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Targeting Prodromal Alzheimer Disease With Avagacestat
A Randomized Clinical Trial
Vladimir Coric, MD; Stephen Salloway, MD; Christopher H. van Dyck, MD; Bruno Dubois, MD; Niels Andreasen, MD, PhD;
Mark Brody, MD; Craig Curtis, MD; Hilkka Soininen, MD; Stephen Thein, PhD; Thomas Shiovitz, MD; Gary Pilcher, PhD;
Steven Ferris, PhD; Susan Colby, BA; Wendy Kerselaers, BA; Randy Dockens, PhD; Holly Soares, PhD; Stephen Kaplita, MSc;
Feng Luo, PhD; Chahin Pachai, PhD; Luc Bracoud, MSc; Mark Mintun, MD; Joshua D. Grill, PhD; Ken Marek, MD; John Seibyl, MD;
Jesse M. Cedarbaum, MD; Charles Albright, PhD; Howard H. Feldman, MD; Robert M. Berman, MD

IMPORTANCE Early identification of Alzheimer disease (AD) is important for clinical
management and affords the opportunity to assess potential disease-modifying agents in
clinical trials. To our knowledge, this is the first report of a randomized trial to prospectively
enrich a study population with prodromal AD (PDAD) defined by cerebrospinal fluid (CSF)
biomarker criteria and mild cognitive impairment (MCI) symptoms.

OBJECTIVES To assess the safety of the γ-secretase inhibitor avagacestat in PDAD and to
determine whether CSF biomarkers can identify this patient population prior to clinical
diagnosis of dementia.

DESIGN, SETTING, AND PARTICIPANTS A randomized, placebo-controlled phase 2 clinical trial
with a parallel, untreated, nonrandomized observational cohort of CSF biomarker-negative
participants was conducted May 26, 2009, to July 9, 2013, in a multicenter global population.
Of 1358 outpatients screened, 263 met MCI and CSF biomarker criteria for randomization into
the treatment phase. One hundred two observational cohort participants who met MCI
criteria but were CSF biomarker-negative were observed during the same study period to
evaluate biomarker assay sensitivity.

INTERVENTIONS Oral avagacestat or placebo daily.

MAIN OUTCOMES AND MEASURE Safety and tolerability of avagacestat.

RESULTS Of the 263 participants in the treatment phase, 132 were randomized to avagacestat
and 131 to placebo; an additional 102 participants were observed in an untreated
observational cohort. Avagacestat was relatively well tolerated with low discontinuation rates
(19.6%) at a dose of 50 mg/d, whereas the dose of 125 mg/d had higher discontinuation rates
(43%), primarily attributable to gastrointestinal tract adverse events. Increases in
nonmelanoma skin cancer and nonprogressive, reversible renal tubule effects were observed
with avagacestat. Serious adverse event rates were higher with avagacestat (49 participants
[37.1%]) vs placebo (31 [23.7%]), attributable to the higher incidence of nonmelanoma skin
cancer. At 2 years, progression to dementia was more frequent in the PDAD cohort (30.7%)
vs the observational cohort (6.5%). Brain atrophy rate in PDAD participants was
approximately double that of the observational cohort. Concordance between abnormal
amyloid burden on positron emission tomography and pathologic CSF was approximately
87% (κ = 0.68; 95% CI, 0.48-0.87). No significant treatment differences were observed in
the avagacestat vs placebo arm in key clinical outcome measures.

CONCLUSIONS AND RELEVANCE Avagacestat did not demonstrate efficacy and was associated
with adverse dose-limiting effects. This PDAD population receiving avagacestat or placebo
had higher rates of clinical progression to dementia and greater brain atrophy compared with
CSF biomarker–negative participants. The CSF biomarkers and amyloid positron emission
tomography imaging were correlated, suggesting that either modality could be used to
confirm the presence of cerebral amyloidopathy and identify PDAD.

TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00890890
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I dentifying Alzheimer disease (AD) before patients meet cri-
teria for dementia may be critical to effectively evaluate
whether potential disease-modifying agents can alter the

neurodegenerative process and long-term course of this ill-
ness. Defining prodromal AD (PDAD) using biomarkers asso-
ciated with amyloidopathy and clinical criteria for mild cog-
nitive impairment (MCI) has been proposed1,2 as a way of
identifying incipient AD dementia. Advances in cerebrospi-
nal fluid (CSF) and neuroimaging biomarkers offer increasing
sensitivity in identifying AD before the onset of dementia.3,4

Enriching clinical trials with patients who have both the clini-
cal phenotype and underlying biomarker signature of AD will
help ensure diagnostic accuracy, minimize exposure of indi-
viduals without AD to investigational agents, and increase the
chances of detecting efficacy signals. A recent study5 in pa-
tients with dominantly inherited AD found that structural and
biochemical changes associated with AD begin years before the
onset of clinically evident symptoms, supporting the notion
that early intervention with a disease-modifying agent will be
required to optimally affect symptom emergence and disease
progression. Nonetheless, it remains to be established if ful-
filling criteria for PDAD predetermines eventual develop-
ment of dementia or simply represents a risk factor.

Avagacestat (BMS-708163) is an oral γ-secretase inhibitor
designed for the selective inhibition of β-amyloid (Aβ) syn-
thesis relative to processing of Notch substrates. Phase 1
studies6,7 demonstrated that avagacestat decreased Aβ40 and
Aβ42 levels at dosages expected to be tolerated in patients.
Given that Aβ abnormality is an early marker of AD pathology
and seems to change substantially throughout the course of
MCI,8,9 avagacestat was advanced into a phase 2 PDAD clini-
cal trial.10-15 We present the methods and results from this pro-
spective, double-blind, placebo-controlled, randomized clini-
cal trial designed to enrich for a study population at increased
risk of progressing to dementia. In addition, we present data
on patients meeting the clinical criteria for MCI but who were
biomarker-negative in an observational cohort to assess the
predictive value of using PDAD criteria to select patients at risk
of progressing to dementia during the trial.

Methods
The treatment period of this multicenter, global, random-
ized, double-blind, 2-arm, placebo-controlled, parallel-
group, randomized clinical trial was planned to extend until
at least 2 years after the last patient was randomized. Indi-
viduals who met clinical criteria for MCI, but not for PDAD (be-
cause of the absence of CSF biomarker evidence of AD pathol-
ogy) were eligible to be monitored longitudinally in an
observational cohort.

Written informed consent was obtained from outpa-
tients aged 45 to 90 years with MCI. The study was approved
by an institutional review board designated by each site and
was conducted in accordance with ethical principles and ap-
plicable regulatory requirements.16,17 The full study protocol
can be found in Supplement 1. An independent data-
monitoring committee had access to all study data and moni-

tored the safety of participants on a quarterly basis through-
out the trial. Patients at US sites and where allowed by local
country regulations outside the United States received finan-
cial compensation for study visits and travel.

