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Abstract

This paper presents recent advances obtained by the authors in the development of enhanced
strain finite elements for finite deformation problems. Two options are discussed, both involv-
ing simple modifications of the original enhancement strategy of the deformation gradient as
proposed in SIMO & ARMERO [1992] and SIMO, ARMERO & TAYLOR [1993]. The first
new strategy is based on a full symmetrization of the original enhanced interpolation fields. The
second family of elements involves only the transpose part of the enhanced interpolation fields.
The new elements are formulated in plane strain, axisymmetric and full three dimensional
conditions. Both simple modifications lead to a significant improvement of the performance in
problems involving high compressive stresses, showing in particular a mode-free response, while
maintaining a simple and efficient (strain driven) numerical implementation. These properties
are demonstrated with a number of numerical benchmark simulations.

1. Introduction

The formulation of low order finite elements in the finite deformation range that ex-
hibit improved properties over the basic Galerkin approach is of the maximum interest. For
instance, the locking-free response in the incompressible limit and in bending dominated
problems, together with a good accuracy for coarse meshes, are some of the properties re-
quired for typical practical applications. A good response in localization problems is also
a desired feature in problems involving large inelastic strains. These properties have to be
combined with a simple numerical implementation, even in the general context of elasto-
plastic and fully coupled materials models, thus leading almost inevitably to formulations
based on a strain driven structure. The effectiveness observed by low order elements in this
general class of problems, especially in problems involving contact, has led to an intensive

research in this area.
Recently, SIMO & ARMERO [1992] presented the formulation of bilinear and trilinear

finite elements for two and three dimensional finite deformation problems, respectively,
that exhibit these properties. The proposed approach is an extension to the geometrically
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nonlinear range of the enhanced strain formulation originally proposed in SiMO & RIFAI
[1991] for infinitesimal problems, inspired to a large extent by the excellent performance
of the now classical QM6 element proposed originally in TAYLOR et al [1976]. The pro-
posed formulation consisted in a local additive enhancement of the deformation gradient,
leading altogether to a very simple and efficient numerical implementation. However, the
elements developed in this framework (denoted by Q1/E4, Q1/E5, and Q1/E9 for plane
strain, axisymmetric, and three dimensional problems, respectively) show hourglass modes
for large strains, especially in compression, as reported in SIMO & ARMERO [1993]. An
improvement of the original formulation has been presented in SIMO, ARMERO & TAYLOR
[1993]. A completely locking-free element in 3D, referred to as QM1/E12, was proposed
in combination with an improved quadrature rule. Even though initial numerical tests
showed a significant improvement with the modified integration rule even in the plane
strain case, the hourglass modes persisted as more recent analyses have shown. In this
respect, the analysis presented in WRIGGERS & REESE [1994] identified the appearance
of a (non-physical) zero eigenvalue at a certain deformation of the compression of a single
quadrilateral element. The problem that these authors considered, involving an homoge-
neous state of strain of a hyperelastic material, allowed the analytical characterization of
this mode. Several authors (SouzA et al [1995], CRISFIELD et al [1995] among others)
have reported similar performances posteriorly.

Given these difficulties, several authors have proposed alternative elements based on
different enhancement strategies. For instance, NAGTEGAAL & FoOx [1995] describe the
incremental enhancement of the deformation gradient implemented recently in ABAQUS,
whereas CRISFIELD et al [1995] propose the enhancement of the right stretch tensor as
an alternative. While the former appears to exhibit the same drawbacks as the original
formulation, the latter approach appears to lead to an improved performance at the cost
of a rather difficult and intricate numerical implementation. In this paper, we propose
a simple modification of the original formulation presented in SIMO & ARMERO [1992]
that leads to a mode-free element for the compression test problems considered so far,
while maintaining a simple numerical implementation. As described in detail below, the
modification proposed herein involves simple modifications of the enhanced interpolations
fields presented originally in this last reference.

However, despite these improved properties in compression, hourglass modes have
been observed at large tensile strains in inelastic models. These modes are also exhibited
by the original enhanced formulation in SiMO & ARMERO [1992], SIMO, ARMERO &
TAYLOR [1993] as well as by the aforementioned alternative approaches in NAGTEGAAL et
al [1995] and CRISFIELD et al [1995]. The origin of these difficulties has been traced to
the appearance of a (physical) negative axial stiffness, which is transmitted to the bending
modes, leading to a classical hourglass pattern. negative stiffness is associated to the
stretching mode. Even though the origin of these modes has been fully characterized,
further research is required for the formulation of elements that avoid this problem. An
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possible alternative involving an hourglass control parameter is proposed herein.

An outline of the rest of the paper is as follows. Section 2 describes the enhancement
of the deformation gradient for the proposed elements. Section 3 includes the deriva-
tion of the (weak) finite element equations. The finite element equations, including their
linearization, are described in detail for the model problem of finite deformation hypere-
lasticity. Section 4 includes a number of representative numerical simulations that assess
the performance of these elements in elastic and inelastic simulations. Both two and three
dimensional problems are considered. Finally, conclusions are drawn in Section 5.

