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THE PROKINETICINS: NEUROMODULATORS AND
MEDIATORS OF INFLAMMATION AND MYELOID
CELL-DEPENDENT ANGIOGENESIS
Lucia Negri and Napoleone Ferrara

Sapienza University of Rome, Rome, Italy; and University of California, San Diego, La Jolla, California

L
Negri L, Ferrara N. The Prokineticins: Neuromodulators and Mediators of Inflamma-
tion and Myeloid Cell-Dependent Angiogenesis. Physiol Rev 98: 1055–1082, 2018.
Published March 14, 2018; doi:10.1152/physrev.00012.2017.—The mammalian
prokineticins family comprises two conserved proteins, EG-VEGF/PROK1 and Bv8/
PROK2, and their two highly related G protein-coupled receptors, PKR1 and PKR2. This

signaling system has been linked to several important biological functions, including gastrointestinal
tract motility, regulation of circadian rhythms, neurogenesis, angiogenesis and cancer progres-
sion, hematopoiesis, and nociception. Mutations in PKR2 or Bv8/PROK2 have been associated
with Kallmann syndrome, a developmental disorder characterized by defective olfactory bulb neu-
rogenesis, impaired development of gonadotropin-releasing hormone neurons, and infertility. Also,
Bv8/PROK2 is strongly upregulated in neutrophils and other inflammatory cells in response to
granulocyte-colony stimulating factor or other myeloid growth factors and functions as a pronoci-
ceptive mediator in inflamed tissues as well as a regulator of myeloid cell-dependent tumor
angiogenesis. Bv8/PROK2 has been also implicated in neuropathic pain. Anti-Bv8/PROK2 anti-
bodies or small molecule PKR inhibitors ameliorate pain arising from tissue injury and inhibit
angiogenesis and inflammation associated with tumors or some autoimmune disorders.
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I. HISTORICAL NOTE ON THE DISCOVERY
OF PROKINETICINS

The complex history of this family of small proteins began
about 40 years ago, when Strydom (218) isolated multiple
proteins from black mamba (Dendroaspis polylepis polyle-
pis) venom. Among these, “venom protein A” or “VPRA”
seemed devoid of toxic effects in standard tests (218). A few
years later, the same group determined the amino acid se-
quence of VPRA and noted the lack of homology with any
known black mamba protein (109). In 1999, Schweitz et al.
(198) purified a protein from black mamba venom that
stimulated contraction of the guinea pig ileum, hence the
name “mamba intestinal toxin 1” (MIT-1). Sequence anal-
ysis revealed that MIT-1 was the same protein as VPRA
(198). The same group also described a key structural fea-
ture of this protein, the existence of a “colipase fold” (17).

In 1999 Mollay et al. (158) isolated from the skin secretion
of the frog Bombina variegata a small protein, which was

closely related to VPRA/MIT-1 (58% sequence identity),
and named it “Bv8” to indicate its origin (B. variegata) and
molecular weight (8 kDa). Similar to MIT-1, Bv8 con-
tracted guinea pig, rat, and mouse ileum and relaxed rat
colon. Additionally, they reported that Bv8 induced hyper-
algesia in rats (158).

In 2001, Li et al. (136), searching EST databases for homol-
ogies to the predicted coding region of Bv8, identified two
human sequences, one encoding a protein of 86 amino acids
which showed a high degree of homology with VPRA/
MIT1 and the other encoding an 81-amino acid protein
highly related to Bv8. Similar to VPRA and Bv8, these pro-
teins potently stimulated the contraction of gastrointestinal
(GI) smooth muscle. To reflect this motility-enhancing ac-
tivity, the two human proteins were named respectively
prokineticin 1 (PROK1) and prokineticin 2 (PROK2) (136).

At about the same time, LeCouter et al. (127) reported the
identification of a molecule capable of stimulating prolifer-
ation of adrenal cortex-derived endothelial cells from
screening a library of human secreted proteins (42). They
expected this molecule to be a member of a known family of
endothelial cell mitogens, but surprisingly, it displayed a
remarkably high degree of homology (80%) with VPRA/
MIT1 (126, 127). Based on its selective expression in hu-
man steroidogenic organs, this protein was named endo-
crine gland-derived vascular endothelial growth factor (EG-
VEGF) (127). These early studies showed that EG-VEGF
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induced proliferation, migration, and fenestration in endo-
thelial cells in vitro and a strong angiogenic response when
delivered in the rat ovary. Similar to VEGF-A (70), the
expression of EG-VEGF was induced by hypoxia, through a
hypoxia-inducible factor-dependent mechanism (127). The
mature human EG-VEGF protein proved identical to
PROK1 (126, 127, 136).

While the nomenclature can be quite confusing given the
multiple names of the mammalian and nonmammalian pro-
teins, it is now well established that this family comprises
only two ligand members, which are encoded by two dis-
tinct genes. EG-VEGF/PROK1 is the ortholog of VRPA/
MIT1, while Bv8/PROK2 is the ortholog of Bv8.

II. STRUCTURE, PHYLOGENESIS, AND
HOMOLOGIES OF PROKINETICINS

Mammalian and nonmammalian prokineticins exhibit an
identical amino terminal sequence, AVITGA, which is crit-
ical for their biological activity. On this basis, Kaser et al.
(110) proposed the general term AVIT proteins to designate
this family. Substitutions, deletions, or insertions to this
hexapeptide result in the loss of agonist activity on proki-
neticin receptors (23, 166).

The presence of 10 cysteines with identical spacing defines a
5-disulfide bridge that confers to the molecule a compact
structure with NH2 and COOH ends present at the surface.
Several charged residues are buried inside the molecule,
whereas some hydrophobic residues, such as Trp24, are
exposed on the surface. Substituting Trp in position 24 with
Ala changes the relative affinity and efficacy of Bv8 for the
receptors (124). One side of the roughly ellipsoid protein
has a positive net charge, whereas the opposite side is hy-
drophobic (110). A similar Cys motif is also present in mam-
malian colipase [called a colipase fold, as already noted (17)]
and in the COOH-terminal region of members of the Dick-
kopf family of extracellular signaling proteins that organize
head development in embryos (85). Prokineticins, however,
do not stimulate the activity of pancreatic lipase and are also
inactive in an assay measuring Dickkopf functions (17, 110,
223). Homologs of Bv8 have been identified in skin secretions
of various amphibians, Bombina bombina, Bombina orienta-
lis (Bo8), and Bombina maxima (Bm8a) (33), and also in liz-
ards and in Takifugu fish species (110) (FIGURE 1). Also,
groups of proteins that share the colipase fold and some se-
quence identity and homology with MIT-Bv8-prokineticins
have been identified in the venom of Australian funnel-web
spiders Hadronyche sp. (223, 239), in the cnidarian allomonal
system (202), and in hemocytes of crayfish. Interestingly, these
crustacean proteins, astakines, are produced by hemocytes
and are released into the plasma. Astakines are among the first
invertebrate cytokines shown to be involved in hematopoiesis,
and thus they may provide new evolutionary perspectives
about this process (210). However, it has been reported that

these invertebrate homologs do not activate the mammalian
prokineticin receptors due to the lack of the six conserved
NH2-terminal amino acids, making their inclusion in the pro-
kineticin family questionable. Subsequent studies reported
that astakine binds plasma membrane ATP synthase (141),
although the signaling receptor for astakine is presently un-
known.

In murine and human testis, two forms of Bv8-like proteins
are present, containing 81 and 102 amino acids, respec-
tively (FIGURE 2). They differ in the sequences encoded by
an exon, 21 residues of which 19 are basic (lysines or argi-
nines) occurring in two clusters, raising the possibility that
some proteolytic cleavage could take place as these mole-
cules cross the secretory pathway, possibly generating a
short molecule (PK2�) that retains the receptor binding and
activation domain (32). However, it remains to be deter-
mined whether prokineticins can undergo proteolytic cleav-
age by extracellular proteases in vivo. The long form is
identified as mBv8b or Bv8102 or PROK2L (130, 238). The
transcript lacking the insert, indicated as Bv8a or Bv881 or
PROK2, similar to Bv8 from frog, is present in many or-
gans. The longer form, however, only could be detected
unambiguously in murine and human testis, in primary
spermatocytes, and in rat and mouse macrophages (84,
150). A third transcript with a portion of intron 2, that
would yield a truncated form of Bv8 lacking both the basic
stretch and the COOH-terminal part, has been found in
mouse brain (108). The recently described amino acid se-
quence of simian (Macaca mulatta) PROK2 (24) displays
only two conservative substitutions compared with human
PROK2 sequences (V51F, R80Q) and three conservative
substitutions compared with mouse PROK2 sequences
(K36Q, L37V, W51V).

The genomic structure of murine and human Bv8/PROK2
genes has been determined, and the chromosomal localiza-
tion was identified near a synteny breakpoint of mouse
chromosome 6 and human 3p21, located within an unsta-
ble chromosomal region. Exon 1 encodes the signal peptide
and the first five amino acids of the mature protein. Exon 2
encodes 42 amino acids, including 6 of the 10 cysteines of
the mature protein. Exon 3 encodes the 21-amino acid in-
sert that is present in an alternative mRNA. The remaining
34 amino acids are encoded by exon 4, including 4 of the 10
cysteines of the secreted protein. The Bv8 human and mouse
promoter sequences are highly conserved (108, 130). FIG-
URE 3 illustrates the genomic structure and schematic pro-
tein sequences of Bv8/PROK2 and EG-VEGF/PROK1.

As noted, EG-VEGF/PROK1 is most closely related to
VPRA/MIT-1 (83% homology) and shows only 45% se-
quence homology with PROK2/Bv8. Mouse EG-VEGF
maps to a region of chromosome 3 synthenic with human
chromosome 1p13.1, the locus for human EG-VEGF/
PROK1. The gene organization is highly conserved, com-
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FIGURE 1. Amino acid sequences of non-mammalian prokineticins. The AVITG motif in the NH2-terminal
region of the mature protein, required for biological activity, and the cysteine residues, required for the
“colipase fold,” are highlighted.
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posed of three exons, with no known alternative splicing
product. But the promoter sequences have diverged; for
example, the human EG-VEGF/PROK1 promoter has a
potential binding site for an orphan nuclear receptor essen-
tial for adrenal development [steroidogenic-factor 1 (SF-1),
or NR5A1] (177). Indeed, as already pointed out, in human
and non-human primates, EG-VEGF/PROK1 expression is
restricted to steroidogenic cells, with ovary and testis ex-
pressing the highest level of transcript, whereas mouse EG-
VEGF transcript is restricted predominantly to the liver and
kidney (129). Surprisingly, in the bovine tissues, the pattern
of EG-VEGF/PROK1 and Bv8/PROK2 expression appears

closer to the distribution in the mouse than in the human
tissues: EG-VEGF/PROK1 is more abundantly expressed in
liver than in endocrine tissues (112).

