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Gli activation by aPKC iota/lambda regulates basal cell 
carcinoma growth

Scott X. Atwood, Mischa Li, Alex Lee, Jean Y. Tang, and Anthony E. Oro
Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA

Abstract

Basal cell carcinoma (BCC) growth requires high levels of Hedgehog (Hh) signaling through the 

transcription factor Gli1. While inhibitors of membrane protein Smoothened (Smo) effectively 

suppress Hh signaling, early tumor resistance illustrates the need for additional downstream 

targets for therapy1–6. Here we identify atypical Protein Kinase C iota/lambda (aPKC) as a novel 

Gli regulator. aPKC and its polarity signaling partners7 colocalize at the centrosome and form a 

complex with Missing-in-Metastasis (MIM), a scaffolding protein that potentiates Hh signaling8,9. 

Genetic or pharmacological loss of aPKC function blocks Hh signaling and proliferation of BCC 

cells. aPKC is a Hh target gene that forms a positive feedback loop with Gli and exhibits elevated 

levels in BCCs. Genome-wide transcriptional profiling shows that aPKC and Smo control the 

expression of similar genes in tumor cells. aPKC functions downstream of Smo to phosphorylate 

and activate Gli1, resulting in maximal DNA binding and transcriptional activation. Activated 

aPKC is upregulated in Smo-inhibitor resistant tumors and targeting aPKC suppresses signaling 

and growth of resistant BCC cell lines. These results demonstrate aPKC is critical for Hh-

dependent processes and implicates aPKC as a new, tumor-selective therapeutic target for the 

treatment of Smo-inhibitor resistant cancers.

In order to identify new druggable targets in the Hh pathway, we used the scaffold protein 

MIM, which potentiates Gli-dependent activation downstream of Smo9, as bait in a biased 

proteomics screen of factors involved in Hh signaling and ciliogenesis. Two of the hits were 

polarity proteins not previously linked to the Hh pathway: aPKC, a serine-threonine kinase, 

and Pard3, a scaffold protein and aPKC substrate (Supplementary Fig. 1a). Reciprocol 

immunoprecipitation of aPKC and Pard3 pulled down MIM suggesting a specific interaction 

(Supplementary Fig. 1b). As MIM is a centrosome-associated protein that promotes 

ciliogenesis8, we fractionated centrosomes and found aPKC, along with Pard3 and Pard6A, 

cofractionated and coimmunoprecipitated with MIM in gamma-tubulin positive fractions 

that mark centrosomes (Fig. 1a; Supplementary Fig. 1c). MIM partially colocalizes with 
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aPKC complex members at the basal body in dermal fibroblasts, keratinocytes, and the well-

characterized mouse BCC cell line ASZ00110 (Fig. 1b), where aPKC and MIM interact 

through coimmunoprecipitation (Fig. 1c). Loss of aPKC or MIM protein suppresses Hh 

signaling as mRNA levels of Hh target gene gli1 was reduced and ciliogenesis was inhibited 

(Fig. 1d,e; Supplementary Fig. 1d,e).

As aPKC kinase activity is necessary for many of its cellular functions7,11, we used a 

myristoylated aPKC peptide inhibitor (PSI) to suppress kinase activity12 (Supplementary 

Fig. 1f). PSI, but not a myristoylated scrambled peptide, inhibited Hh signaling in BCC cells 

in a dose-dependent manner similar to the Smo antagonist cyclopamine (Fig. 1f). PSI, a pan 

PKC inhibitor Go6983, or genetic loss of aPKC expression, also resulted in a dose-

dependent inhibition of cell growth in BCC cells, leading to cell death as assayed by the 

MTT assay (Fig. 1g and Supplementary Fig. 1g,h). PSI inhibited BCC cell growth at a 

concentration similar to that of cyclopamine, with an IC50 of 5uM. Primary cilia were 

reduced by 50% in PSI-treated BCC cells (Fig. 1e) indicating aPKC activity is critical to 

both Hh signaling and ciliogenesis in BCC cells. Interestingly, PSI did not affect 

proliferation in several non-tumorigenic cells (Supplementary Fig. 1i). PSI specifically 

inhibited aPKC as loss of aPKC in BCC cells in combination with PSI treatment possesses 

no additional activity to reduce levels of gli1 or apkc mRNA (Supplementary Fig. 1j).