2. The Assumed Enhanced Deformation Gradient

Denote by 2" a discretization in quadrilateral finite elements if ngj, = 2 or brick
elements if ngim = 3 of the domain 2 C R"™¥™ occupied by the reference placement of a
solid B. Let " : 2" — R™™ be a piecewise (tri)-bilinear isoparametric interpolation of
the deformation @(X) for X € 2, that is, at the element 2" we have

Mnode
P (X)= ) (Xa+dgN*o X! (2.1)
A=1

where X = X (¢) denotes the isoparametric map X : [ — 0" from the parent domain
[ := [—1,1]™i=. Here, the vectors d4 € R"*™ denote the unknown n,,4. nodal displace-
ments (npode = 4,8 for 2D and 3D, respectively), X4 € R™™ are the nodal reference
coordinates, and N4 are the standard isoparametric shape functions, that is,

NAE) = 1+ £+ ), forg= () eD, (22)
in 2D, and
NAE) = S+ M+ (1 +¢A0), foré=(EmO e, (2:3)

in 3D, where (€4,74) and (¢4,74,¢*) for A = 1,m,04. are the vertices of the parent
domain [].
Our point of departure is the three-step procedure described in SIMO, ARMERO &

TAYLOR [1993] for the construction of an additive enhancement of the deformation gradient
F := GRADx ¢ at the element level. This procedure results in the expression

F =GraDx@"+ F , (2.4)
———— e

conforming  enhanced
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with the enhanced part F' given by

F=F,F with F= JJ?J FJ! (2.5)
Here, J, denotes the Jacobian of the isoparametric map X = X (&) at the centroid, i.e.,
T=30) =55 T=T06),_ (26)
with determinants denoted by
J= () = At T de=i(E)],_ - (2.7)
and F, denotes the conforming part of the deformation gradient at the centroid
F, = GRADgp" := GRAD x " £co (2.8)

Note that the presence of F, in (2.5) assures that the final deformation gradient (and thus
the final finite element formulation) exhibits the proper transformation properties under
change of observer, leading then to an objective formulation. The enhanced interpolations
F = F(£) are defined in the parent domain [], and assumed of the form

Nenh

F(g)= > F'(€) I, (2.9)
I=1
with negn enhanced parameters I'7 € R (I = 1,7 ). The notation
GRADg[] := GR,/-\DXH’!€ . (2.10)
and ,
] To . . ‘
F .= J;J(,IPIJO ! I = I, Nenn (211)
J
will be used in the forthcoming developments.
With this notation in hand, the original Q1/E4 element is recovered as
B E 0 0 0 0 n 0 0 5
]F—_Fl[o 0 + Iy £ 0 + Iy 0 0 + Iy 0 (2*1&4)

for the (unkunown) enhanced parameters It € R (I = 1,4) in plane strain problems, and
similarly for the Q1/E9 brick in 3D. The QM1/E12 element is obtained by adding the

three extra volumetric modes
En 00 00 n¢ 0 0
Fiog112=1w0 | 0 &y 0| +I1n | 0 &€ 0| +71270 nC 0O (2.13)
0 0 ¢£n 0 0 & 0 0 ¢
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together with a modification of the isoparametric gradients of the conforming part; see
SiMO, ARMERO & TAYLOR [1993] for details. It is to be noted that the elements proposed
in SiMO & ARMERO [1991] are based on an enhancement of this form. In fact, combining

(2.5) and (2.12), we can write
2
F=) a;0G", (2.14)
I=1

where oy ;= F,I'1 € R™™ (I =1,2) with

_ |1 |13 -
1_'1 = [FQ} N FQ = [F4:! . (210)

and GT = %J{TGRADgﬂ” (I =1,2) where
N'=1(2-1) and N? = Ln* =1y, (2.16)

i.e. the Wilson’s shape functions. Similar construction holds for the enhanced Q1/E9 brick
in 3D, as proposed in this last reference.

Two modifications of the above enhancement procedure are proposed herein:

i. Option I. We first consider the symmetrization of (2.12), that is,

F =T [g 8}4—& {2 g}—ué [S gJer[g 2] (2.17)

and similarly for 3D. We denote the resulting finite elements by Q1/ES4 and Q1/ES9,
respectively, and QM1/ES12 if the extra volumetric modes (2.13) are added.

ii. Option II. Numerical experiments show that the above modification suppresses
the hourglass modes that appear for the Q1/E4 quad in compression. However, a stiff
response of the element has been observed in bending dominated problems, as reported
in Section 4.3. To avoid this drawback, the following basis of the enhanced deformation

gradient is considered

F=1I {g 8J+p2 [8 g%n&[g 8]+F4[8 SJ (2.18)

and similarly for the three dimensional case. Furthermore, it has been observed numer-
ically that the resulting elements lead to improved results in general distorted reference
configurations if the transformation rule (2.5) is replaced by

F= %?-J;T FJ', (2.19)
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We consider then this transformation in what follows for this enhancement, so (2.11) is
modified accordingly for this case, leading to P %QJ; TF'J-1. The enhanced inter-
polations (2.18) are the transpose of the original (2.12), so the full symmetrization of the
Q1/ES4 element is not required. The resulting finite elements are denoted by Q1/ET4
and Q1/ET9 for 2 and 3 dimensional problems, respectively, and QM1/ET12 is the extra
volumetric modes (2.13) are added.