Regulators for the prokineticins have been described in repro-
ductive tract, neurons, and macrophages. In the reproductive
tract, the expression of EG-VEGF/PROK1 may be upregu-
lated by estrogen, progesterone, and human chorionic gonad-
otropin, as well as hypoxia-inducible factor-1a (127, 172,
173, 226). In olfactory bulbs, the expression of Bv8/PROK2 is
elevated by two proneural basic helix-loop-helix factors (neu-
rogenin1 and Mash1) and repressed by homeobox transcrip-

FIGURE 2. Amino acid sequences of mammalian prokineticins. PK1, EG-VEGF/PROK1; PK2, Bv8/PROK2.
Highlighted are the AVITG motif, the cysteine residues, and the highly basic, alternative spliced, sequence
encoded by exon 3 in PK2b.
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tional factors (distal-less homeobox 1 and 2) (247). Bv8/
PROK2 is positively regulated in neutrophils and bone mar-
row, specifically by granulocyte colony stimulating factor
(207) but by interleukin (IL)-10 in human monocytes and
lymphocytes. Granulocyte-colony stimulating factor (G-
CSF) may be also responsible for Bv8/PROK2 upregulation
in sensitive neurons and in central nervous system (CNS)
after nerve damage or neuroinflammation (1, 143).

Prokineticin variants have been found in humans. EG-
VEGF/PROK1-V67I occurs in nearly 50% of the general
population and is usually considered as a neutral variant,
not directly implicated in recurrent miscarriage. However,
it has been reported to confer a modifier effect on early
pregnancy through interaction with PKR1 and PKR2 vari-
ants (219). So far, 10 Bv8/PROK2 mutations have been
found in a minority of Kallmann syndrome (KS) patients,
most heterozygotes. Most of these mutations may impair
correct synthesis and/or activity of the ligand (55).

It has been pointed out that the prokineticin family shares
several common features with the chemokine superfamily,
such as their small size (8 kDa), receptors (G protein-cou-
pled receptors, GPCR), signaling mechanisms, as well as
chemotactic and immune-modulatory activities (161).
However, a key structural difference is the presence of 10
cysteine residues in prokineticins, whereas chemokines con-
tain 4–6 cysteine residues. A phylogenetic study to compare
the degree of similarity among prokineticins, chemokines,
and defensins, a subclass of cationic antimicrobial peptides
involved in innate immunity, revealed a higher similarity of
amino acid sequence between defensins and prokineticins
than with chemokines (161).

III. DIFFERENTIAL EXPRESSION OF
PROKINETICINS

Although both EG-VEGF/PROK1 and Bv8/PROK2 are co-
expressed in various tissues, there are some striking differ-

B
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FIGURE 3. Genomic structure and schematic protein sequences of Bv8/PROK2 (A) and EG-VEGF/PROK1
(B). Bv8/PROK2 gene has been localized near a synteny breakpoint of mouse chromosome 6 and human
3p21, located within an instable chromosomal region. As indicated in the text, exon 1 encodes the signal
peptide and the first 5 amino acids of the mature protein; exon 2 encodes 42 amino acids, including 6 of the
10 cysteines of the mature protein, and exon 3 encodes the 21-amino acid insert that is present in an
alternative mRNA. The remaining 34 amino acids are encoded by exon 4, including 4 of the 10 cysteines of the
mature protein. The Bv8/PROK2 human and mouse promoter sequences are highly conserved, indicating a
related transcriptional regulation in these species (108, 130). Mouse eg-vegf/prok1 maps to a region of
chromosome 3 synthenic with human chromosome 1p13.1, the locus for human EG-VEGF/PROK1. The gene
organization is highly conserved, composed of three exons, with no known alternative splicing product.
However, the promoter sequences have diverged among species (see text) leading to different localization: in
steroidogenic glands in human and non-human primates (177), in liver and kidney in mouse (129), and in liver
in bovine (112).
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ences in tissue expression patterns (see TABLE 1). A major
difference is that, in humans, EG-VEGF/PROK1 is pre-
dominantly expressed in steroidogenic endocrine glands
(127), whereas Bv8/PROK2 is mainly expressed in the non-
steroidogenic cells.

Mammalian testis expresses the highest level of prokine-
ticins. EG-VEGF/PROK1 is restricted to the testosterone-

producing Leydig cells, whereas Bv8/PROK2 is expressed
in the seminiferous tubules and restricted to the primary
spermatocytes (130, 194, 238).

In the rat gut, Eg-vegf/prok1 mRNA expression is signifi-
cantly higher in the stomach than in the small intestine,
especially in fundus where it is 70-fold higher than Bv8/
prok2 mRNA (234). Eg-vegf/prok1 (but not bv8/prok2) is

Table 1. Expression pattern of PROK1, PROK2, PROKR1, and PROKR2 in mouse and human tissues

TISSUES PROK1 PROK2 PKR1 PKR2
Reference

Nos.

Brain Tractus solitarium,
cerebellum

Olfactory bulb, SCN,
medial preoptic area,
nucleus arcuatus,
nucleus accumbens,
Calleja islands, medial
amygdala,
mesencephalon,
cerebral cortex,
cerebellum

Embryo ventricles
olfactory bodies,
nucleus arcuatus,
mammillary bodies,
hypothalamus,
mesencephalon,
Gasser ganglion

Embryo ventricles, olfactory
bodies, piriform and
entorhinal cortex, lateral
preoptic area,
hippocampus, globus
pallidus, amygdala, SCN,
paraventricular nucleus,
nucleus arcuatus, median
eminence, mammillary
nucleus, subfornical organ,
Gasser ganglion

35, 155,
168

Spinal cord Astrocytes, central
endings of
nociceptors

Astrocytes, central
endings of nociceptors

Projection neurons and motor
neurons

143

Peripheral
nervous
system

DRG: some TRPV1�
neurons, Schwann
cells

DRG: mainly inTRPV1�
neurons

DRG: mainly TRPA1�
neurons

165

Pituitary Neuropituitary 138, 151
Ovary Granulosa, theca cells Capillary endothelial cells Capillary endothelial cells 69, 73,

127,
138

Uterus Glandular epithelium,
stromal and smooth
muscle cells

Glandular epithelium,
stromal and smooth
muscle cells

Glandular epithelium,
stromal and smooth
muscle cells

Glandular epithelium, stromal
and smooth muscle cells

63, 112

Placenta Labyrinth � 99–101
Testis Leydig cells Primary spermatocytes Endothelial cells of

interstitium
Endothelial cells of

interstitium
130, 194,

238
Prostate Prostate cancer � 127, 179
Heart Cardiovascular tissue,

cardiac cells
Cardiovascular tissue,

cardiac cells
229, 230

Kidney Epithelial tubules � Endothelial cells 129, 151
Adrenal gland Glomerulosa,

fasciculate cells
Glomerulosa, fasciculate

and endothelial cells
Glomerulosa, fasciculate

and endothelial cells
Glomerulosa and endothelial

cells
127, 138,

152
Liver Kupffer cells 151, 160
Pancreas Pancreatic islet,

stellate cells
Vascular endothelial

cells
Vascular endothelial cells 138, 139

Stomach Stomach fundus Stomach 136, 151
Intestine Mucosa and

mesenchyme of
embryonic gut

Enteric plexus Enteric neuronal crest
cells; epithelial cell,
ileum submucosal and
myoenteric neurons,
colon myoenteric
nucleus

Ileocecum enteric plexus 175

Adipocytes � Preadipocytes 151, 221
Bone marrow
and blood
cells

B and T cells Hematopoietic stem
cells, monocytes,
neutrophils, dendritic
cells. Inflammatory
granulocytes and
macrophages

Hematopoietic stem
cells, mouse
granulocytes

Hematopoietic stem cells,
human and mouse
granulocytes

131, 160
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expressed in the mucosa and mesenchyme of the mouse
embryonic gut. On the basis of in vitro studies, it has been
proposed that EG-VEGF/PROK1 might modulate both
proliferation and differentiation of enteric neural crest cells
(NCC) during enteric nervous system development, which
eventually contribute to the formation of the myenteric and
submucosal enteric plexus of the bowel rich in PKR1 (172,
174). Both EG-VEGF/PROK1 and Bv8/PROK2 are ex-
pressed in mouse and human myocardial tissue where,
through PKR1 signaling promotes cardiomyocyte survival
and angiogenesis and via Akt activation, protect cardiomy-
ocytes against oxidative stress (230). Recently, studies
aimed toward developing cardioprotective agents reported
that some non-peptide prokineticin agonists promote an-
giogenesis and protect heart function in a mouse model of
myocardial infarction (82, 231). The clinical relevance of
these encouraging findings remains to be established, con-
sidering the challenges in the clinical translation of data in
animal models of ischemic disease (60).

Bv8/PROK2, but not EG-VEGF/PROK1, is expressed in
normal liver, but only in Kupffer cells, the liver resident
macrophages (161). Bv8/PROK2 is expressed in the skin,
granulocytes, dendritic cells, and macrophages, and its ex-
pression increases following local inflammation (84, 131).
In rats and mice, inflammatory granulocytes and macro-
phages strongly express Bv8/PROK2 in the two isoforms,
PROK2 and PROK2L (150). By two-dimensional electro-
phoresis and biochemical purification, Giannini et al. (84)
identified and isolated from rat peritoneal granulocytes a
peptide, which displayed comparable receptor affinity and
biological activity as that of the amphibian Bv8. Also,
Zhong et al. (250) purified human Bv8/PROK2 from hu-
man neutrophils, tested it for the biological activity in
NFAT-CHO cells transfected with PKR1 cDNA, and also
demonstrated its ability to promote neutrophil migration at
very low concentrations, suggesting that the Bv8/PROK2
may physiologically regulate neutrophil migration via ERK
and phosphatidylinositol 3-kinase (PI3K) pathways.

It noteworthy that the expression levels of the prokineticins,
as well as those of their receptors, may be differently regu-
lated in pathological states (86, 179, 224). A whole genome
analysis of genes differentially regulated in human aorta
following rupture of abdominal aneurysm revealed that
Bv8/PROK2 was significantly upregulated, similar to IL-6
and IL-8, suggesting that Bv8/PROK2 is a participant in the
immune and inflammatory response associated with such
pathological processes (38).

Prokineticins were detected in CNS by Melchiorri et al. as
early as 2001 (155). By in situ hybridization and immuno-
histochemistry using a polyclonal antibody raised against
an epitope common to both forms of mouse Bv8, they de-
tected the presence of Bv8-like proteins in layer II of the
cerebral cortex, in limbic regions, in cerebellar Purkinje

cells, and in dorsal and ventral horns of the spinal cord.
Subsequent studies demonstrated some species differences
in CNS prokineticin distribution (35, 164, 167).

Maftei et al. (143) reported the presence of Bv8/PROK2 in
mice spinal cord mainly in astrocytes. Bv8/PROK2 is also
present in peripheral nervous system in some dorsal root
ganglion (DRG) neurons, which also express the vanilloid
receptors TRPV1 (104, 165). But after injury of the sciatic
nerve, immunoreactivity for Bv8/PROK2 becomes evident
in many DRG neurons, in calcitonin gene-related peptide
(CGRP)-positive nerve fibers and in Schwann cells along the
fibers.

Zhou and co-workers reported a detailed description of
prokineticin and of prokineticin receptor expression in the
CNS of adult mice (37, 248) and of monkey (24). The
expression patterns of Bv8/PROK2 and PKR2 in the ma-
caque brain were found to be quite similar to those in the
mouse brain. Moreover, through a transgenic reporter ap-
proach, they were able to obtain a map of the efferent
projections of Bv8/PROK2-expressing neurons in the su-
prachiasmatic nucleus (SCN). PROK2 might be axonally
transported and released at the terminals, but it also acts in
a paracrine and/or autocrine fashion. The rhythmic oscilla-
tion of Bv8/PROK2 mRNA in the SCN and the widespread
expression of PKR2 in major SCN targets support a role of
Bv8/PROK2 in circadian-controlled processes. PROK2 os-
cillation in the SCN is dependent on the core SCN oscilla-
tors as it is abolished in mutant mice lacking the functional
clockwork (34, 35).

