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Abstract
The application of plant growth-promoting rhizobacteria (PGPRs) can be an excellent and eco-friendly alternative to the 
use of chemical fertilizers. While PGPRs are often used in traditional agriculture to facilitate yield increases, their use in 
soilless agriculture has been limited. Soilless agriculture is growing in popularity among commercial farmers because it 
eliminates soil-borne problems, and the essential strategy is to keep the system as clean as possible. However, a new trend 
is the inclusion of PGPRs to enhance plant development. Despite the plethora of research that has been performed to date, 
there remains a huge knowledge gap that needs to be addressed to facilitate the commercialization of PGPRs for sustainable 
soilless agriculture. Hence, the development of proper strategies and additional research and trials are required. The present 
review provides an update on recent developments in the use of PGPRs in soilless agriculture, examining these bacteria from 
different perspectives in an attempt to generate critical discussion and aid in the understanding of the interaction between 
soilless agriculture and PGPRs.
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Introduction

The world’s population is predicted to reach nearly 11 billion 
by 2100; thus, sustainable agriculture and food safety are 
foremost issues (United Nations 2017; Sambo et al. 2019; 
Chatterjee et al. 2020; Roberts et al. 2020). However, envi-
ronmental pollution, increasing urbanization, and the grad-
ual decrease in fertile soils have complicated these issues 
(Chen 2007). It has become a critical priority to develop safe 
agricultural products to support environmental and human 

health. One innovative solution to the challenges presented 
by infertile soil and the need for water conservation may be 
soilless agriculture (Sambo et al. 2019).

Soilless agriculture is growing in popularity among com-
mercial farmers because it eliminates soil-borne problems. 
The global market for hydroponic systems (soilless agricul-
ture) is estimated at $9.5 billion in 2020 and is predicted to 
reach $16.6 billion by 2025, growing at a five-year com-
pound annual growth rate (CAGR) of 11.9% (Markets and 
markets 2020). The main strategy in soilless agriculture is to 
keep the system as clean as possible. However, a new trend 
is the inclusion of beneficial microorganisms to enhance the 
resistance to biotic and abiotic stress factors in the plants 
(Gül et al. 2013). Although beneficial microorganisms are 
found throughout the soil, they are most prevalent near plant 
roots in an area termed the rhizosphere (Ortega et al. 2017). 
PGPRs are mostly obtained from the soil. Bacteria from 
many genera, including Alcaligenes, Agrobacterium, Azos-
pirillum, Azotobacter, Arthrobacter, Bacillus, Bradyrhizo-
bium, Burkholderia, Caulobacter, Chromobacterium, 
Enterobacter, Erwinia, Flavobacterium, Herbaspirillum, 
Klebsiella, Mesorhizobium, Micrococcus, Pseudomonas, 
Rhizobium, Rhodococcus, and Serratia, can enhance 
plant growth (Azizoglu 2019). PGPRs can be divided into 
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symbiotic bacteria and free-living rhizobacteria based on 
their interaction with plants. Symbiotic bacteria live within 
plant tissues and exchange metabolites with the host directly. 
However, free-living rhizobacteria live outside of plant tis-
sues and promote plant growth (Gray and Smith 2005).

The mode of action of the effects of PGPRs on plants 
can be direct or indirect. Direct mechanisms include biofer-
tilization (nitrogen  (N2) fixation, production of plant hor-
mones and siderophores (SDs), phosphorus (P) solubiliza-
tion, etc.), root growth stimulation, rhizoremediation, and 
the control of plant stress (Vejan et al. 2016). Additionally, 
PGPRs produce metabolites, such as indole-3-acetic acid 
(IAA), 1-aminocyclopropane-1-carboxylate-deaminase 
(ACC-deaminase), phosphate solubilizing enzyme (PSE), 
and SDs (Jouzani et al. 2017; Azizoglu 2019). They can also 
indirectly enhance plant growth by reducing the detrimental 
effects of phytopathogens through induced systemic resist-
ance (ISR) and the production of antimicrobial compounds, 
such as bacteriocin, zwittermicin, fengycin, chitinase, and 
cell wall-degrading enzymes (Fig. 1) (Vessey 2003; Raddadi 
et al. 2007; Egamberdieva and Lugtenberg 2014; Vejan et al. 
2016; Jouzani et al. 2017; Azizoglu 2019). Although sev-
eral studies have indicated that PGPRs can be successfully 
used in soilless agriculture (Gül et al. 2008, 2013; Kıdoğlu 
et al. 2009; Baset Mia et al. 2010; Gul et al. 2012; Zafar 
et al. 2012), it remains unknown whether they will adapt to 

a different environment from their natural habitat when used 
in this manner (Fig. 2).