It is important to note that for both options, the resulting enhanced deformation
gradient F cannot be written as the sum of the rank-one enhancements as in (2.14). As
it is seen in the next section, this fact leads to a numerical implementation involving non-
sparse matrices in the enhancement contributions, contrary to the original formulation in

SiMO & ARMERO [1992] based on (2.15).

Remark 2.1.
In the same way, we consider the Q1/ES5 enhanced quad for axisymmetric analyses

defined by

E—E 0 0] 0 £-£ 0 0 =n—7 0
F=I7{ 0 0 0|+ 0 O0|+Is5|n-75 0 0
0 0 0 | 0 0 0 0 0 0
0 0 0] [0 O 0
+I, 10 n—7 0| +1I5({0 0 JO() , (2.20)
0 0 0] |0 0 &n=ote

the symmetrization of the original enhancement, where ¢ and #j are given by

s 1 4 1
Y eRr(gydedn and = —— e
‘ v[DR(ﬁ)dgd”/E]é (e)dedn and me(é)dédn/m” (& )atdn,

(2.21)

as proposed in SIMO & ARMERO [1993]. The enhanced interpolations

E—& 0 0] 0 £€-€ 0 0 0 0
F=I7| 0 0 O0|+I{0 0 O0|+I3|np—3 0 0
0 0 0] 0o 0 0 0 0 0
0 0 0] [0 0 0
+I, |0 -7 0| +15]0 0 Qg :
0 0 0] S5 RE

transpose of the original Q1/E5 enhancements, define the Q1 /ET5 element. |
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For later use, we introduce the following notation for the finite element spaces as-
sociated to the interpolations described in this section. Denote by 4" the finite element

space

U = " given by (2.1) for dg € R™™ (A=1,n,04.) and " = ¢
¥ g 3 ) ¥ ¥

for imposed essential boundary conditions ¢ on on [, 4},19 C 00" We denote by U" the
associated linear space of test functions satisfyving homogeneous boundary conditions on
I (’;) Similarly, we introduce the linear space

Fh = {]?’ given by the considerations above for 7 € R (I:Lnenh)} , (2.23)

where n.,1 denotes the total number of assumed enhanced modes.

3. The Governing Equations

We develop in this section the finite element equations for the enhanced finite ele-
ments proposed in the previous section. We consider the model problem of finite hypere-
lasticity. The final equations are obtained in this case as the weak variational equations
associated to a three field variational principle as proposed in SIMO & ARMERG [1992]
Practical issues related to the numerical linearization, including the consistent lineariza-

tion, are described in Section 3.2.

3.1. The enhanced three-field variational formulation

Consider the case of a hyperelastic material characterized by a stored energy function
W = W (X, F) in terms of the deformation gradient F'. This function is assumed to satisfy,
by frame indifference,

W(X,F)=W(X.,C), where C:=F'F, (3.1)
for all F ¢ GLZ‘F&”‘, the group of ngim X 7gim Mmatrices with positive determinant. The
nominal stresses (first Piola-Kirchhoff stress tensor) P are then given by the standard
expression

P=0pW. (3.2)

At the discrete level, we introduce an interpolation of these stresses P* € P", for some
interpolation linear space, left undetined at this stage.

In this context, consider a Hu-Washizu type variational formulation of the nonlinear

elastic boundary value problem involiving the deformation @" € Y™, enhanced deformation
gradient F € F h and the nominal stresses P"* € P, defined by the three-field functional

(", F, P = / [W(F")+ P": [craDx " — F"]] d2 + H.0i(") (3.3)
2k }
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where F = Fh(cph,lﬁ“) 1s given by expression (2.12). Here, [1.,; denotes the potential
energy of the external loading, assumed conservative, and given by

Hepi(@") = - N B odn - . T Qdl

for a nominal body force B: 2" — R™™ and imposed nominal surface traction T F,]}l’ —
R"™4= gver part of the boundary ]ﬂ% C 902" The usual assumptions

TpUlqp =010, and Tpulp =0 (3.4)

are considered. Without loss of generality, the explicit dependence of W (X, -) on the the
particle X (inhomogeneity) has been omitted in (3.3) and in the forthcoming considera-
tions. Inserting (2.12) in (3.3), the latter can be written

(", F, P = / [W(F’?) - P";ﬁh} A2 + Hege (") (3-5)
. Qh

where F" = F(o" ) is given explicitly in equation (2.5), and considerations that follow.
Evaluation of the first variation of the functional (3.3) lead after standard manipu-
lations to the following set of three weak equations
/ {k)FW: [GRADx " + GRADGI@" F] — P" : GRADO" ]F’J df2
J 2
— G (0") =0 V" et (3.6.q)

/ [0pW — P" . F, 6F| d2 =0 YdFe Fh, (3.6.)
h

CPMF,Fd2 =0 YVéPMeP". (3.6.0)
R Qh

We next impose the condition

—~
E’,O
-3

Sa—

P arapgp" Hd2=0 VYP'ePh vHe F",
fzh
for any " € U". Since, any function d¢” in the linear space U" can be expressed as the
difference of two functions of the affine space U", satisfaction of the condition (3.7) also
implies its satisfaction for any de" € U/, Condition (3.7) can be understood as generalized
orthogonality conditions between the linear spaces P" and F", depending on the space
GRADOZIg’“. We note that the imposition of the condition

/ FdR2=0 VFeF", (3.8)
2k
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on the enhanced interpolations F for each element 2" assures the satisfaction of (3.7) for
at least piecewise constant nominal stresses (P"| on = constant), as a simple calculation
shows. Condition (3.8) implies then the satisfaction of the patch test in nominal stresses
and, by assuming the transformation (2.5), or the alternative transformation (2.19), it

reduces to

/ng:o. (3.9)
Y

This last condition is satisfied by all the interpolations introduced in Section 2.

