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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Femtojoule optical nonlinearity for deep learning with 
incoherent illumination
Qixin Feng1,2†, Can B. Uzundal2,3†, Ruihan Guo2,4, Collin Sanborn2,5, Ruishi Qi1,2, Jingxu Xie1,6, 
Jianing Zhang1,6, Junqiao Wu2,4, Feng Wang1,2,7*

Optical neural networks (ONNs) are a promising computational alternative for deep learning due to their inherent 
massive parallelism for linear operations. However, the development of energy-efficient and highly parallel optical 
nonlinearities, a critical component in ONNs, remains an outstanding challenge. Here, we introduce a nonlinear 
optical microdevice array (NOMA) compatible with incoherent illumination by integrating the liquid crystal cell 
with silicon photodiodes at the single-pixel level. We fabricate NOMA with more than half a million pixels, each 
functioning as an optical analog of the rectified linear unit at ultralow switching energy down to 100 femtojoules 
per pixel. With NOMA, we demonstrate an optical multilayer neural network. Our work holds promise for large-
scale and low-power deep ONNs, computer vision, and real-time optical image processing.

INTRODUCTION
As all-purpose digital computation, particularly for artificial intel-
ligence and deep neural networks, reaches an energy bottleneck, 
alternative physics–based computational architectures are attracting 
increasing attention (1–13). Among these, optical neural networks 
(ONNs) are a promising alternative due to their high parallelism, 
energy efficiency, and minimal latency (14–17). Highly parallel linear 
operations, such as matrix multiplications (18–25) and convolutions 
(26–28), can readily be implemented using nearly dissipationless 
linear optical transformations in ONNs. On this front, ONNs offer 
substantial energy savings per linear operation compared to cutting-
edge all-digital counterparts (24, 29–32). However, achieving an 
efficient optical nonlinearity poses inherent challenges (33, 34), 
leading ONNs to often rely on hybrid systems that incorporate elec-
tronic nonlinear activations. These hybrid ONNs require preamplifi-
ers and analog-to-digital converters to process weak optical signals 
that increase latency and power spent per operation (15). To realize 
deep ONNs with low energy consumption, the development of a 
sub-picojoule optical nonlinearity is crucial.

Recently, a “receiverless” approach has been proposed for energy-
efficient optical modulation, which obviates the need for power-
hungry electronics by in situ integration of a photodiode (PD) with 
an electro-optical modulator (EOM) (32, 35). In this configuration, 
a portion of the input light generates photocarriers, which directly 
charge (or discharge) the EOM, thereby modulating the remaining 
part as the output. This process facilitates light self-modulation, with 
energy consumption that scales with the capacitance of the PD and 
the EOM. Following this approach, optical nonlinear operation with 
switching energy on the order of femtojoule per activation has 

been demonstrated in integrated photonics circuits by integrating 
femto-farad capacitance PDs and EOMs such as InGaAsP photonic 
crystals or micro-ring resonators. (23,  36). However, integrated 
photonic devices face scalability challenges and lack compatibility 
with incoherent light, strongly restricting their use in large-scale 
ONNs in ambient light scenarios.

A free-space counterpart of the receiverless optical nonlinearity has 
the potential to address the scalability concerns by harnessing the 
immense parallel computing capabilities afforded by free-space light 
propagation. Further, free-space ONNs have compelling applications 
in object detection and sensing where conventional neural networks 
are routinely used to run inference on digitized camera images. In such 
applications, free-space ONNs could remove the need for the digitiza-
tion step and run inference directly on the ambient light (25). Previ-
ously, liquid crystal (LC) light valves (LCLVs) have been developed for 
controlling a read beam with a write beam by placing a photosensitive 
film next to an LC EOM layer, with a dielectric mirror separating the 
two (37–39). With LCLVs, the sigmoid-like nonlinear dependence of 
the read beam intensity on the write beam intensity has been demon-
strated and applied to the early research on ONNs (40, 41). More 
recently, self-modulation of light has been realized by resistively 
coupling the LC layer to two-dimensional (2D) material phototransis-
tor arrays, but the energy consumption is well above picojoule per 
operation (42). To the best of our knowledge, a femtojoule–rectified 
linear unit (ReLU) for self-activation of the input patterns—the 
predominant nonlinear function in contemporary deep neural 
networks—has never been realized.