IV. PROKINETICIN RECEPTORS

A. Structure

Three groups independently identified two closely related
GPCRs for Bv8/EG-VEGF/PROKs (138, 151, 211), which
showed ~80% identity to the previously described mouse
orphan receptor gpr73 (178). These receptors are now
called prokineticin receptor 1 (PKR1) and prokineticin re-
ceptor 2 (PKR2). FIGURE 4 shows a schematic structure of
human PKRs. PKR1 and PKR2 are similar to the neuropep-
tide Y (NPY) receptor and belong to the family-A of GPCR
with two Cys residues located on the first and second extra-
cellular loop giving rice to a disulfide bond. In humans, the
genes encoding these receptors are on two different chro-
mosomes (PKR1 gene: 2p13.3; PKR2 gene: 20p13), but the
sequences of both receptors are highly conserved, with
nearly 85% identity; in the mouse, the genes are located on
chromosome 6 and 2, respectively. Most sequence variation
is concentrated in the extracellular NH2-terminal region,
which contains a nine-residue insert in hPKR1 compared
with hPKR2, as well as in the second intracellular loop and
in the COOH-terminal tail. Both receptors are encoded by
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two exons separated by an intron located at the border of
transmembrane domain III (138).

Except for MIT-1, a clearly PKR2-preferring ligand, and
PK2� (the predicted short form of PROK2) which displays
clear selectivity for PKR1, all the other natural prokine-
ticins bind and activate both receptors in nanomolar range,
with Bv8/PROK2 showing a moderately higher affinity
than PROK1 for both receptors (138, 211). The non-mam-
malian prokineticins (MIT-1 and Bv8) display considerably
higher affinity with at least one order of magnitude higher
compared with human prokineticins (170). Bv8, which dis-
plays similar affinity for both receptors, behaves as mam-
malian PROK2 and is a good pharmacological tool to eval-
uate the prokineticin activities (168).

Computational (132) and genetic (159) analyses indicate
that the binding sites for the endogenous peptide ligands
reside on the extracellular surface of the receptors in corre-
spondence of the second extracellular loop (EL-II), whereas
small non-peptide agonists and recently identified antago-
nists (9, 82) bind to an allosteric transmembrane site.
However, small agonists and antagonists interact with
different residues (Arg144, Asn 141, Gln219, Phe 300
the agonist; Arg 144, Arg307, Cys137, Glu119 the an-

tagonist) resulting in a totally different area of this
pocket. This might explain why the available antagonists
show only preferential affinity for PKR1 with respect to
PKR2, whereas the agonists behave as positive allosteric
modulators selective for PKR1 (82).

It has been reported that the signal transduction efficiency
of PKR1 may be higher than that of PKR2 (127, 138, 180),
suggesting that the net amount of positive charges at the
central portion of the second intracellular loop (IL-II),
higher in PKR1 (because of the presence of the strong pos-
itive-charged amino acid Arg) than in PKR2 (containing the
neutral amino acid Asp and the moderate positive-charged
Lys), explains a full signaling efficacy and potency.

Receptor internalization (endocytosis) is a mechanism ad-
opted by most receptors to prevent uncontrolled stimula-
tion, which may otherwise lead to disregulation and dis-
ease. In vitro studies [polyoma middle T-transformed
mouse coronary endothelial cells H5V (81) expressing
PKR1, CHO transfected with PKR1, HEK-293 tranfected
with PKR2] indicated that both PKRs undergo rapid (in 1
min) agonist-induced internalization which is maximal at
30–60 min and the receptor recycles back to the plasma
membrane after the removal of ligand (82, 91, 180). Ac-
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FIGURE 4. Schematic structure of hu-
man PKRs. PKR1 (black) has 85% homol-
ogy with PKR2. Most sequence variations
are concentrated in the extracellular NH2-
terminal region, nine residues shorter in
hPKR2 (red), as well as in the second in-
tracellular loop [2 Arg residues in PKR1
instead of Asp and Lys in PKR2 (138)] and
in the COOH-terminal tail. They belong to
the family-A of GPCR with two Cys residues
located on the first and second extracellu-
lar loop giving rise to a disulfide bond. The
binding sites for the endogenous peptide
ligands are in correspondence to the sec-
ond extracellular loop (EL-II); those for the
small non-peptide PKR antagonists and
agonists are in a different area of an allo-
steric transmembrane pocket: yellow cir-
cles indicate the residues interacting with
antagonist, and green circles indicate the
residues interacting with agonists. The
PKRs are Gq-coupled receptors but may
also couple Gi and Gs proteins, indicating
that multiple pathways are involved in pro-
kineticin signaling with both tissue and spe-
cies-to-species variation. [Modified from
Maldonado-Pérez et al. (144).]
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cordingly, Mollay et al. (158) observed strong tachyphy-
laxis to Bv8-induced guinea pig ileum contraction, which
developed after the first exposure to Bv8 and lasted for
more than 1 h. Also, Cheng et al. (35) reported that persis-
tent intracerebroventricular infusion of Bv8/PROK2 may
desensitize the receptors in vivo. Using enhanced green flu-
orescent protein (EGFP)-tagged PKR2 expressed in HEK-
293 cells, Yin et al. (244) found that PROK2-induced PKR2
endocytosis is GRK2- and clathrin-dependent, but �-arres-
tin-independent.

GPCR activity may be modulated also by accessory pro-
teins, single-pass transmembrane proteins that regulate
trafficking and/or signaling of the receptors to which they
bind. Recently, Chaly et al. (31) hypothesized that PKR1
might interact with MRAP2, one of the melanocortin recep-
tor accessory proteins, at least in neurons of arcuate nucleus
where they colocalize. In transfected CHO cells and in hy-
pothalamic neuronal GT1-1 cell line, they demonstrated
that MRAP2 interacts with both PKR1 and PKR2 but sig-
nificantly and specifically inhibits PKR1 signaling, probably
contributing to energy homeostasis regulation (see sect.
VC). Accordingly, Mrap2-KO mice were hypersensitive to
PKR1 stimulation.

Marsango et al. (148) reported that PKR2 has a dimeric
structure in human neutrophils and, by using heterologous
expression in Saccharomyces, suggested that dimerization
proceeds through interactions between transmembrane do-
mains TMs 4 and 5, with a role for TM5 in modulation of
PKR2 function (213). They also observed PKR1/PKR2 het-
erodimers.

Discovery that several PKR2 mutations are associated with
congenital diseases (hypopituitarism, KS, Hirschsprung’s
disease) points out that discordant effects of various PKR2
mutations may indicate domain-specific effects and stimu-
lated studies to identify the critical structural elements of
the receptor. Functional studies of the mutated receptors
transfected in cell lines showed that point mutation of basic
amino acids in intracellular loop I or II or III may result in
reduction of normal cell surface expression and ligand bind-
ing capacity, reduction of receptor interaction with G�q

and G�i, and of receptor endocytosis (2, 180, 254). In the
COOH terminus (amino acids 333–384) of PKR2, interac-
tive motives for Snapin, one of constituents of SNARE com-
plex, were mapped (212), implying a role of Snapin in the
trafficking of PKR2.

B. Signal Transduction

The PKRs are Gq-coupled receptors and promote intracel-
lular Ca2� mobilization (138, 151, 170, 211, 232) via acti-
vation of phospholipase C (PLC)-� and formation of IP3.
PLC inhibition prevents the effects of Bv8 on chemotaxis of
mouse macrophages which express mainly PKR1 (150). In

contrast, Bv8/PROK2-induced ERK phosphorylation and
chemotaxis of human monocytes, mainly expressing PKR2,
are inhibited by pertussis toxin (131), and EG-VEGF/
PROK1-mediated CXCL8 monocyte production is sensi-
tive to pertussis toxin (160), suggesting involvement of the
Gi proteins. Possible homo- or heterodimerization, demon-
strated in human neutrophils (148), can modulate signaling
by negative or positive binding cooperativity (214). PKRs
may also couple Gs proteins (32).

In the DRG, PKR activation, via Gq, increases intracellular
calcium and induces protein kinase C (PKC)-� translocation
to plasma membrane (232). In cultured cortical neurons
and cerebellar granule cells, Bv8-stimulated mitogen-acti-
vated protein kinase (MAPK)/PI3K mediates neuroprotec-
tion and cell survival (155). PROK1/PKR1 signal activates
the calcineurin/nuclear factor of activated T cells (NFAT)
pathway in human endometrium via Gq/11-ERK to regulate
gene transcription and in epithelial cell line induces inositol-
phosphate mobilization with sequential phosphorylation of
c-Src, epidermal growth factor receptor-MAPK-ERK path-
way (47). According to Guilini et al. (91), PKR1 expressed
in endothelial cells of arterioles and vessels signals through
Gq11 cells and induces MAPK and PI3/Akt phosphoryla-
tion, promoting angiogenesis. In contrast, PKR2 is coupled
to G�12 in endothelial cells, in which it internalizes G�12

and downregulates ZO-1 expression, leading to vacuole
formation and the fenestration of these cells. On the basis of
transgenic overexpression in the mouse heart, it has been
proposed that PKR1 mediates angiogenesis and cardiomy-
ocyte survival (230), while PKR2 would mediate increased
vascular permeability (229).

C. Expression

Although both PKR1 and PKR2 are coexpressed in various
tissues including brain, PKR1 is mainly expressed in periph-
eral tissues, including endocrine glands and organs of the
reproductive system, the GI tract, spleen, pancreas, lungs,
heart, and blood cells (12, 211). In the CNS, PKR2 is more
abundantly expressed than PKR1 in several discrete brain
regions (35, 138).

It has been reported that PKR1 and PKR2 are differentially
expressed in the vascular endothelium in distinct organs
(91, 115, 161). In the mouse testis, pkr1 and pkr2 are
equally expressed, while in the human testis PKR1 has
higher expression than PKR2. PKR1 and Bv8/PROK2 are
expressed in mouse and human myocardial tissues and
might be functional in the heart. Downregulation of Bv8/
PROK2 and PKR1 was reported in explanted hearts from
patients with end-stage heart failure (reviewed in Ref. 162).

Expression of PKRs by hematopoietic cells is species-spe-
cific: unlike mouse neutrophils, which express both PKR1-
and PKR2-mRNA (150), isolated human neutrophils ex-
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press only PKR2, which is increased in G-CSF-treated do-
nors and in granulocyte-macrophage colony stimulating
factor (GM-CSF)-treated human neutrophils and bone
marrow in vitro. Both receptors are expressed, at protein
levels, on the surface of human monocytes (250).

In the gut, PKR1 is more abundantly expressed than PKR2.
An aboral increase in PKR1 expression along the length of
rat intestine has been noted: PKR1 immunoreactivity was
visualized in epithelial cells, in submucosal and myoenteric
neurons of ileum, and in myenteric neurons of mouse colon
colocalized with a small subset of neuronal nitric oxide
synthase expressing neurons. This receptor localization ex-
plains the effects of EG-VEGF/PROK1 on propulsive mo-
tility and GI secretions (234).

