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Wood is a major pool of organic carbon that is highly resistant to decay, owing
largely to the presence of lignin. The only organisms capable of significant lignin
decay are white rot Fungi in the Agaricomycetes, which also contains non-lignin-
degrading brown rot and ectomycorrhizal species. Comparative analyses of 31
fungal genomes (12 newly generated) suggest that lignin-degrading peroxidases
expanded in the lineage leading to the ancestor of the Agaricomycetes, which is
reconstructed as a white rot species, and then contracted in parallel lineages
leading to brown rot and mycorrhizal species. Molecular clock analyses suggest
that the origin of lignin degradation roughly coincided with the sharp decrease in

the rate of organic carbon burial around the end of the Carboniferous period.

Lignin is a heterogeneous polymer that provides strength and rigidity to wood, protects
cellulose and hemicellulose from microbial attack (7), and is the major precursor of coal
(2). Genomic studies of wood decay organisms have focused on model systems for
white rot (in which all plant cell wall components are degraded), such as Phanerochaete
chrysosporium (3), and brown rot (in which lignin is modified but not appreciably
degraded), such as Postia placenta (4) and Serpula lacrymans (5). However, these
species represent just two of the 18 recognized orders of Agaricomycetes, of which five

contain brown rot taxa. To reconstruct the evolution of lignin decay mechanisms, we



analyzed 31 diverse fungal genomes, including twelve newly-sequenced species of
Agaricomycotina (Table 1). The new genomes comprise six white rot species, five
brown rot species, and one mycoparasite, representing nine orders (Figs. 1, S1-5; see
Supporting Online Material for information on strains, culture conditions, genome size
and assembly).

To estimate phylogenetic relationships, we constructed datasets using 71 or 26
single-copy genes, with varying alignment criteria and treatments for fast-evolving sites,
yielding matrices of 10002 to 34257 amino acids, which we analyzed with maximum
likelihood (ML) and Bayesian methods (6, 7) (see Supporting Online Material for
details). All but six nodes receive maximal support values in all analyses and the rest
are strongly supported (bootstrap =299% or posterior probability 20.99) in at least three
analyses. The tree topology is consistent with prior analyses (8) and resolves four
independent brown rot lineages (Figs. 1a, S6).

We next searched all 31 genomes for 27 gene families encoding
oxidoreductases and carbohydrate-active enzymes (CAZymes) that have been
implicated in wood decay (9, 70) (Table 1). CAZymes, particularly those acting on
crystalline cellulose, are abundant in white rot genomes, which have 61-148 (avg. 87)
copies of genes encoding CAZymes, representing 14-17 gene families, whereas brown
rot genomes have 32-68 copies (avg. 46) from 9-12 families. The ectomycorrhizal
Laccaria bicolor resembles brown rot species in this regard, possessing 28 CAZyme
genes in eight families (Table 1). Notably, glycoside hydrolase (GH) families GH6 and
GH7, which include cellobiohydrolases that are involved in the attack of crystalline

cellulose (9), are present in all white rot lineages, but they are absent in brown rot



lineages (except Boletales) and L. bicolor. A similar pattern of enrichment in white rot
genomes is shown by genes encoding GH61 enzymes, which have a copper-dependent
oxidative mechanism for disrupting crystalline cellulose (717), and cellulose binding
modules (CBM1), which effectively increase the concentration of the enzymes on the
surface of crystalline cellulose (12) (Table 1).

Here, we focus on fungal class Il peroxidases (PODs), which have been shown
to be important in lignin degradation in P. chrysosporium and others (13-15). (The
remaining gene families are discussed in Supporting Online Material; Figs. S7-19.) We
classified PODs in four major groups, including three ligninolytic forms, lignin
peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP), and a
fourth POD type, defined here as “generic peroxidase” (GP), which is expected to
include non-ligninolytic low redox-potential peroxidases with catalytic properties similar
to those of the peroxidase of Coprinopsis cinerea or the product of the nopA gene in P.
chrysosporium (14) (further subclassification of PODs is described in Supporting Online
Material).

Consistent with a central role for PODs in lignin degradation, white rot species
have 5 to 26 copies (avg. 14) of genes encoding ligninolytic PODs, but all brown rot
species lack these enzymes, as do the ectomycorrhizal (ECM) Laccaria bicolor, the soil
saprotroph C. cinerea, and Schizophyllum commune, which has been regarded as a
white rot fungus, but has a limited capacity to degrade lignin (75). Moreover, analyses of
gene diversification using binary state speciation analysis (79) confirmed that the rate of
duplication of POD genes is elevated in white rot lineages vs. non-white rot lineages

(see Supporting Online Material for details).