To address whether aPKC’s effect on the Hh pathway is direct, we assayed aPKC function 

in several nonpolar cell lines (Supplementary Fig. 1k,l; not shown). These cells maintained 

or increased their primary cilia after aPKC knockdown, however, aPKC removal still 

blocked Hh activation, reducing target gene induction. We conclude that aPKC’s effects on 

Hh signaling are cilia-independent and required for maximal sustained signaling.

As aPKC is necessary for maximal Hh signaling, we next asked if aPKC is overexpressed in 

BCCs. Indeed, apkciota expression, but not apkczeta, is specifically upregulated with gli1 in 

BCC cells (Fig. 2a). Similar results are found using freshly isolated human BCCs compared 

to primary human keratinocytes (Fig. 2b). Immunohistochemical staining of human BCCs 

and normal skin with antibodies recognizing both total and activated aPKC (P-aPKC) show 

higher levels in invasive and nodular tumors, with P-aPKC showing greater overexpression 

(Fig. 2c; 4h). Loss of aPKC removes both aPKC and P-aPKC staining in primary mouse 

dermal cells, indicating the specificity of the antibody (Supplementary Fig. 2).

As aPKC and Hh signaling are required for BCC cell growth, we next asked whether aPKC 

is a Hh target gene. Activation of Hh signaling in both polarized and non-polarized primary 

and immortalized cells using Shh-N ligand induces both gli1 and apkciota transcripts (Fig. 

2d). Additionally, when we block Hh signaling by treating BCC cells with cyclopamine, gli1 

and apkciota transcripts, but not apkczeta, are specifically suppressed (Fig. 2g). Three 

putative Gli1 binding sites13 are present in the promoter region within 5 kb of the apkciota 

transcriptional start site in mice (Fig. 2e). Chromatin immunoprecipitation (ChIP) with BCC 

cells overexpressing Flag:Gli1 enrich in regions containing the three Gli1 binding sites (Fig. 

2f) indicating that aPKC is a direct target of Gli1. The first two Gli1 binding sites promote 

expression of luciferase when expressed in BCC cells suggesting these sites are functional 

(Supplementary Fig. 3). In addition, expression of pard6a (aPKC inhibitor) is reduced 
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whereas cdc42 (activator) is overexpressed in primary mouse BCC tumors14 (Fig. 2h). As 

aPKC is typically found in an inhibited Pard6A complex, less Par6A would result in 

excessive free and active aPKC whereas more Cdc42 would activate any existing Pard6A-

aPKC complexes. Interestingly, when Hh signaling is inhibited with the Smo antagonist 

Sant-1, pard6a transcript levels are elevated and cdc42 levels are repressed (Fig. 2i) further 

supporting the idea that Hh signaling promotes aPKC activation. We conclude that aPKC is 

part of a Hh-mediated positive feedback loop leading to its overexpression in human and 

mouse BCCs.

To gain insight into aPKC’s mechanism of action, we determined whether aPKC-dependent 

genes in tumors differed from those regulated by Smo. We treated BCC cells with Sant-1 or 

PSI and performed 3’-end polyadenylated RNA sequencing. 5700 Sant-1-dependent or 4762 

PSI-dependent transcripts changed two-fold or greater when compared to control (Fig. 3a). 

4325 transcripts overlapped between the inhibitor-treated data sets (p<1.0×10−300) with 

most transcripts downregulated in both sets (Fig. 3b). Gene ontology terms associated with 

commonly changed transcripts include cell cycle regulation, protein transport and 

localization, and cell division (Fig. 3c). Global transcript expression regardless of fold-

change showed a strong positive correlation, with a Pearson correlation of 0.495. 

