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Abstract

The connectionist model IAK (Information evaluation using
configurations) for classification learning is presented here.
The model can be placed between feature based (e.g. Gluck
& Bower, 1988) and exemplar based models (e.g. ALCOVE,
Kruschke, 1992). Specific to this model is that during
learning, sets of input features are probabilistically sampled.
These sets are represented, in a hidden layer, by
configuration nodes. These configuration nodes are
connected to output nodes that represent category labels. A
further characteristic of the IAK model is a mechanism
which enhances retrieval of information. Simulations with
the TAK model can explain different phenomena of
classification learning which have been found in
experimental studies: A Type 2 advantage without
dimensional attention learning observed by Shepard et al.
(1961); a generalisation of prototypes; a generalization based
on similarity to learned exemplars; a differential forgetting
of prototypes and exemplars; a moderate interference (fan
effect) caused by stimulus similarity; and the missing of
catastrophic interference even in A-B/A-B-designs.

In classification tasks, stimuli are given that belong to
different category names. Subjects have to classify old
stimuli that have been presented during a prior learning
phase and new stimuli. The classification depends on the
involved stimuli and the degree of practice.

There are two different ways for connectionist modeling
of classification learning. In feature-based models
associations between single features of the stimuli and
features of category names are formed during learning (e.g.
Gluck & Bower, 1988; Estes et al. 1989). On the other side,
exemplar-based models assume associations between
representations of the whole stimulus and the category
label, e.g. ALCOVE (Kruschke, 1992) or the context model
(Medin & Schaffer, 1978). These models explain a lot of
empirical phenomena of category learning.

The TAK-Model (IAK: Information evaluation using
configurations) lies between feature-based and exemplar-
based models. The IAK-Model exhibits two main
properties:

Associations between small sets of stimulus features
(configurations) and category labels are learned.
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e For optimizing recall, association weights between

configurations and category labels are computed taking
all currently competing weights into account.
Configurations of features are also used in the configural-
cue model of Gluck and Bower (1988). In contrast to this
model, JAK makes use of a probabilistic sampling process
to select a small subset of configurations, thus avoiding a
combinatory explosion of the number of configurations.

The Model

The IAK-Model requires three layers: Input nodes,
configuration nodes and output nodes. Input nodes
represent the features of the stimulus. Their activation is
either 1 (on) or 0 (off). During learning, input nodes are
connected to configuration nodes. A configuration node
gets an activation of 1 if all input nodes that are connected
to the configuration node are on. Input nodes and
configuration nodes  exhibit an all-or-none-activation
characteristic. Output nodes represent categories for the
classification tasks. Their activation values lie between 0
and 1.

Figure 1. Connections in the IAK model. The connection
from input to configuration node is either existent or
absent. The connection from configuration to output node
has a weight between O and 1.

Retrieval

An input pattern is activated and the system has to select a
category represented by an output node by means of
activation propagation from input nodes to output nodes. In
classification tasks, the probability for selection of category
mis:
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a; is the activation of the i-th output node corresponding
to the i-th category. r is the number of output nodes.

The output activations are computed as follows: First,
configuration nodes are switched on if every connected
input node is on. A single inactive connected input node
causes the configuration node to remain inactive.

Second, the activation value a is computed for each
output node:

2 =§w},~ (1-0-8)")- a-8)"

w; is the connection weight between the i-th
configuration node and the j-th output node. s; is the
strength of the configuration node i. Strength values
increase during learning. § and 1 are parameters of the IAK

model. Ssum; is computed by:

Ssum ; = Iz.sk 3

keK

K, is the set of all configuration nodes connected to the
output node j that have connection weights to j greater than
w;i (w>wy; for all ke K),,-)‘I The value of a lies between 0 and
1 because the strength values s are positive integers and the
parameter values are limited to 0<d<1 and 0.
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Figure 2. Illustration showing output node activation
computing. The gray shaded area represents the activation

" If two or more active configuration nodes have the same
weight to an output node then these nodes are treated as a single
node with a summed strength value.

value a. The maximum is 1. Each configuration node gets s
columns; s is the strength of the configuration node. The
configuration node with the maximum weight is placed in
the first column, followed by the configuration node with
the second biggest weight and so on.
These complicated equations prevent many relatively
small values of w from obscuring larger values. The
computation of a is illustrated in Figure 2.

