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Anisotropic-exchange magnets on a triangular lattice:
spin waves, accidental degeneracies, and dual spin liquids

P. A. Maksimov,! Zhenyue Zhu,! Steven R. White," and A. L. Chernyshev!

! Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Dated: November 16, 2018)

We present an extensive overview of the phase diagram, spin-wave excitations, and finite-
temperature transitions of the anisotropic-exchange magnets on an ideal nearest-neighbor triangular
lattice. We investigate transitions between five principal classical phases of the corresponding model:
ferromagnetic, Néel, its dual, and the two stripe phases. Transitions are identified by the spin-wave
instabilities and by the Luttinger-Tisza approach, and we highlight the benefits of the former while
outlining the shortcomings of the latter. Some of the transitions are direct and others occur via
intermediate phases with more complicated forms of ordering. The spin-wave spectrum in the Néel
phase is obtained and is shown to be non-reciprocal, €4,k 7# €a,—k, in the presence of anisotropic
bond-dependent interactions. In a portion of the Néel phase, we find spin-wave instabilities to a
long-range spiral-like state. This transition boundary is similar to that of the spin-liquid phase
of the S =1/2 model, discovered in our prior work, suggesting a possible connection between the
two. Further, in the stripe phases, quantum fluctuations are mostly negligible, leaving the ordered
moment nearly saturated even for the S=1/2 case. However, for a two-dimensional (2D) surface of
the full 3D parameter space, the spin-wave spectrum in one of the stripe phases exhibits an enig-
matic accidental degeneracy manifested by pseudo-Goldstone modes. As a result, despite the nearly
classical ground state, the ordering transition temperature in a wide region of the phase diagram is
significantly suppressed from the mean-field expectation. We identify this accidental degeneracy as
due to an exact correspondence to an extended Kitaev-Heisenberg model with emergent symmetries
that naturally lead to the pseudo-Goldstone modes. There are previously studied dualities within
the Kitaev-Heisenberg model on the triangular lattice that are exposed here in a wider parameter
space. One important implication of this correspondence for the S = 1/2 case is the existence of
a region of the spin-liquid phase that is dual to the spin-liquid phase discovered recently by us.
We complement our studies by the density-matrix renormalization group of the S =1/2 model to

confirm some of the duality relations and to verify the existence of the dual spin-liquid phase.

I. INTRODUCTION

Ever since the seminal works by Wannier [I] and An-
derson [2], a motif of spins on a triangular-lattice network
epitomizes the idea of geometric frustration that can give
rise to non-magnetic spin-liquid states [3,[4]. A variety of
materials and models with the triangular, kagomé, and
pyrochlore lattices have provided a natural playground
for geometric frustration and realized various exotic and
quantum-disordered states [2HT7].

More recently, magnetic materials with anisotropic
spin-spin interactions, which arise from spin-orbit cou-
pling in their magnetic ions, have offered a different path
to achieve similar goals. A strong mixing of spin and
orbital degrees of freedom leads to the bond-dependent
anisotropic-exchange interactions, providing an alterna-
tive mechanism for frustration [8, [9]. A particular case
is that of the so-called compass model [10] on the tri-
coordinated honeycomb lattice with each spin component
interacting selectively along only one of the bonds via
an Ising-like interaction. In a celebrated work [I], Ki-
taev showed that it has a spin-liquid ground state with
fractionalized excitations, a finding that set off a signifi-
cant research effort [12]. In real materials, however, de-
sired terms occur along with the other diagonal and off-
diagonal components of the anisotropic-exchange matrix
that are allowed by the lattice symmetry [I2HI6]. These
have proven to be detrimental to the Kitaev spin liquid

and so far have prevented its definite realization [12].

Combining the geometric frustration of the lattice with
the spin-orbit-induced anisotropic exchanges is a poten-
tially very fruitful and less explored area. The recently
synthesized rare-earth compound YbMgGaO4 (YMGO)
has offered an example of such a synergy, with the
pseudo-spin S = 1/2 states of the strongly spin-orbit-
coupled f-shells of the magnetic Yb3t ions arranged
in nearly perfect triangular-lattice layers [I7, [18]. It
has been initially marketed as a spin-liquid candidate,
given the lack of ordering and broad features in its dy-
namical response [I7H26]. However, this initial opti-
mism has faded considerably due to experimental evi-
dence and theoretical arguments in favor of the intrin-
sic disorder causing a “mimicry” of a spin liquid [26-
33]. Nevertheless, the problem of the triangular-lattice
anisotropic-exchange magnets has attracted considerable
interest [31H40] and remains a focus of much research as
a wider family of materials become available [41H45].

In our first study, Ref. [31], we argued that the ex-
perimental range of parameters of the model that should
describe a disorder-free YMGO does not support a spin-
liquid state, in agreement with exact-diagonalization
(ED) [37] and variational Monte Carlo (VMC) studies
[38]. In our more recent work, Ref. [39], we provided a
detailed exploration of the phase diagram of the most
generic nearest-neighbor triangular-lattice model in or-
der to find out whether anisotropic-exchange interactions



on this lattice can potentially create much desired exotic
states. We have used the density-matrix renormalization
group (DMRG) for the S =1/2 model and discovered a
spin-liquid region in its 3D phase diagram [39]. We have
also established a close similarity and a direct isomor-
phism of this newly found spin-liquid phase to the much
studied spin liquid of the fully isotropic Heisenberg J;—
J2 model on the triangular lattice [46H48]. We have also
pointed out that the spin liquid with open spinon Fermi
surface [20, 211, 25l [34] is not realized in the phase dia-
gram of the model. This is also in accord with Ref. [38].

In the present study, we expand our previous work in
several directions. First, we provide a quasiclassical de-
scription of the five principal magnetically-ordered single-
Q phases that span the 3D phase diagram of the nearest-
neighbor anisotropic-exchange model on the triangular
lattice. These are ferromagnetic, 120° Néel, dual 120°,
and two different stripe phases. For four of them, we find
explicit expressions for the their spin-wave spectra. To
the best of our knowledge, the spin-wave spectrum of the
120° Néel phase with anisotropic terms has not been dis-
cussed previously. We demonstrate that it is, generally,
non-reciprocal in this case, €4k #€q,—k-

Next, we analyze the transition boundaries between
these principal phases as given by the instabilities of their
magnon spectra. We find that such an approach closely
and reliably reproduces phase boundaries obtained by a
numerical optimization of classical energy in large clus-
ters of spins [36], offering obvious advantages over this
technique. In agreement with prior studies [32] [35] B6],
we also find consistent discrepancies of the phase bound-
aries provided by the Luttinger-Tizza method [49] and
discuss a potential reason for that.

For the 120° phase close to the Heisenberg limit, we
find an instability toward a long-range spiral state that
is similar to the Z5 vortex state found in the triangular-
lattice Kitaev-Heisenberg model [55 [56]. With the corre-
spondence to that model discussed below in more detail,
we note that the identified transition boundary is simi-
lar to the boundary of the spin-liquid phase advocated
in our previous work [39] for the quantum S=1/2 case,
suggesting a possible relation between the two.

In the present study, we also explore the ferromag-
netic and stripe parts of the phase diagram in order
to check whether the regions dominated by anisotropic
interactions can lead to strongly-frustrated and highly-
degenerate states. The on-site magnetization is nearly
classical and quantum fluctuations are negligible for most
of these regions even in the quantum S=1/2 limit. Enig-
matically, however, the ordering Néel temperature calcu-
lated from the spin-wave spectrum in one of the stripe
phases is suppressed in the vicinity of a surface of pa-
rameters in the 3D parameter space. This suppression
originates from the gapless pseudo-Goldstone spin-wave
modes, which occur due to an accidental degeneracy, with
the Mermin-Wagner theorem dictating T =0 for a two-
dimensional (2D) system. Although quantum fluctua-
tions do induce a gap in the pseudo-Goldstone spectrum

via an order-by-disorder effect [50], the ordering temper-
ature remains suppressed in that region compared to the
mean-field expectations. Thus, while the system is al-
most classical, large values of the factor f = Tyr/Tn,
which is used to identify a proximity to a quantum-
disordered state [23, 85], can be highly misleading, ques-
tioning it as a useful measure in such cases.

Crucially, this surface of accidental degeneracy in the
anisotropic-exchange model is identified as correspond-
ing to an extended Kitaev-Heisenberg model. This lat-
ter model possesses emergent symmetries that naturally
lead to the pseudo-Goldstone modes in the quasiclassi-
cal limit, thus explaining the enigmatic trends described
above. There are also additional symmetry transforma-
tions within that model, known as Klein dualities [51} [52],
that allow one to make deeper connections between dif-
ferent parts of the parameter space.

Using these insights, we have performed DMRG stud-
ies of the quantum S =1/2 anisotropic-exchange model
in previously unexplored parts of the phase diagram [39].
We have validated quasiclassical phase boundaries dis-
cussed above and verified previous studies of the Kitaev-
Heisenberg model [53H57] that are exposed here in a
wider parameter space. We demonstrate that the so-
called nematic phase [54H57] corresponds to the bound-
ary between two stripe phases and does not represent a
separate state in the quantum limit.

We emphasize that the region that we have previously
identified as a spin-liquid phase in Ref. [39] includes a sec-
tor of the line that corresponds to the Kitaev-Heisenberg
model. This implies that previous numerical studies of
the S =1/2 Kitaev-Heisenberg model [56, [57] must have
overlooked the spin-liquid phase, either due to smallness
of their clusters [50] or due to periodic boundary condi-
tions [57] that are unfavorable for DMRG.

However, the most important implication of the corre-
spondence to Kitaev-Heisenberg model is that it necessi-
tates an existence of another spin liquid, the one that is
Klein dual to the spin liquid found in Ref. [39]. In our
present DMRG study, we do confirm existence of this
dual spin-liquid phase. Interestingly, for the exchange
matrix written in crystallographic axes, the dual spin lig-
uid occurs in the region dominated by anisotropic terms.
We also use the structure factor S(q) to argue that the
dual spin liquid can be seen as a result of a “melting” of
the dual 120° phase, just as the spin liquid of Ref. [39]
is a molten 120° phase, with both phases maintaining
the shapes of the structure factor similar to that of their
parent ordered states. The confirmation of the dual spin
liquid strengthens our case for both of them.

The paper is structured as follows. Sec. [[I| presents the
model and simplified classical phase diagram. Sec. [IT]
shows spin-wave spectra of the key phases. In Sec. [[V]
phase boundaries are discussed. Sec. [V] discusses finite-
temperature transitions. In Sec. |'\lI| a transformation to
the extended Kitaev-Heisenberg model is given. Sec.[VI]]
presents DMRG results. We conclude by Sec. [VIIT and
Appendices contain further details.



II. MODEL AND CLASSICAL PHASES

A. Model

In systems with spin-orbit coupling, magnetic degrees
of freedom are entangled with the orbital orientations
that are tied to the lattice due to crystal fields []. Be-
cause of that, Hamiltonians of the low-energy effective
pseudo-spins involve bond-dependent interactions that
obey only discrete symmetries of the underlying lattice,
thus explicitly breaking spin-rotational symmetries [35].

The most general nearest-neighbor spin-orbit-induced
anisotropic-exchange Hamiltonian, applicable to a vari-
ety of systems, can be written as [16]

H=> SlJ;s; (1)
(i)

where ST = (5#,8Y,57) and J;; is a 3x 3 exchange ma-
trix that also depends on the bond orientation. Since the
spin-rotational symmetries are, generally, absent, con-
straints on the matrix elements of J;; come solely from
the space group symmetry of the lattice.

The effect of these constraints on the Hamiltonian
for the triangular-lattice materials, such as YbMgGaOy4
and others, has been thoroughly discussed in Refs. [25]
311, 35, 38, [40]. Here we would like to provide a brief and
intuitive derivation of the main results.