In this review, we focus on the future of PGPRs in soil-
less agriculture, placing their use into perspective with other 
views to discuss and evaluate the recent advances in the bio-
technological applications of these rhizobacteria.

Overview of soilless agriculture and recent advances

Soilless agriculture is a method based on the cultivation of 
plants in substrates other than the soil (Savvas and Gruda 
2018) and dates back to ancient times. The cultivation of 
plants in pots placed on the soil surface has been attempted 
at various times throughout the ages. For instance, Egyptians 
utilized this method of plant cultivation 4000 years ago, and 
the murals found in the temple of Deir el-Bahari are known 
as the first documented evidence of plants being grown in 
pots (Raviv et al. 2019).

The use of smart applications in agriculture has recently 
become widespread. Many technological tools have also 
been implemented, such as satellite controls, global sys-
tem for mobile communication (GSM) operators, sensors, 
mini weather stations, drones for aerial monitoring, and 
unmanned aerial vehicles. The techniques involving these 
applications and tools are termed “innovation techniques”. 
Thanks to these techniques, agricultural productivity is 

Fig. 1  Mechanism of action of PGPR. ACC  ACC-deaminase, Bac 
bacteriocin, Chi chitinase, SD siderophore, FG fengycin, ISR induced 
systemic resistance, IAA indole-3-acetic acid, PSE phosphate solubi-

lization enzymes, VOCs volatile compounds, modified from Jouzani 
et al. (2017) and Azizoglu (2019)
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predicted to increase. Additionally, the adoption of these 
technologies by farmers is expected to contribute to improv-
ing their quality of life and reducing the labor force (Akko-
yunlu 2013).

The use of technological applications in agriculture 
has allowed the practical creation of controlled cultivation 
environments in controlled-environment agriculture (CEA). 
Many factors, such as light, humidity, soil, ventilation, irri-
gation, and fertilization, can be controlled with automation 
in greenhouses where CEA is performed, which provides the 
maximum benefit to plants (Sabir and Singh 2013; Othman 
et al. 2019). Greenhouses are structures built with the aim 
to optimize agricultural production per unit area, and this 
benefit can be maximized with soilless agricultural systems.

Soilless agriculture is a type of new-generation growing 
system that is based on providing a requisite amount of water 
and nutrients for plant life (Talaz and Nas 2019). In soil-
less agriculture, hydroponics involves the direct provision 
of nutrient solutions in a liquid environment, whereas solid 
culture (aggregate substrate) involves the growth of plant 
roots in peat, perlite, vermiculite, coco peat, rockwool, sand, 
sawdust, or pumice enriched with nutrient solutions.

The hydroponics system provides the opportunity to 
produce throughout the year without being dependent on 
the soil. It has been determined that the substrate used in 

soilless agriculture affects plant growth, fruit quality, and 
yield (Asaduzzaman et al. 2015; El-Kazzaz and El-Kazzaz 
2017; Othman et al. 2019; Raviv et al. 2019; Kumar and 
Saini 2020; Lakhiar et al. 2020). Nihad et al. (2018) inves-
tigated yield and quality parameters in strawberries using 
five different substrates (volcanic tuff, coco peat + perlite, 
peat moss + perlite, tuff + cocopeat, and tuff + peat moss) 
and concluded that the coco peat, used as a potentially 
eco-friendly substrate in soilless strawberry culture, had 
a more positive effect on leaf physiology, fruit yield, and 
quality than the tuff. It has also been highlighted that berry 
fruits (grapes, raspberries, blackberries, blueberries, and 
strawberries) can be cultivated in soilless culture. This 
is especially true for strawberries and blueberries, which 
need environments where the nutrient contents can be con-
trolled, and hydroponic systems are thus suitable for their 
cultivation (Kumar and Saini 2020). Moreover, another 
study showed that the addition of shredded corn stalk 
to a growing medium containing perlite and pumice can 
increase the fruit quality and yield of tomato (Tzortzakis 
and Economakis 2008). However, tomato plants cultivated 
in coconut substrate (cocopeat) showed higher vegetative 
growth than those cultivated in perlite medium (Jerca et al. 
2015). Kılıc et al. (2018) reported that a medium contain-
ing coconut shells was the most suitable in terms of fruit 

Fig. 2  Application of PGPR into the hydroponic system, modified from Hydroponic Urban Gardening Blog
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quality of tomato, while perlite was more advantageous in 
terms of productivity.