Comparision with previously published Hh-dependent data sets from mouse 

medulloblastomas/granular neural precursors (GNPs) or developing mouse limb bud15,16 

reveals substantial overlap (Supplementary Fig. 4a). 321 of the 1077 Gli1 binding sites 

found in medulloblastomas/GNPs (p=1.36×10−11) and 41 out of 396 (p=8.92×10−9) Gli3 

binding sites identified in the developing limb bud overlap with our commonly changed data 

set. Representative gene expression profiles among the data sets are displayed in a cluster 

heat map (Supplementary Fig. 4b). Validation of a subset of transcript expression levels 

using quantitative RTPCR shows that the relative values from our data set closely mirror 

actual mRNA levels upon drug treatment (Supplementary Fig. 4c,d). These results indicate 

that aPKC and Smo regulate a common set of Hh target genes in BCCs.

The striking overlap of transcriptional targets suggested that aPKC might regulate Gli 

transcription factors. To determine where aPKC acts, we added subthreshold concentrations 

of cyclopamine or PSI to BCC cells. We found only cyclopamine outcompeted SAG-

mediated activation (Supplementary Fig. 5a), indicating aPKC functions downstream of 

Smo. Moreover, aPKC inhibition modestly increases rather than decreases Gli1 stability 

(Supplementary Fig. 5b), does not affect Gli2 or Gli3 processing (Supplementary Fig. 5c), 

and does not alter Gli1 nuclear localization (Fig. 3d; Supplementary Fig. 5d), suggesting that 

aPKC affects Gli activity. Intriguingly, loss of aPKC in mouse fibroblasts results in a Gli1 

band with slightly smaller apparent molecular weight (Supplementary Fig. 5e,f). By 

contrast, loss of MIM, despite primary cilia defects that prevent significant activation of the 

Hh pathway8, have more aPKC protein and a Gli1 band with a slightly larger molecular 

weight, suggesting aPKC modifies Gli1 posttranslationally.

Consistent with the notion of aPKC-dependent alteration of Gli1 activity, aPKC and Gli1 

form a complex as recombinant HIS:aPKC and in vitro translated (IVT) human HA:Gli1 or 

HA:Gli1 zinc finger coimmunoprecipitate (Fig. 3e). Purified aPKC directly phosphorylates 

Gli1 in vitro (Fig. 3f), with the majority of the phosphorylation occurring in the zinc finger 
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DNA binding region of Gli1. Immunoprecipitation of endogenous Gli1 from BCC cells 

shows PSI-dependent phosphorylation at serine/threonine residues, further supporting an in 

vivo role for aPKC (Fig. 3g). PSI-treated IVT human Gli1:V5/HIS, where endogenous aPKC 

is inhibited in the reaction, significantly reduced binding to radiolabeled Gli1 target DNA in 

an electrophoretic mobility assay (Fig. 3h,i). Addition of recombinant aPKC overcame the 

effects of PSI to rescue Gli1-dependent DNA binding, whereas heat-inactivated aPKC did 

not (Supplementary Fig. 5g), indicating Gli1 phosphorylation by aPKC is necessary for 

maximal DNA binding. The phosphorylation state of Gli1 appears critical as higher 

concentrations of aPKC leads to paradoxically decreased DNA binding (Supplementary Fig. 

5g). We performed a mutagenesis screen of the DNA binding domain to determine the site 

of aPKC phosphorylation and found that residues S243 and T304 appear to mediate aPKC 

effects. Phospho-mimetic Gli1 (Gli1S243E,T304E) bound to target DNA just as well as wild-

type Gli1, whereas phospho-deficient Gli1 (Gli1S243A,T304A), which accumulates less aPKC 

phosphorylation (Supplementary Fig. 5h), has reduced DNA binding ability (Fig. 3h,i). 