Consider the Hamiltonian on the &; bond, see
Fig. [I} with the z axis parallel to it

Ja:a: ny J;cz
Jyz Jyy Jyz Sj» (2)

zx zy 2z

Hi; = ST

As can be seen from Fig. [[(a), the symmetries of the
lattice are the C3 rotation around z axis, Cy rotation
around each bond, site inversion symmetry Z, and two
translations, 7; and 7z along d; and d9, respectively [35].
These symmetries eliminate most of the elements of the
exchange matrix. First, the 180° rotation around the d;
bond changes y — —y and z — —z, but should leave the
two-site form invariant, leaving us with

) A Jez 00
Hij=SINS; =S| 0 Jy Jy- |S;. (3)
Jzy Jzz

Then, inversion with respect to the bond center, which
is a combination of the site inversion and 77 transla-
tion, and change ¢ <> j should also leave invariant,
allowing only symmetric off-diagonal term, J,, = J..
Renaming it as J., = J,+, and rewriting the diagonal
terms using X X Z-like parametrization J,, = AJ, with
J = (Jog + Jyy)/2 and Jiq = (Jpo — Jyy)/4 yields the
two-site Hamiltonian for

Hij = T (AS7S; + 5757+ SYSY) (4)

Y (5}5} - S}’Sj’) + J.x (555? + Sf’Sj).

FIG. 1. A sketch of the triangular lattice layer of magnetic
ions (empty circles) embedded in the octahedra of ligands
(black dots) with the primitive vectors. Thick (blue) bonds
are between magnetic ions and ion-ligand bonds are thin
solid/dashed lines for above/below the plane.

For the other bonds, using the C3 invariance with the
z axis to transform to the d, bond in Fig. |1} changes

jl matrix in to ja:Rgljllf{a where

R CoS Py  Sing, 0
R,=| —sing, cosp, 0 |, (5)
0 0 1

is the rotation matrix, or, explicitly

A J+2Ji460 —2J1480 —Ji434
Ja — _2Jii§a J — 2Jiiéa Jziéa ) (6)
—J.+ 54 J2+Ca AJ

where abbreviations are ¢, =cos ¢, and 5, =sin @,.
Altogether, the most general Hamiltonian on the
triangular lattice becomes

H=>" J(Sg”s; +SYSY 4+ ASij)
i)
+205s (887 — SVSY ) o — (STSY + SYS7 )0 )
s ((sgs; + st;/)ea . (sgs; + Sfo)ga), (7)

where ¢(§), = cos(sin)@,, as above, the bond angles @,
are that of the primitive vectors d, with the x axis,
Pa=10,27/3, —27/3}, and the spin operators are in crys-
tallographic axes that are tied to the lattice, see Fig.
The Hamiltonian (7)) is naturally divided in the
bond-independent X X Z part and the bond-dependent
anisotropic Jy4+ and J,+ terms, also referred to as the
pseudo-dipolar terms [38], which generally break contin-
uous spin-rotational symmetries down to discrete ones.

B. Classical phase diagram

Since there are four parameters in the model , its
parameter space is three-dimensional, with the forth de-
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FIG. 2. (a) Brillouin zone of the triangular lattice with the ordering vectors for each phase. (b) The 3D classical phase diagram
of the model (7)) for the single-Q states, see text for their description. The vertical axis is 0< A <1. (c) The 2D cut of (b) at
A =1 with a sketch of spin structures and parametrization of the radial and angular coordinates. (d) A detailed sketch of the
dual 120° state. It is, generally, noncoplanar, see Sec. and consists of twelve sublattices with the unit cell indicated.

gree of freedom setting the energy scale. We apply one
physical constraint on it by assuming the easy-plane type
of the X X Z anisotropy, 0 <A <1, as this is natural for
a variety of layered systems of interest [I8] 26]. As was
pointed out in Ref. [35], one needs to consider only pos-
itive J,4 since the global 7 rotation around the z axis
that should leave the Hamiltonian invariant is equivalent
to changing J.+ — —J.+. With these two constraints,
one can map the entire 3D parameter space on a cylinder,
with the vertical axis represented by the X X Z anisotropy
A, J,+ as the radial, and J14/J as the polar variables,
so that each horizontal cut represents an entire 2D phase
space of the model (7)) for a fixed A.
In Figures 2(b) and (c) we use a parametrization

(J,2Jx4,5J.4) = (—r sin, rcosp, /1 — r2> , (8)

such that \/J2 4+ (2J14)? + (5J.4)2 =1, with the choice
of numerical coefficients made to exaggerate the region
where all parameters are of the same order, Jyy, J,+ <J.
The XY and the Heisenberg limits of the X X Z part of
the model, A =0 and A =1, correspond to the bottom
and the top of the cylinder, respectively. The 2D phase
diagram of the latter is shown in more detail in Fig. [2(c).

There are five ordered, single-Q phases shown in the
classical phase diagram in Figs. [2(b) and (c) with spin
arrangements shown in Fig.|[2|(c) and the ordering vectors
in the Brillouin zone in Fig.[2(a). Two of the phases can
be seen as natural because they are known to be favored
by the XX Z part of the model , the ferromagnetic
phase with Q =T and the 120° phase with Q200 = K,
for J<0 and J >0, respectively.

Although not as obviously, the two stripe phases are
favored by the Jiy and J,+ bond-dependent terms that
are selecting the states that satisfy them fully on one of
the bonds and partially on the others [39]. While the
stripes have the same ordering vector, Q =M or equiv-

alent, they differ by the mutual orientation of spins and
bonds. In the stripe-x phase, favored only by the Jy1 <0
term, spins are in plane and along one of the bonds. In
the stripe-yz phase, spins are perpendicular to one of the
bonds and are also tilted out of plane, taking advantage
of both Jy 4 and J.4 terms, see Fig. [2{c).

The remaining small region is the dual 120° phase with
ordering vector Qqiz00 = K/2 or equivalent. While the
reason for this terminology and the logic behind this state
will be made clear in Sec. [V]] it is related to the conven-
tional 120° order via the so-called Klein duality transfor-
mation [5I]. The dual 120° state is a twelve-sublattice
state, which is a combination of four counterrotating 120°
structures, shown in different colors in Fig. d).

The classical per-site energies of these phases (in units
of S?) are as follows

3
Epyv = 3J,  Eigpe = —§J, Egtripex = —J +4J4+,

Estripe-yz = _<7c -AJ - \/ 4J3:i: + ‘702’ (9)
1 ~ / ~
Edl20° = 5 (Jc + AJ - 4‘]3:& + Jg) 5

where we abbreviated J,=[J(1 — A) +4J14] /2 and the
(negative) out-of-plane tilt angle of the stripe-yz state is
found by energy minimization as: tan 29:—2Jzi/jc.
Our discussion reproduces results of previous studies
of the single-Q ordered ground states of the model @
that have identified the stripe and 120° states for J >0
[32], 35 [38] BI]; see, in particular, Ref. [37]. We also ex-
tend the same approach to the entire available parameter
space. However, as was first pointed out in Ref. [36] us-
ing numerical energy optimization in large clusters, more
complicated multi-Q ordered structures become ground
states of the classical model near the phase boundaries
of the stripe and 120° regions. We confirm these findings



by studying instabilities in the spin-wave spectra,—see
Sec. [[V]—and also identify a different instability within
the 120° phase for a range of A near the Heisenberg limit
of the XX Z term in . This is an instability toward a
different multi-Q state with a long-range spiral-like dis-
tortion of the 120° order that is similar to the Z, vor-
tex state discussed previously for the triangular-lattice
Kitaev-Heisenberg (or K—J) model [55], 56]. Our discus-
sion of the correspondence of the model to the K—J
model in Sec. [VI]extends this earlier finding to a broader
range of parameters.

Since the continuous spin-rotational symmetries in
model are broken, one generally expects gapped spin
excitations in all ordered phases. This is, indeed, true
for the stripe-x and for most of the stripe-yz parts of the
phase diagram, where in the latter a peculiar acciden-
tal degeneracy exists along a 2D surface of parameters
that is related to duality relations discussed in Sec. [VTA]
However, the ferromagnetic (FM) and the 120° states of
the classical model exhibit an accidental degeneracy ev-
erywhere in their 3D regions of stability, also referred to
as an emergent symmetry in Ref. [38]. This means that
their spectra are gapless and the orientation of their spin
configurations are not fixed within the lattice plane for
A <1, or at all for A=1, offering examples of the emer-
gent U(1) and O(3) symmetries, respectively. However,
since the model (|7]) breaks rotational symmetry, it means
that quantum and thermal fluctuations will select a pre-
ferred direction and gap out the spectrum. We discuss
the outcomes of such a quantum order-by-disorder effect
in these phases in Sec. [[T]]

It is worth noting that most of the phase diagram in
Fig.[2is occupied by the states with quantum fluctuations
that remain insignificant even for the quantum S =1/2
limit, such as stripes and FM states. Thus, by and large,
strong anisotropic terms on the triangular lattice do not
seem to result in a massive degeneracy of the classical
states that would indicate possible exotic phases, con-
trary to some early expectations [I§].

III. MAGNON SPECTRA

Although the linear spin-wave spectra and transverse
dynamical structure factors for the ordered single-Q spin
structures can be obtained numerically, see Ref. [5§]
and Supplemental Materials of Ref. [50], their analyti-
cal forms can be tremendously useful and informative.
In this Section, we present the linear spin-wave theory
(LSWT) for four out of five ordered single-Q phases
shown in Fig. 2] and discussed in Sec. [[I] above: stripe-
x, stripe-yz, 120° Néel, and ferromagnetic states. We
do not consider the spectrum of the dual 120° state be-
cause of its complicated 12-sublattice structure. Some
of our results for the stripe phases have been been dis-
cussed previously either in limiting cases [31] or with
minimal details [35]. We would like to emphasize that
the spectrum of the 120° phase in the presence of the

bond-dependent anisotropic terms has not been calcu-
lated previously. The same is true for the ferromagnetic
phase, which is, however, much simpler.

The spin-wave expansion requires a rotation of the axes
on each site from the laboratory reference frame {z,y, 2},
in which Hamiltonian is typically written, to a local ref-
erence frame {Z, 7, 2} with the Z along the spin’s quan-
tization axis given by the classical energy minimization
for a spin configuration

S; =R;S;, (10)

where gi is the spin vector in the local reference frame
at the site 7 and R; is the rotation matrix for that site.
Thus, the spin Hamiltonian in can be rewritten as

7:[ = Z S;Fj”sj = Z’SV;[“’]V”’SVJ ) (11)
(i) (i)

where the “rotated” exchange matrix is
Jij =R} J4R; . (12)

This procedure is followed by a standard bosonization
of spin operators via the Holstein-Primakoff transforma-
tion, S7 =5 — azai, St ~a;v/2S, and a subsequent diag-
onalization of the harmonic part of the Hamiltonian.

In the following, we will use a two-stage rotation from
the crystallographic to local reference frame, R=R.-Rg,
with the first rotation in the z-y plane by an angle ¢

cosp —sing 0
sing cosp 0 |, (13)
0 0 1

R, -

and the second rotation in the z-z plane

. sinf 0 cosf
Ry = 0 1 0 . (14)
—cosf 0 sinf

Thus, the spin transformation is given by
sin @; cos p; —siny; cosb; cos p;

sinf; siny; cosy; cosf;sinp;
— cos b; 0 sin 6;

R; = , (15)

where 6; are the out-of-plane canting angles of the spins.
While not unique, this approach is physically intuitive
and is motivated by the in-plane orderings.

A particularly simple and useful example that will be
used below is that of the states that are coplanar with the
lattice plane, such as stripe-x and 120° Néel, for which
all #; =0 and the rotation matrix (15]) simplifies to

R 0 —sing; cosp;
R;,=| 0 cosy; sing; |. (16)
-1 0 0



After this rotation, the Hamiltonian @ that yields the
LSWT becomes

H= 5" {7a578 + cos (s — ) (525 + 53]
(i5)

+ 21k 08 (Ga + i + ;) (S757 - SYSY) (17)
Tk | o8 (Ba = 1) ST SY + cos (Pa — 00) S| |

where ¢;(;) are the angles of the spins with the z axis in
the laboratory frame and we have omitted the terms that
contribute only to the anharmonic order of the SWT.