In this study, we present an energy-efficient and highly parallel 
nonlinear optical microdevice array (NOMA) for free-space opti-
cal computation. Each pixel of the device contains a silicon (Si) PD 
capacitively coupled to an LC cell, allowing for nonlinear activa-
tions at the femtojoule scale. By leveraging the mature fabrication 
processes for Si-based integrated circuits and LC display technolo-
gies, our design readily enables the fabrication of devices with mil-
lions of pixels. Through the characterization of NOMA, we present 
an optical ReLU nonlinearity operating on an incoherent optical 
beam. Further, we demonstrate the practical applications of this 
optical ReLU in two optical processing tasks: real-time image con-
trast enhancement and nonlinear activation within a multilayer 
ONN (ML-ONN).
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RESULTS
Device structure and working principle
We fabricated an NOMA comprising 750 × 700 pixels, each with a 
dimension of 20 μm by 20 μm (Fig. 1A). The Materials and Methods 
of the supplementary text describe the detailed structure and the fab-
rication process for the entire device. Figure 1B schematically illus-
trates the structure of the NOMA. Within each pixel, there is a Si PD 
connected to an Al mirror while the LC fills the gap formed between 
the Si substrate and the indium tin oxide (ITO)–coated glass. The Si 

substrate is grounded, while a source voltage Vs is applied to the ITO 
electrode. An additional n-doped region beneath the Al mirror 
serves as a global electrode for a control voltage Vc. Both Vs and Vc are 
nonnegative to ensure a reverse-biased PD.

For optimal optical modulation, we use a vertically aligned nematic 
LC with a large contrast ratio (43, 44). We characterize the optical 
intensity modulation of the LC cell using cross-polarized (CP) reflec-
tance as a function of VLC (Fig. 1C). In this configuration, the LC cell 
acts as a tunable half-wave plate placed between two crossed polarizers. 
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Fig. 1. Device structure and working principle. (A) Microscope image of NOMA. The inset shows a single pixel, depicting the metallic region that is the Al mirror. The 
n-doped region outlining the PD is indicated by pink dashed lines, and the additional n-doped region underneath the Al mirror is outlined by the blue dashed lines. 
(B) Cross section of NOMA pixels. The device consists of an LC layer, represented by blue rods between an ITO-covered glass and a Si substrate with PDs. Both substrates 
are coated with a SiO2 for LC alignment (AL). Upon illumination, PD charges the LC cell, leading to rotation of the LC molecules and modulation of reflected light through 
LC birefringence. (C) Characterization of the LC birefringence using voltage-dependent CP reflectance of the LC cell with λ = 680 nm, showing a threshold voltage (Vth) at 
2.8 V. (D) Current-voltage relation of the Si PD under dark conditions. The measured PD is the one formed between the auxiliary n-doped region and substrate. The insert 
shows the relation between photocurrent and light intensity, indicating a responsivity (R) of 0.3 A/W. (E) Equivalent circuit for a NOMA pixel. CLC denotes the capacitance 
between the Al mirror and the ITO electrode. Cox denotes the capacitance between the Al mirror and the n-doped region beneath it. Cp represents the junction capaci-
tance. (F) Configuration of NOMA for light self-modulation. The input beam is a linearly polarized pulse, and the output beam is the CP reflected pulse. (G) ReLU-like 
input-output relationship. For incident light with small pulse energy, the NOMA remains in the OFF state and the transmitted light energy through the polarizer (output 
energy) is suppressed. For incident light with large pulse energy, the NOMA is switched to the ON state, characterized by a high CP reflectance.
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At low bias, the LC cell appears dark as LC molecules are aligned 
parallel to the propagation direction of the incident beam and no 
change in the polarization state of the incident beam occurs. At a 
threshold bias (Vth) of 2.8 V, the LC molecules start to tilt, causing the 
incident beam to attain ellipticity and the LC cell appears brighter. The 
measured value closely approximates the theoretical value of 2.2 V 
predicted by the Freedericksz transition theory (45, 46), considering 
the mismatch in electrode work functions (0.4 V, between Al and ITO). 
As the bias is increased above Vth, a clear maximum in reflectance 
occurs where the polarization of the incident beam is completely 
rotated to the perpendicular polarization. The LC cell exhibits a 
contrast ratio of 120, providing a broad optical modulation range.

