observe some properties of

DB(u) when u is real. For u ∈ R, the graph of DB(u) is given below.
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From the graph it is easy to see that DB should have two zeros at v̊1, v̊2 and a critical point

uc in (̊v1, v̊2). Moreover, DB has a vertical asymptote at u = 0 and a horizontal asymptote

at y = 1. We summarize these facts in the following theorem:

Theorem 4.1.1. Let 0 < v̊1 < v̊2 and β1, β2 ∈ R so that β1 + β2 = 1. When nB = 2, DB(u)

always has the following properties:

1. u = 0 is a pole and y = 1 is a vertical asymptote,

2. v̊1, v̊2 are zeros of DB, and

3. uc is a real critical point in (̊v1, v̊2) of DB.

Proof. We can simplify DB so that

DB(u) =
1

u2

1
β1

(u−v̊1)2 + β2

(u−v̊2)2

=
(u− v̊1)2(u− v̊2)2

u2(β1(u− v̊2)2 + β2(u− v̊1)2
. (4.3)

Thus DB can be expressed as a rational function with degree four numerator and denomi-

nator. From here it is easy to see that

lim
u→0

DB(u) = +∞ and

lim
|u|→+∞

DB(u) =
1

β1 + β2

= 1,
(4.4)

which establishes 1. Moreover, v̊1 and v̊2 are zeros of the numerator of DB(u), and hence

DB which establishes 2.

Differentiating DB and using β1 + β2 = 1, we obtain:

D′B(u) =
2(u− v̊1)(u− v̊2)(β2v̊2(u− v̊1)3 + β1v̊1(u− v̊2)3)

u3(β2(u− v̊1)2 + β1(u− v̊2)2)2
(4.5)
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Thus the remaining critical points of DB (i.e. critical points other than v̊1, v̊2) come from

roots of β2v̊2(u − v̊1)3 + β1v̊1(u − v̊2)3. Viewing this cubic polynomial as a sum of cubes,

we conclude that we have a real critical point uc of DB which is the real root of the cubic

polynomial. The other two roots of this polynomial will be complex conjugates. If

β2v̊2(uc − v̊1)3 + β1v̊1(uc − v̊2)3 = [ 3
√
β2v̊2(uc − v̊1)]3 + [ 3

√
β1v̊1(uc − v̊2)]3 = 0, (4.6)

then factoring yields

( 3
√
β2v̊2(uc − v̊1) + 3

√
β1v̊1(uc − v̊2)) = 0, (4.7)

and

(( 3
√
β2v̊2(uc − v̊1))2 − 3

√
β1β2v̊1v̊2(uc − v̊1)(uc − v̊2) + ( 3

√
β1v̊1(uc − v̊2))2) = 0. (4.8)

From the linear factor, we obtain:

3

√
−β2v̊2

β1v̊1

=
uc − v̊2

uc − v̊1

, (4.9)

from which we obtain the real critical point uc:

uc =
v̊1

3

√
−β2v̊2

β1v̊1
− v̊2

3

√
−β2v̊2

β1v̊1
− 1

=
v̊1

3

√
β2v̊2

β1v̊1
+ v̊2

3

√
β2v̊2

β1v̊1
+ 1

. (4.10)

Note that since v̊1 < v̊2, we have

v̊1
3

√
β2v̊2

β1v̊1

+ v̊1 < v̊1
3

√
β2v̊2

β1v̊1

+ v̊2, (4.11)
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which implies that v̊1 < uc. Similarly, we have

v̊1
3

√
β2v̊2

β1v̊1

+ v̊2 < v̊2
3

√
β2v̊2

β1v̊1

+ v̊2, (4.12)

so that uc < v̊2. Thus uc ∈ (̊v1, v̊2) as expected.

4.2 Frequency dependent solutions to the characteris-

tic equation and overview of the main problem

Our goal is to study solutions to the characteristic equation:

DB(u) = 1/ω2. (4.13)

More specifically, we want to study solutions to the above equation that lie in the interval

(̊v1, v̊2), since these can be real or non-real, depending on ω. Solutions to eq. (4.13) are

precisely solutions to DB(u)− 1/ω2, and after rationalizing, they are solutions to:

ω2(u− v̊1)2(u− v̊2)2 − u2(β1(u− v̊2)2 + β2(u− v̊1)2)

ω2u2(β1(u− v̊2)2 + β2(u− v̊1)2
= 0. (4.14)

Thus, after simplifying the numerator, we see that the solutions u to the characteristic

equation DB(u) = 1/ω2 are solutions to the quartic polynomial:

fD(u) = (ω2 − 1)u4 + ((−2(̊v1 + v̊2)ω2 + 2(β1v̊2 + β2v̊1))u3 (4.15)

+ ((̊v2
1 + 4̊v1v̊2 + v̊2

2)ω2 − β1v̊
2
2 − β2v̊

2
1)u2 (4.16)

− 2ω2v̊1v̊2(̊v1 + v̊2)u+ v̊2
1 v̊

2
2ω

2 = 0, (4.17)
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where we have used the condition β1 + β2 = 1 to simplify the leading coefficient. Moreover,

when ω = 1, the leading coefficient vanishes, resulting in a cubic polynomial. This agrees

with what we expect from the graph above; in particular, we see that DB(u) = 1 for some

u ∈ (0, v̊1). More importantly, depending on the values chosen for ω (and provided that

ω 6= 1), fD will have four real solutions or one pair of complex conjugate solutions and two

real solutions.

