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SYMPOSIUM

Hormones and the Evolution of Complex Traits: Insights from
Artificial Selection on Behavior
Theodore Garland, Jr.1,* Meng Zhao* and Wendy Saltzman*

*Department of Biology, University of California, Riverside, Riverside, CA 92506, USA

From the symposium ‘‘Evolutionary Endocrinology: Hormones as Mediators of Evolutionary Phenomena’’ presented at

the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2016 at Portland, Oregon.

1E-mail: tgarland@ucr.edu

Synopsis Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without

changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a

common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses

to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance

(e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often

‘‘used’’ as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life

history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate

receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly

through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breed-

ing and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits,

including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of

physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including

insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which—corticosterone, leptin, and

adiponectin—differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating

levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system

(e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the

endocrine basis of activity levels.

Introduction

Behavior may often be a fairly direct target of natural

or sexual selection; however, it cannot evolve without

changes in subordinate traits that cause or permit its

expression. Because of their diverse effects on both

neural and peripheral aspects of behavior, changes in

endocrine function could be a common mechanism

underlying behavioral evolution. If so, then corre-

lated responses in other aspects of behavior, life his-

tory (Dantzer et al. 2017), and organismal

performance (e.g., locomotor abilities) should com-

monly occur because any cell with appropriate recep-

tors could be affected. At the same time, because

hormones are likely to affect multiple traits, includ-

ing through early-life parental effects (e.g., see

Garland et al. (2017)), they might be ‘‘used’’

routinely by selection to achieve (adaptively) corre-

lated changes (Cox et al. 2017). Nevertheless, the

seminal papers in modern evolutionary physiology

scarcely mentioned the endocrine system (Feder

1987; Garland and Carter 1994; Feder et al. 2000).

Evolutionary endocrinology has thus developed

somewhat separately from the rest of evolutionary

physiology (Zera and Zhang 1995; Zera et al. 2007;

Nepomnaschy et al. 2009; Adkins-Regan 2012;

Cox et al. 2017; Dantzer et al. 2017). Although

hybrid fields always run the risk of settling into

a pattern of ‘‘choose one from column A and

one from Column B,’’ evolutionary endocrinology

can move beyond this trap by addressing emer-

gent questions that truly integrate across disci-

plines and generally would not have been addressed
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by pure practitioners of either parental field

(Table 1).

Ways in which behavior coadapts with other as-

pects of the phenotype can be investigated with var-

ious approaches, such as through phylogenetically

based comparative studies (Garland et al. 2005;

Rezende and Diniz-Filho 2012). Comparative studies,

however, are necessarily correlational and historical

in nature (Abbott et al. 2003; Goymann et al. 2004)

and cannot reveal the detailed generation-to-genera-

tion changes that occur in response to selection.

Quantitative-genetic analyses and studies of selection

in the wild can reveal the patterns of genetic and

phenotypic variation in endocrine components that

form the basis for individual variation and covaria-

tion as well as the higher-level phenotypes on which

natural and sexual selection act in sex-, population-

and context-specific ways (Shire 1976; Storz et al.

2015; Cox et al. 2017; Dantzer et al. 2017). Beyond

this, various types of phenoytpic engineering, e.g., by

manipulating circulating levels of particular hor-

mones, can help to elucidate both functional rela-

tions and selective importance (e.g., Ketterson et al.

1996; Ketterson et al. 2009; Cox et al. 2014; Dantzer

et al. 2017). Finally, phenotypic evolution can be

studied directly with selection experiments and ex-

perimental evolution (Swallow and Garland 2005;

Garland and Rose 2009; Kawecki et al. 2012; Storz

et al. 2015). Most germane to this paper, several

studies have targeted rodent behavior for selective

breeding and reported changes in other aspects of

behavior, life history, and lower-level effectors of

these organismal traits, including endocrine function

(Hyde 1981; Rhodes and Kawecki 2009; Swallow et

al. 2009).

In this overview, we will first consider the nature

and evolution of complex traits, which generally

include motivated behaviors. We then provide a

very brief summary of the endocrine system and

some of its more easily understood components.

Next, we consider some key points about how nat-

ural selection typically acts on behavior. We then

turn to examples of artificial selection on behavior,

as well as one example of selection that was imposed

directly on an endocrine function. We provide a

summary of key endocrine findings from a long-

term experiment in which mice are bred for high

levels of voluntary wheel running. Finally, we draw

some conclusions regarding hormones and the evo-

lution of behavior, emphasizing what we have

learned from rodent selection experiments.

Complex traits

So-called ‘‘complex traits’’ can be defined in various

ways. First, they occur at relatively high levels of bi-

ological organization, including life-history traits

(e.g., reproductive mode, such as viviparity) and

most behaviors (one might exclude simple neuro-

muscular reflex arcs). Complex traits necessarily

comprise many subordinate traits (also known as

endophenotypes, e.g.: Gottesman and Gould 2003).

As a behavioral example, consider ingestion (food

intake). The ‘‘decision’’ by an animal to ingest or

reject a given substance follows from sensory inputs

(e.g., smell, sight, taste), rapidly integrated in the

central nervous system, then leading to motor

output (Berthoud 2007). The decision is influenced

by a variety of external factors, such as whether the

food item offers any resistance or is noxious and

whether the organism perceives any predation risk

while dealing with the potential food item. Internal

to the organism, the endocrine systems can influence

ingestion behavior at several levels, including in

Table 1 Evolutionary endocrinology as a hybrid field that addresses emergent questions

Field Evolutionary Biology Endocrinology

Within-field Questions How do populations change over time?

How can we use ‘‘model organisms’’ to elucidate basic

genetic and evolutionary principles?

Relatively how important are natural selection, sexual se-

lection, and random genetic drift in shaping biological

diversity?

How does the endocrine system work?

How can we use ‘‘model organisms’’ to

elucidate basic endocrine principles?

Where is the line between ‘‘normal’’

individual variation and pathology?

How do we promote health and cure

disease?

Emergent Questions How does the endocrine system constrain or facilitate behavioral evolution?

Which cases of pleiotropic gene action can be attributed to genetic variation in components of the endocrine

system?

What are the most common endocrine mechanisms that respond to selection on behavior or life-history

traits?

