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ABSTRACT 

Brain-infiltrating leukocytes contribute to multiple sclerosis (MS) and autoimmune 

encephalomyelitis and likely play a role in traumatic brain injury, seizure, and stroke.  Brain-

infiltrating leukocytes are also primary targets for MS disease-modifying therapies.  However, no 

method exists for non-invasively visualizing these cells in a living organism.  1-(2'-deoxy-2'-18F-

fluoroarabinofuranosyl) cytosine (18F-FAC) is a PET radiotracer that measures deoxynucleoside 

salvage and accumulates preferentially in immune cells.  We hypothesized that 18F-FAC PET 

could non-invasively image brain-infiltrating leukocytes.  Methods  Healthy mice were imaged 

with 18F-FAC PET to quantify if this radiotracer crosses the blood-brain barrier (BBB).  

Experimental autoimmune encephalomyelitis (EAE) is a mouse disease model with brain-

infiltrating leukocytes.  To determine whether 18F-FAC accumulates in brain-infiltrating leukocytes, 

EAE mice were analyzed with 18F-FAC PET, digital autoradiography, and immunohistochemistry, 

and 18F-FAC accumulation in brain-infiltrating leukocytes was analyzed ex vivo.   Fingolimod-

treated EAE mice were imaged with 18F-FAC PET to assess if this approach can monitor the effect 

of an immunomodulatory drug on brain-infiltrating leukocytes.  PET scans of individuals injected 

with 2-chloro-2'-deoxy-2'-18F-fluoro-9-β-D-arabinofuranosyl-adenine (18F-CFA), a PET radiotracer 

that measures deoxynucleoside salvage in humans, were analyzed to evaluate whether 18F-CFA 

crosses the human BBB.  Results  18F-FAC accumulates in the healthy mouse brain at similar 

levels to 18F-FAC in the blood (2.54±0.2 and 3.04±0.3 %ID/g, respectively) indicating that 18F-FAC 

crosses the BBB.  EAE mice accumulate 18F-FAC in the brain at 180% of the levels of control 

mice.  Brain 18F-FAC accumulation localizes to periventricular regions with significant leukocyte 

infiltration, and 18F-FAC accumulates at similar levels in brain-infiltrating T and innate immune 

cells.  These data suggest that 18F-FAC accumulates in brain-infiltrating leukocytes in this model.  

Fingolimod-treated EAE mice accumulate 18F-FAC in the brain at 37% lower levels than control-

treated EAE mice demonstrating that 18F-FAC PET can monitor therapeutic interventions in this 
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mouse model.  18F-CFA accumulates in the human brain at 15% of blood levels (0.08±0.01 and 

0.54±0.07 SUV, respectively), indicating that 18F-CFA does not cross the BBB in humans.  

Conclusions  18F-FAC PET can visualize brain-infiltrating leukocytes in a mouse MS model and 

can monitor the response of these cells to an immunomodulatory drug.  Translating this strategy 

into humans will require exploring additional radiotracers. 

 

Key words:  PET imaging, autoimmune disease, leukocytes, brain 
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INTRODUCTION 

Brain-infiltrating leukocytes drive pathology in multiple sclerosis (MS) and autoimmune 

encephalomyelitis (1–4).  During MS, brain-infiltrating T cells, B cells, and macrophages promote 

neurodegeneration (1–3), and disease-modifying therapies modulate the immune system (4).  

Leukocytes are also found in the brains of murine models of traumatic brain injury, stroke, and 

seizure and of postmortem Parkinson’s disease and P301L tau frontotemporal dementia patients 

(5–12).  Inhibiting leukocyte migration into the brain or depleting lymphocytes in these animal 

models can slow disease progression (6–12), suggesting a functional role for the immune system 

in these diseases.  Although PET assays have been developed to image and quantify different 

aspects of neuroinflammation (13–17), there is no PET assay to visualize brain-infiltrating 

leukocytes.  A non-invasive method to selectively image and quantify brain-infiltrating leukocytes 

would complement current approaches and provide information on the location of these cells 

during the development and treatment of neurological diseases. 