Learning

Learning requires two computational steps:
1. Sampling of input nodes and
corresponding configuration nodes.

2. Adjustment of weights from configuration nodes to

output nodes.

For the first step, subsets of the active input nodes are
sampled with a probabilistic procedure. Two parameters o
and P control this process. o is the mean number of sets
that are sampled in one learning trial and f influences the
mean number of input nodes g in these sets. [ is the linear
slope for the probability gradient. The computation of § is
illustrated in the following example. If there are 5 active
input nodes I, to Is and o =1.5 and B = -0.2 then at least
one subset is sampled and there is a probability of .5 that a
second subset is sampled. The probability that the subset
consists of 1 element is p(g=1)=0.533; p(g=2) = 0.333;
p(g=3) = 0.133; p(g=4) = 0 and p(g=5) = 0. For instance,
only one subset might be sampled with g = 2 and it might
consist of I, and I;. Now a configuration node is searched
that has the connections to input nodes like the sampled
subset. If a configuration node exists, its strength is
incremented by 1. If not, then an unused configuration node
is chosen with strength s = 1 and connections to the input
nodes of the subset. If an unused configuration node does
not exist then the forgetting process takes place to provide a
node (see section Forgetting of configuration nodes).

In the second step, weights between all active
configuration nodes and output nodes are adjusted. The
weight w;; gives the portion in which the output node j was
a target in cases where the configuration node i was active.
For instance, if configuration node i was active at 20
learning trials and at 15 of these 20 trials output node j was
a target node then wj; = 0.75.

strengthening

Forgetting of Configuration Nodes

Forgetting of node connections is required in cases where
the set of unused configuration nodes is exhausted and new
ones are needed for learning. The following procedure is
used repeatedly: A configuration node is randomly selected,
and its strength is decremented by 1. Nodes with a strength
of 0 are unassigned.

Parameters and Extended Versions of the TAK
Model

This paper presents a reduced version of the IAK model. In
the complete version during learning not only activating
but also inhibiting connections from configuration nodes to
output nodes are learned. These inhibitive links are rather
selective and enhance the systems behavior in difficult
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discrimination tasks.  Another extension deals with
configuration nodes for output nodes. These configuration
nodes are suitable for learning complex response patterns
and are not used in classification tasks. In the reduced
model reported here, only four parameters are used o, B, 8,
and t, although others may be useful. For instance, a
parameter is needed in Equation 1 to increase the activation
values so that a medium value is not obsured by small ones.
However, in the following simulations only qualitative
results are reported and the parameters are kept at a
minimum for better clarity of the model's mechanisms.

Applications

The Experiment of Shepard, Hovland, & Jenkins
(1961)

The task. The stimuli vary on three binary dimensions:
size (large vs. small), shape (square vs. triangle), and color
(filled vs. empty). Four of them are assigned to category A
the other to category B. There are six structurally different
types of category assignment (see Figure 3).

size

Figure 3. One example for the six types of stimuli
assignments to categories.

Shepard et al. (1961; replicated by Nosofsky, Gluck,
Palmeri, McKinley, & Glauthier, 1994). found the
following ordering of difficulties in learning: Type | <
Type 2 < (Type 3 to Type 5) < Type 6. The advantage of
Type 2 compared to Types 3 to 5 is difficult to explain with
connectionist models, unless the model has an explicit
method to fade out irrelevant dimensions, e.g. ALCOVE
(Kruschke, 1992) or DALR (Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier, 1994).
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Method of simulation. The net consists of 2 output nodes
representing categories A and B and 6 input nodes. Within
one block each stimulus is presented twice in random order.
Figure 4 shows the percentage of errors within each block
from n = 400 simulations. The simulation replicates the
ordering of type difficulties.

—— Typeb

—0— Type5

Figure 4. Mean error for 16 blocks of learning
(Parameters: o.=5; B = 0; 6=0.007; 1= 5).