Hydroponic systems involve the direct delivery of the 
nutrient solution to the plant root zone, and thus water and 
fertilizer can be used more efficiently than in other systems 
(Prakash et al. 2020). Crops grown in hydroponic systems 
had 20–25% higher yields than those grown under conven-
tional agriculture. Furthermore, due to the controlled envi-
ronmental conditions, the impact of climatic changes can 
be balanced with the help of these systems, resulting in a 
lack of negative effects on annual crop production (Markets 
and markets 2020). Additionally, problems caused by abiotic 
stress can be more easily overcome due to the abundant oxy-
gen available in the system (Savvas et al. 2013; Raviv et al. 
2019; Lakhiar et al. 2020). Although it has many advantages, 
such as the elimination of pesticides, reduced exposure to 
stress factors and high productivity, hydroponic systems 
have some disadvantages, such as high expenses, a lack of 
information and a shortage of qualified personnel (Macwan 
et al. 2020; Gonnella and Renna 2021).

Consequently, scientists should engage in training pro-
grams to provide more information about the potential of 
soilless agriculture for farmers. Despite some disadvantages, 
advances in soilless agriculture will likely continue in the 
future because of environmental pollution, growing popula-
tions and decreases in soil fertility.

The success of soilless agriculture

Soil is not an essential factor for the growth and develop-
ment of plants. However, it provides all the macro- and 
micronutrients necessary for plant life. Traditional agricul-
ture has certain disadvantages, such as the waste of irrigation 
water, the requirement of a large land area, and the use of 
large amounts of chemical fertilizers. Thus, soilless agri-
culture has garnered attention because of its elimination of 
these disadvantages. Thanks to the presence of a closed-loop 
system, soilless agriculture involves a fixed recycled water 
supply, retains 85–90% of the applied irrigation water, and 
provides better efficiency than traditional production (Prad-
han and Deo 2019). Europe has been at the forefront of the 
application of advanced techniques in soilless horticulture, 
and countries, such as France, Spain, and the Netherlands, 
have large areas over which greenhouse cultivation is imple-
mented. Furthermore, advances in smart technologies have 
supported the development of soilless agriculture in Europe. 
National government statistics indicate that the adoption of 
soilless agriculture (hydroponics) has been the highest in 
European countries. Hence, the market is highly improved 
in this region (Markets and markets 2020).

Nutrients, pH, oxygen, carbon dioxide, light and tem-
perature can be easily adjusted and controlled in soilless 
agriculture, thus positively affecting the yield of plants, 

and deleterious elements present above certain dosages 
could be limited within safe dosages. In soilless agricul-
ture, the surrounding environmental and root temperature 
and supply to roots can be controlled by oxygen. It is well 
known that water resources are decreasing worldwide. 
People should thus be very careful when using water, and 
soilless agriculture is important in protecting our water 
resources. Vegetables produced with soilless agriculture 
can be of high quality and need little washing. In soil-
less agriculture, irrigation water is accurately controlled 
in extremely lower amounts than in traditional agriculture 
(El-Kazzaz and El-Kazzaz 2017). In addition to the routine 
use of soilless agriculture in crop production, it is used 
in basic abiotic stress-based and plant genetic studies. In 
addition, it plays an important role in the development of 
new plant varieties suitable for the ever-changing climate 
characteristics resulting from global climate change.

The agricultural and physiological effects of salt stress 
on tomato, which is one of the most significant horticul-
tural crops in the world, have been studied using different 
soilless agriculture practices (deep flow technique, nutrient 
film technique, and perlite substrate). These studies have 
shown that efficiency decreases in the following order: 
“deep flow technique > perlite > nutrient film technique” 
(Rodríguez-Ortega et al. 2019).

Chemutai et  al. (2019) investigated the effects of 
nitrogen, phosphorus, and potassium (NPK) and plant 
tea (Tithonia diversifolia) manure with selected soilless 
growth media (100% natural soil, 100% sawdust, 100% 
charcoal dust, 100% coffee husks, sawdust + charcoal dust 
(1:1), sawdust + coffee husks (1:1), charcoal dust + coffee 
husks (4:1), and charcoal dust + saw dust + coffee husks 
(2:2:1)) on Amaranthus cruentus to identify alternative 
growth media for its production. Based on the results, the 
mixture of charcoal dust and dry coffee husks (4:1) along 
with the application of either NPK or plant tea manure was 
identified as the best alternative growth media. Another 
study using six different substrates [T1: coarse tuff + fine 
tuff + coco peat (5:1:4), T2: coarse tuff + medium 
tuff + fine tuff + coco peat (5:5:2:8), T3: medium tuff + fine 
tuff + coco peat (5:1:4), T4: medium tuff + fine tuff + peat 
moss (5:1:4), T5: perlite + medium tuff + fine tuff + coco 
peat (5:5:2:8), and T6: lightweight expandable clay aggre-
gates (LECAs) + fine tuff + coco peat (5:1:4)] analyzed 
the growth, flower quality, and some morphological-
physiological characteristics of violet (Viola × wittrocki-
ana), Madagascar periwinkle (Catharanthus roseus), and 
Pavia lily (Longiflorum × Asiatic lily (Lilium) ‘Pavia’) and 
determined the most suitable substrate content for use in 
soilless agriculture. The LECA + coco peat mixture was 
reported to have the lightest weight in terms of field capac-
ity, sufficient ventilation, and the best water-holding capac-
ity. Moreover, it has been determined that LECA + organic 
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matter substrate is the best mixture candidate in terms of 
physical properties (A’saf et al. 2020).