The radiotracer 1-(2′-deoxy-2′-18F-fluoroarabinofuranosyl) cytosine (18F-FAC) is a 

deoxynucleoside analogue that measures deoxynucleoside salvage, a biochemical pathway 

enriched in leukocytes; accumulates at high levels in lymphoid tissues; and is increased in these 

same tissues in mouse models of immune activation (18–20).  Additionally, 18F-FAC accumulates 

at higher levels in activated T lymphocytes than in effector-memory T cells, CD11b+ innate 

immune cells, or B220+ B cells and at low levels in the healthy brain (18–20).  Thus we 

hypothesized that 18F-FAC PET could non-invasively visualize brain-infiltrating leukocytes. 

Here we study 18F-FAC in an experimental autoimmune encephalomyelitis (EAE) mouse 

model of MS.  Our results suggest that 18F-FAC PET can visualize brain-infiltrating leukocytes 

during disease and treatment. 
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MATERIALS AND METHODS 

Mice   

10 week old, female C57BL/6N and NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were 

used for all experiments.  All mouse experiments were approved by the UCLA Animal Resource 

Committee. 

Treatments 

EAE treatments were conducted and scored similar to reported (15,21).  Briefly, mice 

were injected with an emulsion of myelin oligodendrocyte glycoprotein (MOG35-55) in Freund’s 

complete adjuvant (100 µL) and with pertussis toxin (80 ng) 2 hours and again 24 hours later 

(Hooke Laboratories).  All experiments were conducted 13 to 15 days post-immunization.  

Fingolimod (0.5 mg/kg; Selleckchem S5002) or vehicle were injected intraperitoneal daily 

starting immediately post-immunization.  Immunocompetent EAE mice were used at an average 

clinical score of 3.0.  

Immunohistochemical Analyses 

Sagittal brain sections (4 µm) were immunostained as described (20) except for the 

inclusion of CD45 (Clone 30-F11; 1:100; Novus Biologicals), imaged at 1X and 40X magnification, 

and quantified using the Ilastik software (Version 1.3.2).  Boxes in the 1x magnification images 

outline from where the 40x magnification images were taken.  To evaluate correlations, two 

independent 40X magnification images were scored using an H-score (22). 

18F-FAC PET/CT 

 Mice injected with either 18F-FAC (1.85 MBq) or with 18F-FAC (1.85 MBq) and 10 mg of 

non-radiolabeled FAC were imaged for an hour or imaged one hour post-injection for 10 min on 

a G8 PET/CT.  The one hour post-injection time point was chosen as this is the earliest time point 

at which 18F-FAC accumulation in the brain and blood no longer rapidly changes.  Images were 
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analyzed using AMIDE (Version 1.0.4), and the MRM neurological atlas was fitted to the mouse 

skull (23,24).  Regions of interest (ROI) were drawn at the interface of the hippocampus, thalamus, 

and midbrain as demarcated by the neurological atlas.  18F-FAC blood levels were determined 

from a ROI drawn within the left ventricle of the heart. 

18F-CFA PET Analysis 

 18F-CFA PET scans from (25) were analyzed.  ROI were drawn similar to the mouse 

PET/CT images. 

Ex vivo Biodistribution Studies 

Mice were injected with 18F-FAC (1.85 MBq).  One hour post-injection, blood (100 µL) was 

collected, the mice were perfused, and organs were extracted and rinsed in 1x PBS.  Activity and 

weight of the blood and organs were measured. 

Autoradiography 

Autoradiography was performed as previously described (26).  Briefly, pre- and post-

immunization EAE mice were injected with 18F-FAC (18.5 MBq) and sagittal brain sections (10 

µm) from perfused mice were cut.  

Ex vivo Accumulation Assays 

Brain leukocyte isolation was conducted similar to previously described (27), and CD4+ 

and CD11b+ cells were isolated by FACS.  Ex vivo deoxycytidine accumulation was performed as 

previously described (20) by incubating ~20,000 of each cell type in a 96-well filter plate with 3H-

deoxycytidine (0.037 MBq per well) for 30 min. 

Statistical Analyses 
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 Data was analyzed using GraphPad Prism (Version 7.03).  Statistical comparisons were 

performed using two-sided t-tests and one-way ANOVA analyses with multiple comparison 

testing.  Data is reported as mean ± standard error. 

 

RESULTS 

18F-FAC Crosses the Healthy BBB in Mice 

To develop a PET assay to quantify brain-infiltrating leukocytes in neurological diseases, 

we needed a PET radiotracer that accumulates in leukocytes and crosses the BBB.  18F-FAC is 

a pyrimidine deoxynucleoside analogue radiotracer that accumulates in leukocytes (18,19).  