Results. In accordance to previous empirical data (Shepard
et al, 1961; Nosofsky, Gluck, Palmeri, McKinley, &
Glauthier, 1994) there is no difference between linearly
separable tasks (Type 4) to linearly non separable ones
(Type 5). Also, an explicit mechanism of selective attention
learning is not required by the IAK model to predict the
advantage of Type 2 tasks compared to Type 3 to 5 tasks.

The Experiment of Medin and Schaffer (1978)

This experiment raises the question whether learning and
generalization is based primarily on single features or
alternatively on whole exemplars. If generalization is based
on the sum of single feature-to-category associations, then
the best classification should be found with the prototype
stimulus for a category which consists of the features that
are most typical for a category. An alternative assumption
is that generalization may be based on similarity to whole
exemplars.

In the experiment (exp. 2 of Medin and Schaffer, 1978)
subjects had to classify stimuli with four binary dimensions.
Stimuli 1 to 5 are learned as category A, Stimuli 6 to 9 are
learned as B, and the remaining seven stimuli are only
tested.

Method of simulation. For the simulation with the IAK
model a net with eight input nodes and two output nodes is
used. For each block of learning, the stimuli 1 to 9 are
presented in random order. Table 1 compares the
experimental results of the experiment of Medin and
Schaffer (1978) with the results of the simulations after one
(Sim: 1x) and four (Sim: 4 x) blocks of learning
(Parameters: 0=2; B=0; §=0.01; 1=3).

Results. Three values should be compared in detail.
Stimulus 12 is never learned but it is the prototype of



Category A and is classified best in the experiment and in
the simulations. Stimulus 1 is more similar to the prototype
of A than Stimulus 2, but Stimulus 1 is classified worse
than Stimulus 2 in the experiment, because Stimulus 1 is
highly similar to two stimuli (6 and 7) of the opposite
Category B. The simulation with the IAK model also
classifies Stimulus 1 worse than Stimulus 2. The
architecture of the IAK model enables both: generalization
based on features and based on the whole or parts of the
whole.

Table 1. Percentage of selection of category A
(mean values of n = 400 simulations).

No. Valuesof Cate- Exp. Sim:1x Sim:4x
Dimensions  gory

............................................... Learning Stimuli ...

1 1112 A .78 .78 85

2 1212 A .88 .86 91

3 1211 A .81 91 96

4 1121 A .88 79 .83

5 2111 A .81 .79 .84

6 1122 B 16 38 .34

7 2112 B .16 37 34

8 2221 B 12 22 A5
9.nn B 03 . 1206
................................................ Transfer Stimuli

10 1221 .59 60 65

11 1222 31 46 44

12 1111 94 90 96

13 2212 .34 46 46

14 2121 .50 53 49

15 2211 .62 62 66

16 2122 16 25 14

The Interaction in Forgetting Rates for Exemplars
and Prototypes

One aspect of classification learning is the differential
forgetting rate for exemplars and prototypes. In
experiments (e.g. Homa et al. 1973) subjects learned to
classify dot patterns that are randomly distorted versions of
a prototype. They were tested with old exemplars from the
learning phase, new unlearned exemplars and prototypes
that were not shown during the learning phase. The main
result was that forgetting is faster for exemplars than for
prototypes.

Method of simulation. Per block, 18 exemplars in random
order, 9 of Category A, 6 of B and 3 of C are presented.
Each exemplar consists of eight features: four are specific
for the exemplar, two are randomly selected from the
category prototype and the last two are randomly selected
from each of the competing categories. After three blocks of
learning, old and new exemplars and prototypes are tested
(Test 1). Forgetting is caused by a reduction of the
configuration node strength (see section on forgetting of
configuration nodes, page 4). After a forgetting rate of 80
percent the stimuli are retested (Test 2).

Table 2. Mean portion of errors (n=400 simulations; o=1;
B=-0.4; 6=0.01; 1=5).