LiPs possess a tryptophan residue on the surface of the enzyme corresponding
to Trp171 in P. chrysosporium LiP-H8 that enables direct oxidation of lignin compounds
via long-range electron transfer, and MnPs possess two or three residues
corresponding to Glu35, Glu39 and Asp175 of P. chrysosporium MnP1 that function in
binding Mn (16, 17). VPs possess both the Trp171 homologue and Mn-binding
residues, while all are lacking in GPs. To reconstruct functional evolution of PODs, we
performed Bayesian and ML analyses (6, 18) using the GPs of Ascomycota as
outgroups and reconstructed the evolution of the key residues using BayesTraits (20).
The ancestor of all PODs lacked the Mn-binding and Trp171 residues, suggesting that it
was non-ligninolytic (Fig. 1b). The most recent common ancestor of all ligninolytic
Agaricomycete PODs is reconstructed as an MnP, with a single origin of LiP (gain of
Trp171 and loss of Mn-binding residues), leading to parallel expansions in P.
chrysosporium and T. versicolor (each with 10 LiP copies; Figs. 1b, S7, S17). Two
origins of VP are resolved in the Polyporales, leading to T. versicolor and D. squalens
(each with three VP copies; Figs. 1b, S7). VPs are also produced in the “oyster
mushroom” Pleurotus ostreatus (Agaricales) (21), indicating further convergent
evolution of this class of enzymes.

To localize the diversification of PODs in the organismal phylogeny, we
performed gene tree/species tree reconciliation analyses using CAFE (22), Notung (23),
and DrML (24). All methods suggest that a single POD gene copy was present in the
common ancestor of Basidiomycota, with parallel losses in lineages leading to the
Pucciniomycotina, Ustilaginomycotina, Tremellomycetes, and Dacryopinax sp. (Fig. 1a).

Diversification of PODs began in the lineage leading to the most recent common



ancestor of the Agaricomycetes (node “A” in Fig. 1a), which is reconstructed as having
two to seven POD gene copies in the various analyses. The “backbone” nodes in the
Agaricomycete phylogeny (nodes labeled “B” in Fig. 1a) are reconstructed as having 3-
16 POD gene copies, suggesting that duplicated PODs were retained throughout the
early evolution of Agaricomycetes. Subsequently, all analyses suggest that there were
parallel expansions of POD genes in the terminal lineages leading to at least seven of
the eight white rot species, as well as parallel contractions within lineages leading to the
brown rot species Dacryopinax sp., Gloeophyllum trabeum, the Boletales, and the
brown rot Polyporales (Fig. 1).

In addition to multiple PODs, reconciliation analyses suggest that the ancestor of
the Agaricomycetes possessed one or two genes encoding dye-decolorizing
peroxidases (DyP), which are heme peroxidases that have been shown to degrade
lignin model compounds (25, 26), as well 5-8 genes encoding oxidases (including
glyoxal oxidase) involved in peroxide generation (27) (details in Supporting Online
Material). Collectively, these results suggest that the ancestor of Agaricomycetes was a
white rot species that possessed a ligninolytic system with PODs, DyPs, and multiple
pathways for H,O2 production.

To place the origin of lignin degradation in the context of geologic time, we
performed Bayesian relaxed molecular clock analyses using BEAST (78) and
PhyloBayes (7), with fossil-based calibrations at three nodes, including the ancestors of
the Boletales (28), Agaricales (29), and Ascomycota (30) (see Supporting Online
Material for details of molecular clock analyses). The mean age of the Agaricomycetes

is ca. 290 mya in both BEAST and PhyloBayes analyses, with the mean age of the



Agaricomycotina being ca. 430-470 mya. These age estimates are consistent with
basidiomycete fossils that were not used as calibration points, including hyphae with
clamp connections from the Mississippian (37) (ca. 330 mya). BEAST analyses of the
POD genes, calibrated with the split between Ascomycota and Basidiomycota according
to the organismal phylogeny, suggest that the first ligninolytic MnP arose ca. 295 mya
(Fig. 1), which is slightly earlier than (and therefore consistent with) the oldest definitive
white rot fossils from the Permian (ca. 260 mya) and Triassic (ca. 230 mya) (32).

Organic carbon derived from lignin accumulated at an exceptionally high rate
during the Carboniferous and Permian, resulting in the formation of vast coal deposits
(33). A frequently cited explanation for this phenomenon is that decay was inhibited in
the anoxic sediments of the widespread Permo-Carboniferous swamp forests. Our
results are consistent with a complementary hypothesis (2), which posits that the sharp
decline in the rate of organic carbon burial at the end of the Permo-Carboniferous was
caused, at least in part, by the evolution of lignin decay capabilities in white rot

Agaricomycetes.

Figure 1. A. Organismal phylogeny (chronogram) produced with BEAST. Light blue
bars are 95% highest posterior density intervals for node ages; mean ages of selected
nodes (millions of years) are in parentheses. Blue and red branches indicate significant
expansion and contraction, respectively, of PODs inferred using CAFE. Numbers in red
following following taxon names are POD gene counts. Numbers in red at nodes
separated by commas, are numbers of POD gene copies estimated with CAFE, Notung

(with two different edge weight threshold settings), and DrML, respectively. Node labled