Generally, pyrimidine ribonucleosides except for uridine do not cross the BBB, but studies suggest 

that 18F-FAC accumulates at ~2 %ID/g in the brain of healthy mice (18,28).   

 18F-FAC accumulated at nearly uniform levels throughout the healthy mouse brain as 

evaluated by PET and autoradiography one hour post-injection (Fig. 1A, B).  18F-FAC levels in the 

healthy mouse brain, corrected for blood volume in the brain (29), were slightly lower than 18F-

FAC levels in the blood (brain-to-blood ratio quantified from the PET images: 0.84±0.05 – brain: 

2.54±0.2 %ID/g, blood: 3.04±0.3 %ID/g; brain-to-blood ratio quantified from isolated tissue and 

blood: 0.76±0.05; Figs. 1C, D; 18F-FAC time-activity curves: Supplemental Fig. 1; correlation 

between brain-to-blood ratios quantified from the PET images and from isolated tissue and blood: 

R2=0.89, Supplemental Fig. 2).  18F-FAC has a logP value of -1.33, well below the 2 – 3.5 logP 

value of most radiotracers that diffuse into the brain and suggesting that 18F-FAC is transported 

across the BBB (30).  Collectively, these data suggest that 18F-FAC crosses the healthy BBB. 
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Brain-Infiltrating Leukocytes are Present in an EAE Mouse Model 

EAE is a well-established MS model with leukocyte infiltration into the spinal cord and 

brain (31,32).  EAE was induced in immunocompetent C57BL/6 and immunocompromised NSG 

mice by co-injecting MOG35-55 in Freund’s complete adjuvant with pertussis toxin (15,21).  

Consistent with literature (15,21), immunocompetent mice began to display EAE symptoms ~9 

days post-immunization that peaked ~13 days post-immunization and which included a limp tail, 

hind leg paralysis, and severe head tilting (Fig. 2A).  Immunocompromised mice treated to induce 

EAE never displayed symptoms (Fig. 2A).  Immunohistochemistry of immunocompetent mouse 

brain sections demonstrated significant perivascular and periventricular leukocyte infiltrates 

characterized by an abundance of CD11b-positive innate immune cells and CD4 T cells with few 

B220-positive B cells and CD8 T cells (Fig. 2B).  37±2% of infiltrating leukocytes in these sections 

were dividing as suggested by Ki67 immunostaining.  No infiltrating leukocytes were observed in 

the immunocompromised EAE mouse brains (Fig. 2B).  Isolated leukocytes from 

immunocompetent EAE mouse brains were similarly enriched for CD11b-positive innate immune 

cells and CD4 T cells (Fig. 2C). 

 

18F-FAC Accumulates at Higher Levels in the Brains of EAE Mice than Control Mice 

Immunocompetent and immunocompromised pre-immunization and EAE mice were 

injected with 18F-FAC and imaged by PET/CT one hour later.  18F-FAC accumulation in the brains 

of immunocompetent EAE mice was 180% of the levels of pre-immunization immunocompetent 

mice based on a ROI drawn at the interface of the hippocampus, midbrain, and thalamus where 

a high concentration of infiltrating leukocytes resides (pre-immunization immunocompetent mice: 

2.4±0.15 %ID/g; immunocompetent EAE mice: 4.4±0.66 %ID/g; Fig. 3A; Supplemental Fig. 3).  

18F-FAC accumulation in this same brain region of immunocompromised EAE mice was not 
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significantly different from pre-immunization immunocompromised mice (pre-immunization 

immunocompromised mice: 3.2±0.31 %ID/g; immunocompromised EAE mice: 2.4±0.15 %ID/g; 

Fig. 3B; Supplemental Fig. 3).  18F-FAC brain accumulation was lower in immunocompetent mice 

than in immunocompromised mice pre-immunization, and lower in post-immunization than in pre-

immunization immunocompromised mice.  We cannot readily explain either of these results, 

although neither result reached statistical significance.  18F-FAC accumulation was also 

significantly increased in the spleen and lymph nodes but not the femur, bone marrow, or spinal 

cord of the immunocompetent EAE compared to pre-immunization mice (quantified from the PET 

images: spleen – pre-immunization mice: 11.8±2.1 %ID/g, EAE mice: 21.3±3.2 %ID/g; lymph 

nodes – pre-immunization mice: 2.3±0.06 %ID/g, EAE mice: 9.1±0.84 %ID/g; bone marrow – pre-

immunization mice: 14.7±1.1 %ID/g, EAE mice: 11.9±1.5 %ID/g; spinal cord – pre-immunization 

mice: 4.9±0.24 %ID/g, EAE mice: 5.7±0.70 %ID/g; Supplemental Fig. 4; ex vivo biodistribution 

data: Supplemental Fig. 5). 