Whether fD and hence DB = 1/ω2 yield non-real solutions is determined by the critical

point uc computed in the previous section. From the graph of DB for real u, it is clear that

if uc denotes the critical point of DB between v̊1 and v̊2 and ωc satisfies DB(uc) = 1/ωc
2, for

ω < ωc, there should be two non-real solutions to DB(u) = ω2.

Here we include a graphical representation showing the “branching point” at which solutions

u to DB(u) = 1/ω2 transition from non-real to real. The graph plots (<(k), ω) where

u = ω/k.
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Here, the branching point, represented by a black diamond represents the frequency ωc for

which DB(uc) = 1/ωc
2. For a solution u, using u = ω/k, we represent <(k) with blue dotted

lines and represent =(k) with a solid brown line. We see that, as expected, for ω < ωc we

have non-real solutions and for ω > ωc, we have only real solutions.

4.3 Motivation for a change of variables: merging streams

Our goal is to study solutions u near the transition point uc of the electron beam characteristic

equation. To do so, we would like a representation of these solutions near ωc that allows us

to view their dependence on ω. Ultimately, we would like the representation to capture the

behavior of the solutions u(ω) when the two streams merge (̊v2 → v̊1). Unfortunately, in
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its current form, the characteristic equation DB has a singularity at ω when v̊2 → v̊1. We

summarize the singularity behavior in the following theorem:

Theorem 4.3.1. Let 0 < v̊1 < v̊2, β1, β2 ∈ R so that β1 + β2 = 1 and let ω > 0. As

v̊2 → v̊1, if uc is the real critical point of DB in (̊v1, v̊2), then ωc → ∞, where ωc satisfies

DB(u) = 1/ωc
2.

Proof. Using the representation of uc from eq. (4.10), we have:

lim
v̊2→v̊1

uc = lim
v̊2→v̊1

v̊1
3

√
β2v̊2

β1v̊1
+ v̊2

3

√
β2v̊2

β1v̊1
+ 1

= v̊1. (4.18)

Thus, we see that since DB is continuous for all u > 0,

lim
v̊2→v̊1

DB(uc) = DB (̊v1) = 0, (4.19)

and since DB(uc) = 1/ωc
2,

lim
v̊2→v̊1

ωc =∞. (4.20)

So as the two streams merge (i.e. v̊2 → v̊1), we cannot simply represent solutions u = u(ω)

as a convergent series, since ω is near ωc, but ωc →∞.
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4.3.1 One-stream vs. two-streams

One reason for this singularity can be seen in the following way: consider

DB,2(u) =
1

u2
(

β1

(u−v̊1)2 + β2

(u−v̊2)2

)
)

(4.21)

=
(u− v̊1)2(u− v̊2)2

u2(β1(u− v̊2)2 + β2(u− v̊1)2
, (4.22)

and note that the numerator is a degree 4 polynomial. Now, as v̊2 → v̊1 we have:

DB,2(u) =
(u− v̊1)2

u2(β1 + β2)
, (4.23)

a rational function with quadratic numerator. If we use the fact that β1 + β2 = 1, the above

DB,2(u) characteristic function is precisely the one-stream DB,1(u) function:

DB,1(u) =
1

u2 1
(u−v)2

. (4.24)

This collapse of power in the numerator accounts for the singularity behavior of uc when

v̊2 → v̊1. More precisely, computing uc in the one-stream case yields:

D′B,1(u) =
2(u− v̊1)2

u3
. (4.25)

Thus, we see that v̊1 is the only critical point of DB,1(u).

To visualize the solutions to DB(u) for a complex variable u, we use the dispersion relation

u = ω/k. The plots below show points (<(k), ω) where u = ω/k is a complex solutions to the

characteristic equation. In the two-stream plot (left figure), the black diamond represents the

instability node or “branching point” (<(k), ωc) corresponding to uc (that is, DB(uc) = ωc
2).

As for the one-stream plot (right figure), as v̊2 → v̊1 the critical point uc → v̊1, and thus no
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Figure 4.1: Two-stream dispersion relation. Figure 4.2: One-stream dispersion relation.

critical point exists occurs in (̊v1,∞):

Here, we clearly see a distinct difference between the one-stream and two-stream cases: in

the one-stream case, we have no branching point at which complex solutions transition to

real solutions. As demonstrated in the previous section, when v̊2 → v̊1, ω → ∞. Moreover,

<(k)→∞ too. This is unexpected, since v̊2 → v̊1 represents a two-stream MSB merging to

one-stream, and in the one-stream case, we see no instability node. Intuitively, we expect the

critical node (ωc,<(kc)) corresponding to the critical point uc in the nB = 2 case to approach

(0, 0). However, this is not the behavior we observe which we discuss in the following section.