Choosing the ordering vector according to the classical
energy minimization dictates the number of sublattices
within the magnetic unit cell, ns. Upon introducing the
corresponding Holstein-Primakoff boson species and after
the Fourier transform the LSWT Hamiltonian reads

1 TSN
Ho =3 zk:xLHkxk. (18)

T

where X, = (a;r(,b;r(,...,a_k,b_k,...) is a vector of

length 2ns and I:Ik is a 2ng X 2ng matrix
. A, B
Hi=5( < |, (19)
B, A",

where we isolated the factor S. Then the eigenvalues of
gHy, {e1x, €2k -+ -, —€1-k; —€2-k, - - - }, give magnon en-
ergies, here g is a diagonal matrix [1,1,...,—1,—1,...],
see Ref. [09].

A. Stripe-x phase

For the stripe-x phase, the ordering vector is one of
the M-points and spins are split into two sublattices with
spins along one of the bonds, ¢; =¢o + (Qr;). Choosing
the ordering vector Q= M'=(0,27/+/3) for convenience,
dictates ¢4 =0 and pp == for the A and B sublattices,
see Fig. 2] After some straightforward algebra with the
Hamiltonian in , separating the bonds into intra- and
inter-sublattice ones, yields the 4 x 4 LSWT matrix in
with the 2 x 2 Ak and Bk matrices

~ [ Ax By ~ [ Dk Cx
Ak_(Blt Ak)’ Bk_(Ck Dik(), (20)

and the elements of the matrices given by

Ax =2(J —4Jss) + (J(1+ A) — 2J14) coskdy

By = (J(A—=1) — Jiy +iJ.4)(coskds + coskds),
Cx = (J(1+A) + Jit)(coskds + coskds), (21)
Dy = (J (A—=1)+2Jeq — 2iJzi) coskd .

In this case, the eigenvalues of the Hamiltonian matrix
(19) can be found analytically by diagonalizing (ng)2

mK' | J =-03J,J.,=02J
\M =+ o+

K A=10|

05|

05|
[ o4
03] =
02 @ r
3o

040302 01 0 01 02 03 04 — 1

1
KK r

MM)  K(K)

FIG. 3. Magnon energies 1,2k (upper and lower curves) from
Eq. for J >0, A=1.0, Jx+ =—0.3J, and J.+ =0.2J.
Solid (dashed) lines are along the TM KT (I'M’K'T) paths;
the ordering vector at M’ is indicated in the inset. Left inset:
the 2D J,1—J++ phase diagram for A = 1.0 with the point
indicating the chosen set of parameters.

instead of gf{k, giving two magnon branches

&2y = 5 (A%;+ Bul? — C2 — |Dif? (22)

- /4 Ak By — Dy [? — [ BiD;, - B;;Dk|2).

Figure [3| gives an example of the two magnon branches
for a representative point within the stripe-x phase along
the two paths in the Brillouin zone shown in the inset
with the ordering vector at M’ also indicated. The left
inset shows a sketch of the J,+—Jy4+ phase diagram for
A =1.0in cartesian coordinates with the point indicating
the chosen set of parameters. As expected, the spectrum
is fully gapped due to the symmetry-breaking terms.

B. Stripe-yz phase

In the stripe-yz phase, the ordering vector and the
number of sublattices are the same as in the stripe-x
case, but the spins are tilted away from the laboratory
frame, see Fig. 2c). Choosing again Q = M’ fixes all
;=7 /2 while the out-of-plane angles are 6; =60 + (Qr,),
leading to 64 =0 and g =0+, where 6 <0 according to
the classical energy minimization in Sec. [[| B. Thus, the
matrix of rotation to local reference frames becomes

) 0 -1 0
R, = sinf; 0 cosb; |, (23)
—cosf; 0 siné;

which yields a somewhat lengthly “rotated” Hamiltonian
Eq. (1), shown in Appendix [A] The subsequent spin-
wave expansion yields the LSWT matrix (19) with the
structure identical to the stripe-x case, Eq. (20 above.
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FIG. 4. Same as Fig. [3|for J >0, A=1.0, J++ =0.2J, and
J.+ = 2v/2J.. within the stripe-yz phase. See text for the
discussion of the accidental degeneracy at the M point.

We delegate explicit expressions for Ay, By, Ck, and Dy
for the stripe-yz phase to Appendix[A]for brevity. Need-
less to say, the magnon energies are calculated using the
same expressions .

Figure [ shows magnon energies for a point within the
stripe-yz phase, along the same two paths in the Bril-
louin zone as in Fig. [3] and for the same ordering vector
Q=M’. Although one expects the spectrum to be fully
gapped due to the symmetry-breaking terms as in the
stripe-x case, there is a gapless mode at the M point,
which is not the ordering vector, and the spectrum is fully
gapped at M’. This is because of the choice of parame-
ters in Fig. il A=1.0, Jo4 =027, and J.o =2v2J. 4,
that belongs to a 2D surface of parameters

Jow = (A4Jex +J(1—A))/V2, (24)

which yields an accidental degeneracy and a pseudo-
Goldstone (gapless) mode. For A =1, Eq. gives
a line of points defined by J,+ =2v/2J4 4 and the out-of-
plane tilt of spins in this case is given by tanf= —1//2.

While this accidental degeneracy looks similar to the
case of the J1—J; model on a triangular lattice [60], the
symmetry associated with it is hidden. We identify this
2D surface of accidental degeneracies in the parameter
space as corresponding to an extended Kitaev-Heisenberg
model, which possesses emergent symmetries that natu-
rally lead to the pseudo-Goldstone modes in the qua-
siclassical limit; see Sec. [VTA] For a generic choice of
parameters within the 3D region of the stripe-yz phase,
the accidental degeneracy is not present, but the gap re-
mains small in a large portion of the phase diagram. In
Appendix [A] we provide two additional plots of magnon
energies for the stripe-yz phase to substantiate this point.

We also point out that the presence of this gapless
or nearly-gapless mode does not affect quantum fluctua-
tions, which remain small even in the quantum S=1/2
limit throughout the stripe-yz phase. However, the or-
dering Néel temperature is necessarily suppressed in a

vicinity of the 2D surface in Eq. due to the Mermin-
Wagner theorem. We discuss this dichotomy in Sec. [V]

C. 120° phase

For the 120° phase, the ordering vector is one of the
K-points, see Fig. a), and spins form a three-sublattice
structure. For instance, choosing the ordering vector Q =
K'=(47/3,0) and fixing the angle on the A sublattices
to @4, defines the other angles via @; =@+ (Qr;). Thus,
op=pa+ (01Q)=pa —27/3 and pc =pa — (01Q) =
wa +27/3 as expected for the 120° pattern. Using these
phases in the Hamiltonian , after some tedious but
straightforward algebra, one obtains the 3 x 3 Ay and
By LSWT matrices in

. | . . A
Ax=3J (1+ 7 28-1) M1> — 3J.4 M, 43‘]2*1\/13,

~ 3J ~ ~ 3Jz 9
Bie = 7 (1+28) My + 354 My — i =My (25)

Since the nearest-neighbor interactions couple only differ-
ent sublattices, the resultant M; matrices are all traceless
and are built from the hopping amplitudes. The latter
are either bond-independent, as for M in the X X Z term

0 v 7
~ 1 )
Mi=[~ 0 7 |, 7:§§ e (26)
vyt 0 a

or bond-dependent, as for the ones originating from the
anisotropic J14 and J,1 terms

0 ~vaB Vic

Me=| v 0 9BC |, (27)
Yac Ype 0
I ~
YRS = 3 za:ezkéa cos (pr + ¢s + Pa) 5 (28)
and
A P* YaB TZC
M; = —VaB P TYBC | > (29)
~Yac Ve O
. ~0 A’VJAB jo
My= 1|7 0 9Bc |, (30)
YAC VEC 0
where

1 ) 5 B
Yrs = 3 Z e’k (cos (pr — @a) — cos (05 — Pa) ),

~ 1 ikéo . .
YRS = 5%36 (cos (pRr — @a) + cos (s — Pa) )+ (31)

With the Ay and By matrices ( written out explic-
itly, the 6x6 LSWT Hamiltonian (|19]) has to be diagonal-

and sums over « involve only three primitive vectors d,,.
25)
ized numerically. Figure a) shows the resultant magnon
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FIG. 5. (a) Magnon energies for a point in the 120° phase
along two reciprocal k-contours (solid/dashed) in (b), with
the ordering vector indicated. (b) Intensity plot of the lower
branch. (c¢) The ¢-dependent part of the zero-point energy
vs ¢ that selects the structure sketched in (a). The spectrum
retains C's, but not Z symmetry, see text.

spectrum for a representative point in the 120° phase for
J++ <0 indicated in the insets along the two paths in the
Brillouin zone shown in Fig. b)7 which also shows an
intensity map of the lowest magnon branch. Note that
due to the three-sublattice structure, the magnetic Bril-
louin zone is one-third of the full one and the spectrum in
Fig. a) is symmetric with the middle of the I' — K line,
so the K and I" points are equivalent. Thus the spectrum
possesses only one Goldstone mode for A <1.

While one expects the spectrum to be gapless because
of the emergent U(1) symmetry of the classical model
discussed in Sec. [lI| B, the unusual feature in Figs. a)
and b) is the nonreciprocal character of the magnon
dispersions, €4 x #€a,—k [61} [62]. This is due to the J,4
term that breaks the inversion symmetry of the LSWT
Hamiltonian in the 120° state. While H_y # Hy does not
automatically imply the nonreciprocity, J,+ term also
makes H* " ;éflk, which together seem to be a sufficient
condition. As one can see in Fig. [5|(b), the 27 /3-rotation
symmetry of the spectrum is preserved, but the inversion
is not. An additional figure showing the same behavior
for Ji4 >0 is given in Appendix [A]

As discussed in Sec. [[T| B, anisotropic terms do not con-
tribute to classical energy of the 120° state, yielding an
accidental U(1) degeneracy for A <1. Since the magnon
spectra do depend on the angles of spins with bonds, this
degeneracy will be lifted by zero-point fluctuations via
order-by-disorder mechanism [50, [63] [64] that should se-

lect a preferred spin direction and open a gap in the spec-
trum. In the 120° structure, fixing an angle of one spin
fixes the rest, so the quantum energy correction is given
by 6E(p)=—=3J5/2+3_, k€ax(p)/6, where £ k(p) are
the magnon energies that depend on the angle ¢ of a spin
in one of the sublattices with the x axis, and the sum is
over the full Brillouin zone.

In Fig. [f[c) we show this quantum correction with its
average value subtracted, AE () =0E(p)—(0E(p)) vs ¢.
Thus, for the given parameters, fluctuations pin spins to
the bond directions in the manner shown in the sketch of
the 120° configuration in Fig. (a). That is, each spin is
perpendicular to one of the bonds and bisects an angle of
the triangle, corresponding to the choice p=7/6+7n/3.
This choice is for the parameters to the left of the dashed
line in the inset in Fig. a). To the right of it, a state
with spins along the bonds is chosen with ¢ =7n/3, see
Appendix [A] Curiously, the fact that the energy min-
imum must switch implies that the U(1) symmetry is
retained on a 2D surface within the 120° phase.

D. Ferromagnetic phase

For the ferromagnetic phase, the ordering vector is at
Q=T=(0,0) and the spin state can be described with a
single-sublattice picture, i.e., all ¢; =@ and 6; =60. As is
mentioned in Sec. [T, for A <1 the XX Z anisotropy re-
duces the symmetry to U(1) and makes §=0. For A=1,
the classical energy is insensitive to the global direction
of the ordered moment and the symmetry is O(3). Hav-
ing this latter case in mind, the matrix of rotation to
local reference frames retains its general form and
we list the relevant terms of the rotated exchange matrix
in Appendix [A]

The spin-wave expansion yields a simple Hamiltonian

H= 3S¥ (Aka;r(ak - %(BkaLaT_k + H.c.)), (32)

with somewhat involved expressions for Ax and By

Ax = —2J(cos® 0 + Asin®0) + J(2+ (1 — A) cos® ) %
—2J34 cos® O ypi — o sin 207, (33)
Bk =J(1—A)cos® 0y — 24+ (1+sin®0) ypx

+ Tk SN 207 g + 2i(2Jﬁ Sin0Fp1c + Jos cosd %,k) ,
where, using notations cz =cos ¢ and sz =sin ¢,

1
w=§;%, (34)

1 - 1
YFk = 3 ZCQC%HW YRk = 3 an5¢a+2w

« «

_ 1 1

TFk = 3 § :Ca&p—%, TPk =3 § :Cacw—vaa
« «
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FIG. 6. Magnon energies along two contours shown in the in-
set for a representative point in the FM phase: J <0, A=0.5,
J++=0.4J, and J,+ =—0.1J. Inset shows the intensity plot
of the magnon dispersion. A sketch depicts the orientation
selected by the order-by-disorder mechanism.

where ¢, = coskd, and sums over « involve only three
primitive vectors d, as before.
The magnon spectrum is given by

ex = 35/ 42 — | By|?, (35)

and expressions for Ay and By simplify considerably
for A< 1 as it forces a coplanar state with §=0.