Moreover, Gli1S243E,T304E possesses reduced sensitivity to PSI in BCC cells, suggesting 

these sites are functional aPKC sites (Fig. 3j). To confirm aPKC regulates Gli binding in 

vivo, we performed ChIP of Flag:Gli1 in BCC cells using Gli target genes17,18. On all Gli1 

targets assayed, PSI-treated tumor cells left Gli1 nuclear protein levels unchanged but 

reduced the association with chromatin (Fig. 3d,k). Non-Hh target genes were left 

unchanged by PSI treatment. We conclude that aPKC regulates Hh signaling by 

phosphorylating and activating Gli1 to increase its affinity for DNA, illustrating a rare 

instance where posttranslational modification of a zinc-finger domain promotes DNA 

binding and transcriptional activity.

To explore whether aPKC inhibitors can be used successfully as a BCC therapeutic, we 

topically treated allografted BCC tumors14 with PSI. This tumor model faithfully reflects 

human BCCs and has previously been used to validate Hh pathway inhibitors now in clinical 

use19. In allografted BCCs, gli1 mRNA was reduced with increasing concentrations of 

topical PSI (Fig. 4a). Tumor size was also suppressed with intermediate concentrations of 

PSI with no apparent acquired resistance (Fig. 4b), comparing favorably with treatment of 

intermediate concentrations of Smo antagonist itraconazole19 or Gli2 inhibitor arsenic 

trioxide20 (Fig. 4c). Tumors lost their classical palisade patterning upon PSI treatment and 

apoptosis increased (Supplementary Fig. 6). Cell proliferation was reduced along with Gli1 

protein levels. Mice treated with topical or intraperitoneal PSI displayed no apparent adverse 

effects (Supplementary Fig. 7) except a mild hair cycling phenotype (not shown) suggesting 

aPKC treatment is tumor-selective.

Because aPKC acts downstream of Smo, we determined whether PSI could inhibit cell 

growth of Smo-resistant tumors. Following methods to generate resistant lines for other 

chemotherapeutics like K-ras or B-raf21, we generated multiple independent BCC cell lines 

that were resistant to high levels of Sant-1. These Smo-resistant lines displayed increased 

expression of apkc mRNA and protein, with varying levels of gli1 mRNA (Fig. 4d; 

Supplementary Fig. 8a). Other Hh target genes displayed differential expression patterns that 

followed gli1 or apkc mRNA levels, or were generally suppressed (Supplementary Fig. 8b). 

We verified Smo resistance by treating the cells with high concentrations of structurally 
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unrelated cyclopamine and found little effect on cell proliferation (Fig. 4e). Treatment of 

these lines, or Sant-1 sensitive parental lines, with PSI dramatically reduced cell 

proliferation, suggesting active aPKC plays a role in Smo inhibitor-resistant human tumors. 

Comparison of Smo inhibitor-sensitive and resistant locally invasive human BCCs, several 

of which lacked Smo and Sufu mutations as well as Gli1/2 amplification (B. Yauch, 

personal communication), displayed elevated levels of active aPKC with polyclonal and 

monoclonal antibodies, corroborating the increase of active aPKC levels as a mode of 

resistance (Fig. 4f,g; Supplementary Fig. 8c,d). Taken together, these data argue that BCCs 

become dependent on aPKC to drive Hh activation and tumor growth, and suppression of 

aPKC activity is sufficient to prevent BCC progression in both Smo sensitive and resistant 

lines. Our results highlight aPKC inhibition as a viable, tumor-selective alternative to Smo 

inhibitors to treat Hh-dependent and Smo-resistant cancers.