Which correlated responses to selection on behavior represent non-adaptive or maladaptive byproducts of

endocrine function?
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relation to internal states of energy balance, hunger,

appetite, and affect (Magni et al. 2009; Hoskins and

Volkoff 2012).

As an even more complex behavioral example,

consider voluntary activity levels. In the wild, this

relates to, for example, use of the home range;

searching for mates, food, and other resources; pa-

trolling territory; and migration (Feder et al. 2010).

For human beings in Western industrialized societies,

a large part of activity levels may relate to voluntary

exercise behavior, or the lack thereof. Even (or per-

haps especially) within the built environment of

human societies, the control of exercise behavior is

exceedingly complex and involves numerous internal

and external factors, plus interactive effects

(Dishman et al. 2006; Garland et al. 2011b).

A second characteristic of complex traits is that

they often exhibit emergent properties, which is to

say that what they do or how they work is not en-

tirely predictable from knowledge of how their

lower-level components function (Novikoff 1945;

Lobo 2008). Commonly cited examples in the behav-

ioral realm include consciousness, bird flocks, social

behavior, and the functionality of bee hives.

Third, complex traits are characterized by modu-

larity (Csete and Doyle 2002). This means that com-

ponents of the overall trait can often function or

evolve somewhat independently. For example, with

adequate oxygenation and nutrient supply, an iso-

lated heart or skeletal muscle can contract, generate

force, and perform work. Similarly, components of

ingestive behavior can function independently, and

often as components of other complex behaviors

(e.g., smell, motor output). The modules of complex

traits are integrated in both form and function when

in situ, and take on greater roles when so integrated.

Fourth, complex traits are affected by many genes

and environmental factors, plus interactions of genes

with genes, environmental factors with other envi-

ronmental factors, and gene-by-environment interac-

tions. Moreover, epigenetic processes can affect many

components of complex traits. ‘‘Epigenetic’’ in

modern parlance generally refers to changes caused

by modification of gene expression rather than alter-

ation of the genetic code itself. Sometimes the defi-

nition is restricted to heritable changes in gene

expression that do not involve changes to the under-

lying DNA sequence, such as may occur by DNA

methylation (Waterland and Garza 1999; Burggren

and Crews 2014; Waterland 2014; Garland et al.

2017) or histone modification (Lennartsson and

Ekwall 2009).

A final point about complex traits is that several

of them may share specific functional components.

This will obviously be true for any of the major

‘‘organ systems,’’ and perhaps especially true for

the endocrine system, given that particular hormones

and hormone receptors often play a role in multiple

behaviors or physiological processes (see below; Cox

et al. 2017; Schwartz and Bronikowski 2017). For

example, repeated evolutionary patterns of duplica-

tion and divergence of genes for steroid hormone

receptors have led to pronounced changes in the en-

docrine control of reproductive morphology, physi-

ology, and behavior (e.g., see Thornton 2001; Baker

2004; Young and Crews 1995; Dean and Thornton

2007; Bridgham et al. 2009). These and other deep

and diverse phylogenetic patterns of endocrine ori-

gins would lead one to expect considerable pleiotro-

pic gene action both among the components of a

given complex trait and across components—and

hence across different complex traits.

Given all of the foregoing characteristics of com-

plex traits, it should be of little surprise that their

evolutionary history is generally complicated and

multifactorial. A good example of this is the evolu-

tion of lactation strategies in pinnipeds, as reviewed

by Schulz and Bowen (2005). They describe (e.g., see

their Figure 4) complex interrelationships of envi-

ronmental factors (e.g., temperature, predation

regime), body size, rates of energy expenditure, fat

storage, and so forth, with many of the behavioral

and physiological aspects under at least partial endo-

crine control, although that point is not mentioned

in the article.

Another example of the multifaceted evolution of

a complex trait involves endothermy. In particular,

the evolution of mammalian (and avian) endothermy

has long been of interest in comparative, ecological,

and evolutionary physiology (Garland and Carter

1994), but so far has escaped much scrutiny from

evolutionary endocrinologists (Alberts and Pickler

2012; Little and Seebacher 2014). Kemp (2006)

views the origin of mammalian endothermy as a par-

adigm for the evolution of complex traits. His

Figure 3 depicts ‘‘interrelationships of the structures

and functions responsible for or affected by endo-

thermic temperature physiology of a mammal,’’

and also acknowledges the role of endocrine regula-

tion. Koteja (2000) presents a model involving

energy assimilation and parental care in the evolu-

tion of endothermy, but does not mention the en-

docrine system. On the other hand, Farmer (2000)

does emphasize the potential importance of thyroid

(and other) hormones in her model for the evolution

of endothermy in relation to parental care. A recent

review also promotes possible roles of the endocrine

system, especially thyroid hormones (Nespolo et al.
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2011), which have been mentioned for decades be-

cause of their role in resting metabolic rate.

In summary, the endocrine system is likely to play

an essential role in the development, ontogeny, ho-

meostatic regulation, and evolution of many, if not

most, complex traits. Although natural and sexual

selection are likely to act above the level of endocrine

function per se, aspects of the endocrine system are

highly likely to get ‘‘dragged along’’ during the evo-

lution of complex traits because they affect so many

parts of the phenotypic hierarchy, from gene expres-

sion and protein synthesis to organismal perfor-

mance and behavior.

The endocrine system

Endocrine communication, by definition, refers to

transfer of information among different tissues or

organs by chemical messengers that are transported

through the blood—i.e., hormones. In addition to

the diffuse collection of endocrine organs and tissues,

and the hormones that they synthesize and secrete,

components of the endocrine system include trans-

port proteins, receptors, and signal transduction

mechanisms (for overviews of the endocrine

system, see Nelson (2011); Kronenberg et al.

(2016); Lazar and Birnbaum (2016)). At the coarsest

level, Shire (1976) recognized an ‘‘endocrine unit’’ as

consisting of a stimulus generator, which provides a

stimulus to an endocrine tissue, whose output is car-

ried by a transport system and then signals target

organs, which may have multiple responses. Thus,

functional changes in the endocrine system, on

both evolutionary and ontogenetic scales, can be me-

diated by changes not only in hormone secretion but

also in many other components.