As the Si PD provides in situ optical-to-electrical feedback, low 
dark current and high optical responsivity are crucial for energy-
efficient nonlinear operations. By using an Al2O3 passivation layer 
(47), we achieve a low-junction dark current of 10 nA/cm2 (Fig. 1D). 
Given that the PD area in each pixel is approximately 100 μm2, the 
dark current per pixel is around 10 fA. We measure the responsivity 
of our PD as 0.3 A/W (λ = 680 nm), indicating efficient collection 
of photocarriers.

To elucidate the dynamics of the optical ReLU nonlinearity, we 
introduce a simple circuit model depicted in Fig. 1E, which consists 
of three main elements: (i) an LC capacitor (CLC), which forms 
between the Al mirror and the ITO electrode; (ii) a Si PD, which can 
be described by an ideal diode in parallel with a junction capacitor 

Cp; (iii) an oxide dielectric capacitor (Cox), which forms between the 
Al mirror and the additional n-doped region. We list the estimated 
capacitance values of each in table S1. Upon illumination, part of the 
incident light is reflected by the Al mirror, while the rest is absorbed 
by the Si PD. The photocarriers generated in the Si PD accumulate 
on the Al mirror, altering the voltage across the LC cell (VLC). Con-
sequently, the orientation of the LC molecules changes, which then 
modulates the reflected light through the LC’s birefringence (Fig. 1F). 
Under dark or weak illumination, the VLC remains below Vth, so the 
NOMA remains in the “OFF” state with a low CP reflectance. Thus, 
the energy of the CP-reflected light (output energy) is suppressed. 
On the other hand, for incident light with a high pulse energy, the 
LC capacitor is charged above Vth, so the NOMA is switched to the “ON” 
state, characterized by a high CP reflectance. In this state, the output 
energy exhibits a linear dependence on the input energy. This char-
acteristic behavior mimics the ReLU function, where the output 
remains zero for low input values and increases linearly with higher 
inputs (Fig. 1G).

Optical switching dynamics
We periodically operate NOMA between an active and erase phase, 
as illustrated in Fig. 2A. During the active phase, the LC capacitor 
first charges to an initial voltage Vi, which is determined by the capaci-
tance divider: Vi =

Cp +Cox

Ctot

Vs −
Cox

Ctot

Vc, where Ctot = CLC + Cox + Cp. 
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Fig. 2. Optical switching dynamics. (A) Waveform of Vs, Vc, and the resulting LC capacitor voltage VLC. Both Vs and Vc are synchronized square waves, characterized by an 
active and erase phase. In the active phase, an intense optical pulse can charge the VLC from the below-threshold initial value Vi to above-threshold value Vs, resulting in 
NOMA switching from the OFF to the ON state. In the erase phase, the LC capacitor is discharged, setting it to the default OFF state. (B) Illustration of the pump-probe 
experiment (see fig. S3A for an optical layout), where pump (λ = 630 nm) and probe pulses (λ = 680 nm) from LEDs are directed onto NOMA. Using analog outputs (AO) 
of a data acquisition card (DAQ), the light pulses are synchronized with the applied bias such that the pump arrives at the rising edge of the bias, while the probe pulse is 
time-delayed. Dynamics in the CP reflectance of NOMA is measured using a polarized beam splitter (PBS) with a long-pass filter (LP) in a wide-field microscope geometry. 
The total intensity of the reflected light is measured using a PD and digitized using DAQ analog inputs (AI). (C) The dynamics of CP reflectance of NOMA at increasing pump 
energies (lighter shades) Epump (Vs = 4 V and Vc = 4.5 V) largely follow the outline of the voltage pulse with a rise and fall time limited by the LC. (D) Epump-dependent CP 
reflectance at different Vc (Vs fixed at 4 V). The insert illustrates the expected linear relationship between switching energy Esw and Vc, showing a minimum Esw at 60 fJ/pixel.
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This charging process happens on a timescale of τ1 = RsCtot, where Rs is 
the series resistance of bulk silicon and the contact. Given that Rs is 
approximately ∼106 ohm and Ctot is around 20 fF, τ1 occurs on the 
timescale of microseconds. Under dark condition, the LC capacitor 
slowly charges to Vs where the charging time (τ2) is set by the dark 
current IR of the Si PD. Given that IR is in the order of 10 fA∕pixel, 
τ2 is in the order of seconds. In our experiments, we apply a square 
wave of Vs and Vc with a period T of milliseconds, which is deter-
mined by the LC’s response time. Considering that τ1 ≪ T ∕2≪ τ2, 
the LC voltage remains relatively constant at Vi under dark condition 
during the T ∕2 ms active phase. Under light illumination, the pho-
tocarriers generated in the PD lead to a rapid charging of the LC 
capacitor to Vs. We maintain Vs above Vth and adjust Vc so that Vi 
remains below Vth, ensuring that the LC is in the OFF state without 
light but can transition to the ON state under sufficient light illumi-
nation. In the erase phase, we keep Vs below Vth and set Vc to 0 V, 
dissipating the accumulated charges in the LC capacitor and reverting 
the device to the default OFF state.