Full Methods

Tumor immunofluorescence

Human tumors from Smo inhibitor sensitive and resistant patients were obtained from 

patients enrolled in clinical trials performed by the Stanford group (AEO, JYT), clinical 

trials NCT00833417 and NCT00957229. Patients were consented under an approved 

Stanford IRB protocol (#18325). Active and total aPKC levels in human tumor sections 

were determined by immunofluorescence using rabbit anti-aPKC (1:250; Santa Cruz 

Biotechnology), rabbit anti-p-aPKC Thr 410 (1:100; Santa Cruz Biotechnology), or mouse 

anti-p-aPKC Thr 410 (1:100; Santa Cruz Biotechnology). Confocal images were acquired on 

a Leica SP2 AOBS Laser Scanning Microscope with a HCX PL APO 63× oil immersion 

objective. Average pixel intensity over five distinct areas per tumor section was determined 

using ImageJ. Images were arranged with ImageJ, Adobe Photoshop, and Adobe Illustrator.

Cell culture

Primary mouse dermal cells were isolated as previously described8. Dermal cells were 

grown in Amniomax media containing supplement and antibiotics (Invitrogen). ASZ001 

cells were grown in 154CF media containing 2% chelated FBS, HKGS supplement, and 

antibiotics (Invitrogen). Keratinocytes (HPA Culture Collections) were grown in CnT-07 

media containing supplement and 0.07mM CaCl2 (CellNTec). Cells were sterum-starved 

between 24–48 hrs to induce ciliogenesis. MTT cell proliferation assay was performed using 

manufacturer’s protocol from Invitrogen. Cells were transfected with FuGene6 or 

nucleofected with Amaxa Human Keratinocyte Nucleofector kit using manufacturer’s 

protocol.

Smo resistant cell lines were generated by treating ASZ001 BCC cells with increasingly 

higher concentrations of Sant-1 every passage for three weeks. Final resistant cell lines were 

grown in 60uM Sant-1. Cyclopamine was used to inhibit Hh signaling to verify Smo 

resistance.
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Antibodies and immunofluorescence staining

Cells were fixed with either 4% paraformaldehyde or 100% methanol for 10 min. 1% 

normal horse serum and 0.1% Triton X-100 in PBS was used for blocking. Tissues were 

fixed with 4% paraformaldehyde and embedded in paraffin. 10um sections were cut and 

deparaffinized using standard conditions before staining. Tissue sections were blocked using 

20% normal horse serum and 0.1% Triton X-100 in PBS. The following antibodies were 

used: rabbit anti-aPKC (1:500; Santa Cruz Biotechnology), rabbit anti-p-aPKC Thr 410 

(1:100; Santa Cruz Biotechnology), mouse anti-p-aPKC Thr 410 (1:100; Santa Cruz 

Biotechnology), rabbit anti-Pard6a (1:100; Santa Cruz Biotechnology), mouse anti-Pard6a 

(1:100; Santa Cruz Biotechnology), mouse anti-Pard3 (1:500; Millipore), mouse anti-Cdc42 

(1:500; Santa Cruz Biotechnology), rabbit anti-MIM (1:1000)8, rabbit anti-γ-tubulin (1:500; 

Sigma), mouse anti-γ-tubulin (1:500; Abcam), mouse anti-acetylated tubulin (1:2000; 

Sigma), goat anti-Gli2 (1:500; R&D Systems), goat anti-Gli3 (1:250; R&D Systems), rat 

anti-HA (1:1000, Covance), rabbit anti-KI67 (1:200; Lab Vision), mouse anti-Gli1 (1:1000; 

Cell Signaling), rabbit anti-phosphoserine/threonine (1:1000; Abcam), mouse anti-actin 

(1:5000; Sigma), rabbit anti-HSP90 (1:200; Santa Cruz Biotechnology), mouse anti-p63 

(1:200; Santa Cruz Biotechnology), and TUNNEL stain (Roche). Secondary antibodies were 

from Invitrogen. Confocal images were acquired on a Leica SP2 AOBS Laser Scanning 

Microscope with a HCX PL APO 63× oil immersion objective. Images were arranged with 

ImageJ, Adobe Photoshop, and Adobe Illustrator.