 EAE mice suffer BBB breakdown, leading to the slow exchange or pooling of blood fluids 

in areas with significant leukocyte infiltration and a compromised BBB (33).  Our results in the 

EAE model could be due to 18F-FAC in these blood pools and not to specific cellular 18F-FAC 

accumulation.  Immunocompetent EAE mice were injected with 18F-FAC supplemented with 10 

mg non-radiolabeled FAC.  Cellular FAC accumulation can be saturated but FAC accumulation 

in blood pools cannot.  Co-injection of 18F-FAC and non-radiolabeled FAC decreased brain 18F-

FAC accumulation in immunocompetent EAE mice by 57% compared to immunocompetent EAE 

mice injected with only 18F-FAC and to 78% of the levels of pre-immunization immunocompetent 

mice (pre-immunization immunocompetent mice: 2.4±0.15 %ID/g; immunocompetent EAE mice: 

4.4±0.66 %ID/g; immunocompetent EAE mice injected with 18F-FAC and non-radiolabeled FAC: 

1.9±0.15 %ID/g; Fig. 3A; Supplemental Fig. 3).  This suggests that the increased 18F-FAC 
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accumulation in the immunocompetent EAE mouse brains is due to specific cellular 18F-FAC 

accumulation. 

 

18F-FAC Accumulates in Brain-Infiltrating Leukocytes in an EAE Mouse Model 

Deoxycytidine kinase (dCK) phosphorylates 18F-FAC and is a rate-limiting enzyme in the 

cellular accumulation of this radiotracer (18,34).  Brain sections of pre-immunization or EAE mice 

were immunostained with an antibody targeting dCK.  Strong dCK immunostaining was apparent 

in 68±5% of the infiltrating leukocytes in the brain sections of the immunocompetent EAE mice 

and the intensity and number of immunostained leukocytes correlated with brain 18F-FAC 

accumulation (R2=0.85; Fig. 4A; Supplemental Fig. 6).  In contrast, 37±12% of leukocytes in the 

spinal cord of immunocompetent EAE mice, a tissue in which 18F-FAC accumulation did not 

increase compared to pre-injection mice, stained strongly for dCK (Supplemental Fig. 7).  Weak 

dCK immunostaining was present in the brain parenchyma across all conditions, and the degree 

of dCK immunostaining in the brain parenchyma was unaffected by the EAE treatment (Fig. 4A).  

This suggests increased brain 18F-FAC accumulation in the immunocompetent EAE mice may be 

due to the tracer accumulating in the brain-infiltrating leukocytes.  Consistent with this model, 

autoradiography of brain sections of immunocompetent EAE mice injected with 18F-FAC shows 

the greatest enrichment in 18F-FAC accumulation specifically in areas coincident with significant 

leukocyte infiltration in the EAE mouse brain (Fig. 4B). 

 Brain-infiltrating leukocytes in this model consist mostly of CD11b-positive innate immune 

cells and CD4 T cells (Fig. 2B, C).  Deoxynucleoside salvage activity was similar between CD11b-

positive innate immune cells and CD4 T cells isolated from the immunocompetent EAE mouse 

brains (Fig. 4C).  Insufficient B220-positive B cells and CD8 T cells could be isolated for analysis.  

The number of leukocytes in the brain correlated with 18F-FAC accumulation (R2=0.82; 

by UCLA Digital Collections Services on March 17, 2020. For personal use only. jnm.snmjournals.org Downloaded from 

http://jnm.snmjournals.org/


11 
 

Supplemental Fig. 8).  Whether activated microglia also consume 18F-FAC remains a topic for 

future study.  However the overlap between the strong 18F-FAC accumulation identified in the 

autoradiography and the areas identified by immunohistochemistry as having significant 

leukocyte infiltration (Figs. 2B, 4B) supports our interpretation that 18F-FAC accumulates in and 

18F-FAC PET images brain-infiltrating leukocytes.  Collectively this suggests a model in which 

elevated 18F-FAC accumulation in brain regions of immunocompetent EAE mice with significant 

leukocyte infiltration is due to 18F-FAC accumulation in all of the brain-infiltrating leukocyte 

populations. 