The optical switching energy Esw is determined by the amount of 
photocarriers (Qph) needed to fully charge the LC and oxide capaci-
tors, which can be estimated from our circuit model as

where α is the optical-to-electrical coefficient and ΔVs and ΔVc, re-
spectively, denote the changes of Vs and Vc between the active and 
erase phases. Considering the responsivity of silicon PD (0.3 A/W), 
fill factor of Al electrode, and transmission loss through the ITO 
layer, α is approximately 0.1 C/J. Given that both Cox and CLC are in 
the range of femtofarad, Qph is estimated to be in the tens of femto-
coulombs. Thus, the optical switching energy for each pixel is calcu-
lated to be in the hundreds of femtojoule range. Regarding the 
electronic energy consumed during the switching process, it is essen-
tially the work done by the voltage sources, which can be calcu-
lated as Eelectronic = CLCΔV

2
s
+ CoxΔV

2
c
. It indicates that the electric 

switching energy is on the same scale of the optical switching energy.
To investigate the dynamics of the optical switching process, we 

carried out pump-probe experiments capable of optically probing 
the device dynamics at the characteristic time scale of the LC mole-
cules (Fig. 2B). We use short pulses (2-ms duration) from colored 
light-emitting diodes (LEDs) for both pump and probe lights. The 
pump light is synchronized with the electrical signal’s rising edge, 
which charges the LC cell and initiates the optical switching. The 
probe light measures the CP reflectance of the device as a function 
of time delay between the pump and probe. To ensure that the 
observed dynamics are only from the pump-induced changes, we 
use a probe pulse energy (80 fJ per pixel) below the threshold energy 
of NOMA and use probe pulse durations (2 ms) much shorter than 
the LC response time (~10 ms). We map the CP reflectance as a 
function of Vs, Vc, and pump energy (Epump). Using these results, 
we quantify the capacitances in our circuit model and identify the 
optimal conditions for efficient optical nonlinearity.

Figure 2C shows time traces of CP reflectance at increasing 
pump energies at Vs = 4V and Vc = 4.5V. For subthreshold pump 
energies (i.e., 0 and 106 fJ per pixel), CP reflectance traces show a 
negligible increase after pumping, indicating that the device remains 
in the OFF state. In contrast, at a higher pump energy, the CP reflec-
tance increases notably after pumping and reaches a plateau. With 

increasing pump energy, the plateau value rises from 0.8% to a max-
imum of 29%, showing a large modulation range of 35 between the 
OFF and ON states.

We further characterize the optical switching by measuring the 
CP reflectance at a fixed probe time delay at 60 ms, at which point 
the CP reflectance reaches its plateau. Figure 2D displays the mea-
sured CP reflectance as a function of Epump at different Vc. The 
derived switching energy Esw (defined as the pump energy at which 
the CP reflectance reaches 95% of its saturation level) shows a linear 
dependence on Vc, consistent with our circuit model (Eq. 1). From 
the slope and intersection of the linear fit, we derive Cox = 6.5 fF per 
pixel and CLC = 5.8 fF per pixel, which are close to their estimated 
values (table S1).