PGPRs as biofertilizers and biostimulators

An emerging method in agriculture is the use of soilless cul-
ture, which refers to any method of growing plants without 
soil as a rooting medium. This technique provides significant 
advantages over traditional methods by decoupling plant 
growth from soil-associated problems, such as soil-borne 
pests and diseases, decreased arability, salinity, and low 
soil quality (Tzortzakis et al. 2020). A plant biostimulator 
is defined by current European Union (EU) legislation on 
fertilizers as “any substance or microorganism, in the form 
in which it is supplied to the user, applied to plants, seeds or 
the root environment with the intention to stimulate natural 
processes of plants benefiting nutrient use efficiency and/or 
tolerance to abiotic stress, regardless of its nutrient content, 
or any combination of such substances and/or microorgan-
isms intended for this use” (Traon et al. 2014). To this end, 
we focus on microbial plant growth-promoting (PGP) inocu-
lants, which have been studied extensively in recent decades. 
These PGPR-based biostimulants are the main components 
of the biofertilizers used in agriculture (Calvo et al. 2014; 
Le Mire et al. 2016).

PGPRs release extracellular enzymes for the degradation 
of the cell wall of fungi that can also result in the suppres-
sion of phytopathogenic fungi. They can be excellent can-
didates for providing long-term induced resistance in plants 
(Egamberdieva et al. 2011; Joshi et al. 2012; Mbarki et al. 
2017). Furthermore, heavy metal-resistant PGPRs have been 
identified that have proven their potential to promote plant 
growth under heavy metal stress possessing (Pramanik et al. 
2018). The resistance mechanisms include some processes, 
such as intracellular bioaccumulation/biosorption, extracel-
lular complexation with polysaccharides/siderophores and 
enzymatic metal transformation (Ahmad et al. 2016; Chen 
et al. 2016; Pramanik et al. 2016; Ayangbenro and Babalola 
2017; Liu et al. 2018; Pramanik et al. 2018; Treesubsuntorn 
et al. 2018). These bacteria can assist heavy metal hyperac-
cumulator plants by accelerating their uptake, on the other 
hand, reduce the heavy metal uptake in non-hyper-accumu-
lator and can minimize heavy metal accumulation in edible 
parts of the plants (Pramanik et al. 2018).

Recently, Awan et al. (2020) reported that two wheat 
(Triticum aestivum L.) varieties under heavy metal stress 
accumulated more heavy metal in the roots and shoots, 
resulting in severe oxidative stress, evident by an increase 
in malondialdehyde content. Additionally, they also 
observed that these varieties under stress altered antioxi-
dant enzymes, such as catalase, ascorbate peroxidase and 
superoxide dismutase. However, the inoculation of two 
wheat varieties with Bacillus siamensis enhanced plant 

growth, reduced oxidative stress, and improved the activi-
ties of antioxidant enzymes in both varieties. As a result, 
B. siamensis reduced the metal toxicity in wheat varieties 
through the augmentation of the antioxidant defense sys-
tem. Similarly, Ullah et al. (2019) found that endophytic 
Serratia sp.UI01 and Enterobacter aerogenes UI02 strains 
isolated from Solanum nigrum improved plant growth 
and reduced oxidative stress in Brassica juncea exposed 
to heavy metal (Cd) stress. They also observed that anti-
oxidant enzymes and metabolites against reactive oxygen 
species including peroxidase, catalase, alcohol dehydroge-
nase, polyphenol oxidase, superoxide dismutase, reduced 
glutathione, malondialdehyde and flavonoid were signifi-
cantly relieved by inoculation of IU01 and IU02 strains 
in the plant.

The key characteristics required for microbes to be con-
sidered PGPRs include the production of phytohormones, 
such as cytokinins, auxins, gibberellins, ethylene, and 
abscisic acid (Goswami et al. 2016; Saleem et al. 2017). 
These phytohormones facilitate plant cell enlargement and 
division and the extension of roots and influence the hor-
monal balance of plants. In addition to the production of 
phytohormones, free nitrogen fixation, phosphate solubili-
zation, and SD production are important characteristics of 
PGPRs (Jha and Saraf 2015). Nitrogen serves as a critical 
component in the synthesis of proteins, cellular enzymes, 
RNA, DNA, and chlorophyll, which in turn enable plant 
growth (Oberson et al. 2013; Glick 2014). Additionally, 
phosphorus is the second-most crucial element after nitro-
gen, but its uptake by plants is limited because it exists in 
an insoluble form; rhizospheric bacteria are able to sol-
ubilize phosphate, thereby making it available for plant 
uptake (Vessey 2003). Similarly, bacteria present in the 
rhizosphere also release organic compounds for the chela-
tion of  Fe3+ (Payne 1994).