Figure [6] shows the magnon spectrum along the two
paths in the Brillouin zone for a representative point in
the FM phase as indicated in the insets. Note that J <
0. Similarly to the 120° phase, the entire 3D region of
the FM phase has an accidental U(1) degeneracy of the
classical model for A <1 and O(3) for A=1 as discussed
in Sec. [[1] B, hence the gapless spectrum. One can show
from Egs. and that the Goldstone mode should
be linear in k for all A <1 and quadratic for A =1; see
Appendix [A] for another plot of the magnon spectrum
demonstrating the latter result.

Similarly to the stripe states, once the direction of the
ordered moment is chosen, the C'5 symmetry is broken,
while inversion remains; see Fig. [f] The direction of the
ordered moment in the FM state is selected via order-
by-disorder, as for the 120° state. The same type of
analysis for the parameters in Fig. [f] pins spins in the
manner shown in the sketch of the ordered structure, i.e.,
perpendicular to one of the bonds with p=7m/2 4+ 7n/3.
We find that for A <1, the preferred orientation of the
ordered moment in the FM phase of the phase diagram
switches from the perpendicular ¢ =7/2 to the parallel
(=0 orientation in a rough region near J1 4 ~0, although
the details of such a switch can be more complicated. In
an analogy with the 120° phase, this also implies a surface
where U(1) symmetry is retained.

For A=1, quantum selection of the moment direction
is more complicated since it involves both in-plane and
out-of-plane angles ¢ and 0 as spins are allowed to be
noncoplanar. However, in case of parameters that fall on

the line corresponding to the K—.J model,—see Sec.[VI]—
order-by-disorder selects the so-called cubic axes as a set
of preferred directions, in agreement with Ref. [55].

IV. INSTABILITIES OF MAGNON SPECTRA

In the preceding Sections, principal single-Q ordered
phases of the model have been identified and their
spectra of excitations have been found. Here we advocate
a straightforward and fruitful approach that provides fur-
ther insights into the phase diagram of the model via an
investigation of the stability boundaries of the magnon
spectra. Generally, a magnon spectrum of a state is de-
fined in a corresponding region of the phase diagram. As
a function of the model parameters, a magnon branch
may soften and become imaginary, or have £3 <0 at one
or at a set of k points, indicating a transition to a differ-
ent state. This will be referred to as magnon instability.

The well-known examples are magnon softening tran-
sitions in the J;—Js model and some of it extensions on
the square and triangular lattices [60} [65, [66], in which
magnon instability occurs exactly at the classical phase
boundary. There are also other examples, such as the
X XZ version of the same model on the triangular lat-
tice [67], in which the magnon stability region extends
beyond the boundary of its classical phase. This leads to
an overlap of the magnon stability regions of the neigh-
boring phases and suggests a first-order transition be-
tween them [68]. Finally, magnon instability may occur
before the boundaries of its classical phase are reached,
indicating an intermediate phase.

A. Stripe phases

First, we explore magnon instabilities in the stripe
phases. Ref. [36] used a numerical optimization of en-
ergy in large clusters of classical spins and was first to
demonstrate that the single-Q classical phase diagram of
the model of the type shown in Fig. [2l may be incom-
plete. It was shown that the more complicated multi-Q
states, which can be described as modulated stripe phases
with incommensurate ordering vectors, create a layer of
intermediate states between the stripe and 120° phases.

We support this finding using magnon instabilities and
explore it in a wider region of phase space. Our Figs. [7]
and [§| show the 2D J,+—J14 phase diagrams for several
values of A with magnon instability boundaries obtained
from Eq. for the stripe-x and stripe-yz phases.
While not shown, magnon instability boundaries for the
choice of A=20.56 that corresponds to Ref. [30] are virtu-
ally indistinguishable from the phase boundaries of the
multi-Q region identified numerically in that work.

Moreover, the k-points of the observed magnon insta-
bilities also coincide with the ones identified in Ref. [36]
as the new ordering vectors. For instance, for most of
the boundary region with the 120° phase, the magnon in-
stability occurs at the incommensurate vector Q located
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FIG. 7. The J,+—J++ phase diagram of the model for A=
1 with classical transitions from Fig. [2[ (dotted lines), magnon
instabilities in the stripe-x and stripe-yz phases (solid lines),
and transition boundaries by the LT approach, see text.

along the line between the I' and K points in the Brillouin
zone, in agreement with Ref. [36]. Needless to say, our
method of identifying multi-Q transition boundaries of-
fers obvious advantages over the numerical approach, as
it only requires the knowledge of the magnon spectrum
of the single-Q states.

In our Fig. [7, which displays magnon instability lines
(solid lines) from the stripe phases for A =1 that occur
before the classical boundaries (dotted lines) are reached,
we also compare them to the results of the Luttinger-
Tisza (LT) method [49], shown by the dashed lines. The
LT method, with the so-called “weak” constraint, essen-
tially amounts to finding a minimum of the lowest eigen-
value of the Fourier transform of the exchange matrix @
J8(q) in the g-space to find a single-Q ground state.
It has been used previously to study the phase diagram
of the model [32, B35, B6] and was instrumental in
identifying stripe structures as the ground states of the
model. However, it was noted that the LT method some-
times fails and finds an incommensurate state even when
the true ground state is a commensurate single-Q state
[32, B5]. In fact, these problems are not specific to the
model and have been known and understood as com-
ing from the “weak” nature of the constraint [69].

Our Fig. [7] illustrates these consistent discrepancies of
the LT method with the results of the magnon insta-
bility approach for the phase boundaries of the stripe
phases. Curiously, the two methods agree for one point
{Jx+, .+ }~{0.1,0.3}, which is, actually, a point that
belongs to the line corresponding to the K—J model, see
Sec. so one can suspect an emergent U(1)/0O(3) sym-
metry along this line as the reason for restoring the va-
lidity of the LT approach. The other range where LT
agrees with our method is the range of J,1 2 0.5 of the
stripe-to-stripe boundary. The reason for that is not to-
tally clear. We also note that the LT method breaks
down within the 120° phase for any A at any non-zero
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FIG. 8. Same as in Fig. [7] for several A; dotted lines are
transitions in Fig. [2] solid lines are magnon instabilities of the
stripe and 120° phases (half-ellipse shape). Filled areas are
stable single-Q phases and blank regions are multi-Q states.

J++, predicting incommensurate states [32]. Altogether,
significant care must be exercised with using it.

Lastly, we point out that the energy gain created by the
modulation of the stripe states in the multi-Q structures
was shown to be tiny, ~ 1073.J [36]. This may explain
why no multi-Q states were detected by DMRG [39] for
the quantum S=1/2 case.

B. 120° phase

While the border regions of the stripe-x and stripe-yz
phases with the 120° phase get replaced by the multi-Q
states, magnon instabilities within the 120° phase also
indicate intriguing behavior. First, the 120° magnons
defined by the algebra in Sec. [[I] C are stable with re-
spect to the anisotropic J1 1 term far beyond the classical
boundaries of the 120° phase regardless of the value of
the X X Z anisotropy A, with stability boundaries shown
in Fig.[§] by the half-ellipse lines. This strongly suggests
a first-order transition from the 120° to the stripe phases



if quantum fluctuations are included.

Second, the spectrum stability with respect to the
anisotropic J,+ term is more drastic. In fact, while the
X XZ anisotropy provides a finite range of stability to
magnons in the 120° phase, magnons in the A =1 limit
are unstable to any finite value of J.4, see Fig. Bl This
instability is toward a different multi-Q long-range spi-
ral state, which corresponds to the spectrum softening
at three symmetric k points in the immediate vicinity of
the I' and K points. This new state is very similar to the
so-called Z5 vortex state that was discussed intensely in
the triangular-lattice Kitaev-Heisenberg model [55] 56].
In Sec. [VI} we discuss the correspondence of our model
(7)) to that model along the line in the A=1 plane. Our
present consideration shows that a similar state exists in
a significantly wider parameter space.

We note that both trends are commensurate with our
previous DMRG results for the quantum S=1/2 case in
Ref. [39]. Namely, DMRG observes only a direct tran-
sition from the 120° to the stripe phases vs Ji4 and
the transition is likely first-order [39]. The behavior of
the transition boundary of the spin-liquid phase found
in Ref. [39] and the overall shape of the phase space
occupied by it is similar to the boundary of the long-
range spiral state discussed above. The main difference
is that the footprint of the spin-liquid in the A=1 plane
is smaller and an ordered 120°-like phase is stabilized
for J,+ < 0.27. Both the spiral (Z; vortex) and the
spin-liquid phases shrink and disappear upon reducing
A. This may argue for a possible relation between the
two, suggesting the spin-liquid state of Ref. [39] to be
a molten Z, vortex rather than of a simple 120° state.
However, to add a word of caution, we have found no in-
dication of any sizable shift of the peaks in the spin-liquid
structure factor from the commensurate ordering vector
of the 120° state, nor have we seen any traces of the chi-
rality in the spin-liquid wave-function that is non-zero in
the Z, vortex state, see Ref. [39).

V. QUANTUM AND THERMAL
FLUCTUATIONS IN THE STRIPE PHASES

In this Section, we verify whether strong anisotropies
in the model can result in strong quantum or thermal
fluctuations in the stripe phases using a quasiclassical
approach.

A. Quantum fluctuations

The on-site ordered moment for 7' = 0 within the
LSWT takes the standard form

() =5 3 (36)
.k

where N is the total number of lattice sites, the k-sum is
over the full Brillouin zone of the lattice, p=1,2 numer-
ates magnon branches in the stripe phase, v, are the
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Bogolyubov parameters of the transformation that diag-
onalizes Hamiltonian in Eq. , and we have used the
symmetry of the sublattices in the stripe phases.

In the stripe phases, given the symmetry between sub-
lattices, normalization of the Bogolyubov parameters is
uik — vik =1/2 and their squares can be found analyti-
cally following Ref. [70]

W2y = M [g,u] ’
H (euk — €vk)

vER

(37)

where Mj;[\] is the first minor of AI — gH) with
the LSWT Hamiltonian matrix , the product in
the denominator is over three out of four eigenvalues
{e1k, €2k, —€1-k, —€2-k } found in Sec.[[I] A, and explicit
expression for Mi1[)\] given by

M [N = (A + \) (A + CF + | Di|* — A})
+ |Bk|? (Ax — A) — Cx (DB + BiDy), (38)

with the matrix elements for the stripe-x phase given in
Eq. and for the stripe-yz phase in Appendix

The intensity map of (S) obtained from for S=1/2
and A =1 is shown in Fig. El(a) throughout the stripe
phases. One can see that the on-site magnetization is
nearly classical and quantum fluctuations are really negli-
gible for these regions all the way to the transition bound-
aries even in the quantum S=1/2 limit. While this may
seem natural for the strongly gapped stripe-x phase [31],
it is somewhat less obvious in the stripe-yz phase because
its spectrum has low-lying pseudo-Goldstone modes ow-
ing to an accidental degeneracy, see Sec. [[TI] B. As will be
argued in Sec.[VIA] this is because the model in this re-
gion is related to a ferromagnetic state, which translates
into a non-divergent contribution of the gapless region to
the fluctuations in .