Femtojoule optical ReLU for image contrast enhancement
We demonstrate the optical ReLU function using a single but longer 
LED light pulse (50 ms) synchronized with the rising edge of the 
electrical pulses. The voltages are set at Vs = 4V and Vc = 5.5V. The 
distinct signature of the optical nonlinearity is depicted in Fig. 3A, 
where the relationship between CP reflected light energy (output 
energy) and incident light energy (input energy) resembles an ReLU 
function with a switching energy of 280 fJ per pixel. At low input 
energies, the reflectivity of NOMA is marginal at around ~1%. At 
higher input energies, the reflectivity increases to 24% and saturates. 
The saturated reflectivity is limited by the fill factor of the Al elec-
trode and the optical losses at the interfaces of the device stack. 
Analogous to the response to short pulses, we can manipulate the 
switching energy value of the ReLU function by adjusting Vc (fig. S4). 
This additional tunability is useful in applications where the optical 
input varies dynamically, enabling the device to maintain optimal 
performance across various scenarios.

To further investigate the response at the individual pixel level, 
we capture wide-field images of NOMA and track the pixel-by-pixel 
dynamics. We segment the wide-field images into a regular grid, each 
grid containing only one pixel of NOMA (fig. S5A). Figure 3B shows 
the statistics from 10,201 NOMA pixels. The ReLU function has a 
normal distribution of the switching energy with a mean value of 
280 fJ and an SD of 18 fJ. In applications such as ONNs, some degree 
of heterogeneity in the response of individual pixels is acceptable and 
even leveraged through hardware-aware fine-tuning of the models 
(48, 49). Yet, achieving uniform and consistent response across many 
pixels is generally desirable as cascading errors can potentially impede 
computation, especially for deep neural networks.

To demonstrate the ReLU functionality and large-scale unifor-
mity, we performed a contrast enhancement task of a binary gray-
scale image through interaction with more than 15,000 NOMA 
pixels. As our baseline, we capture an image reflected from NOMA 
under the linear response (Fig. 3C). We ensure the linear response of 
the device by setting Vs = −4V to forward bias the Si PD, which 
maintains the LC cell in the ON state. To capture the contrast-
enhanced image (Fig. 3D), we set Vs = 4 V and Vc = 5.5 V to ensure 
that NOMA is under an ReLU response. Compared with the dark 
regions of the reference image, the contrast enhanced image shows 
a darker background while the bright regions retain their average 
brightness. Quantitatively, the image processed with nonlinearity 
exhibits a contrast four times greater than that of the reference image 
(Fig. 3, E and F). The ability of NOMA to selectively amplify the 
contrast of specific image regions showcases its potential in applica-
tions such as real-time image processing and optical edge computing. 

Esw =
Qph

α
=

CLCΔVs + CoxΔVc

α
(1)



Feng et al., Sci. Adv. 11, eads4224 (2025)     31 January 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 8

In these cases, the nonlinear layer prunes or maintains connections 
between successive layers in the network. In spirit, this contrast en-
hancement task can be thought of as one such application where we 
already demonstrate more than 10,000 nonlinear connections with 
potential to expand into deep neural networks with more than one 
hidden layer.

ML-ONN with ReLU activations
We highlight the role of the ReLU nonlinearity by demonstrating 
an ML-ONN. The implemented ML-ONN consists of two fully 
connected linear layers linked by the NOMA, serving as the non-
linear activation layer. We leverage the ML-ONN to tackle two dis-
tinct binary classification tasks characterized by nonlinear decision 

boundaries. Figure 4A illustrates the ground truth for one such 
boundary, separating the 2D space defined by the input vector 
x = (x1, x2) into red and blue regions by a circular decision bound-
ary. Our network is configured with two inputs, four hidden neu-
rons, and two output neurons with the goal of learning these 
nonlinear decision boundaries. The ML-ONN maps the input vector 
x to an output vector y = (y1, y2) through two transformation matri-
ces and one ReLU nonlinear activation. We determine the class of the 
input point (red or blue) by comparing the magnitudes of y1 and y2 
or, more precisely, calculating the posterior probabilities with the 
SoftMax function.

