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EARTHQUAKE SLIP DISTRIBUTION� A STATISTICAL

MODEL

Yan Y� Kagan�

� Department of Earth and Space Sciences� University of California� Los Angeles� California� USA

Abstract� The purpose of this paper is to interpret slip statistics in a framework of
extended earthquake sources	 We �rst discuss the deformation pattern of the Earth
s sur�
face from earthquakes and suggest that the continuum versus block motion controversy
can be reconciled by the model of a fractal distribution of seismic sources	 We consider
earthquake slip statistical distributions as they can be inferred from seismic moment�
frequency relations and geometrical scaling for earthquakes	 Using various assumptions
on temporal earthquake occurrence� these distributions are synthesized to evaluate the
accuracy of geologic fault slip determinations and to estimate uncertainties in long�term
earthquake patterns based on paleoseismic data	 Because the seismic moment distribu�
tion is a power�law �Pareto
� a major part of the total seismic moment is released by
major earthquakes� M � ������ Nm �moment magnitude m � �
� for these large earth�
quakes the rupture is con�ned to the upper brittle layer of the crust	 We review the var�
ious moment�frequency and earthquake scaling relationships and apply them to infer the
slip distribution at area� and site�speci�c regions	 Simulating the seismic moment and
strain accumulation process demonstrates that some synthetics can be interpreted as ex�
amples of a quasi�periodic sequence	 We demonstrate the application of the derived slip
statistical relations by analyzing the slip distribution and history of the San Andreas fault
at Wrightwood� CA	
Index terms� Seismology �ESE
� ���� Earthquake parameters� ���� Seismicity and

seismotectonics� ���� Paleoseismology
Keywords� Seismic moment distribution� Earthquake slip� Spatial earthquake scal�

ing� Fractal earthquake distribution� Power�law �Pareto
 distributions of earthquake pa�
rameters

�� Introduction

This paper is meant to be the �rst in a series that will de�
scribe statistically deformation of the Earth�s surface from
earthquakes� When completed the statistical model can be
compared with results of detailed GPS �Jackson et al�� �		
�
Sagiya� �

�� and InSAR measurements� This task cannot
be undertaken now because needed theoretical tools are still
unavailable and observational results are not su�cient for
extensive statistical analysis� However� we discuss below
�especially in the Discussion section� what statistical meth�
ods should be developed and what measurements attempted
to enable construction of a complex� comprehensive model�

We have a much more modest aim here� to present a
statistical model of slip distributions due to earthquakes�
Slip measurements are being carried out at particular points
along faults in California �Sieh et al�� �	�	� Yeats et al��
�		
� Rockwell et al�� �


� Weldon et al�� �

�� Rockwell
et al�� �

�� Scharer et al�� �

�� Liu et al�� �

�� and in
other places� Histories of vertical displacements have been
investigated in coral reefs �Natawidjaja et al�� �

�� and in
uplifts of marine��uvial terraces along many Paci�c sub�
duction zones� These observations can be compared to the
theoretical derivations of this paper to evaluate the statis�
tical properties of these time series� Here we try to create
only the methodological tools for such an exercise� the few
applications of the statistical analysis discussed below are
meant only as illustrations� A full statistical analysis of

Copyright ���� by the American Geophysical Union�
����	���
�����
���

these data would need cooperation between several Earth
science specialties�

To create the statistical model for earthquake slip dis�
tribution� we consider three interrelated problems� earth�
quake size distribution� scaling of geometric parameters with
earthquake size� and the temporal behavior of seismicity� es�
pecially in the largest earthquakes� These problems need to
be solved to estimate the accumulation and release of strain
by earthquakes in plate boundary zones and zones of dis�
tributed deformation� Until recently� studies of earthquake
statistical distributions presented earthquakes as points in
space and time� Even in those cases where the extent of rup�
ture has been investigated� it was done by studying the data
for individual earthquakes� Here we combine known earth�
quake distributions to present a geometrical and statistical
picture of deformation at certain points along seismogenic
fault�

Most tectonic strain is released by the largest earth�
quakes �Brune� �	��� Kagan� �

�a�� There is little un�
certainty about the size distribution for small and mod�
erate earthquakes� they follow the Gutenberg�Richter �G�
R� relation� A similar conclusion is valid for moderate and
large earthquakes distributed over large seismogenic regions
�Utsu� �			�� Kagan ��			� �

�a�b� and Bird and Kagan
��

�� argue that earthquake size distribution has a univer�
sal b�value� An upper bound or maximum magnitude needs
to be introduced for earthquake size distributions �Kagan�
�

�a�b�� We review several distributions in which this limit
is applied and consider its in�uence on estimating rate of
seismic deformation and slip�

Despite extensive investigations and an extended debate
�see� for example� Scholz ��		
� �		��� Romanowicz ��		���
Abercrombie ��		��� Main ��


�� Romanowicz and Ru�

�
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�������� no consensus exists on scaling relationships between
earthquake seismic moment and geometric variables such as
the rupture length� width� and average slip� Therefore� we
will explore di�erent scaling relations� What are their im	
plications for statistical distributions of slip


The G	R relation for magnitudes is equivalent to the
power	law �Pareto� distribution for the seismic moment
�Utsu� �


� Kagan� ����a�b�� This implies that the geom	
etry of earthquake rupture is also controlled by power	law
distributions� Depending on the value of the exponent� sums
of power	law variables may not converge to any �nite value
�Zaliapin et al�� ����� or may be highly �uctuating�

If a maximum size in a power	law earthquake size distri	
bution is present� the sum distribution and its random �uc	
tuations strongly di�er from that for regular statistical vari	
ables� following the Gaussian law which is mostly �explicitly
or more often implicitly� used in geophysical practice� For
example� Holt et al� ������ found that a sum of earthquake
seismic moments for some regions of south	eastern Asia may
exceed the tectonic rate by a factor of � to � and more�
This di�erence cannot be explained by any errors in tec	
tonic rate calculations or seismic moment evaluation� The
mismatch is clearly caused by random �uctuations of the
power	law distributed variable� This highly random behav	
ior of cumulative seismic moment necessitates a new way to
compare seismic and tectonic rates �Kagan� �


� ����a�b�
Kreemer et al�� ����� Bird and Kagan� ������ Thus� we will
discuss statistical properties of accumulated earthquake slip
and consider appropriate estimates of statistical error for
measuring it�

In studying slip distribution we should proceed from rep	
resenting a point source to the approach based on extended
earthquake rupture� This change requires applying statis	
tical distributions of the rupture length� width and slip to
infer the pattern of average slip not only for a region or an
area� but also for a speci�c place on a fault�

The temporal pattern of large earthquakes is key to the
distribution of cumulative earthquake slip� Unfortunately� it
is still not known whether large events cluster in time� or fol	
low a quasi	periodic pattern� Long	term earthquake hazard
estimates are usually based on the Poisson assumption� oc	
currence of one event is statistically unrelated to occurrence
of others� Thus� we need to consider various hypotheses of
moment and slip release in time and their impact on slip
distribution�

An additional issue needs to be discussed� how earth	
quake rupture is concentrated in space� Two models are
commonly used � tectonic block motion and continuum de	
formation� The former model envisions a very narrow con	
centration of ruptures� whereas the latter expects the defor	
mation to be broadly distributed� As we show in Section ��
in reality both points of view are somewhat valid� the spa	
tial fractal framework combines and synthesizes both these
hypotheses�

In this paper� �rst we will discuss the earthquake size dis	
tribution �seismic moment	frequency relation� and review
the major theoretical relations proposed to approximate ob	
servational data �Section ��� Section � reviews models for
earthquake scaling� or the relationship between the seismic
moment and rupture geometry� We obtain statistical ex	
pressions for rupture lengths and slip distributions based on
scaling and magnitude	frequency relations� Section � applies
the above relations to earthquake ruptures at speci�c sites of
a fault� Temporal distributions of large earthquakes and slip
accumulation at a speci�c point of a fault are considered in
Section �� We illustrate the obtained results by evaluating
statistical properties of slip distribution at Wrightwood� CA
on the San Andreas fault� The Discussion section and Con	
clusion summarize our results� Three appendices contain
some technical statistical formulas� and they are included in
the electronic supplement�

�� Deformation pattern� Continuum versus
block motion

King et al� ��

�� ask whether block or continuum de	
formation should be used to describe patterns of seismicity
and deformation in the western United States� A continu	
ous representation is usually used for large seismic regions
�e�g�� Holt et al� ������� Kreemer et al� �������� For smaller�
extensively studied regions such as California� earthquake
deformation is normally represented as occurring on speci�c
faults �Wesnousky� �
����

Earthquake data are traditionally displayed as epicenter
points or focal mechanisms on a map� although the rupture�s
extent can be estimated from surface rupture traces and
aftershock distributions� To analyze strain at the Earth�s
surface� we need to display earthquake sources as extended
ruptures� at least for large earthquakes� To exemplify earth	
quake data� Fig� � in the companion paper �Kagan et al��
����� shows focal mechanisms for moderate and large earth	
quakes in southern California from ����	����� The diagram
suggests that earthquakes are not concentrated on a few
faults� The mechanisms of neighboring events may have a
very di�erent orientation� Even in a neighborhood of ma	
jor faults� some focal mechanisms signi�cantly disagree with
fault surface traces� This mismatch con�rms the idea that
major faults do not fully represent the deformation pat	
tern� even in a region with relatively simple and well	studied
tectonics� In contrast� measuring deformation on major
faults and in their neighborhood indicates that most strain is
within con�ned zones �often narrow enough to trench in pa	
leoseismic investigations�� Both �ndings suggest that block
and continuum hypotheses need to be combined in a joint
model�

Kagan and Knopo� ��
��� and Kagan ��

�� show that
the spatial distribution of epicenters and hypocenters can
be described by a fractal� scale	invariant relation with the
value of the correlation dimension � � ��� � ���� These re	
sults imply that neither block models �with a �nite number
of faults� nor continuous models can accurately describe the
tectonic deformation pattern�

In this paper we concentrate on studying slip on individ	
ual fault segments� Observations �e�g�� Sieh et al� ��
�
��
Weldon et al� ������� and modeling of fractal fault systems
�Kagan� �
��� Libicki and Ben�Zion� ����� suggest that while
faults generally show a complicated fractal branching struc	
ture� much tectonic deformation is concentrated in very nar	
row zones in certain places� These zones can be represented
by a planar fault intersecting the Earth�s surface� displacing
river valleys and other geomorphic features by measurable
distances� Such displacements are often used to estimate
the average fault slip rate� Given that no statistical descrip	
tion of a fault displacement exists� it is di�cult to estimate
uncertainties in evaluating the rate� at least those uncertain	
ties arising from random �uctuations� Thus� we will model
fault deformation statistically and estimate random errors
in tectonic rate calculation quantitatively� As explained in
the Introduction� for power	law distributed variables� statis	
tical �uctuations can be very large� To evaluate them� we
should know their statistical properties�

�� Seismic moment statistical distribution

We need to �nd the most appropriate statistical relation	
ship that describes earthquake size distribution� The rela	
tion between magnitude and moment	frequency is one of the
most studied statistical properties of earthquake occurrence�
However� many unresolved controversies remain open in the
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properties of earthquake size distribution� We review these
below� emphasizing the moment distribution features�

We use the notation M for the scalar seismic moment and
m for the moment magnitude �Hanks� �����	

m 

�

�
log

��
M � ��
 � ���

where M is measured in Newton�m �Nm�� The magnitude
calculated by Equation ��� is used here for illustration and
as a proxy for the seismic moment� All pertinent computa�
tions are carried out with moment estimates�

���� Theoretical distributions

In this subsection we brie�y review statistical distribu�
tions for approximating the moment�frequency relation� For
a more complete discussion see Kagan ��

�a�b� and Bird
and Kagan ��

��� The earthquake size distribution is usu�
ally described by the G�R magnitude�frequency law

log
��
N�m� 
 a� bm � ���

where N�m� is the number of earthquakes with magnitude
� m� and b � ��

Utsu ������ his Eq� �� see also Aki� ����� explains that
the G�R law �Equation �� is equivalent to the exponential
statistical distribution �see� e�g�� Evans et al� ������� for mag�
nitudes� For earthquake energy or seismic moment �Equa�
tion �� can be converted to a power�law relation �Utsu� �����
his Eq� ��� or� as this distribution is known in statistics� the
Pareto distribution �Evans et al� ������ with the power expo�
nent � 
 b����� Because seismographic networks have lim�
ited sensitivity� small earthquakes are not completely sam�
pled in earthquake catalogs� Thus� we must introduce a
catalog completeness threshold �cuto��Mt and truncate the
distribution from the left	

��M� 
 �M�
t M

���� for Mt �M �� � ���

The threshold magnitude varies from about ��
 for modern
local catalogs like that of southern California to about ���
for the Harvard CMT catalog �Ekstr�om et al�� �

���

Two types of errors need to be considered in �tting the
theoretical earthquake size distribution to data	 uncertainty
in estimating the ��value and random �uctuations of earth�
quake numbers� Fig� � displays the moment�frequency rela�
tion in the southern California area for ��

������ using the
Toppozada et al� ��


� catalog� We approximate the obser�
vational curve by the Pareto distribution ���� The displayed
��� con�dence limits for � �Aki� ����� Kagan� �

�a� are
conditioned by the total number of earthquakes observed�
To calculate full uncertainty bounds� it is necessary to con�
volve ��errors with the event number distribution� We make
the simplest assumption that this distribution is Poisson�
For the number �N� of samples in the Poisson distribution
greater than �
� one can use the Gaussian approximation
with the variance equal to N � Thus� the total number of
events in the subcatalog has the standard error ��� � ���
�
To make the calculations easy for this illustrative diagram�
we extend this approximation down to N 
 �� For the up�
per limit� the resulting uncertainties shown by the upper
dashed curve in the plot are smaller than the actual Poisson
bounds� so our limit is under�estimate of the actual uncer�
tainty spread� For the lower limit� the opposite is true� so
that the real lower limit should be between the � �solid� line
and the dashed line shown in the plot�

Simple considerations of the �niteness of seismic moment
�ux or of deformational energy available for an earthquake
generation �Kagan� �

�a�b� require that the Pareto relation
��� be modi�ed at the large size end of the moment scale�
Below we consider four theoretical distributions to describe

seismic moment�frequency relations with an upper bound
�Kagan� �

�a�b�	
�a� the characteristic distribution�
�b� the truncated Pareto distribution�
�c� the modi�ed G�R distribution� and
�d� the gamma distribution�
These distributions have a scale�invariant� power�law seg�
ment for small and moderate earthquakes� the right�hand
tail of the distributions is controlled by the maximum mo�
ment value� Thus� models �a�d� extend the classical G�R
law using an upper bound� Mx� We employ the notation
Mxc� Mxp� Mcm� Mcg� respectively� for the maximum seis�
mic moment of each distribution� In the last two cases the
limit at the tail of the distribution is not a �hard� cuto� as
in �a���b�� but a �soft� taper� It would be more appropriate
to de�ne Mcm and Mcg as �corner� moments�

For case �a� the distribution is described by the function
��M��

��M� 
 �� F �M� 
 �Mt�M��

for Mt �M �Mxc� and

��M� 
 
 for M �Mxc � ���

where F �M� is a cumulative function� Mxc is the maximum
moment� Equation ��� does not exactly correspond to the
characteristic earthquake model as formulated by Schwartz
and Coppersmith ������ or by Wesnousky ������� In their
model the characteristic earthquakes release about ��� of
the total moment �Kagan� ������ In case �a� only ��� �for
� 
 ���� of the total is released by the characteristic events
�Kagan� �

�b�� Kagan ������ criticizes using the charac�
teristic model for seismicity analysis� see also Wesnousky
������� Rong et al� ��

��� and Stein and Newman ��

�� for
more discussion� We use model �a� here for illustration� as
it is more compatible with other distributions �b�d��

Similarly� for �b�

��M� 

�Mt�M�� � �Mt�Mxp�

�

�� �Mt�Mxp��

for Mt �M �Mxp � ���

For the tapered G�R and gamma distributions the expres�
sions are

��M� 
 �Mt�M�� exp
�
Mt�M

Mcm

�
for Mt �M ��� ���

and

��M� 
 C���Mt�M�� exp

�
Mt �M

Mcg

�

�
�
� � �M�Mcg�

� exp�M�Mcg� ���� ��M�Mcg�
�
� ���

where the normalization coe�cient C is de�ned by Eq� ����
in Kagan ��

�a� �for Mcg �� Mt the coe�cient C � ��
and ��a� b� is the incomplete gamma function �Abramowitz
and Stegun� ����� p� ��
��

The �rst two distributions are utilized extensively in prac�
tical applications� A �hard� cuto� for the maximum moment
�magnitude� is used in these expressions	 in case �a� for the
cumulative distribution function �CDF�� and in case �b� for
the PDF �probability density function�� The two latter dis�
tributions apply a �soft� exponential taper to the distribution
tail	 in case �c� to the CDF� and in case �d� to the PDF�

���� Empirical evidence� Moment�frequency relation
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Pacheco et al� ������� Okal and Romanowicz ������� Triep
and Sykes ������ and others 	see more references in the works
by Main ��


� and Leonard et al� ��

��� argue that the ��
value 	
� increases from ��
 to ��
 over the moment range
M � �
����� � �
�� Nm 	m � ��� � ����� They believe the
�nite thickness of a seismogenic crust explains this change�

To demonstrate the lack of scale breaking in the moment�
frequency distribution� we show in Figs� � several curves for
earthquakes in subduction zones with various focal mech�
anisms �Bird� �


� Bird and Kagan� �

�� listed in the
Harvard catalog� Since tectonic and other conditions on
both sides of the boundary di�er signi�cantly� one expects
the earthquake size distribution to di�er also� We classify
earthquakes by their focal mechanisms� thrust events have
a T �axis which is more vertical than B or P � Similarly� nor�
mal earthquakes have a P �axis and strike�slip earthquakes
have a B�axis more vertical than other axes� respectively� In
addition� we subdivide the earthquake distribution into two
groups� one on the ocean and one on the continental side of
the subduction boundary� The ��values for all the samples
are statistically indistinguishable and correspond to the uni�
versal value for the exponent �Kagan �

�a�b and Bird and
Kagan� �

���

The strike�slip earthquake distribution 	Figs� �A� is of
special interest� according to the standard interpretation�
their rupture width should approximately equal the thick�
ness of the seismogenic upper crust� Thus� we expect the
distribution to exhibit a break at about �
�� � �
�� Nm
	m � ��
 � ����� Pacheco et al� ������ suggest that the b�
value should change from ��
 to ��� 	corresponding limits
are ��
 to ��
 for the ��value� at this magnitude range� No
break of such amplitude is observed in the plots� at least
by inspection� Sornette et al� ������ discuss more rigorous
testing techniques for the break in the magnitude�frequency
relation� Closely inspecting the spatial distribution of the
strike�slip earthquakes indicates that they are not concen�
trated in any of the subduction zones� Hence the absent
break is not due to the seismicity alone in one or two sub�
duction zones�

The tectonic structure in subduction zones may be very
complex 	i�e� the seismogenic crustal thickness highly vari�
able� so that any systematic variation of rupture width may
not be discernable� However� only subduction zones yield
a su�cient number of earthquakes for statistical compari�
son� The absence of a break in scaling relation for strike�
slip earthquakes can also be demonstrated by Kagan ��

�c�
results on the relation between the aftershock zone length
and the mainshock magnitude� Strike�slip events exhibit no
change in correlation behaviour up to magnitude m � �
mainshocks 	see more in Subsection �����

Thrust earthquakes 	Figs� �B� demonstrate a similar pat�
tern� there is no observable statistical di�erence in these di�
agrams� The upper observational curve decay 	Fig� �B� for
the largest earthquakes 	M � �
�� Nm� m � ���� is caused
by the upper bound for moment distribution 	the maximum
or corner magnitude� This decay is not seen in the lower
curve 	Fig� �B�� perhaps because its number of earthquakes
is small� Bird and Kagan ��

�� discuss the corner magni�
tude distribution for global earthquakes in various tectonic
zones�

�� Earthquake scaling

To relate the moment�frequency law to observed geomet�
rical properties of earthquake rupture and its statistics� we
should know the relationship between these variables� This
relation depends on earthquake scaling� the connection be�
tween the moment and rupture length� width� and slip� If
we know or assume the scaling relation� we can then calcu�
late the distribution of earthquake geometrical parameters
by extending the moment�frequency relation�

���� Theoretical principles

Earthquake rupture is characterized by three geometric
quantities� length of the rupture� L� width W � and aver�
age slip� u� The seismic moment is expressed through these
quantities as �Scholz� �

��

M � � uW L � 	��

where � is an elastic shear modulus� The empirical con�
nection between the length and the moment M is expressed
as

M � L
d
� 	��

i�e�� M is proportional to Ld� From the scaling arguments
and the observational evidence� it is generally agreed that
d � 
 for small and moderate earthquakes whose size does
not exceed the thickness of seismogenic layer �Scholz� �����
����� Romanowicz� ����� Abercrombie� ����� Romanowicz
and Ru��� Since the stress or strain drop is generally as�
sumed to be independent ofM and the rupture unbounded�
these variables should depend on the moment only

L� W� u � M
���
� 	�
�

Let us consider the slip distribution at a particular sin�
gle site on the Earth�s surface along the San Andreas fault�
Since total slip can be partitioned between the major fault
	the San Andreas in our case� and subsidiary faults� slip dis�
tribution is for a thin slice orthogonal to the San Andreas
fault� Most of the total moment is released by the largest
earthquakes� M � �
���� Nm 	m � ��
� �Brune� ����� Ka�
gan� �

�a�� for these large earthquakes the rupture is usu�
ally considered con�ned to the upper crust layer of thickness
W �Scholz� ����� ����� Romanowicz� ����� Wells and Cop�

persmith� ����� Bodin and Brune� ����� Stock and Smith�
�


�� Thus� if

W � W� � const� 	���

the rupture can be characterized by two geometric quanti�
ties� length L� and average slip� u�

Main ��


� and Leonard et al� ��

�� discuss various
methods of investigating geometrical scaling of the earth�
quake rupture� They propose evidence for a break in the
scaling corresponding to the brittle�plastic transition at the
base of the crust� Below we brie�y review both of these re�
lations� geometrical features of earthquakes and a supposed
break in the magnitude	moment��frequency relation�

The expressions above 	����� implicitly assume that the
hypocenter or centroid depth distribution is uniform over
the thickness of the seismogenic layer � otherwise the width
W is not properly de�ned� In reality� earthquake depth dis�
tribution is highly non�uniform� In Fig� 
 we show the
depth histogram for one of the southern California catalogs
�Shearer et al�� �


�� arguably the catalog with the most
accurate earthquake locations� Most of its earthquakes are
concentrated within the upper ���� km zone� However� slip
inversions for several large earthquakes in California and
elsewhere �Mai and Beroza� �

�� show that their slip distri�
butions extend to greater depth� We know that slip inver�
sions are not well constrained� especially for the lower part
of the rupture width� Thus� the exact slip distribution over
depth still needs to be established�

Several studies 	see� for example� Mori and Abercrom�

bie ������� Gerstenberger et al� ��

��� Wyss et al� ��

���
suggest that the magnitude�frequency relation varies with
depth� In assuming the simple G�R law 	�� these authors
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show that the b�value signi�cantly decreases with depth�
However� Kagan �����a� p� 	
�� argues that this decrease
may be caused by an inappropriate use of relation 
�� for ap�
proximating earthquake size distribution� If the maximum
earthquake size is taken into consideration 
Equations ��
��� a more reasonable explanation for the apparent b�value
change would be an increase in the maximum size with depth
�Kagan� ����a� p� 	
��� Centroid depth for a large earth�
quake on a vertical fault cannot be smaller than a half of
the rupture width� inspecting seismic maps �like Fig� � in
Wyss et al�� ����� suggests that hypocenters of larger events
are on average deeper than those for small earthquakes�

���� Empirical evidence� Length scaling

Although other parameters of rupture have been corre�
lated with the seismic moment� rupture length is determined
with better accuracy� This accuracy is re�ected� for exam�
ple� in a higher correlation coe�cient of M versus L� as
compared to the correlation of the moment with W � or u
�Wells and Coppersmith� ������ � � ���	 for the �rst case�
and � � ���� and � � ���	 for the second and third case�
respectively� Thus� here we use only the M versus L corre�
lation�

Two models are usually proposed for length scaling of
large earthquakes� The W �model �Romanowicz� ����� and
references therein� assumes that slip is proportional to the
rupture width W and thus is constant as long as the Equa�
tion 
��� holds� The second or L�model �Scholz� ����� �����
and references therein� assumes that u � L� According to
the W �model d � �� whereas the L�model requires d � �

see Equation ���

Kagan �����c� investigated the distribution of aftershock
zones for large earthquakes in global catalogs 
scalar seis�
mic moment M � ������ Nm� moment magnitude� m � ���
How the aftershock zone length� l� depends on earthquake
size was studied for three representative focal mechanisms�
thrust� normal� and strike�slip� It was found that all earth�
quakes show the same scaling 
M � l��� No observable scal�
ing break or saturation occurs for the largest earthquakes

M � ���� Nm� m � ��� Henry and Das ������ obtained
an analogous scaling result� It is natural to assume that the
aftershock zone length l is equal or proportional to the rup�
ture length L� It seems that earthquake geometrical focal
zone parameters are self�similar�

Preliminary data on the recent 
����������� Sumatra
great earthquake as well as addition of ��������� earthquake
catalogs allow us to extend Kagan �����c� results� New re�
gression curves 
see
http���scec�ess�ucla�edu��ykagan�scal update index�html�
show that M � l� dependence continues up to m � � earth�
quakes� Although the Sumatra earthquake is of thrust type�
a few large m � � strike�slip events occurred in the �����
���� period� Estimated regression parameters for strike�slip
and normal earthquakes are similar to those of thrust events�
supporting the conjecture that the scaling relation is iden�
tical for earthquakes of various focal mechanisms�

���� Earthquake scaling relations

As the discussion above shows� geometrical scaling rela�
tions still challenge our understanding� The major di�culty
in studying L�W � and u is that these quantities are often not
subject to direct measurement� especially for earthquakes
occurring under the ocean� Seismic moment is the best sta�
tistically studied variable among the earthquake scaling pa�
rameters� Therefore� we may try to infer statistical proper�
ties of other geometrical quantities by using their relations
to the moment� If the assumed functional dependence be�
tween the moment and a variable x has a form

x � f
M�� 
���

then the PDF for x can be expressed as

�x
x� � �M
�
f��
x�

� ����� �f
��
x��

�x

���� � 
�
�

where �M is the PDF of the seismic moment and f��
x� is
the inverse function of 
����

If x itself has a power�law dependence on the moment�
say

x � M��� or M � x� � 
���

then for the scale�invariant part of the moment PDF 
Equa�
tions �� 	� �� �� we obtain the following relations for variable
x

�
x� � 
x������ x��� � x����� � 
�	�

i�e�� the x�variable is power�law distributed with the expo�
nent value ��� Using 
�� for the rupture length� we obtain

�
L� �
�
Ld

�
����

Ld�� � L����d � 
���

Hence� for earthquakes smaller than the maximum or cor�
ner moment Mx� the length L is distributed according to a
power�law 
see Table � for exponent values�� Similarly� the
PDF for the other variables� like width W and average slip
u can be calculated as long as they follow the same propor�
tionality relations as the moment 
see Equation ����

If we assume that 
��� is true�

L � L�

�
M

M�

���d

� 
���

and�

u � u�

�
M

M�

��d����d

� 
���

where M�� L�� and u� are the seismic moment� length� and
average slip for a reference earthquake� taken here for illus�
tration to be M� � ������ Nm 
m � ��� i�e�� the smallest
earthquake for which its rupture width reaches the maxi�
mum value W�� For an m� earthquake� assuming the width
W� of �	 km and elastic modulus 	 equal to 
� GPa �Scholz�
����� p� ����� we take u� � ���� m and L� � 
��	 km� We
use these reference earthquake parameters in discussion be�
low as an illustration� The derivations can be easily repeated
using other values�

The ratio 
 � u�L is an important parameter which de�
termines the stress drop ��

�� � C	
� 
���

where C is a coe�cient of the order of unity �Scholz� �����
Eq� ������

Using 
��� and 
��� we obtain the following expression
for 



 �
u�
L�

�
M

M�

��d����d

� 
���

From this equation� the stress drop depends on the moment
of an earthquake with the exponent equal to ���
� �� and
��
 for d � ��	� ���� and 
��� respectively� The indepen�
dence of the stress drop from earthquake size seems well
established �Scholz� ����� Abercrombie� ���	�� Therefore�
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assumption ���� leads us to accept the L�model of scaling
�d � ���

However	 assumption ���� may not be true	 as suggested
by the evidence discussed above	 then using ��
� we obtain
for d � �

� �
u�
L�

� ����

i�e�	 the stress drop is again constant�
From ���� similar to ���� and ��
�	 we obtain the scale�

invariant part of the PDF for the slip

��u� �
�
ud��d���

�
����

u���d��� � u����d��d��� �����

Hence for earthquakes smaller than the maximum or corner
moment Mx	 slip u is distributed according to a power�law
�see Table ���

Table � shows the exponent values for three choices of the
moment�frequency exponent� Value � � ���	 corresponding
to the G�R b � �	 is the most often quoted quantity� Kagan�s
��

�a�b� results and those by Bird and Kagan ��

�� sug�
gest that a slightly lower ��value of 
�
� characterizes shal�
low earthquake seismicity� The index value � � 
�
 may be
appropriate for shallow earthquake sequences or deep earth�
quakes �Kagan	 ������ Finally	 � � ��� is the theoretically
derived value �Vere�Jones	 ���
��

�� Earthquakes at a speci�c site

Most known statistical distributions for earthquake size
�magnitudes or seismic moment� are constructed for areas
or regions� However	 earthquake rupture extends over the
length of a fault� Thus	 if we are interested in earthquake
phenomena observed at a particular point on a fault	 we need
to �translate� these distributions into a site�speci�c form�
Large earthquakes have a higher probability of intersecting
the site than smaller ones	 and this probability should be ac�
counted for� Below we calculate site distributions for seismic
moment and earthquake slip�

���� Earthquake moment distribution at a speci�c

site

To calculate the distribution of the seismic moment at a
single site ��M�	 we consider two cases� a potential width of
the rupture W is greater than W� � the width of the seismo�
genic zone � and W �W�� In the �rst case we multiply the
distribution density function of the seismic moment 	�M�
by the length of the rupture L�M� as described by Equa�
tion ���� The probability of an earthquake rupture transect�
ing the fault system at a certain site is proportional to the
length

��Ms� � L�M�	�M� � M��d	�M�� ����

Using the scale�invariant part of the 	�M� expression in
����	 we obtain

��Ms� �M�������d � ����

Although the PDF of the moment distribution has a power�
law form similar to those considered in Section ���	 the
power exponent is smaller� Actually for d � ���	 the log�
arithmic density is uniform over the scale�invariant segment
�see Table � for exponent values��

For d � � the value of the exponent ���
� is derived by
Anderson and Luco ������� since they use the magnitude
rather than the moment	 the exponent in ���� needs to be
multiplied by ���	 resulting in ���� For d � � the exponent
value is only two times smaller than the value of the moment�
frequency or magnitude�frequency relations ���� and ���	
respectively��

Anderson and Luco ������ also argue that since the value
of the exponent for the site�speci�c distributions is signi��
cantly smaller than that for the area�speci�c relations	 this
di�erence may also explain di�erences in the paleoseismic
distributions �site�speci�c� and distributions of instrumental
earthquake catalog data �usually area�speci�c�� Moreover	
as we suggest in Section ���	 because of a lack of earthquakes
near the Earth�s surface and the possible relative reduction
of large earthquakes near it	 it seems likely that only large
earthquakes rupture the surface� For example	 if we assume
that no earthquakes occur in the crust�s upper ��� km layer	
then the smallest earthquake that could rupture the surface
would be about m�� Since the total displacement of seis�
mogenic crust at any depth interval over long time should
be uniform	 this would mean that the slip of large earth�
quakes should �catch up� on the slip de�cit at the Earth�s
surface left by smaller events	 i�e�	 large earthquake slip at
the surface should be on average greater than the slip in
the crust middle layers� If this conjecture is true	 then
the slip and	 by inference moment distributions in paleo�
seismic studies would signi�cantly di�er from the power�law
�like Equation ��	 which explains instrumental seismological
data� This deviation may provide a misleading evidence in
support of claims in the characteristic earthquake model�

In general	 the value of the exponent equal to ��
 means
that in the logarithmic scale the total sum for a variable
is uniformly distributed� For example	 the total length �Ls�
for d � � and � � ��� is equal for all magnitudes� The value
of the exponent equal to 
�
 means that the same condition
is satis�ed for a linear scale�

In the second case �W 
 W��	 several earthquakes are
needed to �ll out the vertical zone of length W �M�� Thus	
in addition to ���� we multiply the density by a term
W �M� �M��d

��M� � L�M�W �M�	�M� � M���	�M�� ����

where we use d � � as in Equation ��
�	 appropriate for this
case� We assume that small earthquakes are distributed uni�
formly in width W��

The latter expression may be considered as a PDF of a
fault surface covered by earthquake ruptures

��S�M�� � M��������� ��
�

i�e�	 for � � ���	 earthquakes of any magnitude or log mo�
ment range cover the same total surface �Rundle	 ������

In Appendix A we derive several formulas of the com�
plementary moment functions for cases �a� and �b�� The
expressions for cases �c� and �d� can be obtained by the
same method	 not shown because of their length� In Fig� �
we show several examples of these functions� The functions
are not normalized in this case� It is to be expected that
for a smaller value of the d�exponent the rupture length of
large earthquakes will increase� Thus	 more ruptures will
intersect the site�

In the diagram we adjust the maximum moment Mx or
the corner momentMc of the distribution according to Eq� �
by Kagan ��

�b�	 so that the total moment rate �M is iden�
tical for all four distributions� Mx � �
��� ���� � �
�� and
Mc � ���
��
�� 	 and ������
�� Nm	 for models �a���d�	 re�
spectively� These moment values correspond approximately
to magnitude values mx � ��
� ����� ���
	 and ����	 appro�
priate	 for instance	 to southern California �Jackson et al�

������� Field et al� �������� Kagan ��

�b	 his Fig� � and
Eq� ��� estimates that for such conditions	 m 
 � earth�
quakes contribute about ��� of the total seismic moment�
Bird and Kagan ��

�� also obtained the corner magnitude
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�case �c� � see Equation �� values of mcm � ���������
����� for

analogous tectonic regions �continental transform bound	
aries� in global earthquake distribution


Comparing the moment	frequency log	log plots �for ex	
ample� see Fig
 � in Kagan 
����a�� with Fig
 �� we see
another signi�cant di�erence between the moment distribu	
tions for an area and a site	speci�c distribution� even for
the characteristic model� the cumulative curve is no longer
linear in a log	log plot
 The reason is that site	speci�c distri	
butions are de�ned for earthquakes close to the upper limit
of the distribution
 But the right	hand tail of the cumula	
tive distributions is not linear for area	speci�c curves
 For
the characteristic law we adjusted the number of character	
istic events in such a way as to produce a linear area	speci�c
curve
 This adjustment is no longer valid for a site	speci�c
distribution


For illustration we calculate the number of earthquakes
at a site for conditions similar to southern California� setting
in Equation �A�� M �M� � �
 We take �� � ���� �rate of
M � ������ Nm� m � � earthquakes� see Fig
 ��� the total
length of the fault system L � ��� km� and � � ��� 
Kagan�
�����
 To illustrate� for the truncated Pareto distribution

n � ��L�
�d

L ��d� ��
�

M�
xp

M�
xp � �


��M��
xp � � ����

Mxp � ������ if we normalizeM� � �
 Then for d � � we ob	
tain �
��� �
��� �
��� and �
� �cases a	d� respectively� events
that rupture an arbitrary site per millenium
 The di�erence
between various distributions is insigni�cant
 For d � � the
numbers are approximately �
�� and for d � ��� the numbers
are around �
�
 The obtained numbers of earthquake rup	
tures are comparable with the number ofm � � earthquakes
found during paleoseismic explorations of the San Andreas
fault �e
g
� Sieh et al� 
������ Weldon et al� 
������ see also
Fig
 ��


���� Earthquake slip distribution at a speci�c site

Again� assuming W � W�� as in ���� using ���� as the
PDF for distribution ��M �� we obtain the following site	
speci�c relations for the rupture length �Ls�

��Ls� �
�
Lds

�
�������d

Ld��s � L��ds � L����s �����

The length Ls is distributed according to a power	law �see
Table ��


The site	speci�c relations in the case of W � W�� for the
rupture slip �us�

��us� �

h
u
d�	d��

s

i
�������d

u
��	d��

s

� u
���	�d��
�	d��

s � u���� � ����

the slip us is also distributed according to a power	law �see
Table ��
 In Fig
 �� we display complementary functions
for d � ��� �see Appendix B for appropriate formulas�
 We
use the same maximum magnitude quantities as in Fig
 �

The distributions are similar over much of the slip range

According to the gamma law� in some rare cases the slip
magnitude can reach almost �� m


In the second case �W � W��� several earthquakes
n � M��� are needed to �ll out the rupture width
 We
assume that their slip distribution is the same as that for
larger �m � �� events
 Each of these smaller events on aver	
age contributes u�n slip to total displacement of the surface


In Figs
 �A and �B we display the distributions of the
total slip �see Appendix C for the expressions�
 In the �rst
plot �Fig
 �A� it is assumed that all surface slip is due to
large �m � �� earthquakes� in the latter picture we estimate

the contribution of smaller events
 For the reasons explained
above �Section �
��� the slip accumulated due to small and
moderate �m � �� earthquakes close to the Earth�s surface
is probably released during the rupture of large events


In both �gures� the distribution of the total slip for
d � ��� is linear� demonstrating that in each linear inter	
val earthquakes contribute an equal amount to the total slip
budget
 But the length of the rupture for d � ��� is too
large for an m � ���� earthquake� whose L � ��� km
 For
the greater d	values the larger part of the slip total is re	
leased by more extensive slip events
 For example� for d � �
about ��� of the total slip is caused by slips in individual
earthquakes exceeding �� m
 The largest slip in the d � �
case exceeds �� m for the largest earthquakes� a value that
seems unrealistic� especially for the gamma distribution


However� if we assume that d � � and allow for an un	
limited width W � the total slip for m � ���� earthquake is
only �
�� m� although its width should reach ��
� km� and
the length L � ����� km
 These parameter values may be
appropriate for subduction zones
 For such m 	 � earth	
quakes the scaling is most likely a mixture of condition ����
and unlimited W 


�� Seismic moment and slip release in time

The seismic moment and slip distributions obtained in
previous sections cannot be used for theoretical modeling
and practical purposes of seismic hazard evaluation without
a proper understanding of earthquakes occurrence in time

Unfortunately� there is no present consensus on even ba	
sic facts about the temporal distribution of the large earth	
quakes or principles for their mathematical representation

Below we brie�y discuss available data and their interpreta	
tion and show one example of applying results of this work


���� Temporal evolution of seismic moment release

There are several models for stress accumulation and re	
lease by earthquakes
 Most of these models assume that
stress is scalar� i
e
� the tensor properties of stress are dis	
regarded
 These models are descendants of Reid�s 
�����
�Elastic rebound theory
� Two recent modi�cations of this
model are presented by Shimazaki and Nakata 
������ the
�time	predictable� and �slip	predictable� earthquake occur	
rence hypotheses
 In the former� stress accumulates until
it reaches an upper critical value and is then released by
earthquakes of various magnitudes
 In the latter model� the
release of stress during an earthquake is limited by a lower
critical quantity� following stress release� it accumulates un	
til a new earthquake is triggered
 In both models the total
variation of stress cannot exceed the moment released by the
largest earthquakes
 It is also assumed that after such an
earthquake� the tectonic stress level is close to zero 
Jaum�e
and Sykes� ����� their Fig
 ��


The often preferred time	predictable model implies that
the probability of a new earthquake is lower� especially after
a large event� since the stress �eld is signi�cantly depleted�
a stress shadow is created
 This conclusion contradicts the
universally observed clustering of shallow earthquakes
 The
most obvious manifestation of such clustering is aftershock
sequences subsequent to strong events 
Kagan and Jackson�
����� Rong et al�� �����


A commonly used explanation of the contradiction is that
the shadow e�ects start following an aftershock sequence
and outside the aftershock zone
 However� it is di�cult
to draw temporal and spatial boundaries for aftershock se	
quences
 Some of these sequences �such as the ones following
the ���� Kern County earthquake� or the Nobi earthquake
of ����� see Utsu et al� 
������ are still active after several
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decades� There are many indications that intraplate earth�
quakes� where the tectonic deformation rate is low� have af�
tershock sequences decades and centuries long �Ebel et al��
������ There are also distant aftershocks� which further com�
plicate determination of the aftershock zone�

Another attempt at explaining the above contradiction
is that clustering is a property of small earthquakes only	
large events rupturing the whole crust follow a time� or slip�
predictable model� Yet Kagan and Jackson �
���� show that
even M � 
������ Nm �m � 
��� earthquakes continue to
exhibit time�distance clustering� The time interval between
closely spaced pairs of earthquakes is signi�cantly less than
the time span needed for the plate motion to accumulate the
strain released by the �rst event� Some M � 
������ Nm
�m � 
��� earthquake pairs listed by Kagan and Jackson
�
���� clearly qualify as members of a foreshock�mainshock�
aftershock sequence� which suggests that strong earthquakes
can recur at a small time interval in essentially the same
area� P�erez and Scholz �
��
� demonstrate that very large
earthquakes M � 
������ Nm �m � ���� are still accom�
panied by foreshock�aftershock sequences that include large
earthquakes� Hence these earthquakes do not fully release
accumulated deformation� It is still possible that earth�
quakes can become large enough to deter others at some
greater threshold� However� if an earthquake releases only
a small part of tectonic stress� then many assumptions of
earthquake temporal behavior need revision�

To illustrate possible stochastic variations in the seismic
moment release� we display in Fig� 
 four simulations of the
process� Their earthquake size distribution is assumed to
follow the truncated density G�R law ���� with the maxi�
mum moment equal to 
��� Nm �m � �� and the minimum
size earthquake equal to 
��� Nm �m � ��� The earth�
quake temporal distribution is assumed to be governed by
the Poisson law with the rate of occurrence of one event
per unit of time� We use the technique described by Kagan
�����a� his Eq� ��� to simulate truncated Pareto distribu�
tion for moment� and the standard methods to obtain the
Poisson variable�

The curves� behaviors signi�cantly di�er from the ide�
alized pictures of stress�time history in the time� or slip�
predictable models �Jaum�e and Sykes� 
���� their Fig� ���
However� some of the trajectories �like the solid curve in
Fig� 
� can be interpreted using these hypotheses� Three
of the four series in Fig� 
 imply stress buildups that look
implausible�

The possible reason for such moment behavior is use of
the Poisson process to model earthquake occurrence� The
problem with the Poisson distribution utilized in Fig� 
 is
that regional stress accumulation would change drastically�
since the Poisson process allows a potentially in�nite accu�
mulation of strain in a region� Clearly� some modi�cation of
Poisson model strain accumulation is necessary� Zheng and
Vere�Jones �
���� propose a stochastic version of the elastic
rebound model for describing large earthquake occurrence
within a seismic region� This model replaces a determin�
istic �hard� threshold with a soft statistical critical cut�o�
to allow within certain stochastic limits clustering of large
earthquakes� Further development of this model and re�
view of results is presented by Bebbington and Harte �������
However� the results of this hypothetical application are still
ambiguous� perhaps because the model does not fully incor�
porate earthquake spatial parameters� Thus� the problem
persists� Are the largest earthquakes quasi�periodic or clus�
tered� Is one pattern changed by another for large enough
time intervals�

���� Slip accumulation in time

Di�culties in describing earthquake temporal distribu�
tion remain for slip accumulation as well� Chery et al� ����
�
discuss many qualitative examples of long�term clustering

for large earthquakes� Rockwell et al� ������ and Dawson
et al� ������ discover a similar temporal earthquake cluster�
ing in eastern California� These researchers de�ne clustering
as a deviation of earthquake occurrence from a periodic or
quasi�periodic pattern� In statistics� temporal clustering is
normally assumed if a point process has a larger coe�cient
of variation than the Poisson process �Kagan and Jackson�

��
� their Fig� 
�� For example� Sieh et al��s �
���� results
are usually interpreted as evidence for earthquake cluster�
ing� although they �nd that the Poisson hypothesis cannot
be rejected as a model for the temporal event series they
describe� Generally� paleoseismic investigations cannot dis�
tinguish earthquakes occurring closely in time� Hence� their
coe�cient of variation estimates should be biased towards
smaller quantities� a more periodic pattern�

Quantitative studies of earthquake temporal occurrence
�Kagan and Jackson� 
��
	 
���� suggest that strong earth�
quakes are more clustered than a Poisson process� Such
clustering can presently be established for instrumental cat�
alogs� for time intervals of a few decades at maximum� Pa�
leoseismic investigations �Rockwell et al�� ����	 Dawson et
al�� ����� also suggest that earthquakes follow a long�term
clustering pattern at least in regions of slow tectonic defor�
mation� Average slip rates are known to be stable for most
signi�cant faults over 
����� to 
�� years� But earthquake
long�term clustering implies that the rates should �uctuate
at least on the order of hundreds or thousands of years�

Recent paleoseismic investigations of slip distribution on
California faults �Weldon et al�� ����	 Scharer et al�� �����
cast doubt on the quasi�periodic model of slip accumulation�
Although the Poisson distribution for slip events on earth�
quake faults may be incorrect over long time intervals� this
distribution approximates the observed temporal sequences�
Thus� as a provisional model of seismic temporal behavior�
we suggest that at relatively short time intervals �less than
a millenium� strong earthquakes are clustered� For longer
time intervals �several thousand years� their pattern can be
approximated by the Poisson process� and� �nally� for even
longer times ��D continuum variants of the stochastic stress
release model Zheng and Vere�Jones �
���� may �t better�

In Fig� �� we show four examples of synthetic slip history
obtained by Monte�Carlo simulations� These realizations
demonstrate a signi�cant random variability of slip release
when one assumes that their time distribution is Poisson
and the slip distribution is a power�law� Simulation meth�
ods are analogous to that used in Fig� 
� We also show the
Gaussian approximations of random uncertainties �Kagan�
����a� his Eq� 
�	 Zaliapin et al�� ����� their Eqs� �� and
�
�
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where �y and ��y are the conditional mean and variance of
each normalized summand� given the restriction on the max�
imum slip y� These Gaussian estimates reasonably approxi�
mate the accumulated variable	 see more in �Zaliapin et al��
������

���� Example� Slip statistical distribution� San

Andreas fault at Wrightwood� CA

Weldon et al� ������ �see also Scharer et al� ������� present
a detailed analysis of earthquake slip history on the San An�
dreas fault at Wrightwood� CA� In Fig� �� we show the sta�
tistical distribution of slip events approximated by a power�
law �Pareto distribution�� Since small slips may not be rep�
resented fully in the soil record� we employ a threshold slip
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��� m� similar to an approximation of the earthquake seis�
mic moment� Unfortunately� it is di�cult to reliably esti�
mate the slip threshold as can be done for the magnitudes�
As Section ��� explained� it seems likely that rupture at
the Earth�s surface is caused mostly by large earthquakes�
Therefore� a de	cit of small slips or an almost complete ab�
sence is to be expected� Liu et al� 
����
 also 	nd that the
smallest o�set at the Carrizo Plain �San Andreas fault� is
��� m� Hence� we assume that the slip record is complete
only for slip events larger than ��� m�

The approximation of the slip distribution by the Pareto
law yields � � ����� ����� When comparing these ��values
to the theoretical estimates in Table �� a few assumptions
should be made� In Fig� �� the fault slip is measured at a
point on the San Andreas fault� The distribution may di�er
from that of average slip u calculated in Table �� Rockwell
et al� 
����
 indicate that surface slip may drastically change
over relatively small distance over fault� Ward 
����
 pro�
poses approximating slip distribution along a fault by the
Brownian bridge� applicability of this model needs to be ex�
plored� Moreover� as mentioned above� small slips have a
larger chance of being overlooked� thus biasing the input
data� Nevertheless� the obtained ��value is compatible with
� � � for the site�speci	c value shown for M��� dependence
�Table ���

Fig� �� shows the slip history at Wrightwood with several
uncertainties estimates� For the truncated distribution we
assume that the maximum slip is �� m� Bird and Kagan

����
 	nd that for continental transform faults the corner
magnitude estimate is ���������

����� �more in Section ����� An
average slip of �� m is consistent with this moment mag�
nitude value� We also estimate the uncertainties of slip ac�
cumulation by a simulation performed similarly to that of
Fig� �� However� to estimate upper and lower bounds� we
used ��� ��� instead of � realizations as in Fig� �� For this
choice of parameters� the Gaussian estimates ���� ��� rea�
sonably approximate those obtained through simulation�

�� Discussion

Three problems must be solved to explain earthquake re�
currence� �a� the degree of allowed stress accumulation in
seismic zones� �b� the distribution of strain release by earth�
quakes of various sizes� and �c� the distribution of stress
release along the fault during a large earthquake� The con�
tinuum�block character of Earth deformation �Section ��
requires that all these problems be resolved within a frame�
work of the ��D or ��D stochastic 	eld process� As explained
in the Introduction� both observational data and a theoreti�
cal foundation are not yet su�cient for solving the problems�

We tried to solve a simpler problem� distribution of earth�
quake slip at tectonic fault sites where the slip is su��
ciently concentrated to be measured by paleoseismic meth�
ods� Even this simpler task cannot be fully accomplished
because several components of the earthquake process are
not adequately known� Among these unknown or contested
features are�
�� Temporal distribution for large and great earthquakes for
time periods of decades� centuries� and millenia�
�� Earthquake scaling for events with m � ��
�� Dependence of earthquake surface slip on both the non�
uniformity of earthquake depth distribution and a possible
change of magnitude�frequency relation with depth�
�� Statistics of the slip distribution along fault rupture 
cf�
Mai and Beroza� ����� Ward� ����
�

The scheme of the stress evolution discussed above raises
two related questions� What is the maximum moment of
earthquakes� What are the relations between the stress lev�
els and earthquakes� Apparently these problems cannot be

solved with available data� but accumulating paleoseismic
results and space�geodetic measurements may provide the
necessary input�

Although solving the earthquake slip distribution prob�
lem in this paper cannot be considered complete and fully
self�consistent� our theoretical results may be used to in�
terpret various observational data� Even if consensus on
earthquake size distribution� scaling of earthquake geomet�
ric parameters and earthquake temporal behavior is not yet
there� the derived formulas can be applied to di�erent sets
of assumed distributions�

Finally� we brie�y comment on issues needing resolution
before we can create a viable model of the Earth�s surface
deformation to compare with new and future GPS and In�
SAR measurements�
�a� The fractal nature of fault systems should be explicitly
used in constructing the model�
�b� Earthquake focal mechanisms should be included as an
intrinsic part of the model �see Section ��� This would
greatly increase the model�s complexity� since we would have
to deal with tensor�valued stochastic processes�
�c� The power�law distributions that control earthquakes
need to be integrated with the model� that improvement will
necessitate using stable statistical distributions� a rapidly
developing discipline in mathematical statistics 
Zaliapin et
al�� ����
�

�� Conclusions

We have analyzed the distribution of earthquake size� ge�
ometrical scaling of earthquake rupture and temporal earth�
quake patterns to derive a possible distribution for average
slip on extended faults� The results can be summarized as
follows�
�� Earthquake slip is power�law distributed� The power�law
exponents are derived as they depend on various assump�
tions�
�� Formulas are proposed to approximate slip at paleoseis�
mic sites and evaluate uncertainties due to the statistical
nature of slip accumulation and its size distribution�
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APPENDICES�

Appendix A� Seismic moment distribution
at a site

To calculate the distribution of the seismic moment at a
site we assume that on a fault zone of total length L� the
rate of earthquake with moment M� � ������ Nm �m � ��
or greater and rupture length L� � 	��
 km is equal to ��

�see Section ��	�� The complementary moment function is
then


�M� �
��L�

L
� C��

�

Z
�

M

x��d��x�dx� �A��

where ��x� is de�ned by Equations ���� �
�� ���� ��� and
C��� is a normalizing coe�cient� Similar to the moment�
frequency relation� the function 
�M� shows the number
of fractures caused by an earthquake with moment M at a
fault site�

For the characteristic distribution


�M� � ��L�
L�d � ��d�M��M�� � �M��Mxc�

��

for Mxc �M �M�� and


�M� � � for M �Mxc � �A��

where 	 � �d��
d

� Using Eq� � by Kagan �����b� we can
convert �A��


�M� � ���
�d
� �M�M

��
� M���

xc

���d�M��M�� � �M��Mxc�
��

for Mxc � M �M� � �A	�

where �M� is the seismic moment rate on L��
For the truncated Pareto distribution�


�M� �
��L���p

L� � ��M��M�� � �M��Mxp�
��

for Mxp � M �M�� and


�M� � � for M �Mxp � �A��

where 
p is de�ned by


p �
M�

xp

M�
xp �M�

�

� �A
�

Alternately�


�M� � ���
�d � �M�M

��
� M���

xp � ��M��M�� � �M��Mxp�
��

for Mxp � M �M� � �A��

If �d � �� the above formulas need to be modi�ed� For
the characteristic distribution�


�M� � ��L�
L

� ��� log�Mxc�M��

for Mxc � M �M�� and


�M� � � for M � Mxc � �A��

For the truncated Pareto distribution�


�M� �
��L���p

L
� log�Mxp�M�

for Mxp �M �M�� and


�M� � � for M �Mxp � �A��

Appendix B� Slip distribution

The distribution density of the average slip is obtained
from ��M� �see Equations ��� �	�� as

f�u� � �
�
ud��d���

�
u���d���� �B��

Inserting in �B�� appropriate expressions for seismic mo�
ment distribution� and integrating to obtain a cumulative
function� we obtain the following formulas for the comple�
mentary function of displacement

��u� � C��
Z
�

u

f�x�dx� �B��

To simplify the equations we normalize the displacement by
dividing them by u� � ���� m� ux is the slip corresponding
to the maximum earthquake �normalized by dividing it by
u���

For the characteristic distribution�

��u� � �d u���u
��
xc

�d u
��

�
� u

��
xc

� for uxc � u � u�� and

��u� � � for u � uxc � �B	�

where

� �
�d� �

d� �
� �B��

hence � � � for d � ����
For the truncated Pareto distribution of the seismic mo�

ment�

��u� �
u���u

��
xp

u
��

�
�u
��
xp

� for uxp � u � u�� and

��u� � � for u � uxp � �B
�

For the gamma distribution of the seismic moment�

��u� � C�

Cg

�
�

�
�� �d��

d
�
�

u
uxg

�d��d����

�
�

u
uxg

�����d���d���

exp

�
�

�
u
uxg

�d��d����	
� �B��

where ��a� x� is the incomplete gamma function �Abramowitz

and Stegun� ����� p� ����

P �x�a� �


��a�

�
��
Z x

�

e�tta��dt� for a � � � �B��

where ��a� is the gamma function �Abramowitz and Stegun�
����� p� �����

C� � �

�
d

���d


�
u�
uxg

�����d���d���

� exp

��
u�
uxg

�d����d��
� �B��

and

Cg � C� �

�
� � �d��

d
�
�

u�
uxg

�d����d��
� �d

�d�� � �B��



KAGAN � EARTHQUAKE SLIP DISTRIBUTION X � ��

If �d � �� the above formulas need to be modi�ed� For
the characteristic distribution�

��u	 � d���log uxc�log u
d���log uxc�log u�

� for uxc � u � u�� and

��u	 � 
 for u � uxc � �B�
	

For the truncated Pareto distribution�

��u	 �
log uxp�log u
log uxp�log u�

� for uxp � u � u�� and

��u	 � 
 for u � uxp � �B��	

For the gamma distribution of the seismic moment�

��u	 � E�

�
u

uxg

��
E�

�
u�

uxg

�
for u � u���B��	

where E��z	 is an exponential integral �Abramowitz and Ste�
gun� ��
�� p� ���	

E��z	 �

Z
�

z

t
��

e
�t
dt � �B��	

We calculate this integral using the mathematica package
�Wolfram� ����	�

Appendix C� Cumulative slip distribution
at a site

The cumulative distribution of the total slip at a site can
be expressed as follows� For the characteristic distribution
of the seismic moment tensor�

��u	 � C�
u�����

u
���
xc ��

� for uxc � u � �� and

��u	 � � for u � uxc � �C�	

where

� �
�d� �

d � �
� �C�	

see �B�	 and

C� � �
�� u���xc

�� �u
���
xc

� �C�	

For the truncated Pareto distribution of the seismic moment
tensor�

��u	 � u�����

u
���
xp ��

� for uxp � u � �� and

��u	 � � for u � uxp � �C�	

For the gamma distribution of the seismic moment�

��u	 �
P� � P�

�� P�
� �C�	

where

P� � P

��
u

uxg

�d����d�
� � � �

�
� �C�	

and

P� � P

��
�

uxg

�d����d�
� � � �

�
� �C
	

see �B
	 for the de�nition of the P �function�
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Table �� Values of exponents for the scale�invariant part of
various fault geometrical distributions

L �M��d u �M �d����d u � M��� �d � ��

d M Ms L Ls u us u us up u� u�s

� � � 	 
 � � 
 � �� �� ��

� � � �

�d��
d

�d �d� � �d
d��

�d��
d��

�d �d� � �d� � �d
d��

�d��
d��

��
 ��� � � � � � � � � � �
��� ��� ��� 	�� ��� 	�� ��� � � � � �
��� ��� ��� � � � ��� � � � � ���
��� ��� 	��
 ��
 ��
 ��� ��	 ��
 ��
 ���� ��� ��	
��� ��� ��� ��� ��� ��	 ��	 ��� ��� ���� ��	 ��	

a x � area�speci�c distributions�
b xs � site�speci�c distributions�
c xp � point�speci�c distributions�
d x�s � reduced site�speci�c slip for small earthquakes�m � ��
Columns ���� ����� assume rupture width W � W� ��
 km��
Columns 
��� widthW is not limited� d � � scaling is assumed�

� � area�speci�c moment distribution exponent�
� � site�speci�c moment distribution exponent�
� � site�speci�c rupture length distribution exponent�
� � site�speci�c slip distribution exponent�
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 N = 197; β = 0.62+/−0.04

 Mt = 1.78e+17 (1017.25) Nm

Figure �� Number of earthquakes �shown by circles�
with seismic moment larger than or equal to M as a
function of M for the earthquakes in the Toppozada et

al� ������ catalog� Latitude limits 	��
�N � 	����N
 mag�
nitude threshold 
�

 the total number of events is ����
Solid line � is the �t to these assuming a Pareto distri�
bution �	� with the exponent � � ����� � ������ dotted
lines show �
� con�dence limits �Aki
 ���
�� Dashed
lines are uncertainties in earthquake numbers when as�
suming a Poisson distribution of the numbers and using
the Gaussian approximation for the Poisson distribution�
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 N1 =107; β1 = 0.74+/−0.07

(A)

 N2 =14; β2 = 0.83+/−0.2
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 N1 =1189; β1 = 0.67+/−0.02

(B)

 N2 =120; β2 = 0.76+/−0.07

Figure �� Seismic moment statistical distribution� Har�
vard catalog �������� � 	

	�
���
 �Ekstr�om et al��
	

�
� subduction zones� Moment threshold is �
���� Nm
�m � ����� Upper four curves � earthquakes on ocean
side� lower curves � earthquakes on continental side�
Solid line � approximation by a Pareto distribution ����
dashed lines ��� con�dence limits �Aki� ����
� condi�
tioned by the total number of earthquakes observed� The
limits show approximately the uncertainty due to the ��
value estimation error� The number of events should fol�
low the Poisson distribution with these parameter values�
hence the full uncertainties would be higher� For smaller
time intervals the Poisson distribution is far from the
Gaussian� the accurate formula is given by Kagan ������
Eq� ��
� The total number of earthquakes N and the
exponent � estimate is shown for both populations�
�A� � strike�slip earthquakes�
�B� � thrust earthquakes�
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Figure �� Depth histogram for hypocenters estimated
using a waveform cross�correlation technique in the ���	�
���� southern California catalog of Shearer et al� �	

�
�
A magnitude threshold ML � ��
 is used� The number
of earthquakes is 	���� the average depth �h � ��� km�
the standard deviation �h � ��� km�
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Figure �� Probability functions for the site�speci�c mo�
ment distribution for M � L

��� � Solid line � truncated
G�R cumulative distribution � model �a� in Section ��	

dashed line � truncated G�R distribution density �b�

dash�dotted line � modi�ed gamma distribution �d�� Dot�
ted line corresponds to the unrestricted G�R distribution�
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Figure �� Probability functions for the site�speci�c slip
distribution in individual earthquakes for M � L

����
Solid line � truncated G�R cumulative distribution �
model �a� in Section ��	
 dashed line � truncated G�
R distribution density �b�
 dash�dotted line � modi�ed
gamma distribution �d�� Dotted line corresponds to the
asymptotic distribution ux � �� i�e�� ��u� 
 u

�� �see
Equation �A����
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Figure �� Cumulative probability functions for total
earthquake slip distribution at a single site� Solid line �
M � L��� for small earthquakes �m � ��� dashed line �
M � L���� dash�dotted line � M � L���� dotted line �
M � L����
�A� the truncated G�R distribution density � model �b�
in Section 	�
�
�B� the gamma distribution density � model �d� in Sec�
tion 	�
�
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Figure �� Simulations of the seismic moment release
history� Four examples are shown� Each represents an in�
dependent simulation of moment release history� Earth�
quakes are assumed to occur according to the Poisson
law� the moment distribution is assumed to be the trun�
cated power�law distribution density ��� with � � 
�	�
For illustration we use the maximum moment equal to

��� and the minimum size earthquake is equal to 
��� If
the moment unit is assumed to equal 
��� Nm� the maxi�
mum magnitude �or the maximum jump in the diagram�
corresponds to an m� earthquake�
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Figure �� Simulation of slip trajectory versus time
at a arbitrary site �thick lines� solid and dot�dashed��
Poisson in time� truncated Pareto in slip �� � ����
uxp � �	��� m�
 Dashed thin lines � Gaussian approx�
imation �see Equations �	� ��� for the sum� ��
 Dash�
dotted thin lines � Gaussian approximation for the sum�
���
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 N =11; ζ = 1.5+/−0.5

Figure �� Slip statistical distribution� for paleoseismic
measurements made in the San Andreas at Wrightwood�
CA
 Threshold �minimum� slip is �

 m
 Solid line �
approximation by a power�law Pareto distribution� � �
��
��	�
�� dashed lines �
� con�dence limits �Aki� ���
��
conditioned by the total number of earthquakes observed
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Figure ��� Slip trajectory versus time� San Andreas at
Wrightwood� CA� thick solid line � measurements� thin
solid lines � simulations� thin dotted lines � Gaussian
approximations �see Equations ���	 and ��
	�� Average
estimate �middle thin lines	 and 
�� con�dence limits
�upper and lower thin lines	 are shown�




