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LMODEL: A Satellite Precipitation Methodology Using Cloud Development
Modeling. Part I: Algorithm Construction and Calibration

TIM BELLERBY

University of Hull, Hull, United Kingdom

KUO-LIN HSU AND SOROOSH SOROOSHIAN

University of California, Irvine, Irvine, California

(Manuscript received 9 September 2008, in final form 15 May 2009)

ABSTRACT

The Lagrangian Model (LMODEL) is a new multisensor satellite rainfall monitoring methodology based on

the use of a conceptual cloud-development model that is driven by geostationary satellite imagery and is locally

updated using microwave-based rainfall measurements from low earth-orbiting platforms. This paper de-

scribes the cloud development model and updating procedures; the companion paper presents model vali-

dation results. The model uses single-band thermal infrared geostationary satellite imagery to characterize

cloud motion, growth, and dispersal at high spatial resolution (;4 km). These inputs drive a simple, linear,

semi-Lagrangian, conceptual cloud mass balance model, incorporating separate representations of convective

and stratiform processes. The model is locally updated against microwave satellite data using a two-stage

process that scales precipitable water fluxes into the model and then updates model states using a Kalman filter.

Model calibration and updating employ an empirical rainfall collocation methodology designed to compensate

for the effects of measurement time difference, geolocation error, cloud parallax, and rainfall shear.

1. Introduction

There is a continuing need for high-resolution satellite

rainfall products to supplement limited surface-based

monitoring networks for regional hydrology and to pro-

vide global calibration and validation datasets for climate

models. Two types of satellite sensors provide infor-

mation pertinent to rainfall monitoring. Active and pas-

sive microwave (MW) sensors are directly sensitive to

precipitation-related hydrometeors and provide instan-

taneous precipitation estimates at sampling frequencies

of up to twice a day, limited by the need to mount sensors

on low Earth-orbiting (LEO) platforms. Multiple satellite

platforms provide improved temporal sampling, and

the proposed Global Precipitation Measurement (GPM)

Mission aims to coordinate MW data collection to ach-

ieve a maximum return time of three hours (Hou et al.

2008). In contrast to MW data, visible (VIS) and infrared

(IR) images from satellite in geostationary Earth orbit

(GEO) provide high temporal resolution (up to 15 min)

information on cloud patterns but are not directly sensi-

tive to precipitation processes within the clouds.

Most high-resolution satellite rainfall algorithms com-

bine information from GEO imagery and LEO MW

sensors. These algorithms may be divided into two cate-

gories: microwave-calibrated and morphing algorithms.

Microwave-calibrated algorithms dynamically calibrate an

empirical GEO rainfall algorithm against local microwave

data (Bellerby et al. 2000; Bellerby 2004; Huffman et al.

2007; Kidd et al. 2003; Marzano et al. 2004; Nicholson et al.

2003a,b; Sorooshian et al. 2000; Todd et al. 2001; Turk and

Miller 2005; Xu et al. 1999) For example, the study area

and period may be divided into separate spatiotempo-

ral calibration domains, typically 100 km 3 100 km 3

1 month, and the GEO algorithm independently cali-

brated against coincident microwave data within each

domain (Todd et al. 2001; Xu et al. 1999). More so-

phisticated approaches involve the continuous training

of neural networks (Sorooshian et al. 2000). Morphing

algorithms use GEO cloud movements to advect mi-

crowave-derived rainfall patterns between overpasses

(Joyce et al. 2004; Okamoto et al. 2005). Each of these
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approaches experiences its own limitations. Microwave-

calibrated algorithms are limited by the physically in-

direct relationships between cloud patterns and rainfall.

Local calibration procedures are able to accommodate

meteorological variations in these relationships, but they

cannot fully compensate for the inability of GEO sensors

to resolve precipitation processes. Basic morphing algo-

rithms assume that rainfall varies smoothly along advec-

tion streamlines. This causes problems in regimes where

storms build and dissipate rapidly (Joyce et al. 2004).

The Lagrangian Model (LMODEL) algorithm adopts a

new approach that combines features of both microwave-

calibrated and morphing techniques within a conceptual

modeling framework. A simple conceptual mass balance

model is used to trace cloud development and dispersal

along Lagrangian streamlines that trace equivalent pixels

within the same cloud through successive geostationary

images. The seasonally calibrated model is then locally

updated against rainfall measurements from available

MW satellite overpasses in two stages: The first stage lo-

cally scales precipitable water fluxes into the model, and

the second stage updates model state variables using a

Kalman filter.

2. Methodology

a. Background

Geostationary satellite rainfall algorithms require the

identification and quantification of raining areas in cloud

imagery. These algorithms most commonly use thermal

IR data because this is available throughout the diurnal

cycle. With the advent of more advanced sensors, mul-

tispectral GEO techniques are being developed (Ba and

Gruber 2001; Bellerby et al. 2000; Turk and Miller 2005).

Many IR algorithms depend on the relationship between

pixel brightness temperatures and cloud-top height. Cold

brightness temperatures are generally associated with

high cloud tops that may be indicative of strongly pre-

cipitating vertically extended convective systems. Some

algorithms identify areas of cold cloud and relate these

to areas of rainfall (Arkin and Meisner 1987; Xu et al.

1999). Other algorithms seek to derive a statistical re-

lationship between pixel brightness temperature and

underlying rainfall (Todd et al. 2001; Marzano et al.

2004; Vicente et al. 1998). Neural network techniques

enable cloud textures and other information to be in-

cluded in the estimation process (Bellerby et al. 2000;

Bellerby 2004; Grimes et al. 2003; Hsu et al. 1997, 1999;

Sorooshian et al. 2000; Tapiador et al. 2004; Zhang and

Scofield 1994).

The Climate Prediction Center (CPC) morphing al-

gorithm (CMORPH; Joyce et al. 2004) uses a correlation-

matching procedure employing a 58 3 58 template to

determine cloud advection at 2.58 3 2.58 spatial resolu-

tion from GEO IR imagery. The resulting advection

vectors are used to ‘‘morph’’ MW precipitation patterns

between sensor overpasses, with MW rainfall rates lin-

early interpolated along cloud-advection streamlines.