Inclusion and Exclusion Criteria
Randomized patients with PDAD met the following criteria: (1)
clinical symptoms of MCI18 but not Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition, Text Revision
(DSM-IV-TR)19 criteria for dementia and (2) CSF biomarker re-
sults consistent with the presence of amyloidopathy (Aβ42 level
of <200 pg/mL or total tau to Aβ42 ratio of ≥0.39) (Figure 1). Clini-
cal MCI criteria required a subjective memory problem verified
by a study partner, as well as demonstration of abnormal
memory functioning as documented by at least 1 of the 4 follow-
ing criteria: (1) scoring below the educational level–adjusted cut-
off (1.5 SDs below the mean) on the Logical Memory II subscale
from the Wechsler Memory Scale–Revised,20 (2) Free and Cued
Selective Reminding Test21 (word list version) Total Recall score
of 39 or less, (3) Free and Cued Selective Reminding Test Free
Recall score of 24 or less, or (4) Free and Cued Selective Remind-
ing Test Delayed Free Recall score of 8 or less. Other inclusion
criteria includedMini-MentalStateExamination22 scorebetween
24 and 30, and Clinical Dementia Rating23 global score of 0.5 with
a memory box score of 0.5 or less. In addition, screening mag-
netic resonance imaging (MRI) had to meet all of the following
criteria: (1) provide a qualitative assessment showing either a nor-
mal MRI commensurate with age or atrophy consistent with an
AD diagnosis, (2) reveal no focal asymmetric lobar atrophy or
other findings suggesting that the primary cause of dementia
was better attributed to a cause other than AD, (3) reveal no more
than mild to moderate white matter disease (1-2 lacunar infarcts
were acceptable, but no lacunes were permitted in the anteri-
or thalamus, genu of internal capsule, or basal forebrain; no
cortical infarcts), (4) reveal no more than 4 cerebral microhem-
orrhages, and (5) reveal no current or prior evidence of macro-
hemorrhages (>10 mm).

Exclusion criteria were as follows: (1) presence of a con-
dition other than AD to explain the patient’s cognitive symp-
toms, (2) previous stroke, (3) positive fecal test for occult blood
at screening, (4) chronic inflammatory bowel disease, (5) fre-
quent diarrhea or loose stools,(6) vitamin B12 or folate defi-
ciency, (7) Geriatric Depression Scale24 score of 6 or higher at
screening (suggesting clinical depression), and (8) exposure to
an investigational agent related to Aβ modulation within 12
months before screening. Patients who received stable doses
of approved AD medications for at least 2 months prior to
screening or who remained free of such medications through-
out the trial were also excluded (Figure 1).

After being informed that their CSF biomarker results did
not qualify for randomization to the treatment arms of the
study, individuals who met all other inclusion criteria were in-
vited to consent and to be followed up longitudinally in the
observational cohort.

Safety Assessments
Safety and tolerability were evaluated by reports of adverse
events (AEs) and clinically meaningful changes in electrocar-
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diograms, vital signs, physical examination findings, labora-
tory test results, and MRIs tabulated by treatment arm. Ad-
verse events were identified for up to 30 days after the study,
and serious AEs (SAEs) were monitored until resolution.

Clinical Outcome Assessments
Key clinical outcome measures, including the 11-item Alzhei-
mer’s Disease Assessment Scale–cognitive subscale,25 Clini-
cal Dementia Rating Sum of Boxes,26 and Alzheimer’s Dis-
ease Cooperative Study Activities of Daily Living MCI version27

were performed at screening, baseline, and approximately ev-
ery 12 weeks thereafter. Other outcome measures (Mini-
Mental State Examination and Free and Cued Selective Re-
minding Test)21,22,28 were performed at screening and/or
baseline and approximately every 24 weeks thereafter.

Progression to dementia was assessed at each visit.
Assessment included review of Clinical Dementia Rating
scores, Geriatric Depression Scale scores, and neuropsycho-
logical test information. Diagnoses of progression to demen-
tia of the AD type were based on fulfilling both DSM-IV-R19

and National Institute of Neurological and Communicative
Disorders and Stroke–Alzheimer’s Disease and Related Disor-
ders Association29 criteria. A diagnostic adjudication com-
mittee reviewed all investigator reports of progression, but
results were not revealed to the sites.

CSF Biomarker Assessments
Lumbar punctures were performed at screening and option-
ally for randomized patients at week 2, week 24, and the end
of treatment. The CSF levels of total tau, phosphorylated tau,
and Aβ1-42 were analyzed (Luminex xMap technique,
INNO-BIA AlzBio3 kit; Innogenetics) at a central laboratory.
Levels of Aβ40 and Aβ42 were measured using electrochemi-
luminescence detection technology in multiplex format (Meso
Scale Discovery). Cerebrospinal fluid levels of Aβ1-42 and total
tau used for inclusion criteria were prospectively analyzed as
patients were screened each week. In assessing changes in CSF
biomarkers over time, baseline and on-treatment CSF samples
from each patient were analyzed in the same analytical run to
avoid any batch-to-batch assay variation.