We also note that we do not show the results for the
ordered moment (S) from the 120° and ferromagnetic
states. In the former, the spectrum is unstable toward
the spiral-like state for A =1, as discussed in Sec. [[V] B
above. In the latter, the order-by-disorder selection of
the ordered moment direction is complicated for A =1
and has to be done numerically, see Sec. [[TI] D.

These problems are avoided for smaller A and we
present such calculations in our Fig. [I0[a) for A =0.5.
Here the order-by-disorder selection in both 120° and FM
phases is straightforward, see Sec. [[Tl]] C and D, and for
the 120° state the formalism for calculating (S) is the
same as in Egs. and . Note that the empty
regions in Fig. [10(a) are from the dual 120° state and
the multi-Q regions discussed in Sec. A, for which
it is simply challenging to perform similar calculations.
There is, however, hardly any doubt that they are equally
well-ordered as the rest of the phase diagram.

Thus, we reiterate, once again, that most of the phase
diagram of the model is occupied by the states with
insignificant quantum fluctuations even for S=1/2.
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FIG. 9. Intensity maps of the (a) T =0 on-site ordered moment (S), Eq. (36)), and (b) ratio T /Tnr, Eqs. (#3)) and (39), in
the stripe phases for S=1/2. Parametrization is as in Fig. [2) A=1. Ellipse shows J.+ =2v/2|J++| line, Eq. (24), see text.

B. Thermal fluctuations

It is common in studies of frustrated magnets and their
models to characterize them with the “frustration ratio”
f = 0cw/T. [35) [T1], the ratio of the Curie-Weiss tem-
perature fcw to the actual ordering temperature T, as
a measure of a proximity to potentially exotic states.

A more refined alternative to fcw in anisotropic mod-
els is the mean-field transition temperature [72)

5(5+1)

3kp )‘min(Q>7 (39)

Tyr=—
where Anin (Q) is lowest eigenvalue of the Fourier trans-
form of the exchange matrix , Jij, at the ordering
vector. For the stripe orders, Q = M’ and A\pnin(Q) is
simply the classical energy @ per unit cell, A\ =2Fy for
stripe-x and Ay, =2Fy, for stripe-yz phase.

The transition temperature can be found from the van-
ishing point of the ordered moment within the LSWT
(S)r = (S) — N (“ik + ”Zk) n(uk) s (40)
78 3

where n (¢,x) is the magnon occupation number. How-
ever, this approach is known to overestimate T, [73] as
it leads to (S)r « (T, — T') for T — T¢, not to a power
law. Instead, we use the self-consistent RPA method of
Refs. [70] [74], in which one introduces the T-dependence
in the magnon spectrum as £, =2(S)rex. Then the spin
Green’s function is given by [74]

u2 7)2
S-Sty =2(8 pk ek 41
(S S5) <>TZ<W_£Hk e (41)

m

and Eq. is replaced by a self-consistent condition

() = % - 2<]5\*7>T )3 (uikn (F) — v2en (—gﬂk)). (42)
.k

At T —T,, the ordered moment (S)r— 0 and yields
the ordering temperature

1 2 uik + vik
— = — —_ 43
TC N % Euk ( )

Note that this approach is only valid for S =1/2, with
expressions being more complicated for larger spins [74].

The results of the calculations of f~! =T./TyFr are
shown in Figs. [9(b) and [I0[b) for A =1 and A = 0.5,
respectively. For the stripe-x phase, the ordering tem-
perature is close to the mean-field temperature except
near the transition boundaries as expected. The results
for the stripe-yz phase are more intriguing. There is
clearly a line of parameters where T, is exactly zero in
both figures. This line is given by Eq. , which re-
duces to Jop = 2v/2|Jgx| for A =1 in Fig. [9[b). Tt
corresponds to the condition for the accidental degener-
acy and for the pseudo-Goldstone mode in the magnon
spectrum, see Sec.[[TT| B. On a technical level, it is easy to
understand why the transition temperature vanishes. In
Eq. , uy, Vi ~const and the magnon energy ey ~ k>
near the accidental degeneracy point, leading to a loga-
rithmic divergence. Physically, this is a manifestation of
the Mermin-Wagner theorem that forbids ordering in 2D
in the presence of a continuous symmetry.

Several comments are in order. First, both ferro-
magnetic and 120° magnon spectra are gapless and the
states retain a continuous symmetry on the classical level.
Therefore, by the same Mermin-Wagner theorem, the or-
dering transition temperature 7T is zero throughout their
regions, as is shown in Figs. [9b) and [L0|(b).

Second, we have provided a clear example that a large
frustration ratio can be highly misleading as a guide to a
quantum-disordered region in 2D. In our case, quantum
fluctuations are negligible and the ordered moment is
nearly classical, but Tyr/Tn can be large, which naively
would imply a proximity to a spin-liquid state [35].
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FIG. 10. Same as in Fig. [9]for A=0.5 with (S) for the 120° and FM phases in (a). Ellipse shows the line from Eq. (24).

Third, because the degeneracy leading to pseudo-
Goldstone modes is accidental, quantum fluctuations will
induce a gap in them via an order-by-disorder effect [50].
We delegate the quantitative discussion of this effect to
Appendix [B] which needs some further developments dis-
cussed in Sec. [VTA] Although the degeneracy will be
lifted, the ordering temperature will remain suppressed
in that region compared to the mean-field expectations.

Lastly, while a detailed phenomenology of the pseudo-
Goldstone modes and suppressed ordering temperature
is achieved and demonstrated, it still leaves the question
on the nature of the accidental degeneracy wide open.
The system is in a well-ordered stripe phase, with the in-
plane and out-of-plane angles of spins seemingly pinned
by the energy minimization, with no obvious combina-
tions of ¢ and # manifesting a continuous symmetry of
the spin configuration in the crystallographic axes. In
order to elucidate the nature of this symmetry, we need
to consider a different set of axes used in the anisotropic
bond-dependent models, which we discuss next.

VI. CUBIC AXES AND GENERALIZED
KITAEV-HEISENBERG MODEL

The underlying crystal structure of the triangular-
lattice model considered in this work is that of the 2D ar-
rangement of the edge-sharing octahedra of ligands, such
as 0?7, surrounding magnetic ions, such as Yb3* in the
case of YbMgGaQy,, see Fig. It is also a particular
example of the 2D and 3D crystal structures built from
the edge-sharing octahedra, such as the honeycomb and
pyrochlore lattices, see Ref. [16] for an overview.

Because of the crystal field effect and since the superex-
change processes between magnetic ions are mediated by
the ligands, this geometry precipitates bond-dependent
anisotropic-exchange interactions between magnetic mo-
ments of the ions with strong spin-orbit coupling [12} 13|

[I6, BI]. At the same time, this robust structure main-
tains high lattice symmetry of the resultant spin models,
such as the one discussed in Sec. [II| for our model ,
which limits the number and the type of allowed terms.

This lattice arrangement also makes natural the choice
of axes that is different from the crystallographic ones
that have been used in this work so far, the so-called cu-
bic axes. The cubic axes are directly tied to the edges of
the cubes, that is, to the bonds of the magnetic ions with
ligands, see Fig. as opposed to the crystallographic
ones that consider only magnetic ions. Crucially, aside
from this physical justification, some of the hidden sym-
metries of the model become apparent in this language.

One of the choices for the cubic axes is illustrated in
Fig. where we also outline the octahedron of the lig-
and sites and the ligand-to-magnetic-ion bonds that are
forming cubic shapes, with bonds and sites of the lattice
being the same as in Fig.

Then, the transformation from the cubic to crystallo-
graphic reference frame, Sc;yst =ReScubic, is given by

0 1 1

V2 V2

N _ 2 1 1
R.= —1§ 761 —1% . (44)

V3 V3 VB

Next, the model in the cubic axes can be rewritten
as the extended Kitaev-Heisenberg (K—J) model

H::E:%Srsf+K$$?+F($%f+Sﬂﬁ>
(i)

H%$$+$$+$g+§$} (45)

where we use conventions and notations borrowed from
the much-studied extended K—J model on the honey-
comb lattice [I2]. The diagonals of the faces of the
cubes in Fig. that connect magnetic ions form the
triangular lattice with three different bonds denoted as



FIG. 11. Same as Fig. [1} side view. Octahedron of ligands
is highlighted, cubic axes and bonds of the triangular lattice
are shown. Spin ordering corresponds to the stripe-yz phase
for the parameters along the gapless K—J line, see text.

{X,Y,Z} = {+61, %82, +83}. They are perpendicular to
the corresponding cubic axes, i.e., the X-bond is perpen-
dicular to the x axis, Y to y, and Z to z, respectively.
In the model (45)), these bonds are numerated as (ij),
with the triads of {«, 8,7} being {y, z,x} on the X-bond,
{z,x,y} on the Y-bond, and {x,y,z} on the Z-bond, see
Ref. [16] for the model in terms of exchange matrices.

The parameters of the extended K—J model (45) are
related to the parameters of the original model (7)) as

1
ho=z (2J AT 4204y + \/ﬁJzi) ,

K=-2J4sy — V2,4, (46)

r— % (_J+AJ—4Jﬂ + ﬂJzi) :

1
I’ = 5 (_2J +2AJ +4J4y — \@Jzi> :

This relation was previously discussed in Refs. [15], [16]
with slightly different factor and axes conventions.

In Sec. [[1] B, we have discussed invariance of the model
@ to the simultaneous change of sign of the J,-term
and a global 7-rotation of the crystallographic axes about
the z axis as a justification to consider only J,+ >0. In
order to access J,4 <0 in Eq. , rotation of the crys-
tallographic axes S*¥) — —5%(W] leads to the following
transformation in the JoKTT' language [15]

Jo 1 +4/9 —4/9 +4/9 Jo

K| [0 -1/3 +4/3 —4/3 K
r | = | o0 +4/9 +5/9 +4/9 r |

I 0 —2/9 +2/9 +7/9 I

which returns the same extended Kitaev-Heisenberg
model and is, thus, self-dual.

b onty

stripe-yz

FIG. 12. Phase diagram of the model for A=1 as in Fig.
The ellipse is the line of J,+ :2\/§\Jiﬂ for which model 1)
corresponds to Kitaev-Heisenberg model . Special points
with higher symmetries and some Klein duality connections
are highlighted, see text.

A. Degeneracies and Klein duality for A =1

As was mentioned in Secs. [l B and [V] B, in the A=1
plane of the phase diagram in Fig. [2]there is a special line
defined by J,+ =2v2J44, see Eq. 7 for which acci-
dental degeneracy of the magnon spectrum in the stripe-
yz phase occurs. One can immediately see from Eq. (46))
that along this line two parameters of the model vanish,
I'=T"=0, reducing the model in the cubic axes (45] to
a simpler and more symmetric Kitaev-Heisenberg model

M= JoSiS;+KS]S], (48)

(ig)~

with Jo=J 4+ 2J+4+ and K = —6J4+4. This line of cor-
respondence to the Kitaev-Heisenberg model is shown in
the phase diagram in Fig.[12|as an oval, with the left half
of it obtained via a relation in for J,4+ <0.

Not only does this correspondence to the higher-
symmetry model hint at the source of the enigmatic de-
generacies, but it also provides a deeper insight into con-
nections between different parts of the phase diagram,
thanks to the prior works on the model on the hon-
eycomb and triangular lattices [511 [52], 53] [56].

Contrary to their explicit anisotropic character, com-
pass models often exhibit continuous symmetries in the
classical limit [I0, [75]. For instance, it is easy to see
that for a classical ferromagnetic state Kitaev term in
is invariant under the global spin rotation, thus



demonstrating an emergent O(3) symmetry [55,[56]. This
consideration is directly relevant to the accidental de-
generacy in the stripe-yz phase via the so-called Klein
duality transformation [51], 52 (55], [66]. This is a four-
sublattice transformation, in which one spin, S(r), is left
intact while spins connected to it via the X(Y,Z) bonds,
S(r + d,), are rotated around the x(y,z) cubic axes by
m. Crucially, this transformation leaves the K—J Hamil-
tonian invariant, with the parameters redefined as

Jo=—Jo, K=2J,+K, (49)

and in terms of J and Jyy4 as

~ J 8J ~ J

J:—g— ;i, Jii:_g‘i‘%- (50)
One can easily see in Fig. that the described spin
transformation converts the stripe-yz state into the fer-
romagnetic one. Since the FM state of the Kitaev-
Heisenberg model is invariant under global spin ro-
tation, the stripe-yz state must also be invariant under a
corresponding four-sublattice spin rotation, demonstrat-
ing accidental O(3) symmetry that naturally leads to the
pseudo-Goldstone modes in the quasiclassical limit.