Joyce et al. (2004) note that cloud-top advection always

closely corresponds to rainfall advection, with some IR

features rapidly streaming off from precipitating sys-

tems to give average cloud-advection speeds 2–4 times

faster than rainfall advection. They overcome this dis-

crepancy by applying an empirical correction to the

cloud displacement vectors before using them to morph

the rainfall. CMORPH performs well in comparison to

other multisensor approaches. However, especially in

rapidly changing convective regimes, linear interpola-

tion between MW overpasses may be insufficient to

represent a developing precipitating system accurately.

To accommodate this type of regime fully, a satellite

rainfall algorithm needs to derive additional storm de-

velopment information from the GEO imagery.

A significant number of GEO algorithms incorporate

some information related to cloud dynamics into the

estimation process. Rapid cloud development is fre-

quently associated with convection, and many algorithms

make use of changes in cloud temperature or area be-

tween successive images to distinguish between grow-

ing and dissipating systems (Bellerby et al. 2000; Stout

et al. 1979; Wu et al. 1985). The Precipitation Estimation

from Remotely Sensed Information using Artificial

Neural Networks with a Cloud Classification System

(PERSIANN-CCS) algorithm (Hong et al. 2004) uses a

statistical analysis of cloud patch textures to estimate

their position within the cloud life cycle, whereas other

techniques have employed whole-cloud tracking to vary

cloud-area/rainfall relationships throughout cloud histo-

ries (Augustine et al. 1981; Griffith et al. 1981; Woodley

et al. 1980). Horsfield (2006) developed a cloud-patch

water balance model for convective systems. Following

Machado et al. (1998) and Kuo (1974), the model em-

ployed patch-area expansion as a proxy for convective

updraft strength and divided water vapor in the con-

vective column into two fractions: one yielding imme-

diate convective rainfall and the other entering storage

in the stratiform anvil to rain out at a steady rate. The

model proved effective at reproducing the area-total

rainfall dynamics for individual cells, provided sufficient

calibration information was available. However, it could

not handle cells that split and merge.

Data assimilation techniques are established proce-

dures in hydrology and numerical weather forecasting.

These approaches update the process states in a sequen-

tial estimation system using available new observations,

enabling enhanced process states as well as improved
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output variables to be estimated in real time. The Kalman

filter is a data assimilation technique widely used in hy-

drological modeling and numerical weather forecasting

(Anderson and Anderson. 1999; Anderson 2001; Liu

and Gupta 2007; Slater and Clark 2006; Walker et al.

2002). The Global Satellite Mapping of Precipitation

(GSMaP) algorithm advects MW estimates using cloud

motion vectors estimated for the past hour from IR

cloud imagery and then adjusts the propagated MW

rainfall field using a Kalman filter (Okamoto et al. 2005).

Here advected MW rainfall is assigned the role of sys-

tem state variable while GEO IR brightness tempera-

tures provide the observations used to adjust the system

state, yielding updated rainfall estimates. GSMaP gen-

erates 1-h rainfall estimates at a 0.18 spatial resolution.

b. Overview

The LMODEL technique is based on a conceptual

model of cloud development that is forced by estimated

precipitable water fluxes and cloud dispersal rates de-

rived from GEO imagery. The semi-Lagrangian mass

balance model is run at full GEO pixel resolution and

then its outputs are aggregated to a coarser spatiotem-

poral resolution before being used. The LMODEL

rainfall estimation algorithm operates in three stages,

with each stage yielding successively improved products.

Stage 1 runs the unadjusted cloud development model

using seasonally derived calibrations.

Stage 2 compares stage 1 outputs to rainfall estimates

from available MW overpasses to derive a correc-

tion ratio. This ratio is interpolated between MW

overpasses along cloud-advection streamlines and

then it is used to scale local precipitable water in-

puts to the model.

Stage 3 locally adjusts model state variables at each

MW overpass using a Kalman filter.

The model is initially calibrated and then later updated

using an adjusted MW dataset that attempts to correct

empirically for the combined effects of measurement

timing mismatch, geolocation error, cloud parallax, and

rainfall shear.

c. Dataset

The prototype LMODEL algorithm was developed

using GEO IR data extracted for a window covering the

conterminous United States (CONUS) for two periods—

July–August 2006 and February–March 2007—from the

CPC full-resolution IR dataset (Climate Prediction Cen-

ter 2008a; Janowiak et al. 2001). This is a 0.048 spatial

resolution 30-min composite of available geostationary IR

(;11 mm) imagery, with individual satellite contributions

corrected for zenith angle dependence to reduce inter-

platform discontinuities. Over the study area, these image

data originate from the Geostationary Operational Envi-

ronmental Satellite East (GOES-E) and West (GOES-W).

Corresponding microwave data were obtained from the

CPC merged microwave dataset (Climate Prediction

Center 2008b), a composite dataset combining data from

the Defense Meteorological Satellite Program Special

Sensor Microwave Imager (DMSP SSM/I), the Polar

Orbiting Environmental Satellite Advanced Microwave

Sounding Unit B (POES AMSU-B), the Aqua Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E), and the Tropical Rainfall Measuring

Mission (TRMM) Microwave Imager (TMI) instruments,

interpolated to a common 0.088 spatial resolution and

30-min temporal resolution (Ferraro 1997; Ferraro et al.

2000; Kummerow et al. 2001; Weng et al. 2003). Hourly,

0.048 resolution, composite National Centers for Envi-

ronmental Prediction (NCEP) stage 2 gauge-corrected

radar rainfall analyses from the National Oceanic and

Atmospheric Administration (NOAA)/NCEP/Environ-

mental Modeling Center (EMC) provided an indepen-

dent validation dataset (Lin and Mitchell 2005).

d. High-resolution 2D cloud tracking

Cloud-advection tracking for LMODEL employs the

mesh-deformation algorithm of Bellerby (2006). This

algorithm starts by draping coarse-resolution rectangu-

lar meshes over a GEO image and its immediate prede-

cessor in time sequence (Fig. 1a). A rectangular-window,

translational, correlation-matching procedure then de-

forms the rectangular mesh covering the preceding im-

age into a convex quadrilateral mesh, optimizing the

correspondence between the two images at and around

equivalent mesh nodes (Figs. 1a,b). The meshes over

both images are interpolated to twice their previous

spatial resolution (Fig. 1c) and the correlation-matching

procedure is repeated, this time taking into account local

distortions represented by the nonrectangular mesh

(Figs. 1d–f). Incorporating these local distortions en-

ables the tracking algorithm to accommodate rotation

and shear effects in addition to translations. The inter-

polation and matching stages iterate until the mesh

resolutions reach the original image GEO resolution.