Making use of the conditions (3.7), the weak equations (3.6) reduce to
/ OpW: [GRADX&p" + GRADgI" fﬁ‘] d? — G (0™) =0 ¥ S e U, (3.10.a)
2h
/ OpW:F, sFd2 =0 YJ§Fec F". (3.10.b)
2k

with (3.6.c) satisfied exactly. In writing equation (3.10.b) we have made explicit use of the
piecewise form of the interpolations F at each element 2" As described in the following
section, this observation carries important consequences in the numerical implementation
of the proposed elements. As occurs in the original enhanced formulations, the interpolated
stress field P" drops from the formulation, and does not need to be specified explicit,
being recovered as a post-processing if required. See SIMO & RiIFal [1991] for variationally

consistent stress recoveries.

3.2. The finite element equations

An efficient numerical implementation of the weak equations (3.10) is accomplished
by expressions the different contributions in terms of objects in the current configuration
@h(Qh). This leads to sparse matrices in the most part. To this purpose, we introduce
the Kirchhoff stresses :
7= pW(F") Fh" (3.11)
which are symmetric after a simple calculation using (3.1) shows. The vector notation

-~

7= [0 722 712] (3.12)

for 2D (and similarly for 3D) is introduced. We also consider the notation

GRADX|] := GRADx[] + F GRADG[], V[]:= F-TGrADR]], (3.13)

and ,
Vol = FO“TGRADO[-] (= V[] ), (3.14)
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following as close as possible the notation in SIMO, ARMERO & TAYLOR [1993].

i. The finite element residual. With this notation at hand, the weak equations (3.10)
lead to a the following set of finite element equations

Tielem
rR:= A / b1 d2 — fopy =0
- N wa ) _
e (3.15)
Teenh = / g Fd2 =0
J 02k
The linearized strain operator b 1s defined as
A E
b=[pl ... p"esc] | where b= | 0 NA for A =1, "u0de , (3.16)
N2 N2

where the [N N2]7 = VN*. The linearized enhanced strain operator is defined as

~i

111
! menh ] where ¢! = Gy for I =1, nenn (3.17)

g:'-'» [g ——i
Giy + G

where we have introduced the notation

11 \I
C7l]‘ GJQ

i s [ . [ I
alooal
21 792

} —F,F F!. (3.18)

ii. The stiffness matrix. The set of nonlinear equations (3.15) are solved using a

Newton-Raphson scheme, leading to the linearized equations

R e
- Koo Koo A Tc(zi)h 31

for the increments of the nodal displacements Ad = d*+1 — d(*) and and enhanced
parameters A = 6+ — () at jteration (k).

As usual, the tangent matrix consists of a material and geometric part,
[Kdd Kda] _ [Km,,dd Km@aJ + [Kg,dd rKg?daJ (320)
K@d Kaav Km,ad Km,cm Kg,a,d Kg,aa

material geometric
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The expressions for the element contributions to the material part can be written as

A, B =1, 7ncde

m,dd ~

T . .
KAB — / bA C bB d(} c R”dxm XTedim .
ar

‘ T J .
Kvi?iaa = / 9] cg’ d2eR, I, J =1 Nenn , (3.21)

Qg

T . _
73,]da - / bt e gJ a2 e R s A =1, nyode J = 1, Menn ,
22
where the spatial tangent ¢ 1s given in components as
P g g P

L0 abed a b pe pd ~ABCD ‘

C = 2507 and c = PO ANFY g F A F DC | T, (3.22)

with the corresponding matrix version following the standard procedure. The geometric

contributions to the stiffness matrix are given by

ffd UNA - +VNP a0l 1, A, B =1 nyode
T J o
K;fm = G' .6 do, I.J =1 nepn ,
o J ok
. B . o
KM, = / [G" r VNA+rG' v, ,NA J! as | A=1,7n0de J = 1, Nann
o J b

(3.23)
where 1 is the n4im X N4y identity matrix. Note that for the hyperelastic problem under
consideration, the stiffness matrix is symmetric (i.e., K,q = Kg;)

The enhanced parameters [ (I = 1,7q,,) are defined independently for each ele-
ment, allowing their elimination at the element level. The system (3.19) is then reduced

by static condensation to

Ko Ag — B ) (3.24)

where the effective stiffness matrix K* and effective residual B**) are defined as

Thelem

K" = A [Ku— KK Ko (3.25)
e=1
Telem

R = A [R- KiK. 'ren] (3.26)
e=1

Here, the symbol A5 denotes the assembly over the different elements, and all the
arrays in the right-hand-side of these expressions refer to their elemental counterparts.
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FIGURE 4.1. Boundary conditions for the constrained single ele-
ment test, plane strain.