 

Changes in Brain 18F-FAC Accumulation can Monitor Immunomodulatory Drug Treatments 

in EAE Mice 

The small molecule fingolimod modulates the sphingosine-1-phosphate receptor, 

sequesters lymphocytes in lymph nodes and the spleen, and limits autoimmune diseases such 

as MS (4,35).  Fingolimod decreased leukocytes in the brain of immunocompetent EAE mice 

compared to vehicle treatment (Fig. 5A).  Fingolimod also significantly decreased brain 18F-FAC 

accumulation compared to vehicle treatment in these same mice (pre-immunization mice: 

2.0±0.13 %ID/g, EAE mice treated with vehicle: 4.2±0.25 %ID/g, EAE mice treated with 

fingolimod: 2.7±0.08 %ID/g; Fig. 5B, Supplemental Fig. 3).  Consistent with its mechanism of 

sequestering lymphocytes to lymph nodes and the spleen (4,35), fingolimod had no effect on 18F-

FAC accumulation in the lymph nodes and spleen of immunocompetent EAE mice (lymph nodes 

– EAE mice: 9.1±0.84 %ID/g, EAE mice treated with fingolimod: 6.5±0.26 %ID/g; Spleen – EAE 

mice: 21.3±3.2 %ID/g, EAE mice treated with fingolimod: 26.2±1.8 %ID/g; Supplemental Fig. 3, 

Supplemental Fig. 4). 
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18F-CFA does not Cross the BBB in Humans 

18F-FAC is deaminated in humans but 2-chloro-2'-deoxy-2'-18F-fluoro-9-β-D-

arabinofuranosyl-adenine (18F-CFA), a radiotracer that also measures deoxynucleoside salvage, 

is not (36–38).  Accounting for blood volume in the brain (39), 18F-CFA accumulates in the brain 

at 11.0±1.4% of the levels of 18F-CFA found in the blood (135 min post-injection: brain SUV: 

0.08±0.01; blood SUV: 0.54±0.07; Supplemental Fig. 9), suggesting that 18F-CFA does not cross 

the BBB in healthy human patients. 

 

DISCUSSION 

Despite studies showing that 18F-FAC selectively accumulates in activated lymphocytes 

in mouse models of autoimmune hepatitis and antitumor immunity (18–20), in the EAE mouse 

model we do not identify selective 18F-FAC accumulation in brain-infiltrating lymphocytes.  In the 

mouse model of antitumor immunity, the rate of 18F-FAC accumulation in T cells was proportional 

to the rate of cellular proliferation (19).  One explanation for our results is that brain-infiltrating 

lymphocytes are not rapidly dividing and thus do not consume high 18F-FAC levels.  Only 37±2% 

of the brain-infiltrating leukocytes in our model are dividing, similar to the number of dividing liver-

infiltrating leukocytes in a viral hepatitis model in which no enhanced hepatic 18F-FAC 

accumulation was observed (20).  18F-FAC is likely able to image infiltrating leukocytes in the EAE 

model but not the viral hepatitis model due to the ~50% lower basal accumulation of 18F-FAC in 

the brain than the liver.  18F-FAC may show selectivity for lymphocytes in other models with more 

actively dividing lymphocytes in the brain. 

We show higher 18F-FAC accumulation in brain-infiltrating leukocytes and in lymphoid 

organs such as the spleen and lymph nodes in the EAE model.  18F-FAC measures 

deoxynucleoside salvage, for which dCK is a rate-limiting enzyme, and genetic knockout of dCK 
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in healthy mice leads to decreased lymphocyte levels (18,34).  Small molecule dCK inhibitors with 

in vivo efficacy have been developed (40).  Our data may suggest that dCK inhibitors could limit 

disease in this model.  

A previous study found that 18F-FDG accumulation in the spinal cord increased by 200% 

compared to control mice in this exact EAE model at the exact time point we studied (15).  We 

identify no significant increase in spinal cord 18F-FAC accumulation in the EAE mice, suggesting 

that in this model, immune cells in the spinal cord increase glucose but not deoxynucleoside 

consumption.  This result is supported by the lower percentage of leukocytes in the spinal cord 

relative to the brain of EAE mice that stain strongly for dCK.  This data suggesting that immune 

cells at different anatomical locations have different metabolic needs is consistent with data 

showing a much larger increase in 18F-FDG than 18F-FAC consumption in the draining lymph 

nodes of a mouse rhabdomyosarcoma model (19). 