4.3.2 Merging streams graphs

Graphically, the collapse of power in eq. (4.13) that occurs as the streams merge can be seen

when considering u ∈ R. The plots below show DB(u) in the two-stream case as v̊1 and v̊2

merge. We also see that the critical point uc of DB(u)→ v̊1 and DB(uc)→ 0, as expected.
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Here, ε = 2 is represented byt the light brown/gold curve, ε = 1 by the orange curve, and

ε = .1 by the dark red/brown curve.

Below we provide two dispersion relation plots in the nB = 2 case to illustrate this surprising

behavior and to contrast the instability node behavior in the one-stream case (̊v1 = v̊2) from

the two-streams merging case (̊v2 = v̊1 + ε). Both plots assume β1 = .3, β2 = .7, and v̊1 = 1

while v̊2 varies. As our analysis suggests, both ω and <(k) tend to infinity:

In short, the disappearance of the point uc in the one-stream case can be viewed as a collapse

of power in the two-stream characteristic equation eq. (4.13). For this reason, to study the

solutions u to eq. (4.13) as the two streams merge requires advanced analytic function theory

involving the study of algebraic functions at exceptional points, as seen in [17], for example.

Thankfully, there is a more elementary approach that can be taken by making use of the

theory of Puiseux series, which is the main subject of our studies here. To pursue this line

of argument, however, we first need a way to represent solutions u to DB(u) = 1/ω2 that
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Figure 4.3: v̊1 = 1, v̊2 = 2. Figure 4.4: v̊1 = 1, v̊2 = 1.1.

avoids the singularity behavior (ωc → ∞) when v̊2 and v̊1 are close. For this reason, we

introduce a change of variables.

4.4 Change of variables and a new characteristic equa-

tion

As prompted by our previous discussion, instead of studying solutions we introduce a linear

change of variables from u to s as follows:

u =
1(

1
v̊1
− 1

v̊2

)
s+ 1

v̊2

, s =
v̊1v̊2

v̊2 − v̊1

1

u
− v̊1

v̊2 − v̊1

. (4.26)

Here, we only consider u ∈ (̊v1, v̊2) and hence, s ∈ (0, 1). Since we are interested in the

behavior of solutions near the branching point at which solutions transition from complex to

real, i.e. near the critical point uc of DB and uc ∈ (̊v1, v̊2), the bounds on s are appropriate.
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Consequently, the critical point sc of TB (given below) is in (0, 1).

This recasts the function DB into TB:

TB(s) =
b

s2
+

1

(1− s)2
(4.27)

where the new parameters b and B are defined as follows:

B =
β1v̊

2
2

(̊v2 − v̊1)2
, b =

β2v̊
2
1

β1v̊2
2

. (4.28)

Consequently, the new characteristic equation in terms of s is given by:

TB(s) =
b

s2
+

1

(1− s)2
= ω′

2
, (4.29)

where ω′ = ω/
√
B.

Some properties of the function TB are given in the following theorem.

Theorem 4.4.1. Define TB as in eq. (4.27). Then,

1. TB has two real poles at s = 0, 1,

2. for s ∈ R, TB(s) > 0, and

3. for s ∈ C and ω′ > 0, eq. (4.29) has four solutions.

Proof. We observe immediately from eq. (4.27) that function TB has poles at s = 0, 1. When

s ∈ R, TB(s) has no zeros since both b/s2 and 1/(1 − s)2 are positive. Thus TB(s) > 0 for

all real s. Rationalizing TB(s), we obtain:

TB(s) =
b(1− s)2 + s2

s2(1− s)2
. (4.30)
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Thus solutions s to TB(s)− ω′2 are solutions to the quartic polynomial:

−ω′2s4 + 2ω′
2
s3 + (b+ 1− ω′2)s2 − 2bs+ b. (4.31)

Since ω′ > 0, this polynomial is always degree 4, and hence we always obtain four solutions

to eq. (4.29).

From the previous argument, depending on the value chosen for ω′, solutions to the TB

equation may consist of four real solutions or two real solutions and one pair of complex

solutions.

For s ∈ R, the graph of TB(s) is given below (here, β1 = .3, β2 = .7, v̊1 = 1, v̊2 = 3 and

b = 7/27):

From the graph, we see that the critical point sc ∈ (0, 1) provides the frequency at which

solutions transition from non-real to real: ω′c =
√
TB(sc). In particular, if ω′ ∈ [0, ω′c]

then solutions s ∈ (0, 1) to TB(s) will consist of one pair of complex conjugate solutions. If
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ω′ ∈ [ω′c,∞) then the solutions will be real.

Theorem 4.4.2. For s ∈ (0, 1), TB(s) has one real critical point sc = 3
√
b/(1 + 3

√
b) with

corresponding frequency ω′c
2 = (b1/3 + 1)3.