It is worth noting that the endocrine system is far

less of a ‘‘system’’ than some others, such as the

musculoskeletal or circulatory systems, in that it sub-

serves myriad functions and does not necessarily op-

erate as a coordinated unit. The evolutionary origins

of the vertebrate endocrine system are diverse (e.g.,

see Barrington (1987); Thornton (2001); Dean and

Thornton (2007); Bridgham et al. (2009); Sower et

al. (2009); pages R203-R204 in Storz et al. (2015);

Baker (2015); Schwartz and Bronikowski (2017)),

and the ways it may respond to selection are mani-

fold. Moreover, components of the overall endocrine

system may be involved in a wide array of biological

functions, such as involvement of the insulin and

insulin-like signaling network in cell division and

growth, organismal metabolism, growth and devel-

opment, reproduction, and lifespan (Schwartz and

Bronikowski 2017).

Hormones fall into two major categories, hydro-

philic and hydrophobic, that differ markedly in

many aspects of synthesis, secretion, transport

through the blood, receptors, and inactivation/clear-

ance from the body. Hydrophilic hormones include

peptides and proteins (e.g., insulin, leptin, adiponec-

tin, growth hormone), which make up most of the

hormones in the vertebrate body. Peptide and pro-

tein hormones are produced in endocrine cells via

transcription, translation, and post-translational

modification, packaged in membrane-bound secre-

tory vesicles, and released into the blood by exocy-

tosis. Hydrophilic hormones typically circulate

through the body dissolved in plasma (Nelson

2011; Kronenberg et al. 2016; Lazar and Birnbaum

2016). Because they are lipophobic, hydrophilic hor-

mones are unable to cross plasma membranes. At

target cells (i.e., cells containing specific receptors

for a particular hormone), therefore, these hormones

bind to membrane receptors, thereby activating

signal-transduction pathways within the cell. This

process can have rapid (within seconds) effects on

cellular function through modification of existing

proteins. In addition, signal-transduction cascades

sometimes lead to changes in gene expression, a

much slower process. Hydrophilic hormones are rap-

idly inactivated by peptidases and excreted; thus,

they have short half-lives, on the order of several

minutes. In addition to proteins and peptides, hy-

drophilic hormones include the catecholamines (epi-

nephrine, norepinephrine, and dopamine) (Nelson

2011; Kronenberg et al. 2016; Lazar and Birnbaum

2016).

Hydrophobic hormones include steroids, thyroid

hormones (thyroxine, triiodothyronine), and melato-

nin. Steroids (e.g., estrogen, progesterone, testoster-

one, cortisol, corticosterone, aldosterone) are non-

polar molecules consisting of three 6-carbon rings

and a conjugated 5-carbon ring, synthesized from

cholesterol by tissue-specific biosynthetic enzymes.

Because they are lipid-soluble, steroid hormones dif-

fuse readily across cell membranes and thus are se-

creted by parent cells immediately following

synthesis. As a result of their limited solubility in

plasma, they circulate in the blood bound, in large

part, to carrier proteins, including albumin and hor-

mone-specific carriers (Nelson 2011; Kronenberg et

al. 2016; Lazar and Birnbaum 2016). Although the

functions of these carrier proteins are not fully un-

derstood, they appear to prevent hydrophobic hor-

mones from entering cells, thus maintaining a

reservoir of these hormones in the circulation

(Malisch and Breuner 2010). Only the unbound or

‘‘free’’ fraction is thought to be biologically active.
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Unbound steroid molecules diffuse into all cells.

In target cells, they bind to receptors located in

either the cytoplasm or the nucleus. The hormone-

receptor complex then binds to hormone-response

elements in DNA and acts as a transcription factor,

increasing or decreasing the expression of specific

genes. These effects typically develop more slowly

than those of hydrophilic hormones, requiring up

to several hours, but persist longer. Some steroids

can also act through membrane receptors to exert

rapid, more transient effects on target cells (Gruber

et al. 2002; Sakamoto et al. 2012). Steroid hormones

are typically inactivated in the liver and excreted, and

have half-lives on the order of hours. Thyroid hor-

mones (thyroxine and triiodothyronine) and melato-

nin have mechanisms of transport and action similar

to those of steroids (Kawata 2001).

Hormone secretion is regulated by neural inputs,

other hormones, or specific physiological stimuli,

and often involves negative feedback loops

(Melmed et al. 2016). Insulin, for example, is se-

creted by the pancreas in response to high blood

glucose concentrations and, correspondingly, acts

on various tissues to lower blood glucose levels,

thereby reducing its own secretion. As another ex-

ample, adrenocorticotropic hormone (ACTH), a pro-

tein from the anterior pituitary, stimulates release of

glucocorticoid hormones (cortisol and/or corticoste-

rone, depending on the species) from the adrenal

cortex. In turn, high concentrations of glucocorti-

coids feed back to the anterior pituitary to decrease

secretion of ACTH. Simultaneously, ACTH secretion

is stimulated by neuropeptides from the brain, cor-

ticotropin-releasing hormone and vasopressin. Thus,

control of hormone release is often multifactorial.

Expression of receptors, too, is dynamically regulated

by such factors as concentrations of their ligands or

of other hormones. Additionally, levels of many hor-

mones, receptors, and even binding proteins may

fluctuate systematically over both circadian and

ultradian cycles (Malisch et al. 2008; Giguere et al.

2011; Nicolaides et al. 2014).

Interactions between hormones and
behavior

Hormones can influence behavior through a multi-

tude of actions on sensory systems, integrative pro-

cesses in the central nervous system, motor output

systems, and other peripheral organs and structures

(for reviews, see Pfaff et al. (2004); Nelson (2011)).

In many cases, a particular hormone exerts comple-

mentary effects on both central and peripheral com-

ponents of a specific behavior—in other words, both

the motivation and the ability to perform the behav-

ior—and these effects can be acute and/or chronic

(Nelson 2011). In female mammals, for example, the

protein hormone prolactin, secreted by the anterior

pituitary, both enhances the neural motivation to

engage in maternal behavior and stimulates milk

production in the mammary glands (Grattan 2002).

As another example, testosterone, a steroid hormone

secreted by the testes, acts both centrally to promote

aggressiveness and libido and peripherally to develop

and maintain weaponry and ornamentation (e.g.,

antlers, plumage coloration) used in inter-male com-

petition and female courtship (Setchell et al. 2008;

Nelson 2011; Pasch et al. 2011). This duality of func-

tion has evolved subject to the screening process of

natural selection, and can be viewed as a possible

example of genetic architecture and gene regulatory

networks (acting through gene expression and down-

stream effects on phenotypes) evolving to match the

prevailing selection regime (Pavličev and Cheverud

2015).