In the nervous system, both prokineticin receptors can be
detected as early as embryonic day 7 in mouse and rat (168).
It has been reported that, in cultures of neurons, astrocytes,
and microglia isolated from embryonic mouse cerebrum,
PKR2 is prevalently expressed in the neurons. In contrast,
PKR1 is mainly expressed in astrocytes and microglia (119,
201). PKR1 (but not PKR2) is present in enteric NCCs,
where it may be upregulated by GDNF and potentially pro-
vide a complementary pathway to glial-derived neu-
rotrophic factor (GDNF) signaling to generate neurons and
glia of the enteric nervous system during fetal development
(175). It has been also hypothesized that insufficient or
improper PROK1/PKR1 signaling may contribute to cause
absence of enteric ganglia, as seen in Hirschsprung’s disease
in humans, or to improper differentiation of NCCs in ad-
renal glands and sympathetic nervous system to give rise to
neuroblastoma, the most common type of childhood solid
tumor (125).

Negri et al. (168) reported that in rat embryos, from day 12
both prokineticin receptors are highly expressed in the neu-
roepithelium lining ventricles, olfactory bulb, Gasser-gan-
glion, and DRG. One day after birth, PKR2 is still expressed
at high levels in multiple areas, whereas PKR1 expression is
detected only in the cortex. In adult rats, only PKR2 is
appreciably expressed in several brain areas (168).

V. PHYSIOLOGICAL AND
PHARMACOLOGICAL EFFECTS OF
PROKINETICINS

A. Neurogenesis

In mammals, neurogenesis occurs primarily during embry-
onic and early postnatal stages, although it persists in cer-
tain regions of adult brain (19). Prokineticins function as
survival/mitogenic factors for both CNS and peripheral ner-
vous system (PNS). Indeed, in vitro Bv8/PROK2 mediates
protection or survival of cortical neurons (35, 155), and

PROK1 stimulates proliferation of neuronal precursor cells
in enteric nervous system (ENS) (172).

1. Olfatory bulb

PROK2/PKR2 signaling has a critical role in the develop-
ment of the olfactory bulb (OB). Bv8/PROK2, present in the
ependymal and subependymal layers of the olfactory ven-
tricle, is secreted in the OB and functions as a chemoattrac-
tant for neuronal progenitors, derived from the subven-
tricular zone (SVZ) and expressing PKRs (120). Genetic
analysis in mice indicates that PKR2, but not PKR1, is a
critical receptor for OB development. Indeed, all PKR2
knockout mice (but not PKR1 knockout mice) have a dra-
matic decrease in size and abnormal architecture of the OB
receptor-deficient mice (152). Conversely, only 50% of
bv8/prok2 null mice exhibit asymmetric OB morphogenesis
(183), suggesting a potential redundancy between the two
ligands, EG-VEGF/PROK1 and Bv8/PROK2, in the neuro-
genesis of the OB. In both bv8/prok2 and pkr2 null mice,
disrupted gonadotropin-releasing hormone (GnRH) neu-
ron migration resulted in a dramatic decrease in GnRH
neurons in the hypothalamus and in the median preoptic
area as well as in hypogonadotropic hypogonadism (152,
183). The pathological changes observed in pkr2 null mice
bear a striking resemblance to the clinical manifestations of
KS, a human developmental disease with combined features
of hypogonadotrophic hypogonadism and anosmia (see
next).

2. Enteric nervous system

During embryonic gut development, EG-VEGF/PROK1 is
expressed in the mucosa and mesenchyme of the embryonic
gut. In vitro, it promotes the survival/proliferation and dif-
ferentiation of enteric NCCs (172). Recently Ruiz-Ferrer et
al. (193) suggested that PKR1 and PKR2 might play a com-
plementary role to the RET/ GFRa1/GDNF signaling path-
way, supporting proliferation/survival and differentiation
of precursor cells during ENS development. They also iden-
tified sequence variants in PKR1, EG-VEGF/PROK1 and
PKR2 genes, which are associated with Hirschsprung’s dis-
ease, in some cases in combination with RET or GDNF
mutations (193).

B. Circadian Rhythm Regulation

In mammals, the endogenous pacemaker that drives circa-
dian rhythms, such as activity and rest, resides in the SCNs
(96). To date, two diffusible molecules, vasopressin and
Bv8/PROK2, have been identified as potential candidate
SCN output molecules (134).

Bv8/PROK2 mRNA expression levels display a high ampli-
tude of circadian oscillation in the SCN of mice (35) and
rats (167), but also of a diurnal rodent (Arvicanthis niloti-
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cus) and of the monkey, suggesting that the key to diurnal-
ity lies downstream of the SCN circadian clock (122). The
rhythm of Bv8/PROK2 is directly regulated by the tran-
scriptional/translational feedback loop of the central clock
(35). Four E-boxes have been described in both human and
mouse Bv8/PROK2 promoters. In vitro experiments re-
vealed that bv8/prok2 transcription is regulated by clock-
work gene products through the activation of the E-boxes.
These findings were validated in vivo: bv8/prok2 mRNA
expression in the SCN was absent or substantially reduced
in mutant mice lacking a functional clockwork, including
Clock mutant mice and in Cry1�/�Cry2�/� mice (34, 35).

Also, it has been reported that light can directly regulate
Bv8/PROK2 expression in the SCN, provided that the mel-
anopsin and rod-cone photoreceptive systems are intact
(34, 35, 251, 252). Neurons expressing Bv8/PROK2
mRNA are scattered in the dorsomedial SCN, which re-
ceives direct projections from the retinal ganglion neurons,
thus explaining this photoresponsive regulation. Some of
these neurons also express vasopressin (~50%), and the
amplitude of the circadian oscillation of Bv8/PROK2-
mRNA in the SCN has been shown to be attenuated in the
SCN of V1a-deficient mice (135). PKR2 is expressed in
essentially all the primary SCN target sites, including the
lateral septum (LS), paraventricular talamic nucleus (PVT),
paraventricular nucleus (PVN), and dorsomedial hypotha-
lamic nucleus (DMH) (35, 37). Bv8/PROK2 was shown to
regulate the excitability of PKR2-positive neurons, such as
the neurons of a primary SCN target, the PVN (245), or the
SCN neurons themselves (25, 189). The molecular mecha-
nism responsible for increasing the firing rate of SCN neu-
rons depends on a cooperation with the vanilloid channel
TRPV2 coexpressed with PKR2 in the SCN neurons (25).

Intracranial delivery of Bv8/PROK2 into the lateral ventri-
cle during subjective night, when endogenous Bv8/PROK2
is low, inhibited the nocturnal wheel running activity of rats
(35). Genetic deletion of bv8/prok2 or its receptor pkr2 in
mice leads to almost identical defects in circadian rhythms
(133, 184). In the absence of Bv8/PROK2 signaling, the
amplitudes of circadian locomotor parameters were re-
markably reduced, with rhythmicity amplitude of wheel-
running activity of Bv8/PROK2-deficient or PKR2-deficient
mice �20% of wild-type mice (133, 184). Rhythmicity of
other circadian parameters, including sleep/wake cycle,
body temperature, circulating glucocorticoid and glucose
levels, as well as the expression of peripheral clock genes,
was also significantly reduced (133, 134, 184, 253).

It has been speculated that patients with mutations in these
genes may have circadian rhythm alterations. However,
sleep and mood disorders or abnormalities in other circa-
dian phase markers (melatonin, cortisol, and core body
temperature) have not been unambiguously demonstrated
in human PKR2-mutation carriers, indicating an intact cen-

tral circadian pacemaker activity in these patients, indicat-
ing a discordance in the regulation of circadian phenotypes
between humans and mice (7, 114).

C. Ingestive Behavior and Energy
Homeostasis

The hypothalamus is important for the regulation of energy
homeostasis, and PKRs are expressed in hypothalamic nu-
clei known to regulate ingestive behavior. Inputs to the
arcuate nucleus (ARC) come from the SCN, medial preoptic
area (MPA), and nucleus tractus solitarius (NTS) whose
neurons contain Bv8/PROK2. In rodents, intrabrain admin-
istration of the amphibian or mammalian Bv8/PROK2
causes anorexogenic (80, 167) and dipsogenic effects (167);
stimulates the release of vasopressin, oxytocin, and cortico-
sterone; and increases the blood glucose level (253). The
anorexic effects of Bv8/PROK2 depend on specific activa-
tion of PKR2 on ARC neurons releasing �-melanocyte stim-
ulating hormone (80, 167). Intrabrain injection of Bv8 po-
tently stimulated drinking (167) through a direct activation
of PKR2 present in the subfornical organ, as demonstrated
soon afterwards in vitro (49, 74).

Bv8/PROK2 displays anorectic effects also by peripheral
administration. In this case, its effect is mediated via the
brain stem and requires PKR1 but not PKR2 signaling;
indeed, anorexic effects of PROK2 are completely absent in
PKR1-deficient mice (13). PKR1 also participate in regula-
tion of energy homeostasis, being regulated by melanocor-
tin receptor accessory protein 2 (MRAP2) (31). Chronic
administration of Bv8/PROK2 reduced food intake and
body weight in a mouse model of obesity, without inducing
tachyphylaxis, as other anorectic agents do. These findings
raise the possibility that PKR1-selective agonists might have
therapeutic potential for the treatment of obesity (13).
Moreover, PKR1, expressed by preadipocytes and adi-
pocytes (211), may have a role in controlling adipose tissue
mass by limiting proliferation and conversion of preadi-
pocytes to adipocytes. Interestingly, late age PKR1-deficient
mice have been reported to have peripheral obesity with a
diabetes-like syndrome (221).

Both Bv8/PROK2 and PKR1 are sensitive to the nutritional
status: food deprivation reduces their expression in rat hy-
pothalamus (80), but Bv8/PROK2 expression was rapidly
induced in the mouse hypothalamic PVN after fasting
(253). This sensitivity has already been established by the
early neonatal period in male and female rats, suggesting
that Bv8/PROK2 may compensate for the immaturity of
other appetite-regulatory systems during the early neonatal
period (107).

PKR1 signaling in endothelial cells has been reported to
promote insulin uptake, in vitro and in vivo, in addition to
regulating endothelial cell proliferation (57). According
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to these studies, impaired capillary formation, transen-
dothelial insulin uptake, and insulin signaling in endo-
thelial-specific PKR1-deficient mice lead to cardiomyop-
athy, renal disorders, and lypodystrophy. High plasma
free fatty acid levels and low leptin levels further contrib-
ute to the development of insulin resistance at the later
age. Hence, it has been speculated that targeting endo-
thelial PKR1 may serve as a therapeutic strategy for ame-
liorating these disorders (57).

High levels of prokineticins have been found in obese adi-
pose tissues (233). Bv8/PROK2 is correlated with various
cardiometabolic risk factors including blood lipid, blood
glucose, blood pressure, BMI, and uric acid. Furthermore,
high levels of blood Bv8/PROK2 are independently associ-
ated with metabolic syndrome in a Chinese population.
Nevertheless, whether there is a causal relationship between
Bv8/PROK2 and metabolic syndrome remains to be estab-
lished (236).