Protein purification and binding experiments

All proteins were expressed and purified as previously described22. In vitro translated 

proteins were produced using manufacturer’s protocol in rabbit reticulocyte lysate from 

Promega. Endogenous proteins were immunoprecipitated by using 5ug rabbit anti-aPKC, 

chicken anti-MIM, mouse anti-Pard3, rabbit anti-Pard6a, rat anti-HA, mouse anti-Gli1, or 

mouse anti-Flag (Sigma) with protein A/G-conjugated beads according to the 

manufacturer’s protocol (Santa Cruz Biotechnology). In vivo phosphorylated Gli1 detected 

by immunoprecipitation of Gli1 from BCC cells treated with 10uM MG132 in the presence 

or absence of 10uM PSI for 6 hrs. Samples were separated by SDS-PAGE and transferred to 

nitrocellulose, followed by antibody incubations and visualization using chemiluminescent 

substrate (ThermoScientific).

Centrosomes were purified from mouse C3H 10T1/2 cells as previously described23. 

Supernatant fractions isolated by incubation of mouse BCC cells with lysis buffer (10mM 

HEPES pH 7.5, 1.5mM MgCl2, 10mM KCl, 0.4% NP-40) for 2 min on ice. Nuclei were 

spun down and washed twice with lysis buffer before equal volume resuspension in PBS and 

addition of SDS loading buffer.

Kinase assays

HIS:aPKC (Abcam) was incubated with GST, GST:Gli1, or GST:Gli1 fragments at 30°C for 

15 min in kinase reaction buffer (20mM Tris-HCl pH 7.5, 10mM MgCl2, 1mM DTT, 10mM 

ATP) with 20nM [□-32P]ATP. The reaction was quenched by addition of SDS loading 

buffer and heated at 95°C for 10 min. The protein was resolved by SDS-PAGE and exposed 

to a phosphor screen (Molecular Dynamics) and imaged with GE Typhoon 9410.
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Luciferase assays

ASZ001 cells were nucleofected (Amaxa) with pGL3-Basic (Promega) containing the 

following Gli binding sites or mutant sites multimerized (6×) head-to-tail: site 1 

(GACCCCCAA); site 1 mutant (GAAACACAG); site 2 (TGCCCCCCA); site 2 mutant 

(TGAACACCT); site 3 (TACCCCAAA); site 3 mutant (TAAACATAG); glics 

(GACCACCCA); glics mutant (GATAATCCG). Nucleofected cells were grown to 

confluency, lysed, and luciferase expression was determined using the Dual-Luciferase 

Assay System (Promega) and a TD-20/20 Luminometer.

Lentiviral knockdown and drug treatments

Lentiviral pLKO.1 vector containing short hairpin RNAs (Open Biosystems) to prkci 

(sh3:CCGTTCACCATGAAATGGATA, sh5:CCAGACAGAAAGCAGGTTGTT), or 

pSicoR-puro vector containing shRNA to MIM8 were used. Lentivirus containing empty 

vector pSicoR-puro was used for control knockdowns. Lentiviral infection was performed 

and cells assayed after three days for prkci shRNA and four days for MIM shRNA. Protein 

knockdown was confirmed by western blot or qRTPCR.

Drug treatments for cells were performed with myristoylated PSI (myr-

SIYRRGARRWRKLY), myristoylated scramble peptide (myr-RGIRYRLRARSWK), 

Sant-1 (Tocris Bioscience), cyclopamine (Tocris Bioscience), SAG (EMD), Go6983 (Tocris 

Bioscience), and cyclohexamide (Sigma). Subconfluent ASZ001 cells were serum-starved 

and inhibitors added for 48 hrs prior to MTT assay (Invitrogen) and 24 hrs prior to visualize 

cilia and assay Gli target gene induction. Stability assays performed with ASZ001 

preincubated with PSI for one hour before 20ug/ml cyclohexamide addition at various time 

points. Mouse blood parameters were tested by treating mice topically twice daily with 

DMSO or 0.8mg/kg PSI dissolved in DMSO for 3 days.