The use of PGPRs in soilless agriculture has been stud-
ied and examined by various research groups using differ-
ent crops. Van Peer et al. (1991) grew cucumber, lettuce, 
and tomato plants hydroponically and used Pseudomonas 
sp. strain WCS417r as the PGP bacteria. This strain was not 
only used as a biostimulator but also served as a biocontrol 
agent against Fusarium through the increased production 
of phytoalexin. Another group used lettuce, tomato, and 
soybean plants, to which B. subtilis was applied for plant 
growth, and this PGP species affected the shoot growth 
of the plants under salt stress conditions (Yasufumi and 
Kaneaki 2003; Woitke et al. 2004; Balanza et al. 2012; Yas-
min et al. 2020). Bisht et al. (2019) studied the alleviation 
of nutrient deficiency-induced stress in chickpea through the 
use of Paenibacillus lentimorbus, and a study conducted by 
Kuzmicheva et al. (2017) analyzed the soybean varieties 
Nice-Mecha, Bara, and Svapa in the presence and absence 
of Pseudomonas oryzihabitans.
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Advances in the biotechnological applications 
of PGPRs

Soilless agriculture was initially developed to manage soil-
borne plant diseases (Vallance et al. 2011). However, root 
rot epidemics have become a continual threat to crop pro-
duction in commercial greenhouses that use soilless culti-
vation systems. Airborne dust, irrigation water, farm tools, 
and transplants are some of the main sources of pathogen 
contamination in such systems (Sutton et al. 2006). The use 
of PGPRs to suppress plant diseases is a newly emerging and 
valuable option in soilless cropping systems (Vallance et al. 
2011; Sambo et al. 2019). Nevertheless, the rapid identifi-
cation and utilization of these potential bacteria with clas-
sical microbiology methods is challenging (Franco-Duarte 
et al. 2019), as many PGPRs are overlooked because many 
relevant genes are not expressed in the absence of natural 
chemical triggers (Paterson et al. 2017).

The advancement of next-generation sequencing (NGS) 
methods has enabled researchers to further investigate and 
understand microorganisms around the globe from differ-
ent perspectives (Cao et al. 2017). Genome mining, which 
involves the analysis of the whole-genome sequence data of 
a PGPR to identify the genes encoding beneficial bacterial 
enzymes and metabolites, has revolutionized the identifica-
tion and use of potential beneficial microbes (Van Der Voort 
et al. 2015; Paterson et al. 2017). Several studies (Arruda 
et al. 2019; Eida et al. 2020; Zhou et al. 2020) have adopted 
a genome mining strategy to identify PGPR strains with 
novel antimicrobial gene clusters that have immense bio-
control potential and plant growth stimulatory effects. Fur-
thermore, the reliable differentiation of potentially human 
pathogenic PGPR strains from nonpathogenic strains has 
been a challenge in bacterial diagnostics (Cosentino et al. 
2013). However, genome sequencing coupled with machine 
learning approaches, such as PaPrBaG (Pathogenicity Pre-
diction for Bacterial Genomes) (Deneke et al. 2017) and 
DeePaC (Deep Learning Approach to Pathogenicity Clas-
sification) (Bartoszewicz et al. 2020), has been reported to 
reliably discriminate potentially pathogenic strains from 
nonpathogenic strains.

The modern advances in sequencing technology have not 
only enabled more accurate classification of bacteria accord-
ing to their genomes but also allowed for deeper taxonomic 
identification of complex microbiomes, which represent the 
combined genetic material of all microorganisms occupying 
an environment (Cao et al. 2017). Such advanced techniques 
have also enabled us to track the spatiotemporal dynamics of 
PGPRs using strain-specific primers designed from whole-
genome sequence data (Zhang et al. 2018). Few studies 
(Mosimann et al. 2017; Mendis et al. 2018) have reported on 
qPCR-based methods successfully used to monitor the popu-
lation dynamics of inoculants in nonsterile soil and plant 

roots, wherein complex microbial communities reside, let 
alone under soilless conditions. Furthermore, Jo et al. (2020) 
simultaneously monitored the population of a bioinoculant 
and the surrounding microbiota over time.