A is the ancestor of Agaricomycetes, while nodes labeled B are “backbone” nodes in
Agaricomycetes (see text). Asterisks indicate nodes that do not receive maximal
support in all analyses (support values are in Fig. S6). Full species names are listed in a
footnote to Table 1. B. POD gene phylogeny estimated in BEAST with ancestral state
reconstructions for manganese-binding site (colored pies) and Trp171 residues (black
and white pies) estimated with BayesTraits. Bars to right of gene IDs indicate presence
of functional residues (77). Mean ages for selected nodes in parentheses are followed

by 95% highest posterior density ranges.
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Table 1. Gene contents in 17 CAZyme and 11 oxidoreductase families in the genomes of 20 Agaricomycotina and eleven other Fungi.
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MCO 0000l 17201311 [10[]10[13] 5 [ 5[5 [ 7] 4]6 8] 11]6][]17]5]4[5]9]6]2][1]14]16][8] 9 [2]3]5
CRO® 0000 5 | 8| 9 | 4 |9 9|9 |7 |3]4]| 4] 2]3]6®8 11 2 | 6 3 2|31 ]3]4|3]0o]o0[1]2]0]3]1
CDH® 0.575 | 1 1 1 1 1 1 1 11 oflo o] 1] 2]2 0 1 1 o l]ofofo]o|of]o]2 |3 ]o][3|o]0o]oO
Cytb562 | 0.177 | 1 11 o]lo ] 0] 1 1 11 ofloflo]o]| 213 0 2 o] of[oflolo|Jo]ofJolo]|[1]|o]2]o]o]oO
OXO0 0026 | 3 | 3 | 2 |3 [ 3|5 |5 7[5 ]| 4] 5] 4] 3]2 1 5 [ 1 2 lofofo]o|1]o]2]21]3][3|o0of]0]o0
GLP oooo| 1 [11 ][ 6 | 8 | 1] 26|35 /[10[10]6 ] 3|11 1 7] o[ 3]o|lolo|]o]2]olo|o]o|lo[o]o]oO
QRD 0496 | 2 | 1 [ 3 | 3 | 4 | 1 1| 4 |1 1 1 | 3] 2 2 4 | 3 1 112011 [1]1 1T 1] 1 [4]1] 4
DyP oo00| 1 [ 2[5 |3 [11]2]1]o0o]2]o0o]o0o]o0o]o 2 0o 4]o0o[1|1]o]o]2]olo|o]olo][]o]o]oO
HTP 0000l 5 [10] 8 | 4 [16] 3 | 4 | 3|5 |5 | 4] 6|3 5 3/ 8] 6 [0|lo|o]|3 17|05 | 2]4|13][0]0]oO0
P450 0.000 | 144 | 215 | 144 [ 130 | 249 | 190 | 187 | 149 [ 250 | 206 | 190 | 130 | 164 [ 238 | 101 115139126 | 9 |13 | 7 |17 |28 | 7 [ 156 |125|71[125[10 | 9 | 52

'Species: New genomes: Ad = A. delicata, Cp = C. puteana, Da = Dacryopinax sp., Ds = D. squalens, Fm = F. mediterranea, Fp = F. pinicola, Gt = G. trabeum, Pu = P. strigosozonata, Sh = S.
hirsutum, Tm = T. mesenterica, Tv = T. versicolor, Wc = W. cocos. Others: An = A. niger, Bd = B. dendrobatidis, Cc = C. cinerea, Cn = C. neoformans, Cr = C. parasitica, Ha = H. annosum (has been
reclassified as H. irregulare), Lb = L. bicolor, Mg = M. globosa, Ml = M. laricis-populina, Pb = P. blakesleeanus., Pc = P. chrysosporium, Pp = P. placenta, Ps = P. stipitis, Sc = S. commune, Sl = S.
lacrymans, Sn = S. nodorum, Sr = S. roseus, Tr = T. reesei, Um = U. maydis. Higher taxa: Dac = Dacrymycetes, Trem = Tremellomycetes, Ust = Ustilaginomycotina, Pucc = Pucciniomycotina, Pez =
Pezizomycotina, Sc = Saccharomycotina, Ch = Chytridiomycota, Mu = Mucoromycotina.

WR = white rot, BR = brown rot, ECM = mycorrhiza, S = non-wood decay saprotroph, MP = mycoparasite, AP = animal pathogen/parasite, PP = plant pathogen, Y = yeast.

*POD= Clas-Il peroxidases, MCO= multicopper oxidases, CRO= copper-radical oxidases, CDH= cellobiose dehydrogenase, Cytb562= cytochrome b562, OXO= oxalate oxidase/decarboxylases, GLP=
Fe(lll)-reducing glycopeptides, QRD= quinone reductases, DyP= dye-decolorizing peroxidases, HTP= heme-thiolate peroxidases, P450= cytochromes P450.

*p-values indicate strength of rejection of model of random diversification in CAFE analyses.

®One of four CRO2 genes in A. delicata is a potential pseudogene.

®0One CDH gene in C. puteana lacks a cyt domain and may not be functional.

"GH3 does not include B-N-acetylhexosaminidase genes

8GH5 includes only models with similarity to endo-1,4-3-D-glucanases and mannan endo-$-1,4-mannosidases.
°One model (Fompi1 162677) is a potential pseudogene.

'“The two models of Pospl1 and Wolco1 were missing from the original dataset as the clusters failed to recover them.
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