Test- Old Prototype New

Stimuli
D Learned Exemplars Category A

Test 1 .06 03 33
oTest2 23 N2 AL
e © Learned Exemplars Category B

Test | 19 25 73
o Test2 . 45 36 .66
........................................ 3 Learned Exemplars Category C

Test 1 .24 78 93

Test 2 .65 76 86

Especially in Category B, the interaction between
forgetting rates of exemplars and prototypes is evident. As
in the experimental results: The forgetting for prototypes is
slower than for old exemplars.

Interference-Effects

In the TAK model, as in other connectionist models,
interference is caused by common features in stimuli from
different categories. A simulation of the fan-effect
demonstrates this.

Simulation. Ten stimuli are associated to ten different
categories. Each stimulus is represented by two features, a
specific one and one that is common to 1, 2, 3, or 4 other
stimuli. This number is the degree of fan. Each category is
represented by one specific feature.One block consists of
presentation of all stimuli in random sequence.

0,8
0,7 —Ss—"%fan 4
0,6
5 0,5 —80— fan '3
= 0,4
L 6.3 B *— fan2
0,2
0,1 —o—"fan &
0
1 2 3
block

Figure 5. Mean portion of errors after the 1st, 2nd, and
3rd block of learning. (n=400 simulations; a=0.5; =-0.3;
8=0.0001; 1=3).

Similar to empirical results, the main difference lies
between degrees of fan from 1 to 2.

Size of interference. The degree of interference in the JAK
model is similar to interference found with people. There is
no catastrophic interference, in contrast to other
connectionist models (McCloskey and Cohen, 1989). The
following simulation of an A-B/A-B, design demonstrates
this. First, List 1 with ten stimulus response associations (a
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k—>r;bk—=ryck—r;dk—rg.. ) is learned. k
denotes the feature for the first context. Second, permutated
combinations with all associations altered (List 2) are
learned in a new context m (e.g..am > ry, bm — r;; cm
— rg ...). Test 1 is made after learning three blocks of List
1. Then follows learning of List 2 for three blocks and Test
2 is conducted. The simulation results in Table 3 show
proactive and retroactive interference but no “catastrophic”
interference.

Table 3: Mean portion of correct responses (n=400; o=5;
B=-0.2; 8=0.01; 1=3).

Teststimuli of List 1 Teststimuli of List 2

Test 1 .94 .00
Test 2 75 .84
Discussion

This paper presents a reduced version of the IAK model.
The model's powerful learning mechanism is nevertheless
evident and applicable to more than classification tasks.
This version of the IAK model demonstrates the following
main learning mechanisms:
e Input features are sampled in an all-or-none manner
and stored as configurations.
Connection weights between configuration and output
nodes are adjusted gradually.
Specific (multi-feature) and unspecific (single-feature)
information is stored.
The probabilistic sampling process avoids unfulfillable
storage requirements .
Weights from configuration nodes that are valid
indicators for retrieval are enhanced.
These principles are basis for the following properties:
1. Realistic, human-like results of learning are achieved
after a few presentations of the learning material.
Difficult  discrimination  learning is  possible.
Interference is moderate but not catastrophic, even in A-
B/A-B,-transfer designs. Specific configuration nodes
are responsible for good discrimination.
At the same time the system exhibits favorable
generalization properties. If specific information is
applicable, then it is used and the unspecific
information is faded-out to prevent specific information
from blurring. But, if there is no specific information,
then unspecific information is increased in value
providing a good generalization.

There are some structural similarities between the IAK

model and RULEX (Nosofsky, Palmeri, & McKinley,

1994). Both models learn in a probabilistic way. Rules in

RULEX may be compared to the binding of configurations

to categories in JAK. In RULEX, it is easier to form simple

rules with one feature than rules with two or more features

(complicated rules and exceptions). This is the same in the

IAK model, especially if the parameter B is negative. But

2.

*ak — r; denotes two input nodes a and k that are associated
to the category node r;.
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there is one main difference between the models: In the
IAK model a connection weight from a configuration to a
category is kept even if inconsistent examples are
encountered. However, inconsistent examples reduce the
connection weight considerable. Thus, in IAK a
configuration is only partially discarded. In RULEX, rules
are discarded completely.
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