D. Mood Regulation

Given that the expression of Bv8/PROK2 in the SCN is
modulated by clock genes and that PKR2 is expressed in
SCN targets involved in the mood regulation (such as the
amygdala, the lateral septum, and the paraventricular nu-
cleus), studies have been performed in mice to determine
whether Bv8/PROK2 may serve as molecular connections
of circadian rhythm and mood disorders. Hu et al. (103)
reported that bv8/prok2 null mice had disruptions in the
homeostatic regulation of sleep. Li et al. (135) reported that
intracerebroventricular infusion of Bv8/PROK2 increased
anxiety-like behavior and also led to increased depression-
like behavior. Conversely, mice lacking the bv8/prok2 gene
displayed significantly reduced anxiety and depression-like
behaviors. Lattanzi et al. (manuscript in preparation) eval-
uated anxiety-related behavior in mice lacking the pkr1
gene and in mice treated with a nonpeptide antagonist of
the receptor1 and found, in both cases, lower anxiety-re-
lated behavior than in wild-type mice.

Also in humans, disrupted circadian rhythms have been
associated with several mood disorders, including bipolar
disorders (BP) and major depressive disorder (MDD) (145).
However, the only study which suggests a possible associa-
tion between PKR2 gene mutations and MDD and BP (114)
is very small in number and power and so far has not been
replicated.

VI. ROLE OF PROKINETICINS IN
PATHOLOGICAL CONDITIONS

A. Nociceptive and Chronic Pain

The first evidence of the hyperalgesic effects of the prokine-
ticins came from the observation that systemic administra-

tion of the amphibian Bv8 protein induced a characteristic
biphasic hyperalgesia to tactile and thermal stimuli in rats
(170). The initial phase of hyperalgesia is caused by a local
action on nociceptors; the secondary phase of hyperalgesia
is attributable to a central action (52, 165, 169), indicating
differences in the contribution of PROK/PKRs at central
versus peripheral sites. The amphibian protein Bv8 was a
useful research tool to characterize prokineticin pharmacol-
ogy. It induces hyperalgesia by activating the PKRs that are
expressed in regions of the nervous system associated with
pain. At peripheral levels, within DRG, PKR1 is mainly
expressed on small nociceptors together with the transient
potential receptor vanilloid 1 (TRPV1), and PKR2 is ex-
pressed on medium/large-sized neurons expressing TRPA1
besides TRPV1. These colocalizations provide the anatom-
ical basis for a cooperative interaction in nociceptor sensi-
tization through activation of PKC-� (232). But other addi-
tive processes may lead to a cumulative sensitization. In rat
primary sensory neurons, PROK2 also enhances proton-
gated current, suppresses GABA-activated current, and sen-
sitizes P2X receptors, via PKC signaling pathway (185, 188,
241). Half of the Bv8/PROK2-responding DRG neurons
co-expressed neuromediators implicated in pain processing,
including CGRP and substance P and release these neuro-
peptides upon exposure to Bv8 (52). Some PKR1-positive
neurons also express PROK2. Evidence that the PROK2/
PKR system is directly involved in setting the pain threshold
comes from studies in mice lacking pkr1 or pkr2 or prok2:
all these genotypes display higher thermal, mechanical, and
tactile pain threshold than wild-type (WT) mice (104, 165).
Exposure of DRG cultures to GDNF induced expression of
functional PKRs (232) in agreement with the demonstrated
upregulation of PKRs after tissue damage and inflammation
(143). In skin preparations, Bv8 sensitizes the peripheral
nerve endings to heat, lowering threshold and increasing
heat response through TRPV1 activation (102).

Intrathecal administration of Bv8 (in the range of fmol)
induces biphasic hyperalgesia, and intrathecal administra-
tion of PKR antgonists rapidly and dose-dependently re-
duces the hyperalgesia induced by inflammation or tissue
damage, i.e., when the PROK system is activated (124,
143).

The PROK2/PKR system may also intervene in modulating
central pain mechanisms (53). This proceeds from inhibit-
ing the endogenous PAG-RVM antinociceptive pathway
(53, 124) and decreasing the encephalinergic tone in the
area postrema, a sensory circumventricular organ in the
medulla that lacks a blood-brain barrier, and is rich in
PKR2. Indeed, Ingves and Ferguson (105) reported that
Bv8/PROK2 causes membrane depolarization and suppres-
sion of action potential firing in the majority of ENK-ex-
pressing neurons of the AP, suggesting that Bv8/PROK2 has
the ability to suppress opioid release from these populations
of cells.
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B. Inflammatory Pain

Tissue injury and inflammation result in release of various
mediators that promote ongoing pain or pain hypersensi-
tivity against mechanical, thermal, and chemical stimuli.
Bv8/PROK2, overexpressed in human and animal inflamed
tissues predominantly in infiltrating neutrophils (84, 186,
207), is one of the main pronociceptive mediators that ac-
tivates primary afferent neurons to enhance nociceptive sig-
nal transmission to the CNS and is also an important mod-
ulator of immune responses. In an animal model of inflam-
mation produced by complete Freund’s adjuvant (CFA)
injection into the paw of rats or mice, Bv8/PROK2 mRNA,
which is quite undetectable in healthy paw, dramatically
increases in the skin, associated with infiltrating cells (gran-
ulocytes and macrophages) and temporally correlates with
pain and other traits of inflammation as edema, but 24 h
after the injection, it is significantly increased also in the
DRG ipsilateral to the paw injected with CFA (84, 163).
Granulocyte-released Bv8/PROK2 (see also sect. VIG)
modulates acute inflammatory pain directly acting on noci-
ceptors and, in turn, exerts chemotactic activities, induces a
proinflammatory macrophage phenotype, and skews the
Th1/Th2 balance to Th1 (58, 72, 150). Hence, besides the
direct activation of the nociceptors by Bv8/PROK2, other
cytokines/chemokines, induced by Bv8/PROK2, contribute
to keep pain in chronic inflammation. Deletion of the pkr1
and pkr2 genes substantially reduced inflammation-in-
duced thermal and mechanical hypersensitivity, but only
deletion of the pkr1 gene reduced the PROK2 upregulation,
indicating that while both receptors are responsible for
pain, only PKR1 is implicated in mediating the enhanced
Bv8/PROK2 expression level during the inflammatory pro-
cess (84). Peripheral and topical administration of PKR an-
tagonists, A-24, PC1 or PC7, significantly reduced pain, but
also edema and extravasation, consistent with the effect of
Bv8/PROK2 on vascular permeability (84, 124, 169).

Prokineticin system dysregulation has been reported in a
mouse model of human rheumatoid arthritis [type II colla-
gen-induced arthritis (CIA)]. Bv8/PROK2 is dramatically
upregulated in the thickened synovial membrane of ar-
thritic mice with a time course that parallels the arthritis
score (121). Chronic treatment with prokineticin receptor
antagonists significantly reduces the thermal hypersensitiv-
ity and the histological damage, encouraging a possible ap-
plication of Bv8/PROK2 inhibitors to combat arthritic in-
flammation and pain (106).

C. Neuropathic Pain

Neuropathic pain, resulting from damage to or dysfunction
of the nervous system, is a chronic condition characterized
by abnormal pain perception, such as hyperalgesia (in-
creased pain perception of noxious stimuli), allodynia (hy-
persensitivity to normally innocuous stimuli), and neuronal

oversensitization occurring at the spinal level and leading to
abnormal pain transmission. It is associated with neuroin-
flammation-related events that participate in pain genera-
tion and chronicization (48, 79).

Peripheral nerve damage [chronic constriction injury (CCI),
spared nerve injury (SNI) in mice] induces overexpression
of PROK2 and of its receptor PKR2 both in peripheral
nerve and in the spinal cord.

PROK2-mRNA upregulation starts in the nerve 3 days after
injury and moves towards the center, being significant in the
spinal cord 10 days after injury. PROK2 protein becomes
detectable in some axons of the damaged nerve but is
mainly associated with activated Schwann cells and infil-
trating macrophages. The release of Bv8/PROK2 in the
nerve contributes to neuroinflammation. Ten days after in-
jury, Bv8/PROK2-mRNA and protein are significantly in-
creased also in the DRG neurons and in spinal cord, in
activated astrocytes, but not in microglia, consistent with
the demonstration that STAT3, the enhancer of Bv8/
PROK2 transcription in myeloid cells (186, 207, 242), is
activated by G-CSF, IL-6 and IL-1� signaling in DRG neu-
rons and astrocytes, but not in microglia (199, 228). In the
spinal cord, the increased Bv8/PROK2-immunofluores-
cence associated with synaptophisin (a presynaptic marker)
indicates that PROK2 may be transported to the central
endings of nociceptors and released. Bv8/PROK2, overex-
pressed with the PKR2 on activated astrocytes functions as
an astrocytic-autocrine-growth factor (119, 201). Eventu-
ally Bv8/PROK2 released in the spinal cord activates the
PKR2 constitutively localized on the projection neurons
and upregulated after nerve injury (143), contributes to
spinal glia activation, and results in aberrant excitability in
the dorsal horn, with allodynia, the marker of neuropathic
pain. It should be pointed out that nerve damage induced
PKR2 overexpression in all the examined tissues: nerve,
DRG, and spinal cord. Treatment with prokineticin antag-
onists, such as PC1, was efficacious in controlling and pre-
venting neuropathic pain. This treatment delayed the recur-
rence of painful symptoms following PC1 suspension, rais-
ing the possibility that blockade of Bv8/PROK2-signaling
might result in long-lasting changes in the neuronal circuits,
or in the neuroinflammatory processes involved. PC1 treat-
ment also normalizes the nerve injury-increased permeabil-
ity of the blood-spinal cord barrier (BSCB) (90, 143), dem-
onstrating the possible involvement of the PROK system in
the regulation of the neuroinflammatory phenomena lead-
ing to infiltration of the peripheral immune cells into the
spinal cord.

Neuropathic pain is often a consequence of diseases such as
diabetes (76). In a mouse model of streptozotocin-induced
diabetes, the PROK system was implicated both in the early
stage of allodynia development as well as in its maintenance
(29). In this animal model, the authors demonstrate that
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pharmacological blockade of the system with PC1, besides
controlling pain and immune system disregulation, also
prevents the upregulation of GluNB2-subunit of the
NMDAR, distributed in spinal cord dorsal horns and
known to mediate nociceptive hypersensitivity induced by
peripheral injury or tissue inflammation (18, 225), suggest-
ing a positive loop between PROK2 and glutamatergic
transmission [see also Caioli et al. (26)].

Common cancer types such as prostate, breast, and lung
cancer have a tendency to metastasize to bone and induce
bone pain (CIBP), which can be seriously disruptive to the
patients’ quality of life (64). It is a mixed-mechanism pain
state that is not entirely similar to inflammatory or neuro-
pathic pain (64); it is difficult to treat so that at least 20–
40% of the CIBP is not adequately controlled. In a rat CIBP
model developed by injecting tumor cells (Walker 256 car-
cinoma) in the medullary cavity of rat tibia, mechanical
hyperalgesia developed in 6 days and progressively in-
creased together with increased levels of Bv8/PROK2 in the
spinal cord. Intrathecal administration of an anti-Bv8/
PROK2 antibody significantly attenuated the CIBP behav-
ior as well as upregulation of spinal tumor necrosis factor-�
protein expression (94).