Chromatin immunoprecipitation

Protein-DNA complexes were captured by fixing ASZ001 cells expressing Flag:Gli1 and 

preincubated 24 hrs with inhibitors, fixed for 10 min with 1% formaldehyde, and quenched 

with 0.125M glycine for 5 min. ChIP was performed using manufacturer’s protocol adapted 

from Upstate. Briefly, cells were lysed for 10 min at 4°C in lysis buffer (50mM Hepes 

pH7.5, 140mM NaCl, 1mM EDTA, 10% glycerol, 0.1% NP-40, 0.2% Triton-X100, protease 

inhibitors [Roche]) and nuclei were pelleted and lysed for 10 min at 4°C in nuclei lysis 

buffer (10mM Tris-HCl pH 8, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.5% N-

lauroylsarcosine, protease inhibitors) to obtain DNA. DNA was sheared to a range of 100–

600bp in size by sonicating for 25 min. ChIP-grade Flag antibody-conjugated magnetic 

beads (Sigma) was incubated with nuclei lysate overnight at 4°C. Beads were washed in 

RIPA buffer and DNA was reverse crosslinked by incubation at 65°C overnight in elution 

buffer (50mM Tris-HCl pH8, 10mM EDTA, 1% SDS). RNA and protein was digested with 

RNase A (0.2ug/ml; 37°C for 2 hrs) and proteinase K (0.2ug/ml; 55°C for 2 hrs), 

respectively, and DNA purified by phenol chloroform extraction using standard protocols. 

Relative fold enrichment was determined by adding DNA to Brilliant II SYBR Green qPCR 

Master Mix Kit (Agilent Technologies) containing primers to known Gli target sites listed in 

Atwood et al. Page 7

Nature. Author manuscript; available in PMC 2013 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Table 1. ChIP with Flag antibody-conjugated magnetic beads in ASZ001 

without Flag:Gli1 was used as a negative control.

3’ end RNA sequencing

Library was generated from ASZ001 cells incubated with or without inhibitors for 24 hrs. 

RNA purified using TRIzol (Invitrogen) and poly A-RNA selected using the micro-

poly(A)purist kit (Ambion). Heat-sheared 200ng mRNA for 12 min at 85°C and performed 

first-strand cDNA synthesis using Superscript III (Invitrogen) for 1 hr at 50°C. Second-

strand synthesis was performed using E. coli DNA Ligase (Invitrogen), E. coli DNA 

Polymerase I (NEB), and E. coli RNAse H (Epicentre) for 2 hr at 16°C. Added T4 DNA 

Polymerase (NEB) for an additional 15 min before quenching with EDTA. Purified double-

stranded cDNA with MinElute Reaction Cleanup Kit (Qiagen). 3’ A-tailed using Klenow 

Fragment 3’ to 5’ exonuclease (NEB) for 30 min at 37°C. Ligated Illumina linker using T4 

DNA Ligase (Enzymatics) overnight at room temperature. Purified 220–300bp bands using 

3% NuSieve GTG agarose (Lonza) and MinElute Gel Extraction Kit (Qiagen). Amplified 

the DNA using Phusion PCR Master Mix (NEB) and 15 cycle PCR program. Purified 220–

300bp bands using 3% NuSieve GTG agarose (Lonza) and MinElute Gel Extraction Kit. 

Sequenced DNA using Illumina Genome Analyzer IIx.

Aligned 36 bp raw reads with Bowtie using the NCBI37/mm9 reference genome. 

Differential expression analysis was performed on the 3’ exon with the Cufflinks suite using 

mouse RefSeq gene predictions as a reference transcriptome. Annotated coding transcripts 

were filtered for significant expression by a RPKM of 25 in at least one sample set. 

Transcripts that were two-fold or greater changed in drug-treated samples were 

hierarchically clustered using the Cluster program and visualized in Java Treeview. 