In the crystallographic notations, the out-of-plane spin
angle in the stripe-yz phase along the K—J line is tan § =
—1/+/2, see Sec. [I1T| B, which is precisely along one of the
cubic axes, see Fig. Interestingly, as was shown for the
K—J model on the honeycomb [76] [77] and triangular lat-
tices [50], precisely this orientation is chosen by quantum
fluctuation from a classically degenerate O(3) manifold
of states. In our case, this choice is made on the classi-
cal level by restricting ourselves with the two-sublattice
stripe state of the surrounding phase in Fig.

We underscore that the Klein duality is not restricted
to the classical limit as the preceding discussion may seem
to suggest, but it rather implies an exact similarity of the
ground state and excitations, up to the described spin ro-
tations [51},[52]. This means that the entire section of the
K-J line in Fig. belonging to the stripe-yz phase is
dual to the entire section of the same line within the FM
phase, as can be confirmed from Eq. , with the point
marked as “K-only” being self-dual. For instance, one of
the implications of the Klein duality is the existence of a
point in the stripe-yz phase that is dual to the isotropic
Heisenberg ferromagnetic point and thus must be free
from any quantum fluctuations [I4]. Its coordinates, ac-
cording to Eq. , are J=Jiy>0and J.o =2v2[Ji],
and it is marked as “jo—only” point in Fig. with the
dashed line emphasizing the duality relation.

In practice, Klein duality means that the calculations
for quantities such as Néel temperature in stripe-yz phase
along the K—J line can be performed in the ferromag-
netic phase instead. Since the K—J model is O(3) sym-
metric only on the classical level, of interest is the gap
in the pseudo-Goldstone mode that is generated by the
order-by-disorder effect. In Appendix [B] we present cal-
culations of the Hartree-Fock corrections to the magnon
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spectrum for the ferromagnetic Kitaev-Heisenberg model
and use Klein duality to obtain the self-consistent tran-
sition temperature in the stripe-yz phase. Although the
fluctuation-induced gap E,; in the magnon spectrum is
small, the transition temperature is very sensitive to it,
TexTyrp/In(Typ/E,) [73], leading to a finite T, except
for the jo—only point. The resultant transition temper-
atures are still significantly suppressed compared to the
mean-field expectations .

The implications for the rest of the phase diagram in
Fig. are the following. A section of the K—J line
was previously identified as a “nematic” phase [54H57).
In Fig. [I2] this section coincides with the boundary be-
tween the stripe-x and stripe-yz phases and is unlikely
to represent a separate phase on its own.

Another insight is provided by the Klein duality into
the dual 120° phase. The isotropic antiferromagnetic
Heisenberg model has a Klein-dual point within the dual
120° phase, marked as the second “Jp-only” point in
Fig. with the coordinates J = Ji4 <0, see Eq. .
This also elucidates the nature of the dual 120° state.
It is obtained from the three-sublattice 120° state by the
Klein rotations of spins around cubic axes resulting in the
12-sublattice state. Since the cubic axes are not collinear
with the crystallographic ones, the resultant state is, gen-
erally, noncoplanar, see Ref. [5I] for the projection of
such a state onto the triangular-lattice plane. It is only
when the plane of the initial 120° state is chosen to be
parallel to one of the principal planes of the cubic co-
ordinate system, the Klein rotations will keep spins of
the dual 120° state in the same plane. This situation is
sketched in Fig. 2]

The most important implication of the correspondence
of the model to Kitaev-Heisenberg model along
the line J,4+ =2v/2J4 4 in Fig. is that it necessitates an
existence of a spin-liquid region in the S=1/2 case that
is Klein-dual to the spin liquid found by us in Ref. [39].
The confirmation of this is the subject of Sec. [VII]

B. Gapless modes at A<1

As was discussed in Secs. [[I]| B and [V] B, the pseudo-
Goldstone modes in the magnon spectrum of the stripe-
yz phase persist for A < 1 along the lines defined by
Jox = [4Jsx + J(1 — A)] /V/2; see Eq. . For the ex-
tended Kitaev-Heisenberg model with parameters in
Eq. 7 this condition means that only one of the off-
diagonal terms remains zero along these lines, I'=0, while
the other one does not, leading to the K—J-I"" model with
Jo = J+2J44 and A-dependent K and I

K=JA-1)—6Jsy, I'=JA-1)/2.  (51)

Thus, while for A = 1 the accidental degeneracies
are associated with the high symmetry of the Kitaev-
Heisenberg model, in this case their origin is more subtle.

For the K—J-T" model, Klein duality transformation
does not leave the Hamiltonian form invariant. While



Heisenberg and Kitaev terms do preserve their structure
with the change of

Jo=—Jo, K=2J,+K, (52)
the symmetric IV-term becomes antisymmetric. For ex-
ample, on the X-bond

r’ (SZXS;' + S'ZS;-‘ + S;‘S]Z» + S’fS;‘) , (53)
becomes
I (S;‘S;’ — SZS;‘ + S;‘SJZ- — SZ-ZS;-‘) . (54)

However, for A <1 and along the the K—J-T" lines the
spin orientation in the stripe-yz remains along one of the
cubic axes. Therefore, the I''-term does not contribute to
the classical energy and leaves the accidental degeneracy
of the Kitaev-Heisenberg model intact.

VII. QUANTUM REALM: DUAL SPIN LIQUIDS
IN THE S =1/2 MODEL

There are several new aspects of the anisotropic-
exchange model that have been discussed in this work
so far. These are the classification of all its single-Q clas-
sical phases, identification of instabilities of some of them
to more complex multi-Q states, and various quantum
and thermal effects in the magnetically ordered phases,
see Secs. [IHVl There is also a fruitful connection with
an extended Kitaev-Heisenberg model that uncov-
ers hidden symmetries and relates different parts of the
phase diagram to each other, see Sec. [V} Here, we build
upon these insights using DMRG for the S=1/2 model.

In our prior work, Ref. [39], we have discovered a spin-
liquid (SL) region of the 3D phase diagram of the model
@ using DMRG, with the sketch of its base shown in
Fig.[13|as a triangle enveloping the tricritical point of the
120° and the stripe phases. According to Ref. [39], the
SL phase occupies a distorted cone shape with the base
at A=1.0, the widest dimensions J,+ ~[0.27,0.45].J and
Jiy ~[—0.17,0.1]J, and the tip of the cone protruding
along the X X Z axis down to A 2>0.7.

It is important to note that for A=1.0, the SL area in
Fig. includes a segment of the line that corresponds
to the pure Kitaev-Heisenberg model , discussed in
Sec. [VTA] Thus, in a retrospect, our discovery is also a
discovery of a spin liquid in the K—J model on the tri-
angular lattice, without the benefit of having an exact
Kitaev-like solution in this geometry. We note that this
finding is in disagreement with the previous numerical
studies of this model [56] [57], which, we believe, have
missed the SL phase due to finite-size effects [56] or un-
favorable boundary conditions [57].

Crucially, the Klein duality along the line of a corre-
spondence to the Kitaev-Heisenberg model necessitates
an existence of another spin liquid region, sketched in
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FIG. 13. Phase diagram for A = 1.0 from Fig. with
highlighted spin-liquid regions. The lower SL region is from
Ref. [39]. The magnified region emphasizes the vicinity of the
dual spin-liquid region that is studied here by DMRG.

Fig. [[3] Thus, in our present DMRG study, we inves-
tigate the previously unexplored parts of the phase di-
agram in order to confirm the existence of this dual SL
phase. As in Ref. [39], we use several complementary
approaches: the long-cylinder 1D “scans” with one pa-
rameter varied along the length of the 6 x 36 cylinder
to explore different phases [31), 46], the shorter cylinders
with fixed parameters [6x 20, “non-scans”], as well as
the intensity maps of the structure factor, S(q), and cor-
relation lengths; see also Appendix [C] We use different
boundary conditions and ranges of the varied parameter
to exclude unwanted proximity effects.

For the DMRG calculations in the 6 x 36 cylinders,
we typically perform 20-24 sweeps and keep up to m =
1600 — 2000 states depending on the complexity of the
Hamiltonian with truncation error <10~°. For the 6x20
cylinders, the protocol is 24 sweeps and up to m = 2000
states with truncation error < 107%. In the real-space
images of cylinders below, the size of the arrows rep-
resent the projection of local spin in the lattice plane
and the color is used to indicate the sign of the out-of-
plane tilt angle of the spins. The thickness of the nearest-
neighbor bonds is proportional to the magnitude of the
(S;S;) correlation, with the (solid) dashed lines repre-
senting (anti)ferromagnetic sign of it.

A. Dual spin liquid region

Our Fig. summarizes results from the two long-
cylinder scans through the putative dual SL region, first
along the K—J line, and second normal to it at the tri-
critical point of the dual 120° and the stripe phases. The
portions of the phase diagram shown on the left of the
cylinder images in rows (a) and (b) indicate the direction
and extent of each scan and plots in (¢) and (d) show the
magnitude of the ordered moment (S) along the scans.
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FIG. 14. Long-cylinder DMRG scans (a) along the K—J line from the dual 120° to the K-only point, and (b) normal to it
at the classical tricritical point of the dual 120° and the stripe phases, J =0 and J.+ = —2v2J++. Sketches of the phases
indicate the direction and extent of each scan, with (c) and (d) showing (S) along the scans. Shaded areas indicate putative
dual spin-liquid regions. Dashed lines in (d) are the LSWT results for (S), Eq. (36), in the stripe phases.

In Fig. [L4fa), the scan covers the entire stretch from
the dual 120° point, that is, the point that is Klein-dual
to the isotropic Heisenberg antiferromagnetic 120° point,
to the self-dual K-only point, K > 0, see also Fig.
In the notations of the Kitaev-Heisenberg model
this is the scan from {Jo, K} ={-1,2}/V5 to {Jo, K} =
{0,1}, with the normalization of JZ + K2 = 1. Using
duality transformation , one can see that the dual
120° point indeed corresponds to jo—only model. In the
notations of the original anisotropic-exchange model ,
the scan is performed along the J, 4 :2\/§|Jii\ line with
A=1.0 by varying J/|Jy4| from —1 to 2, as is indicated
in Figs. [14(a) and (c).

We note that no special boundary conditions are ap-
plied in any of the long-cylinder scans, yet the dual 120°
order appears naturally on the left end of the cylinder
in Fig. a) and is clearly discernible. Nearly half of
this scan is occupied by what is clearly identifiable as a
stripe state, which is intermediate between the stripe-x
and stripe-yz in that the spins are neither parallel nor
perpendicular to any of the bonds. It is also tilted out
of the lattice plane similarly to the stripe-yz state. As
was pointed out above, see Sec. [VIA] this section of the
K—J line, which is exposed here in a wider parameter
space, corresponds to the boundary between two stripe
phases and should not represent a separate phase in the

quantum limit. In Refs. [56] [57] this boundary is referred
to as the nematic phase even in the quantum limit, while
Ref. [78] called it a spin liquid. We believe that both
terms must have been used in error, see also Appendix [C]
for a DMRG scan across the right end of the scan in
Fig. |14)a), the K-only point.

In spite of a significant range of the scan in Fig. (a),
there is a clear suppression of order between the ordered
phases. The shaded regions in Figs.|[14[a) and (c) indicate
the range that is obtained from the Klein duality of the
extent of the “original” spin liquid along the K—J line
in Fig. J/|Jxx| ~ [-0.22,0.23]. It agrees with the
minimum in the ordered moment and we refer to it as the
dual SL region. Similarly to the SL phase of Ref. [39],
which comes from melting of the 120° phase, the dual
spin liquid appears to be born out of the dual 120° phase.