D. CNS Autoimmunity and Inflammation

According to recent studies, Bv8/PROK2 is an important
immune regulator of CNS autoimmune demyelination and
thus might represent a new target for therapy (1). Bv8/
PROK2 levels were increased in the blood of patients with
relapsing/remitting multiple sclerosis (MS, an autoimmune
demyelinating disease of the CNS), while it was undetect-
able in healthy controls, and transcripts for Bv8/PROK2
were significantly increased in peripheral blood mononu-
clear cells (1). In mice with experimental autoimmune en-
cephalomyelitis (EAE), an animal model of MS (46), Bv8/
PROK2 (mRNA and protein) is highly expressed in spinal
cord, in white matter inflammatory infiltrates. As in pa-
tients, Bv8/PROK2 was higher in sera of mice with EAE
with respect to naive mice, and PROK2-mRNA was highly
expressed in lymph nodes and progressively increases dur-
ing development of the disease (1). In both MS and EAE,
myeloid cells are a major component of CNS inflammatory
infiltrates, and mononuclear cell numbers increase in the
peripheral blood before EAE relapses. Thus mononuclear
cells may be important sources of Bv8/PROK2, which is
induced by elevations in plasma levels of G-CSF (see also
sect. VIG), peaking early during the priming phase. Phar-
macological blockade with Bv8/PROK2 antagonists, both
in preventive and therapeutic schedule, significantly re-
duced the diseases score in chronic EAE (MOG) and in
relapsing/remitting (PLP) animal models, reduced inflam-
mation and demyelination, and modulated autoimmune re-
sponse against myelin antigen in lymph node cells reducing
the production of interferon-� and IL-17�, known to play a
crucial role in EAE development and progression (88, 215).

As mentioned above, insults such as ischemia, amyloid �
deposition, or neuronal degeneration modulate the PROK2
levels in the brain. In a stroke model, produced by occlusion
of middle cerebral artery (36), Bv8/PROK2 expression is
increased in ischemic cortex and striatum while PKR2 is
increased in ischemic cortex. Bv8/PROK2 upregulation oc-
curs mainly in neurons and is dependent on NMDA recep-
tor activation. Exogenous delivery of Bv8/PROK2 (10 pmol
icv) post-stroke worsened the infarct volume and increased
CD68� inflammatory cells in the ischemic infarct, whereas
blocking the Bv8/PROK2 actions with an antagonist re-
duced infarct volume and central inflammation and im-
proved behavioral outcome. These results suggested that
Bv8/PROK2 may be an insult-inducible endangering factor.
In contrast, Landucci et al. (123) recently reported a pro-
tective role of Bv8/PROK2 in “in vitro” models of cerebral
ischemia and ischemic tolerance. It is interesting to note that
Bv8 and PROK2 were used in the nanomolar range (10–
100 nM) in all the studies in which they provided protective
or prosurvival effects (123, 155, 171, 231). Conversely, the
proapoptotic effects of these prokineticins were typically
obtained at much lower concentrations (10–100 pM) (36,
201). As suggested by Landucci et al. (123), the harmful
effects of picomolar concentrations of Bv8/PROK2 might
be mediated via SAP/JNK pathway (36), whereas the ERK/
Akt-mediated prosurvival effects require the activation of a
significant fraction of receptors achievable with high con-
centration of Bv8/PROK2. The relative contribution of
PKR1 and PKR2 in these mechanisms still needs to be
fully elucidated. It is noteworthy that in any pathological
situation where the prokineticin system is activate, at
least in mice, the early, apparently harmful increase in
PROK2 is followed by a delayed increase of PKR2.
Hence, the larger availability of ligand/receptor might
result in stronger signaling, enough to activate the ERK/
Akt protective pathway leading towards pathology reso-
lution. The internalization of PROK2 receptors might
induce formation of signalosomes that activates intracel-
lular cytoprotective transduction pathway (244). This
may contribute to a fine-tuned balance of the expression
levels of PKR1 and PKR2 as suggested by studies on the
involvement of the PROK system in heart and kidney
physiology and pathophysiology (162).

It has been proposed that Bv8/PROK2 expression, even if
low in the nigral system, is induced in nigral dopaminergic
neurons during the early stages of degeneration (before the
onset of motor deficits) in mouse models of Parkinson’s
disease and Bv8/PROK2 expression is elevated in the sub-
stantia nigra (SN) of Parkinson’s patients (87). Based on
functional in vitro studies, they suggest that PROK2, up-
regulated in surviving nigral dopaminergic neurons, which
constitutively express PKR2, promotes mitochondrial bio-
genesis and activates ERK and Akt survival signaling path-
ways, thereby driving neuroprotection (87).
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Recent studies suggest that the prokineticin system may
have a role in the amyloid �-induced neuronal damage (26,
201). Bv8/PROK2 levels were significantly elevated in hip-
pocampus and brain cortex in rodent models of Alzheimer’s
disease as well as in the blood of Alzheimer’s patients (Sev-
erini, personal communication). FIGURE 5 shows that tissue
damage or neuroinflammation increases Bv8/PROK2 ex-
pression in neurons and glial cells in peripheral and central
nervous system.

E. Kallmann Syndrome

In 2005, Ng et al. (171) reported the involvement of the
PROK2/PKR2 system in OB morphogenesis in the mouse.
PROK2 appeared to function as a chemoattractant for
subventricular zone-derived neuronal progenitors. Bv8/
PROK2 also acted as a detachment signal for chain-mi-
grating progenitors from the rostral migratory stream
(171). PROK2-null mice had significant reduction in OB
size, loss of normal OB architecture, and accumulation of
neuronal progenitors (171). A year later, Matsumoto et al.
(152) reported a similar phenotype in mice lacking PKR2.
In contrast, mice lacking PKR1 appeared normal (152).
Both bv8/prok2 and pkr2 null mice showed a drastic reduc-
tion in GnRH-expressing cells in the median preoptic area
as well as absence of GnRH neural projections in the me-
dium eminence (152, 183). The reduced number of hypo-
thalamic GnRH neurons was associated with failure of

GnRH secretion, low plasma levels of luteinizing hormone
and follicle stimulating hormone in male mice, and impair-
ment of sexual development and fertility in both male and
female mice. Male bv8/prok2 and pkr2 null mice exhibited
small seminiferous tubules lacking lumens, and absent hap-
loid spermatocytes and spermatids. Similarly, female bv8/
prok2 and pkr2 null mice exhibited disrupted estrus cycles
as a consequence of incomplete follicular development
characterized by absence of mature follicles and corpora
lutea, but ovarian function could be restored by gonadotro-
pin replacement (183). Moreover, in wild-type testis, PKR2
was abundantly expressed in vascular endothelial cells in
interstitial tissue (126), and PKR2-deficient mice display
reduced interstitial space accompanied by small and scat-
tered Leydig cells, compared with their wild-type litter-
mates (152), suggesting that PKR2 could be involved in
vascular remodeling. In humans, PKR2 signaling does not
directly affect Sertoli cell function (227). In the adult mouse,
PKR2 is expressed throughout the pituitary structures, es-
pecially in the pars nervosa supporting a role for PKR2
signaling in the pituitary.

The anomalies observed in PKR2-null mice are clearly rem-
iniscent of the clinical manifestations of KS, a human dis-
ease which is characterized by the association of idiopathic
hypogonadotropic hypogonadism (IHH), secondary to
GnRH deficiency, and anosmia (or hyposmia) related to OB
agenesis (217). Mice with heterozygous gene deletions are

FIGURE 5. Tissue damage or neuroin-
flammation increases Bv8/PROK2 expres-
sion in neurons and glial cells in peripheral
and central nervous system. A–C are from
a neuropathic pain model: chronic con-
striction injury (CCI) of the sciatic nerve in
mice (143). Ten days after injury Bv8/
PROK2 immunofluorescence is strongly in-
creased in nerve fibers (green) and in acti-
vated Schwann cells (yellow) (A), in the body
of DRG neurons (B), and in activated astro-
cytes in spinal cord dorsal horns (C). Bot-
tom panels are from a model of brain neu-
roinfammation induced by intracerebroven-
tricular influsion of amyloid � (A1-42) in
rats. While Bv8/PROK2 immunofluores-
cence is practically undetectable in the hip-
pocampus of healthy rats (data not shown),
35 days after Ab-infusion, Bv8/PROK2 sig-
nal becomes clearly evident in rat hippocam-
pus (D). Bv8/PROK2 immunofluorescence
is localized in activated astrocytes (D=) and in
some neurons (D�) (unpublished data, cour-
tesy of Dr. Daniela Maftei, Department of
Physiology and Pharmacology, Sapienza Uni-
versity of Rome, Rome, ltaly).
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normal, but the clinical syndromes in humans are predom-
inantly associated with the heterozygous state. Also, hu-
mans with identical PROK2/PKR2 mutations show marked
variations in both olfactory and reproductive phenotypes
and PROK2/PKR2 mutations have been reported also in
normosmic GnRH deficiency. Taken together, these find-
ings have led to the recognition of di-oligogenicity in this
disease, accounting, at least in part, for the incomplete pen-
etrance of these cases (182, 220).

KS-affected individuals usually do not undergo spontane-
ous puberty, but GnRH deficiency may be reverted in adults
after treatment with sex steroids. In a few patients with
PROK2/PKR2 mutation, a persistent oligo/azospermia was
observed (209), indicating a primary gonadal defect that is
to be correlated with the unique expression profile of Bv8/

PROK2 and PKR2 in the testes and, in particular, the ex-
pression of Bv8/PROK2 in primary spermatocytes (126,
238), suggesting a role for Bv8/PROK2 signaling in regulat-
ing primary testicular function and spermatogenesis.

After the finding that the pathological changes observed in
mutant mice were a phenocopy of those observed in KS
patients (specifically the arrest of GnRH neuronal migra-
tion), the Bv8/PROK2 pathway became an obvious candi-
date gene to test for the etiology of human GnRH deficiency
(56, 195). Until, more than 20 mutations in PKR2 (see
FIGURE 6) and more than 10 in PROK2 have been found in
KS patients. Most of these mutations were missense muta-
tions, and many were also found in apparently unaffected
individuals. Notably, KS patients harboring biallelic muta-
tions in PROK2 or PKR2 have a less variable and more
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FIGURE 6. Schematic representation of the human PKR2 protein. The 21 missense mutations found in
Kallmann syndrome patients are indicated in red. Mutations found in GnRH-deficient normosmic idiopathic
hypogonadotropic hypogonadism (nIHH) probands are labeled in green, and mutations found in septo-optic
displasia (SOD)/combined pituitary hormone deficiency CPHD/pituitary stalk interruption syndrome (PSIS)
patients are labeled in yellow. The mutated PKR2 were functionally assessed in cell lines. Q210R mutation,
located in the second extracellular loop (159), interferes with ligand binding and impairs receptor activation.
Mutations in the transmembrane domains of the receptor such as L173R, W178S, and P290S impaired cell
surface targeting of the receptor. The mutations in the intracellular loops and in the COOH-terminal domain
(R85C, R85H, R164Q, R268C, and V331M) interfere with G protein activation. Mutations that strongly
impair cell surface targeting of the receptor or binding to Bv8/PROK2 have drastic effects on the different
PKR2 signaling pathways, including the major Gq-dependent pathway, and therefore are clearly pathogenic.
R164Q is critical for G�q, G�i, and G�16 interaction and makes this mutation most likely pathogenic. Arginines
in positions 80 and 85 are highly conserved among different species. While R85C and R85H mutations
interfered only marginally with receptor function, the R80C mutation was associated with a substantial
reduction in receptor activity. When in vitro cotransfected with wild-type, most of the mutant receptors did not
affect the signaling activity of the wild-type receptor, arguing against a dominant-negative effect of the
mutations in vivo, which is consistent with the lack of phenotypic defects in some heterozygous carriers (153).
Mutations with no apparent functional defects (R357W) or with relatively mild defects (A51T, R85C, R85H,
M323I, V331M) are not pathogenic. The mutation R268C, frequent in the African-American population (~8%
of this population), also in the homozygous state is now considered nonpathogenic. It is tempting to speculate
that the PROKR2 R268C variant has undergone positive selection pressure in Africans because the loss of Gi/o

coupling of this mutant receptor (without Gq coupling impairment) would be advantageous from the evolutionary
viewpoint, perhaps by protecting the individuals against infectious agents that would use or target this
particular signaling pathway in the infection process (197). PKR2 has been recently identified as a receptor for
T. cruzi natural infection (113).
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severe reproductive phenotype than patients with monoal-
lelic mutations in these genes. The phenotype of patients
carrying monoallelic mutations in these genes is more vari-
able, and likely depends on the additional genetic mutations
in other causal genes (55), linked to the neurodevelopmen-
tal phenotype of KS transmission. Nonreproductive, nonol-
factory clinical anomalies associated with KS seem to be
restricted to patients with monoallelic mutations. Severe
sleep disorders and abnormal circadian phase markers (cir-
cadian glucocorticoid secretion, melatonin and core body
temperature) as well as obesity and type II diabetes have
been seen in a minority of patient with PROK2/PKR2 mu-
tations, but subsequent studies failed to confirm this link in
humans (7, 196).