4. Representative Numerical Simulations

The goal of this section is to assess numerically the performance of the enhanced finite
elements proposed herein. A number of benchmark numerical simulations are presented,
involving plane strain, axisymmetric and three dimensional problems with elastic and
elasto-plastic models. Comparisons with previous and alternative enhanced formulations

are included.

4.1. Homogeneous compression tests

Homogeneous compression tests are performed with different configurations. First,
tests involving a single element are performed under two different sets of boundary condi-
tions. The results are reported in Section 4.1.1 and Section 4.1.2. Homogeneous compres-
sion tests with more general multi-element meshes are considered in Section 4.1.3.

4.1.1. Constrained single element test

We first consider the one element test described in WRIGGERS & REESE [1995]. The
test consists of the homogeneous compression of a single bi-unit element under imposed
displacement in plane strain conditions. The prescribed boundary conditions are depicted
in Figure 4.1. A compressible Neo-Hookean hyperelastic model with the stored energy
function
W = ZliA (J2=1-2InJ)+ w;v/z, [trb — 3] — plnJ (4.1)

is assumed. The material parameters A = 10° and p = 20 are considered, leading to a

nearly incompressible response.

Static condensation of the enhanced degrees of freedom is performed at the element
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FIGURE 4.2. Constrained single element test. a) Eigenvalue cor-
responding to the stretching mode. b) Eigenvalue corresponding to
the bending mode vs, horizontal stretch (different scales are used).
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|
JE

FIGURE 4.3. Boundary conditions for the unconstrained single
element test. Plane strain (left) and three dimensional case (right).

level, leading to a total of two free degrees of freedom in this case. The two eigenvalues of
the resulting linearized system for the original enhanced Q1/E4 and the newly proposed
Q1/ES4 and Q1/ET4 quads are plotted versus the horizontal stretch A; in Figure 4.2. More
specifically, Figure 4.2.a depicts the eigenvalue w; corresponding to the stretching mode,
whereas Figure 4.2.b shows the second eigenvalue w», associated to the bending mode. The
analytical evaluation of the stiffness matrix presented in WRIGGERS & REESE [1994] de-
tects the appearance of a negative eigenvalue for the Q1/E4 element at A; = 1.6344 (39%
compression) for this example. This eigenvalue is observed also in our numerical experi-
ment. In contrast, no negative eigenvalues appear for the Q1/ES4 and Q1/ET4 elements.
The eigenvalue wy remains positive for all Aj. The same eigenvalue w;, corresponding to
the stretching mode, is observed for the Q1/E4, the Q1/ES4 and Q1/ET4 elements, as
shown in Figure 4.2.a. This mode involves a constant strain which is exactly captured by

all the elements, since all pass the patch test.

4.1.2. Unconstrained single element test

The test is repeated with the boundary conditions depicted in Figure 4.3. The upper
left node is released in the horizontal direction, allowing the appearance of hourglass modes.
The three dimensional counterpart of this problem is also considered; see Figure 4.3. The
compressible Neo-Hookean hyperelastic model defined by the stored energy function

1 . 1
%% 1 (InJ)? + S [trb — 3] — plnJ (4.2)

.,:)-J

ot

is assumed in this case, with A = 40000 and p = 80.2, leading to nearly incompressible
response. This problem has been considered previously in CRISFIELD et al [1995]. The
element is compressed by an imposed displacement on the upper nodes. An eigenvalue
evaluation is performed at the end of each increment on the condensed element stiffness

matriz.
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FIGURE 4.4. Unconstrained single element test. Eigenvalue of the
bending mode orthogonal to the compression direction. (A = 40000,

uo= 80.2)

FIGURE 4.5. Constrained single element test. Hourglass mode
with negative eigenvalue for the Q1/E4 element.
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TABLE 4.1. Unconstrained single element test. Compression stage
at which the first non-physical negative eigenvalue appears for dif-
ferent elements.

Element % Compression
Q1/E4 32%
Q1/ES4 none
Q1/ET4 none
Q1/E4-C 28%
QO1/E4-U 64%

i. The plane strain case. The three zero eigenvalues corresponding to the rigid body
modes (two translations and one rotation) are observed for the unloaded configuration and
the three elements, Q1/E4, Q1/ES4 and Q1/ET4. Upon loading, only two eigenvalues re-
main zero. The eigenvalue corresponding to the infinitesimal rotation turns negative under
compression (positive under tension), as expected from physical considerations. The next
eigenvalue is plotted versus the imposed vertical stretch for the Q1/E4 and Q1/ES4 ele-
ments in Figure 4.4. The original Q1/E4 element exhibits a second negative eigenvalue at
32% compression. The associated eigenvector corresponds to the hourglass mode (bending
mode) orthogonal to the compression direction. This eigenvector s shown in Figure 4.5.
The same curves are obtained with either 2x2 or 3x3 Gaussian quadrature rules and the
5-point quadrature rule proposed in S1MO & ARMERO [1992] for this case involving an ho-
mogeneous deformation. The negative eigenvalue is indicated in the solution process with a
the appearance of a negative pivot in a direct solution of the algebraic system of equations.
This negative eigenvalue is not observed for the symmetrically enhanced Q1/ES4 element
and the Q1/ET4 element at any stage of the loading process. In contrast, the Q1/ES4 and
Q1/ET4 elements show the proper behavior in this single element compression test.