Transcripts were validated using Brilliant II SYBR Green qRT-PCR Master Mix Kit 

(Agilent Technologies) with primers listed in Supplementary Table 1. Two-tail p-value 

between our gene sets and other gene sets calculated using Fisher’s Exact Test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. aPKC is a centrosome-associated protein that regulates Hh signaling
a, MIM and aPKC interact in purified centrosomes. b, MIM and aPKC complexes localize 

at the centrosome (γ-tub) versus primary cilia (Actub) of mouse dermal cells (mDC), mouse 

keratinocytes, and mouse BCC cells. Actub, acetylated tubulin. γ-tub, γ-tubulin. c, MIM and 

aPKC interact in BCC cells. d–f, gli1 mRNA levels (n=3) or cilia percentage (n=3) after 

MIM or aPKC shRNA, or aPKC or Smo inhibition in BCC cells. sh, short-hairpin. KD, 

knockdown. g, Cell proliferation reduced in BCC cells (n=3) after PSI or cyclopamine 

treatment, but not myristoylated scrambled peptide. Error bars, s.e.m.
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Figure 2. aPKC and Hh form a positive feedback loop in BCCs
a, b, gli1, aokciota, or apkczeta mRNA levels in (a) mouse BCC cells (n=3) and (b) primary 

human BCC tumors (n=7). c, Total and activated aPKC (P-aPKC) overexpressed in primary 

human BCC tumors. d, apkciota is upregulated in Shh-N-treated mouse dermal cells (n=3). 

CM, conditioned media. e, Gli1 binding sites within the promoter region of aPKC. TSS, 

transcriptional start site. f, Flag:Gli1 ChIP of aPKC promoter Gli1 sites. g, Cyclopamine 

suppresses apkciota expression in BCC cells (n=3). h, pard6a expression is reduced and 
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cdc42 is upregulated in mouse BCC tumors (n=3). i, Sant-1-treatment of BCC cells 

increases pard6a and decreases cdc42 mRNA expression (n=3). Error bars, s.e.m.
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Figure 3. aPKC phosphorylates and activates Gli1
a, Venn diagram and (b) heatmap of significantly changed transcripts upon Sant-1 or PSI 

treatment in BCC cells. c, Gene ontology terms of commonly altered transcripts. d, PSI does 

not affect nuclear Gli1 in BCC cells. e, aPKC interacts with in vitro translated (IVT) human 

Gli1 or Gli1 DNA-binding domain. f, aPKC phosphorylates human Gli1 DNA-binding 

domain. CBB, coomassie brilliant blue. g, PSI reduces phosphorylated serine/threonine 

levels of immunoprecipitated Gli1 from BCC cells. h, aPKC promotes DNA binding of IVT 

human Gli1 at S243 and T304 in an electrophoretic mobility shift assay (EMSA). NS, non-

specific binding. i, Densitometry of aPKC rescue, phosphomimetic versus phosphodeficient 
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Gli1 EMSA (n=3). j, BCC cells expressing phosphomimetic Gli1 show reduced PSI 

sensitivity (n=3). Error bars, s.e.m. k, Flag:Gli1 ChIP showing PSI and Sant-1 inhibit Gli1 

binding to target chromatin sites in mouse BCC cells.
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Figure 4. Topical aPKC inhibitor suppresses primary tumor growth
a, PSI inhibits Hh signaling in allografted mouse BCC tumors from Ptch1 +/−, K14CreER2, 

p53flox/flox mice (n=7). b, Topical treatment of allografted BCC tumors slows tumor 

growth (DMSO n=10, PSI n=9). c, Intermediate levels of PSI (n=8) compared to 

intermediate concentrations of Itraconazole (n=8) and arsenic trioxide (n=5). d, Five 

independently derived Smo-resistant BCC cell lines that amplify apkc or apkc and gli1 

mRNA levels (e) are sensitive to PSI treatment. f, g, Vismodegib-treated resistant human 

BCC tumors (n=6) display elevated levels of active aPKC compared to vismodegib-treated 
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sensitive tumors (n=8), non-drug treated tumors (n=17), and normal skin (n=7). Error bars, 

s.e.m.
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