Later iterations of the algorithm interpolate both images

to 4 times their original spatial resolution using bicubic

splines before starting the correlation-matching proce-

dure. At the end of the final iteration, each pixel location

x in the main image is associated with an equivalent

location xt21(x) in the same cloud in the preceding

image (Fig. 2). The algorithm is additionally capable

of deriving the reverse mapping xt11(x), relating each

pixel in the preceding image to an equivalent location in

the current image from the same pair of final meshes
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without rerunning the tracking procedure. The 2D

cloud-advection algorithm is computationally efficient

and has been shown to be both robust in the presence of

image rotation and shear and accurate to within 2–3

pixels (Bellerby 2006).

It is possible to use the cloud-advection algorithm to

quantify cloud expansion and contraction by comparing

corresponding cell areas in the two meshes. This was

implemented using the total area of the four cells sur-

rounding a given mesh node (Fig. 2). The resulting area

change ratio A(x, t) is greater than one for expanding

clouds and less than one for contracting clouds. The

accuracy of this product is restricted by the precision to

which the correlation-matching procedure can locate

mesh nodes, which in turn is limited to less than one-

quarter pixel by the use of fourfold-interpolated GEO

imagery in later iterations of the advection-tracking

algorithm.

FIG. 1. Stages of the 2D cloud-advection matching algorithm. (a) Correlation matching using

a rectangular sliding window. (b),(e) Mesh replacement using matching results. (c),(f) Mesh

interpolation. (d) Correlation-matching accounting for local image distortion.
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e. Collocation of clouds and rainfall

Both calibration and updating of the cloud develop-

ment model require cloud imagery to be compared

to coincident MW rainfall data. However, a number of

factors make a direct comparison between MW satellite

rainfall estimates and GEO cloud imagery very difficult

to achieve in practice. The most significant problem is

measurement timing: an MW sensor overpass may occur

at any time between successive GEO images. Moreover,

GEO image collection is not itself instantaneous. Even if

data collection were precisely synchronized, difficulties

with geolocation error, cloud parallax, and cloud/rain

shear would remain (Vicente et al. 2002). The spatial

resolution of MW rainfall products is generally less that

that provided by GEO imagery, and it is tempting to

adopt a low spatial resolution for the cloud development

model, alleviating difficulties with GEO/MW colloca-

tion. However, low model resolutions create significant

problems with cloud tracking. For the 30-min GEO

image data used in this study, a slow-moving cloud may

change location by only ;2–3 GEO pixels between

successive images. If the model spatial resolution were

reduced to less than 2 GEO pixels, then cloud motion

would become difficult to represent, with an average

cloud moving less than one grid cell in a single time step.

This problem would be even more significant for 15-min

GEO imagery. Schemes in which model grid cells for the

current time step are fractionally associated with several

cells in the preceding time step will tend to give rise to

aliasing effects. For example, a slowly moving one-cell-

wide cloud will spread over a growing area as the frac-

tional partition scheme incorrectly divides the cloud

state variables among an increasing number of model

cells with successive time steps. The LMODEL design

avoids these difficulties by operating a full GEO pixel

resolution, employing an empirical correction for collo-

cation errors between MW and GEO datasets and spa-

tially and temporally aggregating model outputs before

they are used as operational rainfall products.

The LMODEL empirical approach to MW/GEO

collocation moves interpolated MW rainfall estimates to

GEO clouds. MW rainfall estimates are linearly inter-

polated to GEO image resolution, and the following

procedure is applied at each GEO pixel location: Pixels

within a set radius of the given pixel location (16 pixels in

the prototype implementation) are identified in both the

GEO IR (Fig. 3a) and interpolated MW rainfall (Fig. 3b)

images, and the two sets of pixels are independently

ranked from lowest to highest rainfall rate and highest to

lowest IR brightness temperature (Fig. 3c). The cor-

rected rainfall value for the current pixel location is then

taken from the same position within the ranked list of

increasing rainfall values as the central IR pixel occupies

within the ranked list of decreasing brightness tempera-

tures (Figs. 3c,d). While the resulting product is gridded

at GEO pixel resolution, its spatial variability is deter-

mined by the coarser MW sensor resolutions. This lim-

itation in effective spatial resolution must be taken into

account when calibrating or updating the model against

this dataset. In addition, it should be noted that the

collocation procedure slightly reduces the spatial cov-

erage of the MW swaths and does not extend the MW

coverage beyond the original overpasses.

The collocation algorithm moves the rainfall to the

clouds and in particular moves rainfall maxima to IR

minima. Many satellite rainfall techniques assume a

monotonic relationship between decreasing IR bright-

ness temperature and increasing rainfall rates (Marzano

et al. 2004; Todd et al. 2001; Vicente et al. 1998). These

techniques rest primarily on the assumption that the

coldest IR brightness temperatures are associated with

the overshooting tops of heavily precipitating convec-

tive systems. Although IR minima do not always coin-

cide with the exact location of maximum rainfall on the

ground (Adler and Mack 1986), a number of studies

have noted a strong quantitative relationship between

IR minimum brightness temperatures and the peak or

total rainfall rates for the cells in which they reside

(Adler and Negri 1988; Hong et al. 2004; Horsfield

2006). It is therefore reasonable to associate the dy-

namics of rainfall maxima with those of local brightness

temperature minima, providing that it is acknowledged

that pixel resolution model outputs may be spatially

displaced with respect to observed surface rainfall.

f. Cloud development model (LMODEL stage 1)

The cloud development model was designed to form

the core of an operational satellite rainfall system based

on model updating. In this context, the model had to be

as simple and as linear as possible while providing a

FIG. 2. Calculation of the cloud area–change product.
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sufficiently realistic representation of cloud process in

both convective and stratiform regimes. Following

Horsfield (2006), the model adopts the assumption of

Kuo (1974) that a fraction (b) of the water condensed in

convective updrafts (Mu) enters storage in the cloud (w)

while the remaining fraction immediately precipitates

out as convective rainfall (Fig. 4). The model further

assumes that nonconvective processes (frontal systems,

among others) contribute a flux Ms into the cloud pre-

cipitable water (w). Over unit time, a fraction a of w is

converted into stratiform rainfall with a further fraction

e evaporating or otherwise dissipating (a complete list of

symbols used by the LMODEL algorithm is given in

Table 1). These assumptions yield the following model

for the surface rainfall rate R based on a Lagrangian

continuity equation for w:

R 5 R
c
1 R

s
,

R
c
5 (1� b)M

u
,

R
s
5 aw,

Dw

Dt
5 bM

u
1 M

s
� (a 1 e 1 $ � v)w,

(1)

where

R is the surface rainfall rate,

Rc is immediate (mainly convective) rainfall,

Rs is delayed (mainly stratiform) rainfall,

v is the local 2D cloud-advection velocity,

w is the total cloud precipitable water content,

Mu is the precipitable water flux in convective up-

drafts,

Ms is the accumulation of w as a result of noncon-

vective processes,

a is the fraction of w becoming stratiform rain in unit

time,

b is the fraction of Mu contributing to w,

e is the fraction of w lost to evaporation in unit time,

D/Dt[›/›t 1 v � $ is the Lagrangian (along-stream)

derivative with time, and

$ � v quantifies cloud convergence/divergence.

To solve this system numerically, Eqs. (1) are approxi-

mated using a semi-Lagrangian discrete system operat-

ing at GEO IR pixel resolution:

FIG. 3. Stages in the MW rainfall to IR cloud collocation algorithm: (a) window for IR pixels, (b) corresponding window for MW rainfall

estimates, (c) independently ranked IR and MW rainfall data, and (d) derived collocated rainfall value.

FIG. 4. Schematic of the conceptual cloud development model.
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R(x, t) 5 R
c
(x, t) 1 R

s
(x, t),

R
c
(x, t) 5 F(x, t),

R
s
(x, t) 5 aw(x, t),

w(x, t) 5 G[x
t�1

(x), t � 1] 1
B(x, t)w[x

t�1
(x), t � 1]

max[ A(x, t), 1 ]
,

(2)

where

F(x, t) 5 (1 2 b)Mu,

G(x, t) 5 bMu 1 Ms,

B(x, t) 5 (12 a 2 e),

A(x, t) is the local change in cloud area,

x is the pixel location,

xt21(x) is the equivalent pixel location of the same

cloud in the preceding image, and

t is the time in units of GEO image time steps.

Rainfall (R), cloud precipitable water (w), and the pre-

cipitable water flux terms (F and G) are assumed to

adopt zero values in cloud-free areas, identified with IR

brightness temperature (Tb) above a threshold value,

Tcld, set at 265 K in the prototype implementation.

Cloud divergence is quantified using the area-change

product A. For expanding clouds, the mass balance be-

tween successive model cells is approximated by divid-

ing precipitable water by A, giving (1 2 $ � v) ’ 1/A.

Thus, a cloud that expands to twice its previous size will

have half the precipitable water per model cell, prior to

other forcing factors taking effect. Dispersing clouds

may be associated with apparently contracting areas in

GEO imagery but are unlikely to be associated with

actual areas of converging cloud precipitable water. For

this reason, the divisor based on A is forced to remain

greater than or equal to 1.0, meaning that for approxi-

mating the mass balance, cloud expansion is quantified

but cloud contraction (as opposed to dispersal) is as-

sumed not to happen. Because the cloud-tracking algo-

rithm has limited accuracy at subpixel resolutions, the

gridded model state (w) field for the preceding time step

is not interpolated prior to its use for the current time

step. This contrasts with the semi-Lagrangian integra-

tion schemes employed by more conventional atmo-

spheric models (Staniforth and Côté 1991).

The cloud development model described by (2) includes

three forcing terms: F, G, and B. Here F represents only

convective fluxes, G incorporates a mixture of convective

and stratiform inputs, and B is a decay ratio that models

cloud dissipation. These terms are estimated from two

GEO satellite cloud indices: IR brightness temperature

and its rate of change along an advection streamline,

S
1
(x, t) 5 T

b
(x, t) and

S
2
(x, t) 5 T

b
(x, t)�min T

b
[x

t�1
(x), t � 1], T

cld

� �
.

(3)

Here Tb(x, t) is average brightness temperature over a

3 3 3 pixel window centered on x. Neighborhood averages

are used to reduce the effects of the residual 1–2 pixel

noise in the advection-tracking algorithm. If the previ-

ous pixel is cloud free, then the temperature change is

computed from the cloud/no-cloud threshold, not from

the actual preceding brightness temperature. These in-

dices are likely to be somewhat more effective at re-

solving convective development processes (Mu) than the

purely stratiform processes (Ms), such as frontal sys-

tems, because the latter do not maintain such a strong

correlation between visible cloud growth and precipi-

table water input.

TABLE 1. Variables and parameters used by the algorithm.

Variables and parameters Coordinate system and advection

R Total surface rainfall t Time in units of GEO image sequence

Rc Convective rainfall x GEO pixel location

Rs Stratiform rainfall xt21(x) Corresponding pixel location at time t 2 1

Mu Convective updrafts A Local area change ratio from t 2 1 to t

Ms Stratiform cloud growth Satellite inputs

w Cloud precipitable water R* Corrected MW rainfall

a Fraction of w becoming Rs in unit time Si GEO cloud indices

b Fraction of Mu converting to w Tb IR brightness temperature

e Fractional evaporation in unit time Tb 3 3 3 pixel average Tb

F Convective rainfall flux Tcld Cloud/no cloud Tb threshold

G Input flux to w Updating

B Fractional decay of w with unit time C Local scale factor applied to F and G

Calibration V Rainfall comparison window

R̂ Simple rainfall estimate g Rainfall comparison offset

ui Polynomial coefficients for F c(t1, t2) Covariance function of C with time

fi Polynomial coefficients for G
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The cloud decay term B is derived as a piecewise

linear function of S2, whereas the two flux terms F and G

are derived as polynomial expressions of a simple rainfall

estimate R̂ that combines S1 and S2 using the histogram-

matching technique of Marzano et al. (2004),

F 5 u
1
R̂(S

1
, S

2
) 1 u

2
R̂(S

1
, S

2
)2

1 u
3
R̂(S

1
, S

2
)3 and

G 5 f
1
R̂(S

1
, S

2
) 1 f

2
R̂(S

1
, S

2
)2

1 f
3
R̂(S

1
, S

2
)3. (4)

The cloud development model is seasonally calibrated in

two steps against corrected MW data from archived

overpasses. The first step computes R̂ and B. Here R̂ is

derived for growing clouds only and is set to zero for

decaying clouds (S2 . 0); B is calculated by identifying

those relatively rare pairs of MW observations in the

calibration dataset that are available for two consecutive

GEO time steps in a decaying cloud and then modeling

the associated rainfall decay ratios as a function of S2:

B(S
2
) 5

E[R* (x, t)jS
2
(x, t)]/E[R* fx

t�1
(x), t � 1gjS

2
(x, t)] S

2
$ 0

B(0) S
2

, 0.