For some behaviors, endocrine regulation requires

two or more hormones acting in concert. For exam-

ple, estrogen and progesterone interact to stimulate

the expression of sexual behavior in female rodents

(Blaustein 2008); in male rodents, rhythmic diurnal

changes of progesterone synergize with testosterone

to facilitate sexual behavior (Witt et al. 1994; Phelps

et al. 1998; Woolley et al. 2006). In some reptiles and

amphibians, progesterone and testosterone synergize

to promote aggression (Woolley et al. 2004; Crews

and Moore 2005), whereas in other species these

same hormones promote sexual behavior in males

(Lindzey and Crews 1992; Lindzey and Crews

1993). As another example, regulation of appetite

and food intake is coordinated by a large suite of

hormones from the brain (e.g., corticotropin-releas-

ing hormone), gastrointestinal tract (e.g., ghrelin,

cholecystokinin), pancreas (e.g., insulin), adipocytes

(e.g., leptin), and adrenal cortex (corticosterone or

cortisol), in addition to other endocrine, neural and

metabolic signals (Pfaff et al. 2004; Berthoud 2007;

see also Alberts and Pickler (2012)).

Importantly, hormones can act at different

life stages to influence behavioral phenotypes.

According to the classic organizational-activational

hypothesis (Phoenix et al. 1959), the expression of

sexually dimorphic behaviors—including sexual, pa-

rental, and aggressive behaviors, among others—de-

pends, first, on exposure to (in males) or absence of

(in females) gonadal steroids (especially testosterone)

at specific ‘‘sensitive periods’’ during prenatal or

early postnatal development. These early-life effects

more or less permanently ‘‘organize’’ the neural

Hormones, behavior, motivation, ability 211
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substrates of the behavior. Beginning at puberty, sub-

sequent exposure to testicular or ovarian steroid hor-

mones transiently ‘‘activates’’ the expression of

the behavior (Phoenix et al. 1959; Arnold 2009).

Organizational and activational effects on the brain

can involve changes in numbers, morphology, size,

and electrophysiological properties of neurons, as

well as effects on synthesis of neurotransmitters

and neuropeptides, or expression of receptors for

these neurocrines or hormones (Nelson 2011).

Since its original formulation in 1959 (Phoenix et

al. 1959), the organizational-activational hypothesis

has been refined in important ways. First, not all

sex differences in behavior are organized by sex dif-

ferences in early exposure to gonadal hormones;

rather, some behavioral sex differences result from

direct effects of genes on the sex chromosomes,

from epigenetic effects, or from exposure to hor-

mones other than gonadal steroids (Arnold 2009;

McCarthy and Arnold 2011). Second, organizational

effects may be less permanent than initially thought.

Third, in at least some vertebrate taxa, organizational

and activational effects on the male brain are not

mediated directly by testosterone but rather by estro-

gen, which is synthesized in neurons either de novo

or via aromatization of testosterone (Sodersten

2015). Fourth, hormonal determinants of organiza-

tion and activation can differ both among and within

species (Crews and Moore 2005; Adkins-Regan

2012). Finally, in addition to the classic dichotomous

effects of steroids in early development and adult-

hood, it is now becoming clear that steroids can

act during puberty to exert long-term effects on

the brain and behavior (Juraska et al. 2013).

A crucial point is that hormones do not directly

‘‘cause’’ behavior in the sense of having a determin-

istic effect. Instead, hormones interact with other

neural and physiological systems to influence the

likelihood that particular behaviors will be expressed

under certain conditions (Pfaff et al. 2004; Nelson

2011). Testosterone promotes libido in many species,

for example, but high circulating concentrations of

testosterone do not ensure that males will engage in

sexual behavior. Instead, they increase the probability

that a male will seek, court, and mate with females

under conditions of appropriate organismal (e.g.,

low stress) and environmental (e.g., presence of an

attractive female, absence of a dominant male) con-

ditions (Nelson 2011).

Interactions between hormones and behavior can

be bi-directional (Fig. 1). Returning to the examples

above, not only does prolactin enhance the expres-

sion of parental behaviors in birds and mammals,

but its secretion can also be increased by engagement

in these behaviors and the resulting exposure to

stimuli from the young (e.g., Lea et al. 1986). In a

similar fashion, testosterone promotes aggressive be-

havior in males, whereas engagement in competitive

or aggressive interactions can feed back to increase

secretion of testosterone (Wingfield et al. 1990).

Other examples involve negative feedback loops be-

tween hormones and behavior. For instance, high

levels of leptin, a peptide hormone secreted by adi-

pocytes, suppress appetite, leading (in theory, at

least) to a reduction in food intake and, ultimately,

to a decrease in leptin secretion (Zhang and Scarpace

2006; Meek et al. 2012; Balland and Cowley 2015,

references therein). In general, effects of behavior

on endocrine function can be mediated by numerous

mechanisms, including behaviorally induced changes

in metabolism, energetics, sensory input, cognition,

and mood, among others.

Finally, hormonal influences on behavior may be

dose- and time-dependent, and relationships between

hormone levels and behavior may not be linear.

Across several vertebrate taxa, for example, acute el-

evations of glucocorticoid hormones have permissive

or stimulatory effects on aggressiveness, whereas

chronic glucocorticoid elevations inhibit aggression

(Summers et al. 2005). In humans, excessively high

concentrations of thyroid hormones can lead to ner-

vousness, irritability, and insomnia, whereas unusu-

ally low concentrations of the same hormones may

contribute to depression and cognitive impairments

(Pfaff et al. 2004). Effects of hormones on behavior,

and vice versa, can also differ among species and

between the sexes, can change with age, and can

vary among individuals with different experiential

or genetic backgrounds (Pfaff et al. 2004). Among

biparental rodents, for example, testosterone inhibits

the expression of paternal care by fathers in some

species but enhances paternal care in others (Bales

and Saltzman 2016).