Proof. We can explicitly compute the real critical point sc of TB(s) by differentiating TB(s)

and equating it with 0:

T ′B(s) =
2

(1− s)3
− 2b

s3
, (4.32)

so T ′B(s) = 0 when

2

(1− s)3
=

2b

s3
, (4.33)

and hence

3
√
b =

s

1− s
. (4.34)

Finally, solving for s, we have that the real critical point, sc of TB occurs when

sc =
3
√
b

1 + 3
√
b
. (4.35)

Evaluating TB at s = sc and taking the square root of the result, we see that the correspond-

ing ω′ value, ωc is precisely:

ω′c =
√

(b1/3 + 1)3. (4.36)

Our goal now is to express the solutions s to TB(s) = ω′2 in terms of b and ω′, which we do
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in the following section.

4.5 Series representation of solutions near the critical

point

Our main result is that solutions s to the characteristic equation TB(s) = ω′2 near the

transition point (sc, ω
′
c
2) can be expressed as a convergent Puiseux series [27] which we

explicitly compute. More precisely:

Theorem 4.5.1. Let sc be the real critical point of eq. (4.27) in (0, 1) so that T ′B(sc) = 0

and TB(sc) = ω′c
2. Then, there are δ > 0 and η > 0 so that if ω′ ∈ (ω′c − η, ω′c + η)\{ω′c},

then

1. there are exactly two distinct solutions s ∈ C to TB(s) = ω′2 with s ∈ Dδ(sc), and

2. for both solutions s+ and s−, there is a Puiseux series representation centered at ω′c

with radius of convergence at least η, i.e.:

s±(ω′) = sc +
∞∑
n=1

An(±
√
ω′ − ω′c)n

where the An coefficients are algebraic expressions of the parameter b.

The first few bn coefficients are computed explicitly and given in eq. (4.44).

Proof. The function TB is analytic everywhere except for s = 0, 1 and bounded away from 0

(as we saw in theorem 4.4.1). Thus,
√
TB(s) is analytic in some disk Dδ(sc), centered at sc

with radius δ > 0. We claim that
√
TB satisfies the hypotheses of theorem A.2.3.
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We note that TB(sc) = ω′c
2 = (b1/3+1)3 and T ′B(sc) = 0.Moreover, T ′′B(sc) = 6(ω′c)

10/3b−1/3 6=

0, so sc is a critical point of TB of order two. Then we can show that sc is also a critical

point of order two for
√
TB(s), since:

(
√
TB(s))′ =

T ′B(s)

2
√
T ′B(s)

. (4.37)

Evaluating at s = sc yields 0, so sc is a critical point of
√
TB. Computing the second

derivative, we have:

(
√
TB(s))′′ =

−T ′B(s)

4(TB(s))3/2
+

T ′′B(s)

2
√
TB(s)

. (4.38)

Evaluating at sc, we see that T ′′B(sc) 6= 0. Thus, according to theorem A.2.3, we can express

solutions s = s(ω′) to
√
TB(s) = ω′ as a Puiseux series which converges in the punctured

disk Dη(ω
′
c)\{ω′c} where η > 0.

We can find the series expansion for
√
TB(s) by first computing the Taylor series of TB(s)

centered at sc:

ω′
2

= TB(s) =
∞∑
n=0

T
(n)
B (sc)

n!
(∆s)n = ω′c

2
+
∑
n≥2

T
(n)
B (sc)

n!
(∆s)n, (4.39)

where ∆s = s− sc. Taking the square root, we obtain

ω′ =
√
TB(s) = ω′c +

∑
n≥2

an(∆s)n, (4.40)

where the an are given by theorem A.2.2. Now, if ∆ω′ = ω′ − ω′c, we have:

∆ω′ =
∑
n≥2

an(∆s)n = (a2∆s2)

(
1 +

∑
n≥3

an
b2

∆sn−2

)
. (4.41)
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Taking the square root, again according to theorem A.2.2, we have for some coefficients cn:

±
√

∆ω′ = (
√
b2∆s)

(
1 +

∑
n≥3

bn
b2

(∆s)n−2

)1/2

=
∑
n≥1

cn∆sn. (4.42)

Now, we can invert (revert) the series ±
√

∆ω′ =
∑

n≥1 cn∆sn according to theorem A.2.1:

∆s =
1

c1

(±
√

∆ω′)− c2

c3
1

(±
√

∆ω′)2 +
−c1c3 + 2c2

2

c5
1

(±
√

∆ω′)3 +O((±
√

∆ω′)4). (4.43)

Computing the coefficients explicitly, we have:

s± =sc ±
1

3

√
6 6
√
b(

3
√
b+ 1

)7/4

√
∆ω′ − 4

9

(
3
√
b− 1

)
(

3
√
b+ 1

)5/2
∆ω′

±
√

6(20b2/3 − 73b1/3 + 20)

324b1/6( 3
√
b+ 1)13/4

√
∆ω′

3
+O((±

√
∆ω′)4).