�
(5)

Here E[j] is a conditional expected value computed

over all suitable pairs of data points in the seasonal

calibration dataset and R* is the 0.048 corrected inter-

polated MW rainfall. Notice that Eq. (5) is robust with

respect to uncertainties introduced by interpolating MW

rainfall, whereas the transformation of R̂ by Eq. (4) will

compensate for any scaling errors introduced by its com-

putation at full GEO pixel resolution.

The second step in the calibration process derives

(u1, u2, u3) and (f1, f2, f3) using multilinear regression

(Press et al. 1992). In this step, model outputs and

corrected MW data are aggregated to a coarse (0.128)

resolution before comparison to overcome difficulties

introduced by MW interpolation. If the parameter a can

be assumed to be constant, then computing aG as op-

posed to G simplifies the overall calibration procedure by

eliminating the need to determine a specific value for a.

This is a slightly problematic assumption in terms of cloud

physics, but it should have a relatively modest effect on

model outputs because B is specifically constructed to

model stratiform rainfall decay.

g. Local scaling of precipitable water fluxes
(LMODEL stage 2)

LMODEL implements a two-stage scheme to locally

update model input fluxes and then model states against

rainfall data from MW satellite overpasses. The first

stage of updating computes the ratio C between esti-

mated and MW-observed rainfall and uses this to locally

scale the precipitable water fluxes F and G,

C(x, t) 5

g 1 �
x2V

R* (x, t)

g 1 �
x2V

R(x, t)
, (6)

where R* is the corrected MW rainfall. Here C is com-

puted over a 0.288 area V, centered on the pixel being

updated, with each mean rainfall value offset by a small

increment g (0.1 mm h21). This serves to overcome the

spatial resolution mismatch between GEO and MW data

and to avoid stability problems resulting from the com-

parison of high-resolution noisy estimates, especially at

low rainfall rates. Here C is further constrained to lie

within the range of 0.2–5.0, to cater for problems of

zero rainfall and avoid extreme values.

Once C has been determined at MW overpasses, it

is interpolated to all GEO time steps along advection

streamlines using simple lognormal kriging (Rendu 1979).

This technique requires a covariance function c(t1, t2)

for the log-transformed field Z 5 ln C. Covariance

functions were calculated for July–August 2006 and

February–March 2007 from the test dataset. Both of

these curves could be effectively modeled using an ex-

ponential function

c(t
1
,t

2
) 5 e�ajt1�t2j. (7)

Notice that c(t1, t2) / 0 as jt1 2 t2j/ ‘ implies Z / 0 as

jt1 2 t2j/ ‘. This means that at long intervals from an

MW overpass, C will have a value of 1. The winter data

display a more persistent parameter covariance with

time, reflected in an exponential decay coefficient a 5

0.08 as opposed to a 5 0.18 for the summer dataset. This

is consistent with the predominantly convective nature

of the summer rainfall regime that would be expected

to display shorter correlation distances than the more

stratiform winter regime.

h. Model state adjustment using a Kalman filter
(LMODEL stage 3)

Stage 2 of the LMODEL algorithm locally scales

precipitable water fluxes to improve the match between

model outputs and available MW estimates. However,

modifying fluxes alone is not sufficient to optimally

match model outputs to observations because these

outputs are also dependent on precipitable water states.

This is particularly true in decaying clouds where the
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input fluxes are zero. LMODEL stage 3 applies a Kal-

man filter to update model state variables whenever

rainfall information is available from an MW overpass.

A Kalman filter is an optimal filter that improves both

the model states and outputs of a linear Gaussian system

at time steps for which external observations of model

output variables are available. Although the basic non-

stationary Kalman filter is guaranteed to yield optimal

estimates only in the case of Gaussian noise, the ro-

bustness of the procedure makes it useful in situations

where this assumption does not fully hold. Advanced

Bayesian filters have been devised specifically to cater to

nonlinear non-Gaussian systems (Arulampalam et al.

2002; Andrieu et al. 2003; Doucet et al. 2000; Moradkhani

et al. 2005). However, these algorithms introduce a

considerable additional computational overhead that

is problematic in an operational estimation procedure

designed to process large volumes of data. As demon-

strated by the case studies presented in Hsu et al. (2009),

a basic Kalman filter provides effective state updating

for the cloud development model, even in the presence

of the mixed, skewed error distributions associated with

rainfall estimates. Although it is possible to apply non-

linear transformations to model states and outputs to

bring the modeled system closer to the ideal assumed by

the Kalman filter, preliminary investigations along these

lines introduced significant difficulties and did not yield

any significant improvement in updating performance.

A standard nonstationary Kalman filter was imple-

mented to update the precipitable water state variable w

whenever a corrected MW observation was available. In

contrast with LMODEL stage 2, modeled and observed

rainfall was compared at the full 0.048 GEO pixel reso-

lution. The uncertainty introduced by interpolating MW

data to a higher spatial resolution was incorporated into

the measurement error term allowed by the Kalman

filter algorithm. A Kalman filter implementation addi-

tionally requires estimates to be made of the magnitude

of the Gaussian noise introduced at each model step and

an error covariance for the initial state. These values are

not easy to quantify. The prototype implementation

employed an error covariance increment with twice the

magnitude of measurement error covariance and an

initial state error covariance equal to the measurement

error covariance. Although the error model used in this

stage of the updating procedure may not be entirely

optimal, this did not impede the effective operation of

the Kalman filter.

3. Results

Two independent LMODEL calibrations were derived

for the CONUS dataset: July–August 2006 and February–

March 2007. These were used to generate unmodified

(stage 1) LMODEL outputs for July–August 2006 and

February–March 2007. Model outputs were generated at a

30-min temporal resolution and 0.048 spatial resolution

and then aggregated to coarser resolutions for validation

against ground radar data.