The performances of alternative enhanced formulations under plane strain compres-
sion are summarized in Table 4.1 for this benchmark problem. The element referred to as
the Q1/E4-C involves the enhancement of the right Cauchy-Green tensor as

C=C+C, (4.3)

whereas the Q1/E4-U element is based on an enhancement of the form
F=F+ RyU . (4.4)
Here, C = FTF is the compatible right Cauchy-Green tensor, and Ry is the rotation

tensor associated to the compatible deformation gradient F at the center of the element.
The enhanced parts C and U are symumetric enhancement tensors having the same form
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as the Q1/ES4 enhancement tensor F in equation (2.17). All elements are numerically
integrated with 3x3 point Gaussian integration rule. In the unloaded configuration all
elements exhibit the same stiffness matrix, reducing in the infinitesimal case to the QM6
element presented in TAYLOR et al. [1976]. All the elements, except the proposed Q1/ES54
and Q1/ET4 quads, exhibit a non-physical negative eigenvalue at a certain stage.

ii. The three dimensional case. The same performances are observed in the three
dimensional case. The six zero eigenvalues corresponding to rigid body motions in the un-
loaded configuration reduce to three upon loading. The three dimensional Q1/E9 element
exhibits a negative eigenvalue corresponding to a three dimensional bending mode at 32%
compression. A second negative eigenvalue appears at 44% compression, being related to
a second three dimensional bending mode. The symmetric enhanced three dimensional
Q1/ES9 and Q1/ET9 elements behave properly in this test. No negative eigenvalues asso-
ciated with bending modes could be detected at any compression state. It is to be noted
that a negative eigenvalue corresponding to a twisting deformation in three dimensions
appears in both elements. This twisting mode with negative eigenvalue is also present in
the regular non-enhanced three dimensional Q1 element, and is then not related to the

enhancement of the element.

4.1.3. Multi-element homogeneous compression test

Homogeneous compression tests are performed with more general multi-element dis-
cretizations in plane strain. A 1 x 1 block is considered. Only the right half of the block is
discretized using 200 Q1/ES4 elements. Symmetry boundary conditions are imposed along
the vertical center line. The bottom of the block is restrained in the vertical direction only,
with an imposed vertical displacement at the top. The 3 x 3 Gaussian quadrature rule is
considered. The same material model as considered in the previous section, characterized
by the stored energy function (4.2), with the same material properties A = 40000. and

i = 80.2, is assumed in this case.

The block is compressed to an homogeneous state of deformation. The load deflection
curve is depicted in Figure 4.6. During the upsetting an eigenvalue calculation on the
global equation system containing the enhancement degrees of freedom is performed after
the convergence for each increment is achieved. Up to 49.6% compression all eigenvalues
of the system remain positive. At this stage one eigenvalue turns negative indicating a
physical bifurcation. The eigenvector associated to this eigenvalue corresponds to the first
bulging mode as shown in Figure 4.7.a. Shortly after a second negative eigenvalue appears
at a deformation stage of 49.76%. This eigenvalue corresponds to the second bulging mode
shown in Figure 4.7.b. At a deformation stage of 56% compression the third negative
eigenvalue appears. The corresponding eigenvector is shown in Figure 4.7.c. A fourth
negative eigenvalue appears at 76% compression; the corresponding eigenvector is depicted
in Figure 4.7.d. The next negative eigenvalue is obtained at 92% upsetting followed by
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FIGURE 4.6. Load-deflection curve of the hyperelastic block com-
puted with the Q1/ES4 and Q1/ET4 elements.

the sixth negative eigenvalue at 96%. At a deformation stage of 99% upsetting seven
negative eigenvalues are present. All of them correspond to physical bulging patterns. No
eigenvectors with negative eigenvalues showing hourglass patterns could be detected with
the Q1/ES4 or Q1/ET4 elements.

TABLE 4.2. Material properties.

Bulk Modulus K 164.21 GPa
Shear Modulus 7 80.1938 GPa
Initial Flow Stress Yo 0.450 GPa
Saturation Flow Stress vy 0.715 GPa
Saturation Exponent ) 16.93

Linear Hardening H 0.12924 GPa

4.2. Upsetting of an elasto-plastic block

This example corresponds to the upsetting of an elasto-plastic block in plane strain.
A square block of 6.35 x 6.35 mm? is considered. Only the right half of the block is
discretized with 200 Q1/ES4 and Q1/ET4 element, respectively. Symmetry boundary
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FIGURE 4.7. Bulging eigenvectors superposed on the deformed
configuration of the rubber block at a) 49.60%, b) 49.76%, ¢) 56.%.

d) 76.%, compression.
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FIGURE 4.8. Load-deflection curve of the elasto plastic block,
obtained with the Q1/ES4 element.

conditions are imposed along the vertical center line. The bottom of the block is restrained
in the vertical and horizontal directions, leading to a non-homogeneous state of stress after
loading. The block is loaded with an imposed displacement on the top base. A rigid
surface with a frictional coefficient of 0.3 is located at the bottom to simulate a forming
tool. In order to examine the influence of the quadrature rule, the integration is done
by using the 2x2 point Gaussian integration rule, the 3x3 point Gaussian integration
rule and the 5 point integration rule. The finite strain plasticity model based on the
multiplicative decomposition of the deformation gradient described in SiMO & ARMERO
[1992] is considered. The assumed material properties are summarized in Table 4.2.