Advanced molecular biology tools have been used to 
describe the structure and diversity of the entire microbial 
community in various environments and can help to inves-
tigate the functional roles of such communities. Korenblum 
et al. (2020) stated that the microbial communities associ-
ated with roots provide specific functions to their hosts to 
help regulate plant growth, health, and productivity. Dong 
et al. (2019) also reported on the positive impact of natural 
microflora in controlling diseases of tomato seedlings in a 
soilless cultivation system. They found that Pseudomonas, 
which had been reported to improve plant growth and induce 
stress resistance in tomato and red pepper plants, was one of 
the most predominant genera in the nutrient solution. Fur-
thermore, some beneficial PGP fungi, such as Trichoderma 
virens and Trichoderma harzianum, were detected. Sheri-
dan et al. (2017) analyzed PGP microorganisms in the plant 
root zone microbiome in hydroponic cultivation systems 
for different crops through the use of amplicon sequenc-
ing targeting 16S rRNA genes. In their study, four different 
crops (durum wheat, bread wheat, potato, and soybean) were 
inoculated with a number of strains, including Pseudomonas 
spp., Bacillus spp., Enterobacter spp., Streptomyces spp., 
Gliocladium spp., and Trichoderma spp. The authors con-
cluded that the application of PGPRs to the plant root zone 
could change the microbial community even when only a 
small portion of the inoculated microbes colonized the root 
zone. Mamphogoro et al. (2020) used a similar technique 
to analyze the microbial communities associated with the 
sweet pepper Capsicum annum to identify potential biocon-
trol agents against pathogens. They found that the major-
ity of the genera present in the communities consisted of 
Acinetobacter, Agrobacterium, and Burkholderia, which 
are known fungal antagonists. Similarly, Ye et al. (2020) 
found that Corallococcus sp. strain EGB controlled cucum-
ber Fusarium wilt in a hydroponic system by migrating to 
the plant root and regulating the microbial community. In a 
different study, Hultberg et al. (2017) investigated the influ-
ence of the root microbiome in the presence of inoculated 
Pythium ultimum at three different stages of tomato plant 
growth; they reported that P. ultimum changed the composi-
tion of the microbial communities in the plant rhizoplane, 
wherein Bacteroidetes was the dominant phylum in the pres-
ence of P. ultimum, and Proteobacteria was more abundant 
in the control.

Another advancement in the biotechnological application 
of PGPRs is the use of transcriptomics. Understanding a 
transcriptome is essential for inferring the functional fea-
tures of a genome and obtaining information on the molec-
ular makeup of cells and tissues (Wang et al. 2009). Lee 
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et al. (2016) made use of such an approach to gain insight 
into the responses of lettuce following treatment with the 
beneficial microbe Pseudomonas chlororaphis. This treat-
ment led to the increased expression of genes involved in 
the response to pathogens and external stress. Moreover, the 
authors showed that the nodulin family, which is known to 
regulate phosphorylation and signaling and stimulate trans-
port activity and resistance to osmotic and environmental 
stress, was expressed. Bharti et al. (2016) used a similar 
approach to identify the stress-responsive genes of wheat 
through inoculation with the PGP Dietzia natronolimnaea 
STR1. Their study confirmed the involvement of the ABA 
signaling cascade, as TaABARE and TaOPR1 were upregu-
lated in PGPR-inoculated plants, which led to the induction 
of TaMYB and TaWRKY expression followed by the stimula-
tion of the expression of a plethora of stress-related genes. 
Their results also showed enhanced expression of TaST, a 
salt stress-induced gene associated with the promotion of 
salinity tolerance in PGPR-inoculated plants. A group led 
by Gómez-Godínez (2019) used metatranscriptomics to 
study nitrogen fixation in maize plantlets inoculated with a 
group of PGPRs (R. phaseoli Ch24-10, A. brasilense Sp7, 
M. extorquens AM1, B. amyloliquefaciens CCGE2031, S. 
americanum CFNEI 156, and R. phaseoli Ch24-10), which 
showed the expression of Azospirillum nif genes in the 
presence of the PGPRs. Another work by Yi et al. (2017) 
involved comparative transcriptomics of Bacillus mycoides 
strains in potatoes and provided insights into the transcrip-
tomic profiles and survival strategies of plant-associated 
endophytes and soil isolates of this species.

Despite the plethora of studies performed to date, there 
remains a huge knowledge gap that needs to be addressed to 
commercialize PGPRs for sustainable soilless agriculture. 
Hence, the development of proper strategies and additional 
research and trials are required.