FIG. 5. Stratiform rainfall decay parameter plotted as a function of IR brightness temperature change

for July–August 2006 and February–March 2007.
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As described earlier, the model calibration deter-

mines three input functions: F, G, and B. Figure 5 shows

B(S2) curves calculated using the test dataset for July–

August 2006 and February–March 2007. Given the

considerable difference in precipitation regime between

these two periods, these curves are remarkably similar.

Figure 6 shows F(S1, S2) and aG(S1, S2) derived for the

July–August and February–March datasets. There is a

clear difference between the summer (largely convec-

tive) regime and the winter period dominated by strat-

iform rainfall. This is most noticeable in the presence of

significantly higher values for F in the summer period.

Figure 7 plots F/(F 1 aG) as a function of F 1 aG for

each regime. Here there is a remarkable similarity be-

tween the two curves, especially if MW coverage prob-

lems in the winter dataset are assumed to introduce

errors into the polynomial series coefficients. This sug-

gests that the seasonal variations in F and G may be

primarily related to changes in the local cloud and

rainfall statistics determining their total magnitude,

whereas their relative magnitudes may be relatively in-

variant. The similarities in both the relative values of F

and G and the absolute values of B between the summer

and winter regimes suggest that the model is at least

partially succeeding in its goal of separately representing

convective and stratiform rainfall processes.

Figure 8 shows the spatial path of a selected advection

streamline and plots model inputs, state, and output

along this streamline. The cloud-advection streamline is

FIG. 6. Model inputs plotted as functions of IR brightness temperature and brightness temperature change: (a) F and

(b) aG for July–August 2006 and (c) F and (d) aG for February–March 2007.

FIG. 7. Convective rainfall fraction F/(F 1 aG) plotted as a

function of total precipitable water input (F 1 aG) for July–August

2006 and February–March 2007.
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not a wind-based product and frequently oscillates to the

right or left of a smooth trajectory as it follows equiva-

lent points through expanding and contracting clouds.

Both model inputs and outputs along this trajectory

display a considerable degree of noise, attributable

to small errors in advection tracking and to unresolved

precipitation processes. However, there remains a clear

relationship between modeled and observed rainfall

that may be enhanced by aggregating the product to a

lower spatiotemporal resolution. The proportion of

stratiform rainfall generated by the model is relatively

high, and it is clear that in some convective systems the

storage term Rs in the cloud development model is

serving to provide a partial time delay for convective

processes in addition to representing the accumulation

of stratiform anvils.

Figure 9 shows instantaneous MW and LMODEL

stages 1, 2, and 3 rainfall maps for a single 30-min time

step occurring at 0415 UTC 26 August 2006 when heavy

storms appeared near the border of Nebraska, Iowa,

Missouri, and Kansas (Fig. 9a). The LMODEL stage 1

rainfall map shows that the spatial coverage of rainfall

was well captured by fixed-parameter LMODEL out-

puts but that heavy rainfall intensities in the storm were

underestimated. The LMODEL stage 2 rainfall map, on

the other hand, corrects the underestimation over the

high-intensity regions while overall rainfall areas remain

larger than those shown in the MW map. The stage 3

rainfall map shows not only improved rainfall intensi-

ties but also improved rain areas. This suggests that, as

intended, the parameter-updating stage serves to im-

prove the representation of convective cores, whereas the

FIG. 8. Example LMODEL output for 1915 UTC 15 Jul 2006: (a) IR image for 1845 UTC,

(b) IR image for 1915 UTC, (c) LMODEL rainfall output, (d) collocated MW rainfall,

(e) unprocessed MW rainfall, and (f) ground radar rainfall.
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Kalman filter refines wider rainfall areas by adjusting the

precipitable water available to create stratiform rainfall.

LMODEL validation is discussed in Part II of this

paper (Hsu et al. 2009). However, two sets of validation

statistics are included here because they address specific

elements of the model. The first set of statistics was

compiled to assess the effectiveness of the MW/cloud

collocation procedure. Table 2 compares LMODEL

products calibrated against corrected MW data to those

generated by a model run calibrated against MW satel-

lite rainfall data that had not been further processed.

Notice that the skill score is the percentage of correctly

identified events (rain or no-rain defined by a 0.1 mm h21

threshold.) The collocation procedure clearly improves

the optimality of the model calibration.

As mentioned earlier, aspects of the model calibration

show a remarkable degree of commonality between sum-

mer and winter calibration periods. To explore this further,

a new set of winter rainfall products were generated using

coefficients for F and aG derived for July–August com-

bined with R̂ recalculated from the February–March da-

taset (Table 3). Although this partially cross-calibrated

product does not perform quite as well as the model run

calibrated entirely using winter data, the margin be-

tween the two products is not very large. This suggests

that the transferred calibration functions may be to some

degree universal and indicative of underlying physical

processes—or at least their relative magnitudes.

4. Conclusions

A simple cloud development model has been pre-

sented, together with a set of empirical methodologies

that enable its calibration and dynamic updating against

imperfectly collocated MW satellite rainfall data. The

semi-Lagrangian conceptual model incorporates separate

representations of convective and stratiform processes,

and there is some indication that these process represen-

tations are at least partially transferable between meteo-

rological regimes. However, it is clear that the division

between convective and stratiform processes in the model

does not fully correspond to that prevailing in real

FIG. 9. LMODEL outputs along a selected advection streamline: (a) path of the streamline, (b)–(d) GEO satellite

inputs, 0.048 LMODEL rainfall outputs and corrected MW rainfall measurements plotted against time.
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precipitating systems, with the model apparently em-

ploying its ‘‘stratiform’’ precipitable water state variable

to introduce a time delay into some convective processes.

The model operates at full geostationary pixel resolution,

but it generates useful rainfall products at spatial resolu-

tions somewhat coarser than this resolution. The spatial

aggregation of rainfall outputs is not only required to re-

duce noise attributable to unresolved precipitation pro-

cesses but is also necessary to average out the effects of

satellite geolocation error, cloud parallax, and rainfall

shear. These uncertainties are accommodated in one di-

rection (calibration data to GEO imagery) by collocating

the rainfall to the clouds. However, no inverse procedure

exists to correctly position high-resolution model rainfall

outputs to correspond to expected surface rainfall.