The second scan through the dual SL region is shown
in Fig. b)7 with the vertical line within the shaded
region marking its intersect with the first scan. It is
also a tricritical point of the classical dual 120° and the
stripe phases. The scan in Fig. b) is not on the K—J
line, so the natural notations here are of the anisotropic-
exchange model , in which this scan corresponds to
J =0 line, the line where the X X Z part of the model
is absent and the only two variables are J,+ and Jy4.
Keeping J,+ = 2v/2 in order to match the first scan at



FIG. 15. (a) 6x20 DMRG cluster for J=0 and J,+=—2v2J4+. (b) Intensity map of S(q), Eq. (55)), from (a), see text.

Ji4+=—1, we vary Jy4 from -2 to -0.5. The stripe-x and
stripe-yz phases are clearly seen in the scan, separated
by a rather wide range that is marked by the shaded
region, Jiy &~ [—1.26,—0.76], where magnetic order is
suppressed. In Fig. d) dashed lines show the ordered
moment as given by the 1/S calculations in the stripe
phases, indicating that magnon instability boundaries are
not unlike the boundaries of the putative dual SL phase.

As is in the previous studies [39], the long-cylinder
scans are only a part of the evidence for the spin liquid.
In order to confirm the SL, we perform DMRG non-scans
on 6x 20 clusters with fixed parameters. Our Fig. [L5{a)
shows one of them for the point that is at the core of the
suggested dual SL region, at J=0 and J,+=—2v2J44,
a tricritical point of the classical phases. Since it is on
the K—J line, its coordinates in the K—J language cor-
respond to {Jo, K}={-1,3}//10.

The cluster presented in Fig.|15|a) shows no discernible
traces of any magnetic order and has weak nearest-
neighbor (S;S;) correlations of ferromagnetic sign. The
boundary conditions are open with one site removed on
each side of the cylinder to avoid spinon localization,
common to the Zy spin-liquid states [39], [46] and indica-
tive of them. Without the sites removed, a weak pattern
similar to the dual 120° structure appears at the bound-
aries (not shown) and decays exponentially toward the
center of the cluster, all supportive of the SL state. This
behavior is in a clear contrast with the results of a sim-
ilar analysis of the dual 120° (Jy-only) point offered in
Appendix [C] There, the long-cylinder scans also suggest
a possible SL state, but the 6 x 20 non-scan cluster ver-
ification demonstrates a robust 12-sublattice order with
a power-law decay from the boundary, as expected.

A more comprehensive insight into the spin-spin cor-
relations and into the nature of the SL state is given by
the static structure factor, observable in experiments,

@= 3 (4

QQQ,@> <Szasrjﬁ>e1,q(Rl—R]) (55)
af,ij

We obtain it from the Fourier transform of the real-space
spin-spin correlation function <Sf‘Sf ), determined from
the DMRG ground state wave-function with all |i — j]
distances that are available in the cylinder.

In Fig. b), we present an intensity map of S(q)
from the cluster in Fig. [15(a). It shows clear maxima at

the Q1200 = (27/3,0) and equivalent points, associated
with the dual 120° order, see Sec.[[]] B. This is in accord
with the “original” spin liquid of Ref. [39] having broad
maxima in S(q) at the Qi20o. These results also suggest
that the dual spin liquid can be seen as a result of a
“melting” of the dual 120° phase in the same way that
the spin liquid of Ref. [39] can be seen as a molten 120°
phase, both maintaining the shape of the structure factor
similar to that of the parent ordered states.

Altogether, we have confirmed the existence of the sec-
ond SL region in the phase diagram of the anisotropic-
exchange model, with properties that are in accord with
the expectations based on the Klein-duality relation
along the K—J line. This confirmation of the dual spin
liquid strengthens our case for both SL regions.

Two additional notes are in order. In Sec. [[V] B, we
remarked on a similarity of the spin-liquid region in the
quantum S =1/2 model from Ref. [39] with the quasiclas-
sical region of instability of the 120° phase to a multi-Q
long-range spiral, or a Zs-vortex-like state, suggesting a
possible connection between the two. This may imply
that the discussed spin liquids should originate from the
melting of the Z5-vortex and dual Zs-vortex states rather
than their more simple 120° and dual 120° counterparts.
However, we reiterate here that while the long-range dis-
tortions of the ordered states found in DMRG clusters
are possible, there are no traces of the expected shifts of
the peaks from the commensurate ordering vectors in the
SL structure factors. There is also no detectable residual
chirality in the spin-liquid wave-functions that may be ex-
pected to survive from the Zs-vortex states, see Ref. [39].
Thus, the relation between the quasiclassical and quan-
tum ground states of the problem in this region deserves
further investigation.

Lastly, a superficial observation is that both the “orig-
inal” and the dual spin liquids seem to be centered at the
tricritical points of the classical single-Q ordered phases.
In the K—J notations they correspond to K =Jy >0 and
K = —3Jp > 0 points, respectively. Interestingly, in the
anisotropic-exchange notations, the dual tricritical point
corresponds to the model @ with no XX Z terms and
only anisotropic J,+ and Jii terms. While we were un-
able to draw any useful insight from this or identify any
quasi-classical degeneracy that can be affiliated with this
model, the chance that this point can have a special so-
lution may be an intriguing possibility.
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FIG. 16. The 1D phase diagram of the quantum S = 1/2
K—-J model using DMRG results from Sec. A and
Ref. [39]. Pure Heisenberg, pure Kitaev and their Klein-dual
points are marked and the duality relation between them and
SL and “120°” phases is emphasized by dashed lines.

B. Phase diagram of the K—J S = 1/2 model

Although the full parameter space of the nearest-
neighbor anisotropic-exchange model , or, equiva-
lently, of the extended K—J-I'-T” model on the
triangular lattice is three-dimensional, their relation to
a simpler and more symmetric K—J model along
a one-dimensional line has proven to be very informa-
tive. Thus, we conclude this Section by summarizing our
DMRG results for the quantum S=1/2 K—J model (48]
in the form of its 1D phase diagram, shown in Fig. [16]

In Fig. we use the standard parametrization, Jy=
cos and K =sin ¢, and the positive (counterclockwise)
 direction corresponds to the negative (clockwise) direc-
tion and negative range of Jii along the ellipse in our
2D phase diagram in Fig. see Eq. .

We fully agree with the previous studies of the
triangular-lattice K—J model [53H57, [78] on the location
and boundaries of the FM and stripe-yz phases.

We deviate in the notations for what we refer to as the
“120°” and dual “120°” phases. They were quasiclassi-
cally identified as the multi-Q distortions of such 120°
orders and were called the Z5 vortex crystal and its dual
phases [55] 56]. These regions are still designated as the
Zy vortex and the dual Zs vortex states in the S=1/2
case [50], B7], although the evidence for the persistence
of such distortions in this limit is slim. We note that
some deviations from the precise spiral orders near the
isotropic limit of the model may have been detected in
our prior DMRG work, Ref. [39]. While we do not con-
clusively confirm or rule them out, it seems that these
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deviations from the ideal orders, even if exist, play only
a minor role for the energetics of the phases in the quan-
tum limit, see Sec. [[V] Hence, we simply use quotation
marks for the “120°” in referring to them.

We disagree with the previous works on the presence
of a nematic phase in the quantum limit [56| [57]. While
it may exist as a fully classical curiosity, quantum fluc-
tuation select a stripe state that is intermediate between
the stripe-x and stripe-yz phases, see Sec. [VIA]and Ap-
pendix |C| Denoting this sector a spin liquid [78] must
have been in error. In Fig. we refer to it as a “stripe”
phase to distinguish from the stripe-yz phase.

Our most important findings are the two regions of
the spin-liquid phase. They occur in a proximity of,
and, arguably, as a result of a melting of their respec-
tive parent “120°” phases. This is also evidenced by the
structure factor discussed in Sec. A and in Ref. [39].
The connection of our “SL” region to an SL phase of the
fully isotropic Ji—J2 Heisenberg model was established
in Ref. [39], and was referred to as an SL isomorphism.
We have found that the spin-spin correlations are very
similar in them and that there is a path in the 4D phase
diagram that provides a continuous link between the two.
This connection further strengthens the argument for our
“molten 120°” phase scenario.

The respective SL regions in Fig. [I6 are as follows. For
the region marked “SL”, K/Jy=[0.71,1.40] and ¢/7 =~
[0.20,0.30]. While this may or may not be a coincidence,
the K =y point is included in this range. By the Klein-
duality transformation, the region referred to as “dual
SL” occurs. Its boundaries agree well with the DMRG
presented in Sec. [VII|A and are K/Jy=[—3.4,—2.71] and
p/m=2]0.59,0.61]. As was discussed above, it is centered
around K = —3Jy point, which translates to the vanishing
point for the X X Z part of anisotropic-exchange model
@ with only anisotropic J++ and J,4 terms present.

Lastly, the mean-field Schwinger-boson study [80] has
discussed various spin liquids in the triangular-lattice K—
J model. The “SL” region in Fig. is affiliated with
their “SL2” state, but the latter has the structure factor
that is very different from S(q) found by DMRG [39)]
and thus can be ruled out. We also reiterate that the spin
liquids that we identify are not consistent with the “open
spinon Fermi surface” SL state proposed for YMGO [20].

VIII. SUMMARY

In this work, we have provided an extensive, if not ex-
haustive, overview of the phase diagram of the nearest-
neighbor triangular-lattice anisotropic-exchange model,
which is relevant to a growing family of the rare-earth-
based magnets and other materials with strong spin-orbit
interactions. We have explored ordered phases, identified
the principal ones that occupy a majority of the param-
eter space, and obtained explicit expressions for their
non-trivial spin-wave excitation spectra. We have also
identified and characterized transitions of some of the or-



dered phases to more complex multi-Q states and demon-
strated the effectiveness of the analysis of such transitions
with the help of magnon instabilities.

In the studies of the quantum and finite-temperature
effects in the well-ordered phases, a number of acciden-
tal degeneracies that lead to emergent continuous sym-
metries of the classical states have been discussed, and
the effect of order-by-disorder on them has been ana-
lyzed. Another systematic and enigmatic accidental de-
generacy has been found in the nearly classical stripe
phase, leading to a strongly suppressed ordering temper-
ature that can be falsely attributed to a proximity to
an exotic state. This degeneracy has been connected to
the correspondence of the original model to an extended
Kitaev-Heisenberg model, in which the degeneracies have
a more natural explanation.

This connection has been particularly fruitful for un-
covering hidden symmetries and in relating different
parts of the phase diagram to each other via the Klein-
duality transformation. In a rather spectacular manifes-
tation of the correspondence to the Kitaev-Heisenberg
model, a new region of the spin-liquid state that is Klein
dual to the spin liquid found by us in a prior work has
been confirmed for the S=1/2 model using an unbiased
DMRG approach. Both the original and the dual spin
liquids occur in proximity to their parent ordered phases
that are also dual to each other. This finding strengthens
our case for both spin-liquid regions in the phase diagram
of the quantum model. As a corollary, we have also pro-
vided a one-dimensional phase diagram of the quantum
Kitaev-Heisenberg model on the triangular lattice that
updates and corrects previous results.

In conclusion, the present work, together with our prior
works in the phase diagram of the anisotropic-exchange
model on a triangular lattice, creates a foundation for the
studies of the large group of materials with anisotropic
exchanges, clears the path to a consistent interpreta-
tion of the current and future experiments, and gives
important new insights into fundamental properties of
quantum magnets with spin-orbit-generated low-energy
Hamiltonians.
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Appendix A: LSWT details

The spin Hamiltonian in the local axes and without
the anharmonic terms is

H=Y" (J;;wsgcsj@ + JYSYSY v JSES?
(i)

+ TSI 4TSSy (A1)

Stripe-yz phase.—For the stripe-yz state, elements of the
rotated exchange matrix J;; are
j{f =(J — 2J44 cos pq) sinb; sin @ + AJ cos 0; cos 0

— J.4 (cos0;sin 0 + sin 6, cos 0;) cos ¢, ,
(A2)
jsz =(J —2J44 cosp,)cosb;cosf; + AJsinb;sinb;

j;y]y =J + 2J44 cos g,

+ J.4 (cos;sinf; + sinb; cos b;) cos ¢, ,
JvE = gy

Tx . . .
Jl-jy =2J14siné;sinp, — J,4 cos; sin g, , i i

where 0;(;) for the two sublattices are defined by the
choice of Q=M’, 04 =0 and 05 =0 + 7, see Sec. [[I]B.
After some algebra, these yield the following expressions
for the matrix elements of the LSWT matrices in Eq.