Fig. 1 Interactions between hormones and behavior can be bi-

directional (see text). For example, testosterone activates both

sexual and aggressive behavior in males, whereas engagement in

sexual or aggressive interactions can feed back to increase se-

cretion of testosterone.
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Selection on behavior

Behavior can be defined as what an organism does in

any given situation: it is caused by motivation, but

limited by ability. Most biologists who work with

animals accept the general premise that selection in

nature usually acts more directly on behavior than

on the subordinate traits that affect behavior and

determine performance abilities (e.g., see Fig. 1 in

Garland and Kelly (2006), Fig. 1 in Careau and

Garland (2012), Fig. 1 in Storz et al. (2015)).

Behavior differs from morphology in that it is

highly labile from moment to moment and day to

day. The repeatability (consistency from day to day

or over other time intervals (Boake 1989)) of behav-

ior is often relatively low, which reduces both the

intensity of selection acting on behavior (behavior

is a ‘‘moving target’’) and its narrow-sense heritabil-

ity (Fig. 2). A reduced selection intensity and/or

narrow-sense heritability (Stirling et al. 2002) will

lower the possible rate of adaptive evolution for be-

havioral traits as compared with morphological

traits. Of course, the same points could be made

for circulating levels of many hormones (Cox et al.

2017).

Nonetheless, behavior evolves a lot and quickly,

and it is often viewed as a ‘‘driver’’ of evolutionary

change (Sol et al. 2005; but see Huey et al. (2003)),

which can be termed the ‘‘Behavior Evolves First’’

hypothesis (Mayr 1960; Blomberg et al. 2003;

Rhodes and Kawecki 2009), or at least being at the

leading edge of phenotypic evolution. Darwin (1859),

for example, stated that ‘‘. . . the acutest observer by

examining the dead body of the water-ouzel would

never have suspected its sub-aquatic habits. . . . In

such cases, and many others could be given, habits

have changed without a corresponding change of

structure.’’ In any case, behavior can and does

evolve rapidly, as illustrated by substantial differences

among the songs of closely related species of spar-

rows (Nowicki et al. 2001) or among behavior of dog

breeds (Draper 1995; Careau et al. 2010).

Many studies have bred rodents and other verte-

brates for particular aspects of behavior (e.g., see

Supplementary Table S1). For example, various live-

stock breeds have been bred for behavioral traits re-

lated to production farming (e.g., see Nicol (2015)

on chickens). Rodents, especially laboratory house

mice and laboratory Norway rats, have been

common subjects of selection experiments under

controlled laboratory conditions (Hyde 1981;

Rhodes and Kawecki 2009; Swallow et al. 2009).

House mice have been bred for a wide range of be-

havioral traits, including open-field behavior

(DeFries et al. 1978; Flint et al. 2004; Henderson et

al. 2004), thermoregulatory nesting (Lynch 1980,

1994; Bult and Lynch 2000), female agonistic behav-

ior (from a wild-derived starting population: Ebert

and Hyde (1976); Hyde and Ebert (1976); Hyde and

Sawyer (1979); Hyde and Sawyer (1980)), maternal

defense (Gammie et al. 2006), voluntary wheel run-

ning (Swallow et al. 1998; Rhodes and Kawecki 2009;

Swallow et al. 2009), and home-cage activity

(Zombeck et al. 2011; Majdak et al. 2014).

Some interesting examples from an endocrine per-

spective involve experimental domestication of mul-

tiple species of mammals (foxes, river otters, mink,

rats) in Siberia, begun in 1959 by Belyaev. In these

studies, selection for ‘‘tameness’’ was viewed as a first

step. The response to selection in the foxes involved

many correlated responses, including some at the

endocrine level (Belyaev 1979; Trut 1999; Bidau

and D’Elı́a 2009; Kukekova et al. 2012). In pups

from the unselected population, at 45 days of age

the fearful response to humans appears, exploratory

behavior of a new environment decreases, and there

is a sharp increase in glucocorticoid content in the

peripheral blood. In pups from the domesticated

line, at 45 days of age the fearful response does not

appear, exploratory activity is not diminished, and

Fig. 2 Illustration of how low repeatability of behavior will

reduce its narrow-sense heritability (ratio of additive genetic

variance to total phenotypic variance in a population). On the left

are hypothetical values for a behavioral trait for the average of

the two parents and the average of their offspring (presuming

that sex differences either do not exist for the trait in question

or that they have been removed statistically). In this case, the

estimate of the narrow-sense heritability is the slope of the least-

squares linear regression (assuming no non-genetic parental ef-

fects and no shared-environmental effects). On the right, random

noise has been added to the X and Y values for each of the 10

families, which results in a lowering of the strength of the rela-

tionship and hence a lower slope. A reduced tendency for a trait

to ‘‘run in families’’ because of low repeatability (caused by high

liability of the trait and/or high measurement error per se) will

reduce the rate of response to directional selection, whether

natural, sexual or artificial.
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glucocorticoid content is not increased (Trut et al.

2004).

Domestication of rats started with 233 wild-caught

Rattus norvegicus. They were tested for reaction to a

human hand’s approach in their cage. The 30% that

were least aggressive were bred to form a ‘‘tame’’

line, while the 30% most aggressive were bred to

form an ‘‘aggressive’’ line. No non-selected control

line was maintained, so in subsequent papers regard-

ing correlated responses it is not always easy to dis-

cern which line(s) changed. In addition, no replicate

selection lines were used, so random genetic factors

could account for some of the correlated responses

(Henderson 1989; Henderson 1997; Koch and

Britton 2005; Majdak et al. 2014; Sadowska et al.

2015).

Although the rats’ responses to humans changed

dramatically, conspecific aggression did not change.

Several endocrine responses were observed, based on

comparison of the two lines (Albert et al. 2008, and

references cited therein). Serum testosterone in fe-

males was higher in the tame than in the aggressive

line, although the authors downplay this result.

Serum corticosterone and fecal metabolites of corti-

costerone were lower in the tame line, which was

less reactive to restraint, pain, and injections of

noradrenaline and serotonin, and had smaller adre-

nal glands. Brain size was larger in the tame line

and brain taurine concentrations were higher,

but brain serotonin and GABA concentrations were

lower.

Artificial selection on endocrine function

As argued elsewhere, selection experiments can be a

powerful approach for demonstrating mechanisms of

behavioral or organismal-level evolution (Shire 1976;

Garland 2003; Storz et al. 2015). Suppose that selec-

tion is applied to a behavioral trait, that it responds

across generations, and that one or more lower-level

traits are observed to change as a correlated re-

sponse, consistently in replicated selection lines.