Future of PGPRs in soilless agriculture

In agricultural production systems, amending the soil with 
chemical fertilizers is considered indispensable for achieving 
optimum yield. However, it is well known that the constant 
and excessive use of chemical fertilizers disrupts the ecology 
of soil, affects the microbial population in the rhizosphere, 
pollutes groundwater and has harmful effects on human 
health (Ayala and Rao 2002; Joshi et al. 2006; Azizoglu 
et al. 2020). Therefore, the application of PGPRs in agri-
cultural production has become popular because it signifi-
cantly reduces the use of chemical fertilizers and pesticides. 
The use of PGPRs instead of harmful chemicals in modern 
agriculture is considered to be an excellent eco-friendly 
biotechnological approach (Pandey et  al. 2012). PGPR 
application increases the germination rate, development 
of roots, yield, leaf area, chlorophyll ratio, nitrogen ratio, 

protein ratio, hydraulic activity, thirst tolerance, and root and 
stem weight, delays the aging of leaves and provides resist-
ance to some diseases. In the field, PGPRs may not provide 
expected results due to unexpected conditions. Unfavorable 
environmental conditions, such as pH changes in the soil, 
high temperatures, low rainfall and humidity, and nutrient 
deficiencies, result in reduced microorganism colonization 
(Çakmakçı 2005). Because conditions are more controlled 
in soilless agriculture practices, successful microorganism 
colonization increases.

The presence of PGPRs increases plant resistance to 
stress, and they can be easily applied at any stage of the plant 
life cycle. Soilless agricultural practices and the application 
of PGPRs are likely to positively increase plant resistance 
to abiotic and biotic stress. PGPR application has positive 
effects on plant physiology and morphology to eliminate 
the harmful effects of stress, such as affecting plant water 
content, abnormal changes in hormone concentrations, and 
osmolytes (Yasmin et al. 2019).

Soilless agriculture is expected to become even more suc-
cessful in combination with effective PGPR application. To 
date, some studies have provided clues to its success. PGPRs 
have been shown to increase lentil (Lens culinaris) growth 
and development under field and controlled environmental 
conditions (Zafar et al. 2012). Studies analyzing the effects 
of PGPR application on tomatoes (Kıdoğlu et al. 2009; Gul 
et al. 2012) and cucumbers (Gül et al. 2013) grown in a soil-
less agriculture system under greenhouse conditions have 
shown that PGPR application contributed positively to yield 
in both species (Table 1).

Baset Mia et al. (2010) examined the effects of PGPR 
application (Bacillus sphaericus UPMB10 and Azospirillum 
spp. Sp7 strains) on banana plantlets produced in nitrogen-
free hydroponic culture. They reported that the Sp7 and 
UPMB10 strains increased banana seedling growth com-
pared with that under control conditions and could be used 
as biofertilizers. Another study confirmed that Azospirillum 
spp. and Azotobacter spp. enhance the growth of strawberry 
(Fragaria vesca) in hydroponic culture (Rueda et al. 2016). 
Furthermore, it was reported that Paenibacillus polymyxa 
(SQR-21) increases watermelon growth in hydroponic 
culture (Yaoyao et al. 2017). In contrast with soil culture, 
aquaculture practices offer the ability to control and reuse 
beneficial microorganisms and manage nutrient availabil-
ity. In fact, the naturally occurring microbial consortia of 
the hydroponics are a result of the presence of roots, and 
dormant endophytic microbes living in the seed can initiate 
growth simultaneously with the plant. Therefore, all hydro-
ponic systems have a microflora in the rhizosphere under 
normal conditions. However, largely because it is depend-
ent on the chemical compounds released from the plant 
roots, there might be differences between the systems due 
to physicochemical differences in the water content and the 
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environment surrounding the roots. For instance, hydroponic 
suspend roots in nutrient solution, and therefore, the com-
pounds released from them are subject to relatively large 
dilution effects. On the other hand, solid cultures equipped 
with drip emitters are less disruptive as they do not create 
the same constant mass flow. The rhizosphere effect reaches 
further in hydroponics, yet the concentration of root exu-
dates decreases much faster than in solid culture (Raviv et al. 
2019; Söderström 2020).

While many publications focus on the PGPRs involved 
in the nitrogen cycle, others highlight the potential effects 
of PGPRs against plant pathogens in soilless culture (aqua-
ponic systems) (Rakocy 2012; Gravel et al. 2015; Sirakov 
et al. 2016; Stouvenakers et al. 2019). Indeed, limited atten-
tion has been paid to the possible natural plant protection 
capacity of aquaponic microbiota. However, the potential of 
this protective action can be envisaged with regard to differ-
ent elements already known to be involved in hydroponics or 
re-circulated aquaculture (Stouvenakers et al. 2019).