(4.44)

The series representation eq. (4.44) can be used to approximate solutions to TB(s) = ω′2

when s and sc are close as accurately as desired. When ∆ω′ < 0, i.e. ω′ < ω′c we obtain two

complex conjugate solutions, and when ∆ω′ > 0 we have two real solutions as expected. In

particular, the terms corresponding to odd powers of n, (±
√

∆ω′)n, give the imaginary part

of s whenever s /∈ R.

Reverting back to the original parameters v̊1, v̊2, β̂1, β̂2 (see eq. (4.28)), we can rewrite the

Puiseux expansion eq. (4.44) in terms of the original variables u and ω according to the

change of variables in eq. (4.26). The explicit representation of u as a function of ω is quite

messy, so we write here only the first order approximation s ≈ sc + a1(±
√

∆ω′):
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u ≈ v̊1v̊2

(̊v2 − v̊1)(sc ± 1
3

√
6

6√
b

(
3√
b+1)7/4

√
∆ω′) + v̊1

=
v̊1v̊2

(̊v2 − v̊1)

 3

√
β2v̊

2
1

β1v̊
2
2

3

√
β2v̊

2
1

β1v̊
2
2

+1

±
√

6
3

6

√
β2v̊

2
1

β1v̊
2
2(

3

√
β2v̊

2
1

β1v̊
2
2

+1

)7/4

√
(̊v2−v̊1)ω√

β1v̊2
−
(

3

√
β2v̊2

1

β1v̊2
2

+ 1
)3/2

+ v̊1

(4.45)

4.5.1 Accuracy of the series representation

To see the accuracy of the series approximation given by eq. (4.44), we provide two plots:

ω′ vs. <(s) and ω′ vs. =(s) for the following data:

β1 β2 v̊1 v̊2 b

.3 .7 1 3 7
27

Here, b is computed according to eq. (4.28) For varying ω′ in the interval (1, 3), we solve

the characteristic equation TB(s) = ω′2 for s first, explicitly and second, according to the

series approximation given by eq. (4.44). Using the given data in the table and according to

eq. (4.35) and eq. (4.36), we can easily compute:

sc =
b1/3

b1/3 + 1
≈ 0.3894 and

ω′c = (b1/3 + 1)3/2 ≈ 2.0957.

(4.46)

In both plots, the red curve is obtained from the explicit computation of the solutions s

to TB(s) = ω′2, while the blue curve is obtained from the series approximation given in

eq. (4.44).
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Figure 4.5: ω′ vs <(s) Figure 4.6: ω′ vs =(s)

4.6 The imaginary part of non-real solutions

In this section, we show that as suggested by Figure 4.6, if s is a non-real solution to

TB(s) = ω′2, then =(s) is bounded, and, using the series representation eq. (4.44), we see

that as ω′ → ω′c, =(s)→ 0. More precisely:

Theorem 4.6.1. Let ω′ ∈ [0, ω′c]. If s is a non-real solution to TB(s) = ω′2, then =(s) is

bounded. Moreover

lim
ω′→ω′c−

=(s) = 0. (4.47)

Proof. When ω′ = 0, we can solve TB(s) = ω′2 explicitly. If

b

s2
+

1

(1− s)2
= 0, (4.48)

then we obtain two complex conjugate solutions

s± =
b± i
√
b

b+ 1
. (4.49)
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We will denote the solution s± with positive imaginary part by s0 and note that the same

argument holds if we choose s0 with negative imaginary part.

To see that =(s) is bounded near ω′ = 0, we apply the Implicit Function Theorem for Banach

spaces (see theorem A.3.1).

Writing TB(s) = ω′2 as

f(ω′, s) =
b

s2
+

1

(1− s)2
− ω′2, (4.50)

we have f : R× C→ C.

Previously, we only considered ω′ ≥ 0, when studying solutions s to TB(s) = ω′2; however,

by symmetry, we can also consider ω′ < 0, since TB(s) = ω′2 = (−ω′)2. Consider a small

open interval I around ω′ = 0 and any open neighborhood U of s0 so that 0, 1 /∈ U (for

example, we can take U to be the upper half plane in C). Then f is Frechet differentiable

in I × U and f(0, s0) = 0.

Then,

fs(ω
′, s) =

−2b

s3
+

2

(1− s)3
. (4.51)

Thus, we see that fs = 0 at (sc, ω
′
c
2) where sc = 3

√
b/(1 + 3

√
b). In particular, this means that

fs(0, s0) 6= 0, i.e. fs is invertible.

Thus, by the Implicit Function Theorem, there are r, ρ > 0 so that if ω′ ∈ (−r, r), then there

is a unique s(ω′) ∈ B(s0, ρ) satisfying

f(ω′, s(ω′)) = 0 (4.52)

and s(ω′) is continuous. Thus s(ω′) is bounded on [0, r].
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For ω′ ∈ (r, ω′c), solutions s to

b

s2
+

1

(1− s)2
= ω′

2
(4.53)

must have bounded imaginary part. Otherwise, if =(s) is unbounded, then ||s|| is unbounded

too. Thus,

lim
|s|→∞

∣∣∣∣∣∣∣∣ bs2
+

1

(1− s)2

∣∣∣∣∣∣∣∣ = 0, (4.54)

i.e. the left-hand side of eq. (4.53) tends to 0 in norm so that the right-hand side, ω′2 also

tends to 0, but ω′ > r > 0.