The cloud development model is modular and may be

straightforwardly extended to incorporate additional sat-

ellite inputs. Multispectral GEO imagery is a clear can-

didate to improve model performance because additional

channels may be used to discriminate nonprecipitating

cirrus and reduce other misidentifications (Ba and Gruber

2001; Bellerby et al. 2000; Capacci and Conway 2005; Turk

and Miller 2005). In addition, cloud texture measures have

been shown to be effective inputs to GEO satellite rainfall

algorithms (Bellerby 2004; Hong et al. 2004).

The LMODEL updating procedures incorporate two

major stages, both of which use the limited MW rainfall

measurements available from LEO satellites. The first

stage involves the temporal interpolation of a scaling

parameter using data smoothing and geostatistical tech-

niques based on a covariance model describing the

decorrelation of rainfall anomalies with time along ad-

vection streamlines. The covariance function varies be-

tween the summer and winter seasons, where convective

and stratiform cloud precipitation systems, respectively,

predominate. The second stage updates precipitable wa-

ter states using a Kalman filter and appears to be robust

with respect to uncertainties and nonnormality in its as-

sociated error models, as evidenced by validation statistics

provided in Part II of this paper (Hsu et al. 2009). How-

ever, the construction and parameterization of the up-

dating procedures should be studied in more detail. For

example, the current Kalman Filter implementation as-

sumes process noise to be Gaussian. Future work will

further explore the uncertainty of precipitation estimation

arising from non-Gaussian process.

TABLE 2. Validation of two different 3-h LMODEL rainfall products against ground radar. Product C was calibrated against collocated

MW data. Product NC was calibrated against MW data that had not been further processed.

Resolution

Correlation (r) RMSE (mm h21) Bias (mm h21) Skill (%)

C NC C NC C NC C NC

July 2006

0.048 0.441 0.415 0.863 0.913 20.058 20.073 91.3 90.4

0.248 0.515 0.482 0.702 0.753 20.058 20.073 91.1 90.1

0.488 0.559 0.521 0.609 0.660 20.058 20.073 91.0 89.9

1.008 0.607 0.566 0.502 0.548 20.058 20.073 90.7 89.4

August 2006

0.048 0.479 0.450 0.837 0.882 20.055 20.074 91.2 90.4

0.248 0.564 0.526 0.674 0.723 20.055 20.074 90.9 90.0

0.488 0.616 0.573 0.579 0.629 20.055 20.074 90.6 89.7

1.008 0.679 0.632 0.463 0.511 20.055 20.074 90.3 89.2

TABLE 3. Validation against ground radar of 3-h LMODEL rainfall products for February and March 2007 calibrated using MW data for

two different periods (February–March 2007 and July–August 2006).

Resolution

Correlation (r) RMSE (mm h21) Bias (mm h21) Skill (%)

Feb–Mar Jul–Aug Feb–Mar Jul–Aug Feb–Mar Jul–Aug Feb–Mar Jul–Aug

February 2007

0.048 0.379 0.371 0.439 0.440 20.010 20.004 91.2 90.2

0.248 0.421 0.413 0.407 0.408 20.012 20.007 91.4 90.5

0.488 0.450 0.442 0.382 0.383 20.013 20.008 91.2 90.3

1.008 0.496 0.490 0.338 0.339 20.014 20.009 90.9 90.0

March 2007

0.048 0.478 0.462 0.510 0.518 20.014 20.012 91.4 90.4

0.248 0.523 0.506 0.465 0.475 20.016 20.014 91.5 90.5

0.488 0.556 0.539 0.427 0.438 20.017 20.015 91.4 90.4

1.008 0.608 0.593 0.365 0.374 20.017 20.016 91.3 90.3
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Although they take some time to describe, the

LMODEL cloud development model and updating pro-

cedures are not computationally demanding and may

be efficiently implemented on standard computer hard-

ware to process monthly datasets in a matter of hours.

Acknowledgments. The authors would like thank

NOAA CPC, NESDIS, NCEP, and the NASA TRMM

program for providing the satellite and radar data in the

study. Satellite and radar data processing was performed

by Dan Braithwaite, whose efforts are very much ap-

preciated. Anonymous referees are thanked for their

helpful comments. Partial funding support for this re-

search was made available from the NASA TRMM

(Grant NAG5-7716) and NEWS (Grant NNX06AF93G)

programs.

REFERENCES

Adler, R. F., and R. A. Mack, 1986: Thunderstorm cloud top dy-

namics as inferred from satellite observations and a cloud top

parcel model. J. Atmos. Sci., 43, 1945–1960.

——, and A. J. Negri, 1988: A satellite infrared technique to esti-

mate tropical convective and stratiform rainfall. J. Appl. Me-

teor., 27, 30–38.

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for

data assimilation. Mon. Wea. Rev., 129, 2884–2903.

——, and S. L. Anderson, 1999: A Monte Carlo implementation of

the nonlinear filtering problem to produce ensemble assimi-

lations and forecasts. Mon. Wea. Rev., 127, 2741–2758.

Andrieu, C., N. D. Freitas, A. Doucet, and M. I. Jordan, 2003:

Introduction to MCMC for machine learning. Mach. Learn.,

50, 5–43.

Arkin, P. A., and B. N. Meisner, 1987: The relationship between

large-scale convective rainfall and cold cloud over the

Western Hemisphere during 1982–84. Mon. Wea. Rev., 115,
51–74.

Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp, 2002: A

tutorial on particle filters for on-line nonlinear/non-Gaussian

Bayesian tracking. IEEE Trans. Signal Process., 50, 174–188.

Augustine, J. A., C. G. Griffith, W. L. Woodley, and J. G. Meitin,

1981: Insights into errors of SMS-inferred GATE convective

rainfall. J. Appl. Meteor., 20, 509–520.

Ba, M. B., and A. Gruber, 2001: GOES Multispectral Rainfall

Algorithm (GMSRA). J. Appl. Meteor., 40, 1500–1514.

Bellerby, T., 2004: A feature-based approach to satellite precipi-

tation monitoring using geostationary IR imagery. J. Hydro-

meteor., 5, 910–921.

——, 2006: High-resolution 2-D cloud-top advection from geosta-

tionary satellite imagery. IEEE Trans. Geosci. Remote Sens.,

44, 3639–3648.