One could then hypothesize that the lower-level

trait (e.g., a change in the circulating levels of a par-

ticular hormone) was causally related to the change

in behavior. This hypothesis could be tested with

another selection experiment, directly targeting the

hormone concentrations.

To our knowledge, this research approach has not

yet been undertaken with any vertebrate. However,

some studies have directly targeted behaviorally rel-

evant lower-level endocrine traits. For example, lab-

oratory mice were bidirectionally selected for iodine

release rate, determined by in vivo thyroid radiation

counts on the second, third, and fourth days after an

injection of 5 uc I131 in adult mice (Blizard and Chai

1972). All else being equal (e.g., no variation in hor-

mone receptor densities), a higher release rate is

presumed to represent greater thyroid activity.

A number of behavioral or behavior-relevant corre-

lated responses were observed. Specifically, the low-

release-rate line (¼ relatively hypothyroid) had

increased defecation in an open-field test, had in-

creased activity (and decreased latency to move) in

the open field on only the first day, learned more

quickly in a water-maze test, showed no difference in

body, pituitary or testes mass, but had smaller adre-

nal glands and larger brains. Unfortunately, this se-

lection experiment (like many others with rodents)

included no control line and no replication, so it is

not always clear which line(s) changed in response to

selection.

More recently, replicate lines of zebra finches were

bred for high or low corticosterone responsiveness to

a mild stressor (20 min holding in a cloth bag), while

two non-selected control lines were also maintained

(Evans et al. 2006). After five generations of selec-

tion, an asymmetry in response was observed, with

the high-selected lines evolving as would be expected

but the low-selected lines apparently not diverging

significantly from the control lines. Although circu-

lating corticosterone concentrations differed two- to

three-fold between high- and low-selected lines, no

statistically significant differences were observed for

circulating testosterone levels in adult males.

Moreover, no consistent, significant differences

were found for any of the life-history traits studied.

A subsequent report of generations 4-5 indicated an

increase in body size for birds in the low-corticoste-

rone lines, but little effect on male sexual signal qual-

ity or dominance ranking, and no simple

relationship with measures of immune function

(Roberts et al. 2007).

With the wide availability of ELISAs for various

hormones, we see excellent prospects for additional

studies that selectively breed for endocrine function

and then study correlated responses in behavior, life

history, etc.

Selective breeding for wheel running

As emphasized elsewhere (Henderson 1989;

Henderson 1997; Garland and Rose 2009; Rhodes

and Kawecki 2009; Kawecki et al. 2012), replication

and control lines are crucial for strong inference with

selection experiments. Therefore, the selection exper-

iment that our laboratory began in 1993 includes

four replicate lines bred for high levels of voluntary
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wheel-running behavior (High Runner [HR] lines)

and four non-selected control lines (Garland 2003;

Swallow et al. 2009). (It does not include any lines

selected for low wheel running: we did not intention-

ally create ‘‘couch potatoes.’’) The starting (base)

population was 112 male and 112 female mice of

the outbred Hsd:ICR strain (Swallow et al. 1998).

This strain exhibits levels of genetic variation similar

to populations of wild house mice and to human

populations, and has been used in other selection

experiments and several quantitative-genetic analyses

of various traits (e.g., Dohm et al. (2001)).

The selection criterion is the total number of rev-

olutions run on days 5 and 6 of a 6-day period of

wheel access when mice are young adults. We chose

to select after a few days of familiarization with

the wheels, which are attached to standard hous-

ing cages, to avoid selecting on neophobia

(Kronenberger and Medioni 1985). Wheels are

large (1.12 m in circumference, the size typically

used for rats), reflecting an experimental design

choice that anticipated possible future studies of

wheel running in other species of rodents

(Dewsbury 1980; Chappell and Dlugosz 2009).

Further details of the selection protocols are pro-

vided elsewhere (Swallow et al. 1998; Garland 2003;

Swallow et al. 2009; Careau et al. 2013).

At the outset, we had some very general hypoth-

eses and predictions (see also Rhodes et al. (2005)).

First, we expected that selective breeding for high

voluntary wheel running would lead to changes in

both motivation and ability. Hence, subordinate

(lower-level) traits that evolved would involve both

neurobiology and exercise physiology. This crudely

separates into brain vs. body, so we expected that

the structural genes that directly affect motivation

vs. ability would be largely different. However, we

also presumed that upstream regulatory control of

gene expression could share some pathways.

Moreover, certain mechanisms ‘‘used’’ by selection

mainly because they affect motivation or ability (e.g.,

changes in circulating levels of, or receptors for, a

particular hormone) might affect numerous other

traits, within or between these domains, leading to

numerous correlated responses, some of which might

be only tangentially related to wheel running. Some

of the lower-level traits that evolved might even be

somewhat detrimental to aspects of wheel running,

other behaviors or reproduction.

In other words, within the general domains of

motivation or ability, many of the genes whose fre-

quencies change would likely have pleiotropic effects

on other aspects of behavior or physiology. These

effects might or might not be predictable. Although

we do know a lot about ‘‘how organisms work,’’ the

pathways from genes to even lower-level traits (the

so-called genotype-phenotype map) are not well

understood.

In addition to those general hypotheses, we also

predicted changes in a number of exercise-related

traits in the HR lines, including increases in endur-

ance capacity, maximal oxygen consumption, blood

hemoglobin concentration (or hematocrit), relative

heart size, and changes in muscle characteristics. As

outlined below, most of these predictions have

turned out to be accurate.

Mice in the high-selected lines diverged rapidly

from controls (Swallow et al. 1998) and reached ap-

parent selection limits at generations 16–28, depend-

ing on sex and line (Careau et al. 2013). The gradual

increase in running behavior over many generations

is consistent with polygenic inheritance, as would be

expected for such a high-level, complex trait.

Running on days 1–4 has also increased in the HR

lines, with some important changes in the additive-

genetic variance-covariance matrix for running

across the days (Careau et al. 2015). (An analysis

of an advanced intercross population involving one

of the four HR lines demonstrated some separate

quantitative trait loci affecting days 1–4 versus 5–6

(Kelly et al. 2011).) Interestingly, the increase in dis-

tance run was caused mainly by an increase in aver-

age running speed, although males also show an

increase in running duration (Garland et al. 2011a).