Thus, =(s) is bounded for all ω′ ∈ [0, ω′c].

Now, let us consider solutions s near the transition point sc, and recall that sc =
3√
b

1+
3√
b
, so

=(sc) = 0. we have seen with the series representation given in eq. (4.44) that as ω′ → ω′c,

s → sc. This also implies that =(s) → 0, since =(s) is given precisely by the odd terms of

the series (again, because ω′ < ω′c). In particular,

=(s) =
∞∑
k=0

ak(
√
ω′2 − ω′c2)2k+1, (4.55)

which clearly tends to 0 as ω′ → ω′c.

Corollary 4.6.1. ω′ = 0 is a local extreme value of the function =(s)(ω′) with value

=(s)(0) =
√
b

b+1
.

Proof. Using the same notation from the theorem,

f(ω′, s) =
b

s2
+

1

(1− s)2
− ω′2 (4.56)
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is also differentiable with respect to ω′ and fω′(s, ω
′) = −2ω′. Then, according to the Implicit

Function Theorem, we have:

s′(ω′) = − −2ω′

−2b
s3

+ 2
(1−s)3

=
−ω′

−b
s3

+ 1
(1−s)3

(4.57)

when (ω′, s0) is near (0, s0). Using this formula, we have s′(0) = 0, and so =(s)′(0) = 0. Since

ω′ = 0 when s = s0, this implies that =(s)(0) = =(s0) = =((b+ i
√
b)/(b+ 1)) =

√
b/(b+ 1).
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Chapter 5

Solutions to the characteristic

equation: merging streams

One of our goals is top use the series representation obtained in the previous chapter to

study the behavior of the solutions s to TB(s) = ω′2 when the two real poles v̊1, v̊2 are close.

For β1 = .3, β2 = .7, we consider v̊1 = 1 and v̊2 = v̊1 + ε. The graph below shows three

TB,ε(s) graphs for real s and varying ε: ε = 1, (red curve), ε = .5 (blue curve), and ε = 0

(green curve). Note that the critical point sc of TB,ε(s) is increasing as ε→ 0:

One benefit of the change of variables from u to s and resulting characteristic equation TB

is that the frequency ω′c is bounded as ε → 0, unlike the behavior of ωc which we saw in

theorem 4.3.1. Thus the Puiseux series obtained in the previous chapter eq. (4.44) can be

used to study solutions s = s(ω′) and their dependence on ε.
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Figure 5.1: Here, ε = 2 is represented by the dark brown/red curve, ε = 1 by the orange
curve, and ε = .1 by the light brown/gold curve.

5.1 Behavior of the critical point and solutions to the

characteristic equation for merging streams

In this section we study the behavior of the critical point sc, its corresponding ω′c value,

and solutions s to TB(s) = ω′2 as v̊2 → v̊1. To do so, we define the dependence on ε for the

parameter b and the function TB.

In what follows, the merging of streams is modeled by defining v̊2 = v̊1 + ε and small ε > 0.

Note that since

b =
β2v̊

2
1

β1v̊2
2

, (5.1)
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b now depends on ε:

bε =
β2v̊

2
1

β1(̊v1 + ε)2
. (5.2)

The function TB,ε(s) is defined as:

TB,ε(s) =
bε
s2

+
1

(s− 1)2
. (5.3)

Making use of our formulas eq. (4.35), eq. (4.36) we have that the critical point sc,ε and

corresponding frequency value ω′c,ε are given by:

sc,ε =
3
√
bε

1 + 3
√
bε

and (5.4)

ω′c,ε =

√
(b

1/3
ε + 1)3. (5.5)

From these definitions, we have some simple consequences of the behavior of bε, sc,ε, ω
′
c,ε as

ε→ 0:

Theorem 5.1.1. Let bε, sc,ε, and ω′c,ε be defined as in eq. (5.2) and eqs. (5.4) to (5.5). Then,

as ε→ 0:

1. bε, sc,ε and ω′c,ε are all increasing,

2. limε→0 bε = b̄ where b̄ = β2

β1
, and consequently,

3. limε→0 sc,ε = b̄1/3

1+b̄1/3
, and limε→0 ω

′
c,ε =

√(
b̄1/3 + 1

)3
.
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Proof. We note that

lim
ε→0

bε = lim
ε→0

β2v̊
2
1

β1(̊v1 + ε)2
=
β2

β1

. (5.6)

We denote b̄ = β2/β1. Moreover, bε is monotonically increasing as ε → 0, since β1, β2 are

fixed and v̊2
1/(̊v1 + ε)2 is increasing. We also see that bounded

0 < bε ≤ b̄. (5.7)