——, M. Todd, D. Kniveton, and C. Kidd, 2000: Rainfall estimation

from a combination of TRMM precipitation radar and GOES

multispectral satellite imagery through the use of an artificial

neural network. J. Appl. Meteor., 39, 2115–2128.

Capacci, D., and B. J. Conway, 2005: Delineation of precipitation

areas from MODIS visible and infrared imagery with artificial

neural networks. Meteor. Appl., 12, 291–305.

Climate Prediction Center, cited 2008a: NOAA CPC global merged

full resolution IR data. [Available online at http://www.cpc.

noaa.gov/products/global_precip/html/wpage.full_res.html.]

——, cited 2008b: NOAA CPC merged microwave. [Available

online at http://www.cpc.ncep.noaa.gov/products/janowiak/

mwcomb_description.html.]

Doucet, A., S. Godsill, and C. Andrieu, 2000: On sequential Monte

Carlo sampling methods for Bayesian filtering. Stat. Comput.,

10, 197–208.

Ferraro, R. R., 1997: Special sensor microwave imager derived global

rainfall estimates for climatological applications. J. Geophys.

Res., 102, 16 715–16 736.

——, F. Weng, N. C. Grody, and L. Zhao, 2000: Precipitation

characteristics over land from the NOAA-15 AMSU sensor.

Geophys. Res. Lett, 27, 2669–2672.

Griffith, C. G., J. A. Augustine, and W. L. Woodley, 1981: Satellite rain

estimation in the U.S. High Plains. J. Appl. Meteor., 20, 53–66.

Grimes, D. I. F., E. Coppola, M. Verdecchia, and G. Visconti, 2003:

A neural network approach to real-time rainfall estimation for

Africa using satellite data. J. Hydrometeor., 4, 1119–1133.

Hong, Y., K. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation

estimation from remotely sensed imagery using an artificial

neural network cloud classification system. J. Appl. Meteor.,

43, 1834–1852.

Horsfield, N., 2006: Development of a mass balance approach to

modelling cloud lifecycles and rainfall using satellite obser-

vations. Ph.D. thesis, University of Hull, 353 pp.

Hou, A. Y., G. Skofronick-Jackson, C. D. Kummerow, and J. M.

Shepherd, 2008: Global precipitation measurement. Precipi-

tation: Advances in Measurement, Estimation and Prediction,

S. C. Michaelides, Ed., Springer, 131–170.

Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Pre-

cipitation estimation from remotely sensed information using

artificial neural networks. J. Appl. Meteor., 36, 1176–1190.

——, H. Gupta, X. Gao, and S. Sorooshian, 1999: Estimation of

physical variables from multichannel remotely sensed imagery

using a neural network: Application to rainfall estimation.

Water Resour. Res., 35, 1605–1618.

——, T. Bellerby, and S. Sorooshian, 2009: LMODEL: A satellite

precipitation methodology using cloud development model-

ing. Part II: Validation. J. Hydrometeor., 10, 1096–1108.

Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite

Precipitation Analysis (TMPA): Quasi-global, multiyear,

combined-sensor precipitation estimates at fine scales. J. Hy-

drometeor., 8, 38–55.

Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time

global half-hourly pixel-resolution infrared dataset and its

applications. Bull. Amer. Meteor. Soc., 82, 205–217.

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004:

CMORPH: A method that produces global precipitation es-

timates from passive microwave and infrared data at high

spatial and temporal resolution. J. Hydrometeor., 5, 487–503.

Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003:

Satellite rainfall estimation using combined passive micro-

wave and infrared algorithms. J. Hydrometeor., 4, 1088–1104.

Kummerow, C., and Coauthors, 2001: Evolution of the Goddard

Profiling Algorithm (GPROF) for rainfall estimation from

passive microwave sensors. J. Appl. Meteor., 40, 1801–1820.

Kuo, H. L., 1974: Further studies of the parameterization of the

influence of cumulus convection on large-scale flow. J. Atmos.

Sci., 31, 1232–1240.

Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV precipi-

tation analyses: Development and applications. Preprints, 19th

Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2.

[Available online at http://ams.confex.com/ams/Annual2005/

techprogram/paper_83847.htm.]

1094 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 10



Liu, Y., and H. V. Gupta, 2007: Uncertainty in hydrologic model-

ing: Toward an integrated data assimilation framework. Water

Resour. Res., 43, W07401, doi:10.1029/2006WR005756.

Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker,

1998: Life cycle variations of mesoscale convective systems

over the Americas. Mon. Wea. Rev., 126, 1630–1654.

Marzano, F. S., M. Palmacci, D. Cimini, G. Giuliani, and F. J. Turk,

2004: Multivariate statistical integration of satellite infrared

and microwave radiometric measurements for rainfall re-

trieval at the geostationary scale. IEEE Trans. Geosci. Remote

Sens., 42, 1018–1032.

Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian, 2005:

Uncertainty assessment of hydrologic model states and pa-

rameters: Sequential data assimilation using the particle filter.

Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604.

Nicholson, S. E., and Coauthors, 2003a: Validation of TRMM and

other rainfall estimates with a high-density gauge dataset for

West Africa. Part I: Validation of GPCC rainfall product and

pre-TRMM satellite and blended products. J. Appl. Meteor.,

42, 1337–1354.

——, and Coauthors, 2003b: Validation of TRMM and other rainfall

estimates with a high-density gauge dataset for West Africa.

Part II: Validation of TRMM rainfall products. J. Appl. Me-

teor., 42, 1355–1368.

Okamoto, K., T. Iguchi, N. Takahashi, K. Iwanami, and T. Ushio,

2005: The global satellite mapping of precipitation (GSMaP)

project. Proc. 25th Int. Symp. on Geoscience and Remote

Sensing, Seoul, South Korea, Institute of Electrical and Elec-

tronics Engineers, 3414–3416.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

1992: Numerical Recipes in Fortran: The Art of Scientific

Computing. 2nd ed. Cambridge University Press, 963 pp.

Rendu, J.-M. M., 1979: Normal and lognormal estimation. Math.

Geol., 11, 407–422.

Slater, A. G., and M. P. Clark, 2006: Snow data assimilation via an

ensemble Kalman filter. J. Hydrometeor., 7, 478–493.

Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and

D. Braithwaite, 2000: Evaluation of PERSIANN system sat-

ellite–based estimates of tropical rainfall. Bull. Amer. Meteor.

Soc., 81, 2035–2046.
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