Earlier review articles emphasize the complexity and the
unanswered questions regarding the role of the Bv8/PROK2
pathway in the pathogenesis of KS and in human reproduc-
tion (8, 149). For a recent review discussing the genetic
heterogeneity of KS, see Boehm et al. (16).

Recent studies indicate overlapping phenotypes/genotypes
between KS and congenital hypopituitarism, a rare condi-
tion that may be associated with complex midline defects of
the forebrain (237), including combined pituitary hormone
deficiency (CPHD, diagnosed as a deficiency of at least two
pituitary hormones) and septo-optic dysplasia (SOD, a dis-
order characterized by pituitary hormone deficiencies, optic
nerve hypoplasia, and midline defects) (237). It should be
noted that PKR2 but not Bv8/PROK2 mutations were de-
scribed in patients with CPHD, including SOD (6, 153,
187) and pituitary stalk interruption syndrome (92, 190).
These reports suggest a potential role of the Bv8/PROK2
pathway in early pituitary development, as well as in the
development of GnRH neurons. However, the extent to
which PKR2 variants contribute to either hypopituitarism
or KS-associated phenotypes remains to be established.

F. Other Roles of Prokineticins in the
Pathophysiology of Reproduction

As discussed in the previous sections, PROK2 or PKR2
inactivation results in deficient gonadotropin secretion and
reproductive failure secondary to defective neurogenesis of
GnRH neurons.

The prokineticins might also play a role in reproduction
through the regulation of angiogenesis (127). While Bv8/
PROK2 mRNA is practically undetectable in the human
female reproductive organs and placenta, EG-VEGF/
PROK1 expression is strong in the human ovary and un-
dergoes changes during the ovulatory cycles (69). Interest-
ingly, consistent with the association of EG-VEGF/PROK1
expression with steroidogenic cells, particularly intense ex-
pression was detected in “hilus cells” (43), a populations of
cells involved in androgen production and thought to be the

functional equivalent of Leydig cells (216). Early studies
documented the intimate association of hilus cells with
blood vessels and nerve fibers (156). In situ hybridization
analysis (69) also revealed strong expression of EG-VEGF/
PROK1 mRNA in specimens of polycystic ovary syndrome
(PCOS), a leading cause of infertility, characterized by the
association of hirsutism, obesity, and enlarged polycystic
ovaries (217). Other key features of this syndrome are hy-
perplasia and high vascularity of the ovarian stroma, with
excessive production of androgens. In the series examined,
EG-VEGF/PROK1 mRNA was strongly expressed in PCOS
ovaries, with a pattern complementary to the expression of
VEGF mRNA. Interestingly, the site of highest expression
of EG-VEGF/PROK1 mRNA was the stroma, and thus it
was highly correlated with angiogenesis (69).

According to Fraser et al. (73), EG-VEGF/PROK1 mRNA
expression is localized predominantly to granulosa-derived
cells of the corpus luteum. These authors reported that hu-
man chorionic gonadotropin stimulated both VEGF and
EG-VEGF/PROK1 mRNA in vitro. According to these
studies, in the human corpus luteum EG-VEGF/PROK1
mRNA expression is mainly associated with granulosa lu-
tein cells, and its synthesis is highest during the mid- to late
luteal phase (73).

Battersby et al. (12) reported that, in the human endome-
trium, expression of EG-VEGF/PROK1 mRNA was ele-
vated in the secretory phase of the menstrual cycle relative
to the proliferative phase, consistent with a regulation of
EG-VEGF/PROK1 mRNA expression by progesterone.
Others also reported that, in human endometrium, EG-
VEGF/PROK1 shows a dynamic pattern of expression
across the menstrual cycle and during pregnancy, suggest-
ing that it plays a role in implantation and early pregnancy
(71, 73, 99). In addition, the plasma levels of EG-VEGF/
PROK1 were reported to substantially increase during
pregnancy, consistent with the hypothesis that the placenta
is the major source of this factor (99, 101). The same group
also investigated the expression pattern of EG-VEGF/
PROK1 and receptors in the mouse placenta throughout
gestation and found that Eg-vegf/prok1 and vegfa exhibited
different expression patterns and different localizations.
While Eg-vegf/prok1 was primarily localized in the laby-
rinth, vegfa was mainly expressed in glycogen and giant
cells (100).

Subsequent studies have provided evidence for a potential
role of EG-VEGF/PROK1 in multiple disorders of preg-
nancy (reviewed in Ref. 3).

Gao et al. (78) reported that EG-VEGF/PROK1 plasma
levels are a strong predictor of occurrence and severity of
ovarian hyperstimulation syndrome (OHSS) in patients un-
dergoing ovulation induction. OHSS is characterized by
massive ovarian enlargement and extensive increases in vas-
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cular permeability and can be a life-threatening complica-
tion (59). Interestingly, PCOS is a well-known risk factor
for OHSS (111).

These data, together with a wealth of studies showing a
correlation between plasma levels of EG-VEGF/PROK1
and various pathophysiological conditions in humans as
well as provocative in vitro studies showing effects of EG-
VEGF/PROK1 on endothelial and other cell types from re-
productive organs (3, 4, 20–22, 61–63, 77, 100, 116, 235),
suggest important regulatory functions of EG-VEGF/
PROK1 in the pathophysiology of the female reproductive
tract and pregnancy, with interesting therapeutic implica-
tions.

However, one has to acknowledge that progress in this field
has been hampered by the lack of suitable mouse or rodent
models that recapitulate the expression pattern and thus
potentially the functional roles that EG-VEGF/PROK1
plays in humans and in other primates. As already noted,
the expression pattern of mouse eg-vegf/prok1 mRNA is
different from that of its human ortholog (129), with mouse
eg-vegf/prok1 being expressed primarily in liver and kid-
ney, with little or no expression in endocrine glands (129).
As discussed in section II, the human but not the mouse
EG-VEGF/PROK1 promoter (129) has a consensus site for
SF-1, which confers steroidogenic cell-specific expression
(177). Indeed, there are some major differences in ovarian
physiology between rodents and primates. It is well-estab-
lished that in humans and other primates, a single follicle is
selected from the cohort that enters the follicular cycle (98).
This single follicle, referred to as the “dominant follicle,”
establishes dominance and is able to achieve ovulation, un-
like the nonselected follicles. It has been hypothesized that
the establishment of a more complex and extensive vascular
network confers a growth advantage to the dominant folli-
cle (98, 246). Therefore, it is possible that the expression of
EG-VEGF/PROK1 reflects the greater complexity and re-
quirement for a finer regulation of angiogenesis in the pri-
mate ovary (129). Further research is needed to test this
hypothesis.

G. Role of Prokineticins in Myeloid Cell
Biology and in Tumorigenesis

As already mentioned, early studies showed that both EG-
VEGF/PROK1 (127, 139) and Bv8/PROK2 (130) are able
to induce endothelial cell proliferation, migration, and an-
giogenesis, suggesting the possibility that these molecules
play a role in tumor angiogenesis. Indeed, several studies
have documented EG-VEGF/PROK1 mRNA and protein
expression in human tumors derived from steroidogenic
cells in the adrenal cortex, testis, and ovary (11, 97, 128,
194, 249).

The possibility that the prokineticins may have some func-
tions in the bone marrow was suggested by the observation
that a well-established angiogenic factor such as VEGF-A is
expressed by hematopoietic stem cells (HSC) and has the
ability to mobilize as well as promote proliferation and
survival of blood-marrow-derived cell types by autocrine
and paracrine mechanisms (83). Indeed, in the embryo,
common progenitors give rise to hematopoiesis and angio-
genesis (191), and VEGF-A inactivation results in defective
angiogenesis and blood island development (68).

In 2004, LeCouter et al. (131) reported the expression of
Bv8/PROK2 as well as of PKR1 and PKR2 in multiple cell
lineages from the bone marrow, while EG-VEGF/PROK1
was undetectable. These studies demonstrated the ability of
Bv8/PROK2 to promote differentiation, survival, and mo-
bilization of granulocytic and monocytic lineages and also
showed that both EG-VEGF/PROK1 and Bv8/PROK2 are
able to induce formation of granulocytic and monocytic
colonies in human and mouse HSC (131). This study also
reported the expression by in situ hybridization of Bv8/
PROK2 mRNA in neutrophils infiltrating human inflamed
tissues (131), providing the first evidence linking expression
and function of this molecule to a key cell type of the innate
immune system. As indicated in previous sections of this
review, it is now well established that neutrophils (and mac-
rophages) upregulate Bv8/PROK2 expression in response

FIGURE 7. Immunohistochemical localization of human Bv8/
PROK2 in invasive colon adenocarcinoma. Immunostaining was per-
formed as described (250). Note the strong signal in multifocal,
dense neutrophil clusters in the stroma adjacent to invasive tumor,
and in neutrophil clusters associated with necrotic debris in tumor
gland lumens. (Figure courtesy of Dr. Franklin Peale, Genentech Inc.)
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to a variety of proinflammatory stimuli (1, 84, 121, 250).
Also, human neutrophils isolated from peripheral blood or
bone marrow were reported to strongly express Bv8/
PROK2, which in turn stimulated neutrophil chemotaxis
(250).

It has been known for a long time that neutrophils and other
myeloid cells provide the first line of defense against many
pathogens (15). Also, much recent evidence supports the
notion that various bone marrow-derived cell types regulate
tumor angiogenesis and growth by a variety of mechanisms
that are often context-dependent (10, 50, 137, 140). Man-
tovani et al. (146) reported that macrophages, depending
on their “polarization” state, may have either tumor-pro-
moting or tumor-suppressive effects. Recent studies have
emphasized the important pathophysiological roles of a
population of myeloid cells, defined in the mouse by the
CD11b and Gr1 markers (CD11b�Gr1�), which consists
primarily of neutrophils, but also includes macrophages
and dendritic cells (203). Increased numbers of CD11b�
Gr1� cells (or their functional equivalents in humans) have
been reported in tumor-bearing mice and in cancer patients
(54, 147, 200, 243). These cells infiltrate tumors and stim-
ulate angiogenesis and tumor growth (39, 208). Subsets of
CD11b�Gr1� cells have been also implicated in suppress-
ing T-cell-mediated immune responses, hence the denomi-

nation “myeloid-derived suppressor cells” (MDSC) (75,
147).