Ay = 2JA + 2(J (1-A)+ 4Jii) cos? 0 — 4.J,4 sin 260
+ (2J + (J(A -1+ 2Jii) cos? 0 — J,4 sin 29) c1,

By = ((J(l - A)+ Jii) cos? 0 — 2J44 — J.4 sin 29/2)

X

(c2+c3) — i\/??(l]ii sinf — J,4 cos 0) (c2 — c3),
Cx = —(2J + (J(A —-1) - Jii) cos? 0 + J,4 sin 6 cos 6)

X (C2 + 63), (A3)

Dy = —((J (1-A) - 2Jii) cos? 0 + 4Ty
+ J,+ sin 29)01,

where ¢, =cos kd,,.

In our Figures[AT]and [A2] we present the magnon spec-
tra for two points within the stripe-yz phase. The mo-
tivation for their choice is the following. The J,,-term
was initially suggested as the main source of frustration
[35], so the model with the rest of the terms absent, the
J,+-only model, is of interest. The parameter set re-
ferred to as “Model B,” A = 0.76, J+4+ = 0.26.J, and
J,+=0.45J, was discussed [23] 24], 30] as potentially rel-
evant to YbMgGaO, based on a restricted fit of neutron-
scattering results in high field and on a matching of the
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inset: the 2D phase diagram with the points indicating the
chosen set of parameters.
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FIG. A2. Same as Fig. along the M’ K'T path.

observed static structure factor by a semiclassical simu-
lation of the spin-spin correlations [23] [24].

Fig. shows €10k from Eq. vs k along the
I'MKT path and Fig. along the ' M'K'T path, re-
spectively, where M’ is the ordering vector. The two
models are away from the accidental degeneracy sur-
face discussed in Sec. B, but still demonstrate
a nearly-gapless mode at the M point. This yields an or-
dering temperature that is suppressed compared to the
mean-field value, which naively would suggest a proxim-
ity to a spin-liquid state. However, we have confirmed
that no signs of strong quantum fluctuations are present
in either of the cases. For S = 1/2, LSWT for the J,4-
only model gives (S)=0.4869, supported by the DMRG
result (S)=0.4795. The Model B is also nearly classical
with LSWT (S)=0.4763 and DMRG giving (S)=0.4694.

120° phase.—In Fig. we provide another exam-
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FIG. A3. Same as Fig. |5l (a) Magnon energies along the two
reciprocal k-contours (solid/dashed) in (b) for the parameters
shown in the graph. (b) Intensity plot of the lower branch.
(¢) The ¢-dependent part of the zero-point energy selecting
the structure sketched in (a) with ¢o = 7n/3.

ple of the nonreciprocal spectrum in the 120° phase,
discussed in Sec. [[TI] C. The choice of parameters is to
the right of the dashed line in the inset of Fig. a),
which corresponds to quantum order-by-disorder select-
ing a state with spins along the bonds, ¢ =mn/3.

FM phase.—For the ferromjlgnetic state, elements of
the rotated exchange matrix J;; are

JI% =(J + 2J 14 cos (@a + 2¢) ) sin 0 + AJ cos? 0
— J,+in26 sin (¢ — p,),

ng =J — 2J14 cos (pa +2¢),

J> =(J +2J4 4+ cos (pa + 2¢) ) cos® @ + AJ sin® 6
+ J.+sin 26 sin (p — p,),

(A4)

jgfy =—2J34 sinfsin (o, + 2¢) — J,+ cosfcos (¢ — pa),

and fgz = j(fy, where for ¢ and 6 are the global angles
of the ordered magnetic moment, see Sec. [[TT}D.

In Fig. [A4] we demonstrate the magnon spectrum in
the FM phase that is discussed in Sec. [[I] D. Here it is
shown for the A=1 plane of the phase diagram and also
for the parameters that fall on the line corresponding to
the K—J model, see Sec. [V for which order-by-disorder
fluctuations select the cubic axes as a preferred direction
for the ordered moment. The Goldstone mode is clearly
quadratic in k while the rest of the features discussed in
Sec. [[MT| D are preserved.
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Appendix B: Gap and 7, on the K—J line

Since the degeneracy leading to the pseudo-Goldstone
modes along the K—J line in Fig.|[12is accidental, quan-
tum fluctuations induce a gap and make the transition
temperature 7T, finite in 2D. Generally, calculations
of such order-by-disorder gaps can be rather involved,
see, e.g., Ref. [50]. In the considered case of the stripe-
yz state in the K—J model, the problem is simplified
by the absence of the cubic anharmonicities, because the
spin orientation is along one of the cubic axes. The other
simplification is the Klein duality to the ferromagnetic
state, for which calculations are straightforward.

The LSWT spectrum in the ferromagnetic phase of the

Kitaev-Heisenberg model is ex=+/A; — BZ, where
A = 6455 (1 = m0) — 2K (1 _ 02‘2”3> ,
Bk = —KS (CQ — Cg) s (B].)
ca =coskd,, and i is from Eq. (34)), see Ref. [53].
The Hartree-Fock corrections from the quartic terms

in the SWT Hamiltonian to Ay and By are

0Ax=2Jy (3n (I—Vk)+m1 (61 —1)+m2 (02+C3—2) )
+ K(n (2—co—c3)+2mycy; — 2m2)7 (B2)
0By = Kn (cy — c3),

with the Hartree-Fock averages allowed by symmetry
:Zvﬁ, Mo =(a;0;, 5. anvk, (B3)
Kk

where vy is the Bogolyubov parameter and mo=ms3.
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FIG. A5. Ordering temperature for the FM phase of the K—J
model calculated using Eq. . lower curve, and the mean-
field result, Eq. ., upper curve. Tnx and K are in units of

(J3 + K2)1/2 and Jo <0.

Within the 1/S-approximation, the spectrum becomes

B = /(A + 047 — (Bic+ 0Bk, (BY)

Because the LSWT parameters Ay and By vanish at
k = 0, the expansion in §Ax and §By is not possible.
However, the most important effect of the quantum fluc-
tuations is the gap at k=0

Since the LSWT spectrum is parabolic, one can approx-
imate the renormalized spectrum as

cx = Eg + €k, (BG)

which should suffice for the regularization of the diver-
gences leading to the vanishing ordering temperature due
to Bose factors in Eq. . Thus, our self-consistent
transition temperature in the Kitaev-Heisenberg model
is given by a simplified version of Eq. with the renor-
malized spectrum

1 1 1+ 20

Tc N Zk: [ ( )
The results of using for the FM phase of the K—.J
model are presented in Fig. where we denote transi-
tion temperature as Ty having in mind Klein duality to
the stripe-yz part of the K—J line in Fig. Both Tu

and K are in units of (J§ + K2)1/2 and Jy <0.
Although the gap E, is small, the transition temper-
ature depends singularly on it, T, < Tarr/In (Thmr/Ey)
[73], leading to a finite and sizable T with an excep-
tion to the phase boundaries and to the isotropic, O(3)
symmetric K =0 point (“Jp-only” point), where Ty re-
mains zero. The resultant transition temperatures are
still small compared to the mean-field results of Eq. .



23

(b)

-0.5
J 17

FIG. A6. Long-cylinder DMRG scans (a) across the K-only point (A=1.0, J++=—0.5J, and J,+ =+/2J) vs Jx+/J from -0.7
to -0.3, and (b) across the dual 120° point (A=1.0, J <0, Je+ =J, and J,+ =2v2|J|) vs Jx+/|J| from -3.0 to 0. Both scans
go from the stripe-x to the stripe-yz phase and are normal to the K—J line in Fig. with the vertical lines in the clusters
showing the intersect with it. Sketches of the phases indicate the direction and extent of each scan, with (c) and (d) showing
(S) along the scans. Dashed lines in (c) and (d) are the LSWT results for (S), Eq. (36)), in the stripe phases.

Appendix C: DMRG details

Our Fig. [A6] summarizes results from the two long-
cylinder scans, one across the K-only point separating
the stripe-x and stripe-yz phases, and the other through
the dual 120° region, also connecting the stripe phases.
Both scans are perpendicular to the K—J line in Fig.
and the vertical lines in the clusters show the point of in-
tersect with it. The cutouts of the phase diagram shown
on the left of the cylinder images in rows (a) and (b) in-
dicate the direction and extent of each scan and plots in
(c) and (d) show the magnitude of the ordered moment
(S) along the scans.

In Fig. a), a scan is performed by varying Jyy/J
from -0.7 to -0.3 for fixed A =1.0 and J.+ = v/2J, so
that at the K—J line J,4 =—2v/2J44 as elsewhere. The
scan shows a clear crossover from the stripe-x to stripe-
yz phase. The spins on the left edge of the cylinder in the
stripe-x phase are slightly tilted off the lattice plane and
continuously deform into the stripe-yz order on the right
edge with only a small variation of the ordered moment
near (S)~0.4, see Fig. [A6{c). There is no indication of
a nematic [56, [57] or a spin-liquid state [78] at the K—J

line, nor there is a sign of a proximity to any.

Dashed lines in Fig. c) show the ordered moment
as given by the 1/5 calculations in the neighboring stripe
phases, indicating a direct transition. We have also per-
formed a DMRG non-scan 6 x 20 cluster calculation at
the K-only point (not shown) with the results very sim-
ilar to the central part of the scan in Fig. [A6{(a), show-
ing a robust order in the form of a stripe phase with
the same ordering vector at the M-point and spins ori-
ented in between the stripe-x and stripe-yz orders. Given
the smoothness of the crossover in Fig. [A6[a) and that
the ordering vector does not change, it is not clear to
us whether the two stripe phases remain distinct in the
presence of quantum fluctuations.

In Fig. b), a scan is performed across the dual 120°
point by varying J 4 /|.J| from -3.0 to 0.0 for fixed A=1.0
and J,+ = 2v/2|J| (J <0 here). There are well-ordered
stripe-x and stripe-yz phases in the two ends of the cylin-
der, separated by a region where the order is suppressed,
see also Fig. d). This may seem surprising as one
expects the dual 120° ordered phase in this region. One
of the obvious reasons for a suppression of the order is a
very large gradient of parameters in this scan, combined
with a large unit cell of the 12-sublattice structure. In
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FIG. A7. DMRG non-scan calculation in the 6 x 20 cluster for
the (a) dual 120° point, and (b) 120° point for comparison.
In (a) the 12-sublattice structure is highlighted. (c) Ordered
moment (S) along the length of the cluster.
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Fig. d)7 dashed lines show the ordered moment as
given by the 1/ calculations in the stripe phases, show-
ing that for S = 1/2 the dual 120° state expands and
claims some of the stripe regions, similar to the expan-
sion of the “original” 120° state, see Ref. [39].

To verify that the intermediate phase is not a spin lig-
uid, we have performed a DMRG non-scan calculation
in the 6 x 20 cluster for the Jy-only, dual 120° point
(A=1.0, J<0, Jox =J, and J,+ = 2v/2|J|) with the
results shown in Fig. [A7|(a). Here, the dual 120° bound-
ary conditions are applied at the left edge only, with a
robust 12-sublattice order parameter showing a power-
law decay with a finite asymptote, characteristic of the
well-ordered phase, see Fig. [A7|c).

The observed ordered moment of the dual 120° state
in this cluster is about (S)~0.09. Since the Kelin duality
implies that all observables between dual points should
be the same, this may seem to be in a contradiction with
the value of the ordered moment at the Heisenberg 120°
point, (S)~0.2 [79]. As we verify in Fig. [A7|(b), this is
due to the mixed boundary conditions and the resultant
aspect ratio of the cluster being far from being “opti-
mal,” according to Ref. [79]. In Figs. [A7[(b) and (c) we
demonstrate that the 120° order on the same cluster be-
haves very similarly and is in a quantitative agreement
with the Klein-duality expectations.
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