Although the HR lines evolved to be smaller in body

size and to have reduced body fat (Girard et al.

2007), differences in life-history traits (weaning suc-

cess, litter size, total litter mass, mean offspring mass,

sex ratio at weaning) had not evolved as of genera-

tions 21–22 (Girard et al. 2002).

As of the current generation (76), various aspects

of exercise physiology and morphology have changed

in the HR lines, including increases in endurance

capacity (Meek et al. 2009), maximal oxygen con-

sumption (Dlugosz et al. 2009; Kolb et al. 2010),

heart size (Kolb et al. 2010), size of femoral head

and hindlimb symmetry (Garland and Freeman

2005), along with reductions in muscle mass

(Garland et al. 2002; Kelly et al. 2013) and alterations

in muscle fiber type (Bilodeau et al. 2009). In addi-

tion to an increased ability for aerobically supported

exercise, mice from the HR lines have alterations in

the brain reward system that presumably indicate

higher motivation for wheel running (Rhodes et al.

2005; Belke and Garland 2007; Rhodes and Kawecki

2009; Keeney et al. 2012). Moreover, the HR lines

exhibit some evidence of being addicted to wheel

running (Kolb et al. 2013).
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Although the HR lines have evolved to be smaller

in both body mass and length under most conditions

(Swallow et al. 1999; Kelly et al. 2006; Copes et al.

2015), it is not entirely clear if this would be bene-

ficial for sustained, endurance-type exercise. A simi-

lar question concerns their generally reduced body

fat (Swallow et al. 2001; Girard et al. 2007;

Nehrenberg et al. 2009; but see Vaanholt et al.

(2007b); Meek et al. (2014); Acosta et al. (2015)).

Studies of circulating hormones (next section) indi-

cate that two produced by white adipose tissue (adi-

ponectin, leptin) show altered concentrations in the

HR mice, even after adjusting statistically for body

fat.

The HR lines show evidence of increased adaptive

plasticity for some traits (Houle-Leroy et al. 2000;

Garland and Kelly 2006; Kelly et al. 2006;

Middleton et al. 2008). Perhaps most dramatically,

HR and C mice did not differ significantly in gas-

trocnemius GLUT-4 transporter protein abundance

when housed without wheels, but after five days of

wheel access HR mice had 2.4-fold more GLUT-4

than C mice (Gomes et al. 2009). This difference

was not a simple linear function of the amount of

wheel running on the previous day, which is much

higher in HR mice. Therefore, this is arguably a case

of the evolution of increased ‘‘self-induced adaptive

plasticity’’ in the HR lines (Swallow et al. 2005).

Endocrine studies of the HR mice

The potential bidirectional relationships (Fig. 1) be-

tween endocrine function and exercise behavior are

manifold (e.g., Radosevich et al. 1988; Coleman et al.

1998; Girard and Garland 2002; Droste et al. 2007;

Sinclair et al. 2014). Accordingly, a number of stud-

ies have addressed aspects of endocrine differences

between HR and control mice, with the vast majority

considering circulating hormone concentrations (adi-

ponectin, corticosterone, IGF-1, insulin, leptin, tes-

tosterone, thyroxine, triiodothyronine). A few studies

have reported masses of endocrine organs (adrenal

glands, ovaries, testes: Klomberg et al. 2002; Swallow

et al. 2005; Malisch et al. 2007). In total, these stud-

ies are far from providing a complete picture of en-

docrine evolution in the HR lines, in part because

they have mostly included only one sex, age, gener-

ation, and housing condition (e.g., with or without

wheels). The following paragraphs highlight some of

the findings. A few studies with collaborators in the

Netherlands have, due to logistical constraints, in-

cluded only a subset of the HR and control lines,

and these will not be considered here (Vaanholt et

al. 2007a; Vaanholt et al. 2008; Guidotti et al. 2016).

Mice from the HR lines have higher baseline adi-

ponectin levels, even after accounting statistically

for their lower body fat (Vaanholt et al. 2007b).

Adiponectin is a protein hormone produced by ad-

ipose tissue and is the most abundant adipokine in

the circulation that can access the brain. It has many

functions, with more being discovered on a regular

basis (Stofkova 2009; Galic et al. 2010). Adiponectin

is involved in energy balance, glucose regulation, li-

polysis, and some aspects of the brain reward system.

In general, it is viewed as having a positive role in

metabolic health, working against the metabolic syn-

drome and type 2 diabetes. Circulating concentra-

tions of adiponectin are also known to respond to

physical exercise (Saunders et al. 2012). Therefore, it

seems possible that this hormone is involved in both

motivation and ability of the HR mice.

Baseline plasma corticosterone concentrations are

elevated approximately two-fold in HR mice of both

sexes (Malisch et al. 2007). We have found no

differences in the circadian pattern of blood cortico-

sterone concentrations nor in levels of corticosterone-

binding globulin, and so we believe that the higher

corticosterone levels likely have functional significance

(Malisch et al. 2008). Glucocorticoids are not just

‘‘stress hormones’’ in the conventional sense. They

are generally involved in energy mobilization during

exercise, may stimulate physical activity (Sibold et al.

2011; Malisch et al. in revision; references therein),

and may interact with the brain’s reward system.

Various studies of multiple species of mammals, in-

cluding the HR mice, show that circulating cortico-

sterone levels respond to physical exercise, both

acutely and chronically (Coleman et al. 1998; Girard

and Garland 2002; Droste et al. 2007). As with adi-

ponectin, it seems that this hormone may be involved

with both motivation and ability of the HR mice.

Although one can make a case that elevated cor-

ticosterone levels have evolved adaptively in the HR

lines, we have also considered the possibility that

they could be a nonadaptive or even maladaptive

byproduct of changes in the brain (e.g., the hypo-

thalamus: Malisch et al. 2007). Elevated glucocorti-

coids can reduce growth rates in mammals, and we

have found correlational evidence that this may have

occurred in the HR mice. Specifically, mean baseline

corticosterone levels for each sex are negatively re-

lated to body mass across the eight lines (Malisch

et al. 2007). In addition, at the level of individual

variation, growth over days 26–55 of age was nega-

tively related to mean nighttime corticosterone levels

in females from both HR and control lines (Girard

and Garland 2002). Most recently, we have found

that adding corticosterone hemisuccinate to drinking
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water confirms the negative effects on growth rates

from weaning to adulthood in males of both HR and

control lines (J. S. Singleton and T. Garland, unpub-

lished results).