In 2007, Shojaei et al. (205) reported that resistance to
anti-VEGF antibody treatment in some tumor cell lines im-
planted in immunodeficient or immunocompetent mice was
correlated with tumor infiltration by CD11b�Gr1� my-
eloid cells. Subsequent studies reported that Bv8/PROK2
was strongly upregulated in CD11b�Gr1� cells associated
with such resistant tumors (206, 207). Function blocking
anti-Bv8 antibodies inhibited tumor angiogenesis and
growth and exhibited additive effects with anti-VEGF anti-
bodies in slowing down the growth of anti-VEGF resistant
tumors (207).

These studies identified G-CSF as a key inducer of Bv8/
PROK2 expression in myeloid cells (207). This induction
has been observed in multiple biological contexts, including
mononuclear blood cells isolated from human subjects
treated with G-CSF (1, 41, 142, 186, 206, 250), and is
dependent on STAT3 signaling (186). G-CSF is a key regu-
lator of granulopoiesis and is produced by endothelial cells,
fibroblasts, and macrophages in response to various inflam-
matory cytokines (14, 192). Also, subsets of human tumors
produce high amounts of G-CSF, resulting in high neutro-
phil counts, and, in more severe cases, in “leukemoid reac-

Table 2. Biologic activities of PROKs and potential associated disorders in mice and humans

System/Organ Biological Effects Associated Pathology in Mice Associated Diseases in
Humans

Factors Reference Nos.

CNS Olfactory bulb
morphogenesis

Olfactory bulb ipoplasia,
olfactory bulb neurogenesis
deficiency, GnRH deficiency

Kallmann syndrome,
idiopathic
hypogonadotropic
hypogonadism, impaired
development of
reproductive axis

PROK2, PKR2 152, 171,
196

Circadian rhythm
regulation

Attenuated circadian rhythms,
reduced locomotor activity

Mood disorder? PKR2 34, 35, 103,
133

PNS Nociceptive
threshold

Altered pain perception ? PROK2, PKR1,
PKR2

102

Gastrointestinal
tract

Enteric nervous
system
development

Hirshprung disease PROK1, PKR1,
PKR2

172, 193

Ovary Angiogenesis Polycystic ovary syndrome PROK1 69, 127, 144
Testis Angiogenesis Leydig cell tumors PROK1 130, 194
Prostate Angiogenesis Prostate cancer 179
Endometrium Angiogenesis Endometriosis PROK1 227
Placenta Trophoblast

differentiation
Idiopathic recurrent

pregnancy loss
PROK1, PKR1 99–101

Adrenal gland Angiogenesis Neuroblastoma progression PROK1, PKR1,
PKR2

127, 138

Bone marrow
peripheral
blood

Immune responses
hematopoiesis

Tissue inflammation/
neuroinflammation

Inflammatory disease,
arthritis, multiple
sclerosis

PROK2, PKR1,
PKR2

131, 160

Cardiovascular
system

Cardiomyocytes
survival

Impaired angiogenesis �3 wk Heart failure, abdominal
aortic aneurysm

PPKR1,
PROK2

38, 82, 230
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tions,” which are associated with very poor prognosis (5,
30, 89, 154). Phan et al. (181) have recently shown that
activation of the ras pathway plays a key role in G-CSF
upregulation through activation of the Ets2 transcription
factor. It has been also reported that G-CSF release from
tumor cells or from the stroma, depending on the tumor
type, was correlated with refractoriness to anti-VEGF anti-
bodies in mouse models (206). Treatment with anti-G-CSF
antibodies led to a substantial reduction in both circulating
and tumor-associated myeloid cells in such models (206).

Consistent with a role of G-CSF signaling in regulating
Bv8/PROK2 expression, Lu et al. (142) reported that the
adhesion molecule CEACAM1, which is a negative regula-
tor of G-CSFR signaling in myeloid cells (176), profoundly
affects Bv8/prok2 expression in CD11b�Gr1� cells. Bv8/
PROK-2 levels were strongly upregulated in CD11b�
Gr1� cells from CEACAM null mice implanted with B16
melanoma, and treatment with anti-G-CSF or anti-Bv8/
PROK2 antibodies reduced tumor growth and angiogenesis
to the levels observed in wild-type mice. The authors (142)
concluded that CECAM1 is a negative regulator of myeloid
cell-dependent angiogenesis through inhibition of the G-
CSF-Bv8 pathway.

Kowanetz et al. (118) uncovered another critical function of
the G-CSF-Bv8/PROK2 axis, facilitating tumor metastasis.
They reported that the ability of 4T1 and other breast can-
cer cell lines to metastatize to the lungs was highly corre-
lated with G-CSF release by the tumor cells and the result-
ing mobilization of Ly6G� granulocytes, which strongly
expressed Bv8/PROK2 (118). Anti-G-CSF or anti-Bv8/
PROK2 antibodies significantly reduced lung metastasis.
Subsequent studies independently confirmed the key role of

G-CSF-mediated mobilization of granulocytes in breast
cancer metastasis (28, 44).

Xin et al. (240) described another role of Bv8/PROK2 in
malignant cells. Bv8/PROK2, through activation of STAT3
and downstream JAK2, had a pro-survival effect on normal
and malignant human myeloid cells. Knocking down Bv8/
PROK2 in human leukemic cells reduced the activity of
STAT3 and downstream genes, resulting in inhibition of in
vitro growth and reduced tumorigenesis and angiogenesis
in vivo (240).

Also, Curtis et al. (51) tested a small molecule Bv8/PROK2
receptor antagonist in tumor models. Administration of this
inhibitor reduced growth of glioblastoma and pancreatic
xenografts by suppressing angiogenesis and myeloid cell
infiltration (51).

Hasnis et al. (95) have described another situation in which
Bv8/PROK2 plays an important role. Tumor resistance to
weekly administration of gemcitabine, a cytotoxic agent
widely used to treat pancreatic cancer, was found to be
related to rebound mobilization of granulocytes, and Bv8/
PROK2 was highly expressed in granulocytes colonizing
pancreatic tumors. Administration of anti-Bv8/PROK2 an-
tibodies resulted in suppression of granulocyte rebound and
reduced tumor regrowth, angiogenesis, and metastasis in
mice treated with weekly gemcitabine (95).

Treatment with anti-Bv8/PROK2 antibodies was associated
with decreased mobilization of CD11b�Gr1� cells and a
reduction in the numbers of angiogenenic islets in RIP-Tag
mice (204), a transgenic model of pancreatic neuroendo-
crine tumorigenesis (93), indicating that anti-angiogenic ef-

Table 3. Correlation between altered expression of the prokineticin system and human disease

Diseases Mutated/Altered Expression Reference Nos.

Kallmann syndrome, idiopathic hypogonadotropic hypogonadism PKR2, PROK2 196
Hypopituitarism PKR2 6, 190
Hirshprung disease PROK1, PROK2, PKR1, PKR2 172
Neuroblastoma progression PROK1, PROK2, PKR1, PKR2 125, 174
Heart failure PKR1, PROK2 82, 230
Abdominal aortic aneurysm PROK2 38
Leydig cell tumors PROK1 194
Prostate carcinogenesis PROK1, PROK2, PKR1, PKR2 179
Polycystic ovary syndrome, ovarian hyperstimulation syndrome PROK1 69, 144
Idiopathic recurrent pregnancy loss PROK1, PKR! 220
Ectopic endometrium in endometriosis 227
Steroidogenic cell-derived human tumors adrenal cortex, testis, ovary PROK1 127
Human tumors and inflammatory disorders PROK2 251
Arthritis PROK2 121
Tumor angiogenesis and metastasis PROK2 207
Multiple sclerosis PROK2 1
Parkinson’s disease PROK2 87
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fects of the anti-Bv8/PROK2 antibodies are not limited to
transplantable tumor models. Importantly, neutrophils in-
filtrating human tumors strongly express Bv8, raising the
possibility that this protein may have therapeutic/diagnos-
tic significance for some human malignancies (250). FIGURE
7 illustrates the immunohistochemical localization of the
Bv8/PROK2 protein in clusters of tumor-infiltrating neu-
trophils in an invasive colorectal adenocarcinoma.

As noted elsewhere in this article, Bv8/PROK2 is upregu-
lated in synovial cells in animal models of rheumatoid ar-
thritis (121). Angiogenesis is a key aspect of rheumatoid
arthritis (reviewed in Ref. 222), and key angiogenic factors
such as VEGF-A are highly expressed in human (117) and
experimentally induced (157) rheumatoid arthritis. CD11b�
Gr1� myeloid cells were found to express Bv8/PROK2 in a
model of collagen-induced arthritis (121), consistent with
the above-mentioned proangiogenic and proinflammatory
roles of this cell type.

VII. CONCLUSIONS AND THERAPEUTIC
PERSPECTIVES

As discussed throughout this article, research conducted
over the last two decades has elucidated a number of im-
portant functions of this family of factors, ranging from
circadian rhytms, regulation of reproductive processes,
neurogenesis, angiogenesis, and inflammation. TABLES 2
AND 3 illustrate, respectively, the biological effects of pro-
kineticin and potential ssociated disorders and a correlation
between altered expression of this system and human dis-
ease. The association of PKR2 and Bv8/PROK mutations
with KS provides a compelling verification of the hypothesis
that this signaling system plays important roles in neuro-
genesis. Also, this system is implicated in the regulation of
pain sensitivity associated with a number of disorders in-
cluding cancer. Therefore, inhibitors of this pathway may
have applications for the treatment of various types of pain.

VEGF inhibitors have been approved for the treatment of
multiple malignancies and intraocular neovascular disor-
ders, and there is an interest in improving patient outcomes
and treating poor-responders (66, 67). Much recent re-
search has focused on the microenvironment as a source of
alternative proangiogenic pathways (40, 65). In particular,
inflammation and infiltration by myeloid and other cell
types of the innate and adaptive immune system have been
strongly implicated in these processes (45). As discussed in
this article, extensive preclinical data support the notion
that Bv8/PROK2, produced by neutrophils and potentially
other myeloid cell types, is one of the mediators of VEGF-
independent angiogenesis in tumors. Indeed, the expression
of Bv8/PROK2 in tumor-infiltrating neutrophils is promi-
nent in several human tumors, including colorectal (FIGURE
7) and non-small-cell lung cancer (250). Therefore, clinical
trials combining VEGF inhibitors with Bv8/PROK2 antag-
onists may have a rational foundation.

Intriguingly, recent data suggest that EG-VEGF/PROK1
might be one of the factors involved in the abnormal vas-
cular permeability of diabetic macular edema, raising the
possibility that this protein may have diagnostic/therapeu-
tic implications in this context (27).

As discussed, there are several tantalizing clues that EG-
VEGF/PROK1 also plays important functions in endocrine
gland angiogenesis and in the pathophysiology of preg-
nancy. However, the lack of suitable rodent models has so
far precluded the generation of definitive evidence. Studies
in primates and possibly in humans may be required to
conclusively resolve these issues.

Finally, the development of reagents that selectively target
not only each ligand but also each PKR (or both) may
further expand the therapeutic possibilities and potentially
enable a more refined targeting of various disorders in
which the prokineticin system is implicated, should the sig-
nificance of the two receptors in different pathophysiologi-
cal contexts become more clear.
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