The computed load-deflection curve for this case is depicted in Figure 4.8 for the
2x2 and 3x3 point Gaussian integration rules. The behavior of the element with 3x3 point
Gaussian integration and the 5-point integration proposed in SIMO & ARMERO [1992] are
nearly identical. Even though the influence of the quadrature rule in the load-deflection
curve is negligible, significant differences are observed in the deformed geometry when
using 2x2 or 3x3 point Gaussian quadratures, as becomes apparent in Figure 4.9. The
solution obtained with the Q1/ES4 element is shown. The 3x3 point and the 5 point
integration rules give again nearly identical results, and so it does the Q1 /ET4 element.

Figure 4.9 depicts the deformed configuration of the block at 25%, 35%, 50% and
74% upsetting for the 2x2 and 3x3 point Gaussian integration rules. With both integration
rules no hourglassing can be observed even under high compression. However, with the
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FIGURE 4.9. Deformed geometry of the elasto plastic block at a
deformation stage of a) 25%, b) 35%, ¢) 50%, d) 74%, upsetting,
for the Q1/ES4 element with the 2x2 point Gaussian integration rule
(left column) and the Q1/ES4 element with the 3x3 point Gaussian
quadrature rule (right column). The 5-point guadrature rules leads
to results nearly identical to the 3x3 rule,



[
[}

Recent Developments in Enhanced Strain Finite Flements

48
Lo
ZZ22
ZZ222
=ZZZ
2227
© ] Z227
-~ e 227
T 2227,
LT ZZZ%7
Beesccczecczs -
1 1
R -
T4 wRse Ny f//%
T e e 77 Z
T4 T AT 777 4
AT ;j/;jjjjf 72
_ [
sSEEsEsrssesr2eZ227
sSwl el el esrersss 227
pBgPy L1 1A [ 7z
/////’////////////5/
goEssrreiciozsss
AT AT T
L - AT et
A1 T AT
I AT AT
VAT G A )
Py gty 1T 114004
BSRS89 52757
T4 2%
Sy lr L7 777%7%
Bl ps 55000057777
09 5ePns5955%22%%7
3 AT
A AN
$p5%5500277
g5 %
/j/ // 1
%
e
//// s
¢ 1
o7
g

FIGURE 4.10. Cook’s membrané problem. Initial configuration
(32 x 32 element mesh)

3x3 point Gaussian integration rule. the element behaves rather stiffly. As observed in
Figure 4.9, the element in the lower right corner resists to bend into a triangular shape,
but a 907 turn is finally accomplished at the end of the simulation. This stiff behavior
is not so accused for the 2x2 point Gaussian integration rule. This difference response of
the corner element leads to different sliding behavior at the contact interface, as observed
in Figure 4.8. Using the element Q1/ES7 with three additional enhancement degrees of
freedom this stiff response is diminished. It is to be note again that no hourglass modes
appears in the simulation, leading to a smooth pattern of the deformation along all the

loading process.

4.3. Cook’s membrane problem

We next consider the benchmark test for bending dominated problems in plane strain
referred to as the Cook’s membrane problem. Figure 4.10 depicts the initial configuration
of the problem. The problem consists of a tapered panel clamped on one end and subjected
to a shearing load on the opposite end. Asin SIMO & ARMERO [1992], two material models
are considered. First, the Neo-Hookean model defined by the stored energy function (4.2),
in regularized form, with material parameters A = 40.0942-10* GPa and p = 80.1938 G Pa,
leading to a quasi-incompressible response. Second, a Jp-finite strain plastic model as in
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FIGURE 4.12. Axisymmetric necking of a circular bar. Relative
ratio of the current radius at the center versus relative elongation.

SIMO & ARMERO [1992] in regularized form is considered. See this last reference for
details, and Table 4.2 for the value of the assumed material parameters.

Figure 4.11 summarizes the convergence of the finite element solutions computed
wit the Q1/E4, Q1/ES4 and Q1/ET4 elements. The vertical tip displacement (upper left
corner) obtained for a applied load of 100 in the elastic case, and of 5 in the elastoplastic
case, is plotted versus the number of elements per side. From these results, we observe
that the Q1/ES4 results in a stiffer response in bending dominated problems for coarse
meshes. This drawback is not shared by the Q1/ET4 quad, which leads to a good accuracy

in these conditions.

4.4. Necking of a circular bar

The tension test of a circular bar has become a standard benchmark problem for
finite element formulations at finite strain. A cylindrical bar with a radius of 6.413 mm
and a length of 53.334 mm is considered. The necking is triggered with a small geometric
imperfection, 1% reduction of the radius at the center of the bar. The Jy-flow theory
finite strain elasto-plastic model described in SiMO & ARMERO [1992] is considered, with
material properties summarized in Table 4.2. The bar is loaded in tension with a prescribed

displacement at the top end.
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FIGURE 4.13. Axisyminetric necking of a bar. Deformed geome-
try obtained with the Q1/ES5 element at a) 5.6 top displacement,
and b) 7.0 top displacement.

i. Axisymmetric analysis. The upper right quarter of the cross section of the bar
is discretized using appropriate symmetry boundary conditions along the center line of
the bar. The mesh consists of 200 axisymmetric Q1/ES5 elements. Simulations with the
original Q1/E5 element have been reported in SIMO & ARMERO [1992].