Implications for Human Studies 

Brain-infiltrating leukocytes contribute to neurological diseases, and MS and possibly 

other neurological diseases can be treated with immunomodulatory drugs (1–9).  Many 

immunomodulatory drugs cause significant side effects, and in MS the primary effects of these 

drugs on the immune system are assessed indirectly with MRI and clinical evaluations (41).  PET 

assays with radiotracers that measure deoxynucleoside salvage could directly monitor the effect 

of these drugs on brain-infiltrating leukocytes.  We demonstrate how this might work with the drug 

fingolimod. 

Both 18F-FAC and 18F-CFA measure deoxynucleoside salvage (18,38).  18F-CFA works 

poorly in mice due to high plasma deoxycytidine levels but is resistant to deamination in humans 

(37,38).  However 18F-CFA does not cross the BBB in humans, suggesting that a different 

radiotracer will need to be tested in humans.  These could include the 18F-FAC derivatives L-18F-
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FAC and 2′-deoxy-2′-18F-fluoro-5-methyl-β-L-arabinofuranosylcytosine, which are resistant to 

deamination (36).  Additional studies would have to be conducted with these radiotracers to 

determine whether they cross the human BBB. 

 

CONCLUSION 

 This study suggests that 18F-FAC PET can non-invasively image brain-infiltrating 

leukocytes and can function as a pharmacodynamic biomarker of drugs that modulate these cells 

in mice.  However, PET tracers that measure deoxynucleoside salvage and cross the BBB in 

humans will need to be further explored.  We and others have shown that PET with radiotracers 

that measure deoxynucleoside salvage can image the immune system at least preclinically in 

various autoimmune conditions (18,20,42).  The consistent activation of deoxynucleoside salvage 

in all of these settings may suggest a larger role for inhibitors of this pathway and a universal 

strategy for monitoring therapeutic responses in autoimmune disease. 
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KEY POINTS 

QUESTION:  

 Can PET imaging with 18F-FAC, which measures deoxynucleoside salvage, visualize 

brain-infiltrating leukocytes, a cell population that can contribute to neurological disease 

pathology and may serve as an important therapeutic target? 

PERTINENT FINDINGS:   

 18F-FAC accumulates in the brains of a MS mouse model at 180% of the levels found in 

the brains of control mice, and 18F-FAC accumulates in areas of significant leukocyte 

infiltration and at nearly equal levels in brain-infiltrating T cells and innate immune cells.  

 18F-FAC accumulation in the brains of these mice decreases by 37% when they are treated 

with the immunomodulatory drug fingolimod, suggesting that changes in brain 18F-FAC 

accumulation can monitor a therapy in this model.  

IMPLICATIONS FOR PATIENT CARE:  

 A PET assay with a radiotracer that measures the deoxynucleoside salvage pathway may 

image brain-infiltrating leukocytes in patients with neurological disease and during 

therapeutic interventions. 
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Figure 1. 18F-FAC crosses the healthy BBB in mice. (A) Sagittal 18F-FAC PET/CT image of a 

healthy C57BL/6 mouse.  Representative image of n=5.  Brain outlined in white.  (B) 18F-FAC 

autoradiography and H&E staining of a sagittal brain section from a healthy C57BL/6 mouse.  

Scale bar: 3 mm.  c: cerebellum, n: neocortex.  Representative image of n=5.  (C) Blood and brain 

18F-FAC levels, quantified from PET images of healthy C57BL/6 mice.  n=5.  (D) Normalized blood 

and brain 18F-FAC levels, quantified from extracted blood and brain.  n=6.  *: P<0.05, ns: not 

significant. 
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Figure 2. Brain-infiltrating leukocytes are present in a mouse model of EAE.  (A) Time course of 

EAE symptoms in immunocompetent and immunocompromised mice.  n=4.  (B) H&E and 

immunohistochemical stains of brain sections of mice pre- and post-immunization.  1X and 40X 

magnification images.  Scale bar: 50 microns.  n=2.  (C) Immune cell populations isolated by 

fluorescence-activated cell sorting from immunocompetent EAE mouse brains.  n=3. 
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Figure 3. 18F-FAC accumulates more in the brains of EAE mice than control mice.  Sagittal 18F-

FAC PET/CT images (left) and quantification (right) of (A) immunocompetent and (B) 

immunocompromised pre- and post-immunization mice.  FAC block: co-injection of mice with 18F-

FAC and non-radiolabeled FAC.  All experiments: n=4.  *: P<0.05, **: P<0.01, ns: not significant.  