It is also easy to see that for x ∈ R, f(x) =
3√x

1+ 3√x is an increasing function. From this we

may conclude that sc,ε is increasing as ε→ 0 and bounded. In particular,

lim
ε→0

sc,ε = lim
ε→0

3
√
bε

1 + 3
√
bε

=

3
√
b̄

1 +
3
√
b̄

=
3
√
β2/β1

1 + 3
√
β2/β1

(5.8)

As for the critical value of ω′, it too is bounded and monotonically increasing. For ε > 0, we

have:

lim
ε→0

ω′c,ε = lim
ε→0

√
(1 + 3

√
bε)3

=

√
(1 +

3
√
b̄)3

=

√
(1 + 3

√
β2/β1)3

(5.9)

Moreover, 1 ≤ ω′c,ε ≤ ω′c.
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5.2 Merging streams: solutions near the critical point

In this section for fixed ω, we analyze solutions s to

TB,ε = ω′ε
2

(5.10)

near the critical point sc,ε as the two streams merge (̊v2 = v̊1 + ε, ε→ 0). Note that:

ω′ε =
ω√
Bε

=
ω√

β1 (̊v1+ε)2

ε2

=
εω√

β1(̊v1 + ε)
. (5.11)

Making use of our series representation given in eq. (4.44) for solutions s to TB(s) = ω′2 near

sc, we analyze the behavior of these solutions when the two streams merge. The resulting

dependence on ε is given by:

sε ≈sc,ε ±
1

3

√
6 6
√
bε(

3
√
bε + 1

)7/4

√
ω′ε − ω′c,ε −

4

9

(
3
√
bε − 1

)(
3
√
bε + 1

)5/2
(ω′ε − ω′c,ε)

±
√

6(20bε
2/3 − 73bε

1/3 + 20)

324bε
1/6( 3
√
bε + 1)13/4

√
ω′ε− ω′c,ε

3
+O((±

√
ω′ε − ω′c,ε)4).

(5.12)
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Making the substitutions given by eq. (5.2), eq. (5.4), eq. (5.5), and eq. (5.11), we have:

sε ≈
3
√
bε

1 + 3
√
bε
± 1

3

√
6 6
√
bε(

3
√
bε + 1

)7/4

√
εω√

β1(̊v1 + ε)
−
√

(bε
1/3 + 1)3

− 4

9

(
3
√
bε − 1

)(
3
√
bε + 1

)5/2

(
εω√

β1(̊v1 + ε)
−
√

(bε
1/3 + 1)3

)

±
√

6(20bε
2/3 − 73bε

1/3 + 20)

324bε
1/6( 3
√
bε + 1)13/4

√
εω√

β1(̊v1 + ε)
−
√

(bε
1/3 + 1)3

3

+O

(±√ εω√
β1(̊v1 + ε)

−
√

(bε
1/3 + 1)3

)4
 .

(5.13)

Then, for fixed ω, as ε→ 0, we have:

s ≈
3
√
β2/β1

1 + 3
√
β2/β2

± 1

3

√
6 6
√
β2/β1(

3
√
β2/β1 + 1

)7/4

√
−
√(

1 + 3
√
β2/β1

)3

− 4

9

(
3
√
β2/β1 − 1

)
(

3
√
β2/β1 + 1

)5/2

(
−
√

(1 + 3
√
β2/β1)3

)

±
√

6(20 3
√
β2/β1

2 − 73 3
√
β2/β1 + 20)

324 3
√
β2/β1

1/2
( 3
√
β2/β1 + 1)13/4

(√
−
√

(1 + 3
√
β2/β1)3

)3

+O

(±√−√(1 + 3
√
β2/β1)3

)4
 .

(5.14)

In this case, we see that as expected, if ω is fixed and ε → 0, the representation gives

solutions s which are always non-real.
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Appendices

A.1 Rouche’s Theorem

We paraphrase here the formulation of Rouche’s theorem as described in [17].

Theorem A.1.1 (Rouche’s Theorem). Let γ be a simple, closed rectifiable (Jordan curve).

Suppose that F (z) and G(z) are meromorphic functions inside and on a vicinity of γ, and

G(z) does not have zeros or poles on γ. Suppose also that

|F (z)−G(z)| < |G(z)|, z ∈ γ.

Then if ZF and PF stand respectively for the number of zeros and poles of F (z) inside γ,

the difference between the number of zeros and the number of poles is the same for both

functions F (z) and G(z), that is ZF − PF = ZG − PG.
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A.2 Theorems for series reversion and square roots

In chapter 4, we express solutions to eq. (4.29) as a Puiseux series using the reversion formula

given by Lagrange’s series as well as the square root of a series formula found in [5], [1]. We

formulate those theorems in this section.