Figure 4.12 depicts the computed radius at the center versus the total relative elon-
gation of the bar. Nominal values with respect to the initial radius and length are reported.
The curves obtained with the axisymmetric Q1/ES5 and the Q1/E5 elements are included.
The 5-point integration rule is considered in both cases. For comparison, the curve for the
Q1/P0 element is included in the figure. The deformed geometry of the cross section is
shown in Figure 4.13 for a top displacement of 5.6 and 7.0. No hourglass modes are

observed in any of the simulations.
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FIGURE 4.14. 3D necking of a bar. Solution obtained with the
Q1/ES12 element a) Initial configuration, b} Solution at a top dis-
placement of 5.6 mm, and ¢) Solution at a top displacement of 7.0
mm.



S. Glaser & F. Armero 27

Reaction, [kN]

Displacement, [mm]

FIGURE 4.15. 3D necking of a bar. Load-displacement curve
obtained with the Q1/ES12.

ii. Three dimensional analysis. A three dimensional simulation is carried out with
the Q1/ES12 element described in Section 2.1. The initial configuration is depicted in
Figure 4.14.a. An eight of the bar is discretized with a total of 120 elements. Appropriate
symmetry boundary conditions are imposed on the lateral and bottom faces. Prescribed
displacements are imposed at the top base. A 2 x 2 x 2 Gaussian quadrature rule is
employed. Figure 4.14 shows the solution obtained in this case at 5.6 mm and 7.0 mm
imposed top displacement. The load-deflection curve is shown in Figure 4.15. No modes

are observe in this test either.

4.5. Plane strain tension test

This example consists of the necking of a bar in plane strain. The specimen is 12.826
mm wide and a 53.334 mm long. The upper right quarter of the bar is discretized using
appropriate symmetry boundary conditions along the center lines. The mesh consists of
200 plane strain Q1/ES4 elements. The elasto plastic material properties are summerized
in Table 4.2. Figure 4.16 depicts the deformed configuration at a top displacement of 5.6

and 7.0.

An hourglass mode is observed in this case at large tensile strains, as shown in Figure
4.17. The appearance of this mode can be traced back to the presence to a limit point in
the load /displacement law in tension, thus leading to a negative stiffness for the stretching
mode. This negative stiffness is communicated to the two bending modes shortly after the
limit point of the graph is reached. While the negative stiffness of the tension mode is
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a) b)

FIGURE 4.16. Plane strain tension test. Deformed geometry at
a) 5.6 top displacement, and b) 7.0 top displacement.

physical in nature, the negative stiffness of the bending modes is numerical, and directly
related to the design of the response of the element in bending. Unfortunately the bending
modes follow the behavior of the tension mode becoming softer under tension. These
modes are able to propagate through the mesh showing typical hourglass patterns. Using
2x2 point Gaussian integration, the situation is worse than employing 3x3 point Gaussian
integration or 5-point integration rule. The hourglassing can be avoided by adding a control

term of the form

- 2
/ a (det(\1+F) - 1) dv (4.5)
JV

to the functional (3.5), which gives additional stiffness to the volumetric part of the en-
hanced deformation gradient. A small factor of o = 1. is sufficient to stabilize the hour-
glassing as can be seen in Figure 4.17.b. A similar strategy has been proposed in WRIGGERS
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FIGURE 4.17. Plane strain tension test. a) Hourglass modes
in the necking zone at 5.6 top displacement. b) Necking zone at
5.6 top displacement obtained by Q1/ES4 element with hourglass
stabilization.

& REBSE [1995] to alleviate the hourglass modes of the original enhanced formulation in
compression. Alternative strategies to avoid this mode are currently under further inves-

tigation.

5. Concluding Remarks

Very simple modifications of existing enhanced finite elements have been proposed
that leads to a significant improvement in the numerical performance. The first modi-
fication involves a symmetric enhancement, and it is very easily incorporated in current
implementations of the original formulation. It has been observed that the transpose part
of the original enhancement is enough to eliminate the zero energy energy modes, thus lead-
ing to a second family of elements. No hourglass modes have been observed in compression

for these new formulations.

As it happens with the original and the different enhanced strategies tested to date,
the element shows hourglass modes at high tensile strains for some inelastic models. These
modes appear in severely strained materials exhibiting a negative stiffness in tension (i.e.,
after passing a limit point). This negative stiffness, although physical, is communicated
to the bending modes of the element, leading to an hourglassing pattern. Hourglass con-
trol is shown to suppress these modes. Alternative strategies for the elimination of this
undesirable response are currently under further investigation.

Acknowledgments: We are indebted to Professor Robert L. Taylor for many helpful
discussions and for making available his finite element code FEAP. Part of the numerical
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simulations presented above where obtained after implementing the elements proposed

herein 1n this code.
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