In our optical implementation, we encode x into light intensity 
and the weight matrices [W (1) and W (2)] into the reflectivity of 
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Fig. 4. ML-ONN for binary classification. (A) Schematic illustration of the ML-ONN used for the binary classification task. The input to the ML-ONN consists of coordinates 
(x1, x2) of a point in 2D space, separated into two classes by a nonlinear boundary. The implemented ML-ONN is a two-layer fully connected neural network with optical 
nonlinear activation using the NOMA with ReLU response shown in Fig. 3A. (B) Performance of the linear operation of the ML-ONN shown as a scatter plot of measured 
outputs against ground truth of 80 random MVM. In an ideal implementation, the measured output of the MVM and the ground truth fall on a line with slope of 1, marked 
by the purple line in the figure. The inset panel is an error histogram illustrating the scatter around this ideality line. The histogram is characterized by a root mean squared 
error (RMSE) of 1.2%. (C) Scatter plots characterizing the RMSE of the full ML-ONN, including the nonlinear activation between MVMs, along with the error histogram 
(inset). RMSE rates for two classification tasks on two datasets (Circle and XOR) are characterized as 3.3% and 1.7% respectively. The distribution and the underlying deci-
sion boundaries of the Circle dataset and the XOR dataset are shown in (D) and (E), respectively. In both cases, the classification accuracy is >97% when the NOMA is 
operated under an ReLU response, while the accuracy is 50% (random chance) when it is operated under linear response conditions.
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spatial light modulators (SLMs). We use an optical fan out to imple-
ment matrix vector multiplications (MVMs) (25). The Supplemen-
tary Materials contain a detailed description of the optical layout 
(fig. S7) as well as the test and validation of the implemented optical 
hardware in supplementary section S3.

We first quantify the operation precision of the linear and nonlinear 
layers in the ML-ONN. We evaluate the linear operation capabilities of 
our ML-ONN by performing random MVMs on the SLMs. Figure 4B 
shows the measured light intensities after the multiplication operation 
versus the theoretical values. On the basis of this comparison, we deter-
mine a root mean square uncertainty of 1.2% in our optical MVM 
implementation. This error rate indicates an effective calculation preci-
sion of 6.2 bits for our linear operations.

We next performed an optical inference experiment with the com-
plete ML-ONN depicted in Fig. 4A across two binary classification 
datasets, namely, Circle and XOR. Figure 4C shows the measured 
light intensity versus the theoretical values. The comparison shows 
that the root mean square uncertainty increases to 1.7 ~ 3.3% when 
we include a nonlinear activation through NOMA, resulting in an 
effective calculation precision of 5 bits. Figure 4 (D and E) illustrates 
the inference results of the Circle and XOR classifications, respectively, 
where the shaded regions show the underlying decision boundaries. 
For XOR and Circle datasets, the test accuracy stands at 97 and 100%, 
respectively. In contrast, the inference accuracy without non-
linearity is only 50% for both datasets. The poor accuracy in the 
absence of nonlinearity is expected as the network without optical 
nonlinearity essentially functions as a linear regression model, 
incapable of capturing the inherent nonlinear decision boundary of 
these datasets.

DISCUSSIONS
In this study, we implemented an NOMA for an energy-efficient opti-
cal nonlinearity by integrating Si PD and LC EOM at a single-pixel 
level. The NOMA achieves an optical ReLU function with switching 
energy down to 100 fJ across more than half a million pixels. We 
further demonstrated NOMA’s energy efficiency, uniform nonlinear 
response, and compatibility with incoherent light through an image 
contrast enhancement task and highlighted the optical ReLU function 
in a binary classification task for deep ML-ONNs. In contrast with the 
state-of-the-art analog optoelectronic neural networks (17), NOMA 
eliminates the need for shuttling signals back and forth between optical 
and electrical domains, which should enable neural networks with 
more than one hidden layer in an energy-efficient manner. Further 
improvements to the switching energy can be achieved by decreasing 
EOM and PD capacitance, which is ultimately limited by the circuit 
Johnson noise. For instance, by reducing the pixel pitch from the 
current 20 to 3 μm (comparable to the state-of-art LC on silicon tech-
nology) and using a smaller-capacitance P-I-N junction as the PD, the 
capacitance of a single pixel can be as low as 100 aF, enabling optical 
modulation at sub-femtojoule switching energies.

We report switching times on the order of milliseconds for our 
energy-efficient nonlinearity. At these switching times, an NOMA-
based ONN can be used as a drop in energy-efficient replacement 
for digital neural networks in applications where the inference task 
is frame rate limited. Such situations arise in a broad range of image 
recognition tasks, including applications in autonomous vehicles 
and facial recognition. Furthermore, an NOMA-based optical non-
linearity could be used in image compression as an efficient optical 

encoder layer that alleviates bandwidth challenges associated with 
large images. More excitingly, an energy-efficient optical nonlinearity, 
such as NOMA, could enable the development of optical neuro-
morphic computation platforms that mimic biological functions, 
such as visual perception.

The NOMA initially addressed a fundamental challenge of nonlin-
earity within the all-optical neuromorphic computing framework, 
which generally requires high energy efficiency, scalability, and 
broadband compatibility. We believe that our approach could cata-
lyze the development of large-scale deep ONNs for intelligent edge 
computing and sensing in the future.

MATERIALS AND METHODS
Figure S1A is the photograph image of a completed NOMA with 
750 × 700 pixels. Figure S1B illustrates the design of a 20 μm–by–20 μm 
NOMA pixel. Each pixel contains a rectangular Al mirror that occu-
pies approximately AAl = 240 μm2 or 60% of the total pixel area. The 
Al mirror is connected to a Si PD through a 4-μm2 contact via. 
The area of the Si PD is APD = 100 μm2. Beneath the Al mirror, a 
6-μm-wide additional n-doped region extends across the column of 
pixels and connects to a common Al electrode at the edge of the 
device. The device’s vertical structure, displayed in Fig. 1B, consists of 
an ITO glass and a Si backplane, forming an LC cell with an approxi-
mate thickness of d = 3 μm. Given the LC’s refractive index anisot-
ropy (Δn = ne − no) of about 0.1, the retroreflected light’s maximum 
path difference (ΔL) between the ordinary (o) and extraordinary (e) 
light is roughly 0.6 μm (ΔL = 2dΔn), corresponding to a 1.8π phase 
retardation for a wavelength of 670 nm. This phase shift is sufficient 
for a full-range intensity modulation, which typically requires a 
phase modulation between 0 and π.

We used conventional planar fabrication techniques for the silicon 
substrate. To define the Si PD, we doped a 6-inch (15.24-cm) p-type 
Si wafer (ρ = 10 to 20 ohm·cm, Silicon Valley Microelectronics, USA) 
using phosphorus thermal diffusion under a POCl3 atmosphere at 
840°C. We next established a dielectric stack on the Si substrate 
through the deposition of 15 nm Al2O3 at 250°C by atomic layer 
deposition and 530 nm SiO2 at 350°C by plasma-enhanced chemical 
vapor deposition. Notably, the Al2O3/Si interface hosts a substantial 
built-in charge density, which effectively passivates minor carrier 
recombination at the surface, reducing the surface leakage current of 
the Si PD (50). Following the formation of the dielectric stack, the 
wafer underwent a patterning and etching process to create contact 
vias for Al mirrors. This was followed by 200-nm Al sputtering and 
patterning. Then, we established an ohmic contact to the p-type Si 
using 100-nm Pt that was sputtered on the back side of the wafer (51). 
We used the ITO glass (MSE Supplies LLC) with a sheet resistance 
of around 30 to 60 ohm/sq. We coated both the silicon and ITO 
substrates with 40-nm SiO2 via oblique e-beam evaporation, which 
served as the alignment layer for the LC (52). We bonded the Si 
and ITO pieces together using an ultraviolet (UV) curing adhesive 
(OG142, Fiber Optic Center, USA). We controlled the cell gap using 
microspheres (Micropearl SP-203, Sekisui Chemical Co. Ltd., Japan) 
with a diameter of 3 μm, which were placed along the periphery 
of the chip within the UV adhesive. We filled the sealed cell through 
a small fill port at the edge of the bonded chips with nematic LC 
(LC-VAST14, INSTEC, USA) using the capillary effect to uniformly 
form the LC layer. Last, we sealed the fill port using the same UV 
adhesive, completing the assembly process.
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