Brains outlined in white. 
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Figure 4. 18F-FAC accumulates in brain-infiltrating leukocytes in an EAE mouse model.  (A) Mouse 

brain sections immunostained for deoxycytidine kinase pre- and post-immunization.  1X and 40X 

magnification images.  Scale bar: 50 microns.  n=2.  (B) 18F-FAC autoradiography images and 

H&E staining of sagittal brain sections of immunocompetent mice pre- and post-immunization.  

1X and 40X magnification images.  Scale bars: 50 microns.  c: cerebellum, n: neocortex, x: regions 

where the tissue wrinkled.  n=2.  (C) Deoxycytidine (dC) accumulation in leukocyte populations 

isolated from immunocompetent EAE mouse brains.  n=2.  ns: not significant. 
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Figure 5. 18F-FAC PET can monitor immunomodulatory drug treatments in an EAE mouse model.  

(A) H&E stains of brain sections and (B) sagittal PET/CT images and quantification of 18F-FAC 

accumulation in the brains of mice pre-immunization, and post-immunization and treated with 

vehicle or fingolimod.  1X and 40X magnification images.  Scale bar: 50 microns.  H&E: n=2; 

PET/CT: Pre-immunization: n=4, Post-immunization + vehicle: n=4; Post-immunization + 

fingolimod: n=3.  **: P<0.01, ***: P<0.001.  Brains outlined in white. 
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Supplemental Figure 1.  Time-
activity curves of 18F-FAC 
accumulation in the blood and 
brains of healthy mice.  n=5.
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Supplemental Figure 2.  Brain-
to-blood ratios of 18F-FAC in 
healthy mice, as measured from 
the PET/CT images and ex vivo 
biodistribution studies.  n=4.
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Supplemental Figure 3.  18F-FAC accumulation in immunocompetent and immunocompromised mice 
pre- and post-immunization, and co-injected with non-radiolabeled FAC (FAC block) or treated with 
vehicle or fingolimod.  H = heart, S = spleen, B = bladder.
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Supplemental Figure 4.  18F-FAC PET can be used to 
monitor peripheral immune activation at specific locations 
throughout the body in EAE mice and following treatment 
with an immunomodulatory drug.  Representative 
transverse 18F-FAC PET/CT images of immunocompetent 
mice pre-immunization, post-immunization, and post-
immunization and treated with fingolimod.  Spleen, lymph 
nodes, bone marrow, and spinal cord encircled in a white 
dotted line (top).  Quantification (bottom).  Pre-
immunization and post-immunization: n=7; post-
immunization and treated with fingolimod: n=3.  *: 
P<0.05; ****: P<0.0001, ns: not significant.
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Supplemental Figure 5.  18F-FAC 
biodistribution, measured ex vivo in 
organs from immunocompetent mice 
pre- and post-immunization.  n=4 
except for spinal cord which is n=3.  
*: P<0.05, **: P<0.01, ns: not 
significant.
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Supplemental Figure 6. dCK 
immunostaining (as measured by an 
immunohistochemistry H-score) and 
18F-FAC accumulation in the brains 
of immunocompetent mice.  n=7.
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Supplemental Figure 7. dCK 
immunostaining of spinal cord tissue 
sections from immunocompetent 
mice pre- and post-immunization.  
40x magnification images.  Scale 
bars: 50 microns.  Representative 
images of n=2.
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Supplemental Figure 8. CD45 
immunostaining (as measured by an 
immunohistochemistry H-score) and 
18F-FAC accumulation in the brains 
of immunocompetent mice.  n=7.
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Supplemental Figure 9. 18F-CFA does not readily cross the blood-brain barrier in
healthy human subjects.  Representative coronal PET images of healthy volunteers 
injected with 18F-CFA at 135 min post-tracer injection (left).  Blood and brain 18F-CFA 
accumulation, quantified from the PET images of healthy volunteers (right).  The 
PET scans analyzed here are the same as those reported in Ref. 25.  45 and 90 min 
time point: n=2; 135 min time point: n=3.  ***: P<0.001.
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