Much as glucocorticoids have been pigeon-holed

as ‘‘stress hormones,’’ leptin has perhaps been over-

emphasized as the ‘‘obesity hormone.’’ In fact, the

endocrine effects of leptin in both peripheral tissues

and the central nervous system are manifold (e.g.,

Zhang and Scarpace 2006; Stofkova 2009; Galic et

al. 2010; Balland and Cowley 2015; Houweling et

al. 2015) and should be viewed from a broader per-

spective. Relatively few studies have examined lep-

tin’s effect on voluntary exercise (e.g., Choi et al.

2008; Morton et al. 2010; Meek et al. 2012;

Fernandes et al. 2015); however, given its pervasive

effects, it is safe to presume that leptin may influence

both motivation and ability for voluntary exercise.

Consistent with their usually lower amounts of

body fat, young adult female HR mice have lower

baseline circulating leptin levels than do mice from

the control lines. This difference is statistically signif-

icant even when using body fat as a covariate in the

statistical model (Girard et al. 2007). However, not

all studies have found reduced leptin levels in HR

mice (Vaanholt et al. 2007b), and one report indi-

cates dramatically different effects of early-life wheel

access on adult leptin levels in the HR (decreased)

and their control (increased) lines (Acosta et al.

2015).

The Mouse Phenome Database (MPD; Jackson

Labs) provides a wealth of tools for exploring both

phenotypic and genetic associations of traits in

laboratory strains of house mice (Bult 2012), which

now include some wild-derived strains of other spe-

cies. Perusal of this data base will make clear that

mouse strains show tremendous diversity in many

aspects of behavior and endocrine function (e.g.,

see Spearow et al. (1999); Svenson et al. (2007); Li

et al. (2008); Miller et al. (2010)). We searched the

MPD for information on wheel running and hor-

mone levels for inbred strains. Among 35 inbred

strains of mice, mean daily wheel-running distance

is negatively related to circulating leptin levels

(Svenson et al. 2007) in females (Fig. 3) but not in

males (data not shown). The relationship is statisti-

cally significant for ranked values. Further support

for a negative relationship between circulating

leptin levels and physical activity is provided by var-

ious studies of humans (e.g., Franks et al. 2003;

Holtkamp et al. 2003: see also Girard et al.

(2007)). An important area for future research will

be determining whether maternal variation in circu-

lating hormone levels is affecting adult phenotypes of

their offspring, possibly in a way that contributes to

the selection limits observed in all four of the HR

lines (Careau et al. 2013; Careau et al. 2015; Garland

et al. 2017).

Conclusions and future directions

As demonstrated by the examples cited above, com-

plex traits, such as most behaviors, evolve in com-

plicated ways. Artificial selection on vertebrate

behavior commonly results in correlated endocrine

responses. However, few studies have demonstrated

Fig. 3 Among 35 inbred strains of mice, mean daily wheel-running distance is negatively related to circulating leptin levels in females,

but not for males (values not shown). The relationship is statistically significant for ranked values. Data are from the Mouse Phenome

Database at The Jackson Laboratory (http://phenome.jax.org/). Values for wheel running are from Lightfoot (http://phenome.jax.org/db/

q?rtn¼projects/details&sym¼Lightfoot1), whereas leptin levels are from Naggert (http://phenome.jax.org/db/qp?rtn¼views/measplot&

brieflook¼14306&projhint¼Naggert1).
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that the endocrine changes are causally related to the

evolutionary changes in behavior. Subsequent studies

selecting on endocrine function might provide com-

pelling evidence for causality (Garland 2003), but

this has yet to be attempted. Nevertheless, the endo-

crine system includes so many ‘‘moving parts’’ (e.g.,

see Shire (1976); Young and Crews (1995)) that it

may often respond in diverse ways to selection at the

level of behavior: ‘‘multiple solutions’’ (Turner et al.

2010; Losos 2011; Garland et al. 2011a) seem likely

to be the rule, rather than the exception.

Endocrine-level correlated responses to selection

on behavior may occur for several reasons. First,

they may represent mechanisms underlying behav-

ioral change at the levels of motivation and/or abil-

ity. In this capacity, these effects could occur early in

life (i.e., organizational effects), possibly through epi-

genetic mechanisms, and/or later in life (activational

effects). More generally, hormones have the potential

to mediate suites of traits that either facilitate or

constrain adaptation (or responses to sexual selec-

tion), depending on the details of multivariate selec-

tion acting on those traits (McGlothlin and

Ketterson 2008; Pavličev and Cheverud 2015; see

also Garland (1994)).

Second, endocrine responses to selection on be-

havior may represent ontogenetic or immediate ef-

fects of the altered behavior, such as acute changes in

circulating corticosterone levels in response to phys-

ical activity or longer-term changes resulting from

exercise training over many days or weeks (e.g.,

Droste et al. 2007). As an example of the former,

HR mice have higher corticosterone levels compared

to control mice during the scotophase, as an acute

response to their increased running (Girard and

Garland 2002). (The HR mice also have higher base-

line circulating corticosterone levels than controls

when sampled at rest, during the day (Malisch et

al. 2007).)

Third, pleiotropic gene action (reflecting func-

tional relationships) is expected to be pervasive for

many aspects of the endocrine system, such that var-

ious components may get ‘‘dragged along’’ by selec-

tion on higher-level traits. As a consequence, some of

the endocrine changes that are observed in response

to selection on a particular behavior (e.g., voluntary

wheel running) might be nonadaptive or even mal-

adaptive ‘‘byproducts’’ of selection on the target

behavior.

Although the approach of selection experiments

and experimental evolution (Garland and Rose

2009) is an excellent way to study the consequences

of selection on behavior (Garland 2003; Rhodes and

Kawecki 2009), establishing causal evolutionary

relationships between hormones and behavior re-

mains a difficult undertaking. Nonetheless, the endo-

crine system is well positioned to mediate

coordinated changes in multiple levels of subordinate

traits underlying behavior, given the pervasive effects

of hormones on sensory systems, integrative systems,

motor systems, and effectors. In many cases, these

effects should be general enough as to apply to ver-

tebrates in the wild, not just the animals and condi-

tions typically used for selection experiments (e.g.,

see Supplementary Table S1).
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