Theorem A.2.1 (Lagrange’s series). Let F (z) be an analytic function of z in a vicinity of

z = z0 with the Taylor expansion

F (z) =
∑
n≥1

an(z − z0)n, an =
∂nF (z0)

n!
, F (z0) = 0, F ′(z0) = a1 6= 0. (15)

Then there is a sufficiently small vicinity of z = z0 where the function F (z) has inverse G(z),

that is G(F (z)) = z − z0, satisfying the Lagrange series expansion:

G(w) =
∑
n≥1

gnw
n, gn =

1

n!

dn−1

dzn−1

(
z

F (z)

)n∣∣∣∣
z=z0

. (16)

The first five terms of the expansion above are given by:

G(w) =
1

a1

w − a2

a3
1

w2 +
−a1a3 + 2a2

2

a5
1

w3 +
−a2

1a4 + 5a1a2a3 − 5a3
2

a7
1

w4

+
−a5a

3
1 + 6a2a4a

2
1 + 3a2

3a
2
1 − 21a2

2a3a1 + 14a4
2

a9
1

w5 +O(w6).

Theorem A.2.2. Consider the formal power series

∑
n≥0

anz
n. (17)

Then square root of this series can be computed according to the following formula, provided

a0 6= 0:
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√∑
n≥0

anzn =
√
a0

[
1 +

a1

2a0

z +

(
− a2

1

8a2
0

+
a2

2a0

)
z2 +

(
a3

1

16a3
0

− a1a2

4a2
0

+
a3

2a0

)
z3 (18)

= +

(
− 5a4

1

128a4
0

+
3a2

1a2

16a3
0

− a1a3

4a2
0

− a2
2

8a2
0

+
a4

2a0

)
z4 +O(z5)

]
. (19)

In the special case when a0 = 1, the above equation simplifies to:

√
1 +

∑
n≥1

anzn = 1 +
a1

2
z +

(
−a

2
1

8
+
a2

2

)
z2 +

(
a3

1

16
− a1a2

4
+
a3

2

)
z3

+

(
−5a4

1

128
+

3a2
1a2

16
− a1a3

4
− a2

2

8
+
a4

2

)
z4 +O(z5).

Our main equation of interest is the characteristic equation TB(s) = ω′2 which we would

like to solve for certain values of ω′. In general, solving this characteristic equation amounts

to solving an equation f(s) = w where s is complex, f(s) is analytic everywhere except for

a finite number of poles, and w is another complex-valued variable. Solving the equation

f(s) = w for g = s(w) is reduced then to inverting the function f(s), that is s = f−1(w). In

the case when f(s0) = w0 and ∂sf(s0) 6= 0, the inverse function f−1(w) is well-defined and

analytic in a vicinity of w0 and its Taylor series can be effectively found using Theorem A.2.1

In the case when ∂sf(s0) = 0, we refer to s0 as a critical point. More precisely, we refer to

s0 as a critical point of order n ≥ 2 if

∂sf(s0) = · · · = ∂s
n−1(s0) = 0, ∂s

nf(s0) 6= 0. (20)

In the case of a critical point the inverse function f−1(w) becomes multiple-valued in a
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vicinity of s0 and is represented by a convergent Puiseux series, that is a series involving

fractional powers of the relevant variable [27].

The multiple solutions to the equation f(s) = w in a vicinity of a critical point s0 satisfy

the following statement [16],[17], [27].

Theorem A.2.3 (inverse function at a critical point). Let f(s) be an analytic function in

|s− s0| < R, where s0 is a critical point of order n ≥ 2 satisfying eq. (20), and f(s0) = w0.

Then there exists a function g(z) analytic for sufficiently small |z| such that the numbers

s(w) = s0 + g
(
|w − w0|

1
n ζm

)
, 0 ≤ m ≤ n− 1, ζ = exp

(
2π

n
i

)
, (21)

represent all solutions to the equation f(s) = w.
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A.3 The Implicit Function Theorem

Here we formulate the Implicit Function Theorem given in [12] which is used in chapter 4 to

establish that the imaginary part of solutions to eq. (4.29) are bounded.

Theorem A.3.1 (The Implicit Function Theorem). Let A,B be Banach spaces and let X

be a metric space with metric d. Let G be a continuous function defined in a neighborhobod

of (x0, y0) ∈ X ×A, with values in B, such that

G(x0, y0) = 0. (22)

Suppose that for each fixed x near x0, the slice function y → G(x, y) is differentiable with

derivative G2(x, y) depending continuously on x and y. Suppose, furthermore, that G2(x0, y0)

is an invertible operator from A to B. Then:

1. There exist r > 0, ρ > 0 such that for each x ∈ B(x0, r), there is a unique f(x) ∈

B(y0, ρ) satisfying

G(x, f(x)) = 0. (23)

2. The function f depends continuously on x.

3. If X is a Banach space and the slice function x→ G(x, y0) is differentiable at x0, with

derivative G1(x0, y0). Then f is differentiable at x0 and

f ′(x0) = −G2(x0, y0)−1G1(x0, y0). (24)

4. If the partial derivative G1(x, y) exists and is continuous near (x0, y0), then f is con-

tinuously differentiable near x0.
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