The suppression capacity demonstrated by the soilless 
medium is discussed by Postma et al. (2008) and Vallance 
et al. (2011). While some authors have comprehensively 
described plant pathogens, such as Phytophthora cryptogea, 
Pythium spp., P. aphanidermatum and Fusarium oxyspo-
rum, which are suppressed by the natural microbiota, they 
have not clearly identified the microorganisms responsible 
for this suppressive action (Stouvenakers et al. 2019). Sup-
pressiveness in hydroponics can be interpreted as the patho-
gens not persisting or establishing, which also leads to little 
or no damage. The suppressive action of an environment 

can be related to the abiotic milieu. On the other hand, in 
most situations, suppressiveness is considered to be related 
directly or indirectly to microorganism activity or metabo-
lites (Borneman and Becker 2007; Stouvenakers et al. 2019). 
Microbial inclusion in the suppressive effect in soilless agri-
culture is generally verified via the initial destruction of the 
microbiota of the soilless substrate by sterilization. Then, 
the beneficial microorganisms are reinoculated. In contrast 
to that in traditional culture, in which water recirculation 
does not occur, the suppressive activity in soilless culture 
can be explained by water recirculation, which allows for the 
enhanced development and dispersal of beneficial microor-
ganisms (PGPRs) (Postma et al. 2008; Vallance et al. 2011; 
Stouvenakers et al. 2019). As a result, the combination of 
PGPRs and soilless agriculture is considered to be necessary 
for success in sustainable agriculture.

Conclusion and predictions

The use of PGPRs as a microbial fertilizer can be an excel-
lent and environmentally friendly alternative to the applica-
tion of chemical fertilizers. The success of PGPRs in the 
soil may decrease under adverse environmental conditions, 
such as high temperatures and soil pH, low precipitation and 
humidity, and nutrient deficiency, which reduce microorgan-
ism colonization in the rhizosphere. In soilless agriculture, 
however, these conditions are controlled, thereby putatively 
increasing successful PGPR colonization in such systems.

Table 1  Some PGPRs successfully applied in soilless agriculture

Plant growth promoting rhizobacteria Soilless cultures Crops References

B. amyloliquefaciens, B. brevis, B.circulans, B. 
coagulans, B. firmus, B. halodenitrificans, B. 
laterosporus, B. licheniformis, B. megaterium, 
B. mycoides, B. pasteurii, B. subtilis and P. 
polymyxa

Commercial substrate (SER CA-V7 Special 
semine, Vigorplant Italia Srl, Fombio, Italy), 
composed of a mixture of slightly or fully 
decomposed raised bog peat

Basil Moncada et al. (2021)

P. polymyxa Hydroponic Watermelon Yaoyao et al. (2017)
Azospirillum spp. and Azotobacter spp. Hydroponic Strawberry Rueda et al. (2016)
P. putida, S. marcescens, Bacillus spp., P. fluore-

scens, B. amyloliquefaciens
Perlite Cucumber Gül et al. (2013)

B. subtilis, A. vinelandi and C. pasteurianum Perlite cocopeat mixture in 1:1 Squash Dasgan et al. (2012)
P. fluorescens bv3, P. fluorescens bv5 and P. 

putida
Perlite Tomato Gul et al. (2012)

PGPR, LCA strains. There is no identification of 
species

İn vitro, hydroponic and greenhouse (pot experi-
ment)

Lentil Zafar et al. (2012)

B. sphaericus and Azospirillum sp., Hydroponic Banana Baset Mia et al. (2010)
P. putida, S. marcescens, P. fluorescens, B. 

amyloliquefaciens and Bacillus spp.,
Perlite Tomato Kıdoğlu et al. (2009)

B. amyloliquefaciens Perlite Tomato Gül et al. (2008)
P. fluorescens Peat-based growing media Tomato Gagné et al. (1993)
P. putida Hydroponic Bean Anderson and Guerra (1985)
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Because soilless agriculture utilizes recycled water, 
thanks to the use of a closed-circuit system, 85–90% of the 
irrigation water is maintained and it provides greater effi-
ciency than traditional agriculture. Such systems can support 
beneficial microorganisms (PGPRs) by managing the water 
content (e.g., nutrient content, C/N ratio, oxygen and car-
bon dioxide concentrations) and parameters (e.g., tempera-
ture and pH). Moreover, water recirculation allows for the 
enhanced development and spread of PGPRs. For instance, 
when introducing a new microorganism normally not pre-
sent into an aquaponics system, which is the combination 
of aquaculture and plants grown without soil, the selection 
of a microorganism adapted and safe for soilless culture is 
necessary.

Understanding how to include PGPRs in soilless agri-
culture to promote plant growth could enable the produc-
tion of healthy and freshly grown crops and decrease the 
use of chemical fertilizers. Although some studies suggest 
that PGPRs can be successfully used in soilless agriculture, 
limited attention has been paid to their potential interactions. 
Indeed, the application of PGPRs in soilless agriculture is 
a promising technique. However, a better understanding of 
the role of bioinoculants in the uptake of nutrients needs 
to be established. Prior to the use of a particular bacterial 
strain, the proper assessment of the survival of the native 
bacteria within the plant of interest is needed to avoid nega-
tive impacts on plant growth.

In the future, it seems critical to investigate this interac-
tion followed by the identification of the responsible ben-
eficial microbes. Therefore, we strongly recommend the 
implementation of further research efforts on the interaction 
between soilless agriculture and PGPRs.
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