Figure 1. CONSORT Flow Diagram: Patient Disposition

571 Lumbar puncture

1358 Enrolled
787 Excluded

232 Did not meet MCI cognitive criteria

207 Dementia or clinical severity

97 Feasibility issues

72 Abnormal laboratory tests

67 MRI findings

57 Withdrew consent prior to randomizing

37 Concomitant medications

18 Other or missing

53 Discontinued

16 Withdrew consent

14 Adverse event

6 Requested discontinuation of treatment

6 Lack of efficacy

4 No longer met criteria

3 Poor compliance

2 Other

2 Lost to follow-up

73 Discontinued

45 Adverse event

13 Withdrew consent

6 Requested discontinuation of treatment

4 Lack of efficacy

3 No longer met criteria

1 Lost to follow-up

1 Death

131 Randomized to receive placebo 132 Randomized to receive avagacestat

78 Completed ≥1 y double-blind treatment
prior to study termination

59 Completed ≥1 y double-blind treatment
prior to study termination

308 Excluded (did not meet CSF biomarker criteria)

102 Assigned to
observational cohort

263 Randomized

PET substudy sample (scans at
baseline, week 24, and week 104)

32 Placebo

26 Avagacestat

16 Observational

Patient flow in the randomized treatment phase (avagacestat vs placebo) for
cerebrospinal fluid (CSF) biomarker–positive participants and the observational
cohort for CSF biomarker–negative participants. After all participants in the
treatment phase had the opportunity to receive double-blind treatment for at

least 1 year, the study was terminated early after an interim analysis suggested a
lack of efficacy on key clinical outcome measures. MCI indicates mild cognitive
impairment; MRI, magnetic resonance imaging; and PET, positron emission
tomography.
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MRI Assessments
Magnetic resonance imaging scans were performed on 1.5-T
scanners at baseline and every 12 weeks thereafter. Volumet-
ric MRI assessment techniques have been described.10 Re-
sults were evaluated centrally (BioClinica). Whole-brain and
ventricular atrophy rates were computed using tensor-based
morphometry,30-32 and hippocampal atrophy was calculated
using hippocampus boundary shift integral.33

PET Amyloid Assessments
Imaging using florbetapir F 18 positron emission tomography
(PET) was performed in a subset of patients at baseline, week
24, and week 104 at selected sites. The florbetapir F 18 PET
methods were performed blinded to patient assignment and
analyzed as described previously34,35 under the direction of a
central laboratory (Molecular NeuroImaging). Neocortical amy-
loid burden was expressed visually as either positive (consis-
tent with an AD pattern of amyloidopathy) or negative (not con-
sistent with an AD pattern of amyloidopathy), and
quantitatively as the mean standard uptake value ratio for spe-
cific brain regions (posterior cingulate, parietal, lateral tem-
poral, and frontal). The ratio was calculated as the target re-
gion standard uptake value divided by the brain tissue
reference region, with the cerebellar cortex used as the refer-
ence region.

Randomization and Interventions
Patients with PDAD were randomly assigned (1:1) across the 2
blinded treatment groups: placebo or avagacestat once daily
(Figure 1). Patients assigned to the avagacestat group initially
received 50 mg/d for the first 2 weeks and then 125 mg/d. An
amendment to the protocol reduced the dose to 50 mg/d and
allowed for down-titration to 25 mg/d owing to high treat-
ment discontinuation rates at 125 mg/d. Treatment allocation
was stratified based on concomitant cholinesterase inhibitor
use (yes/no), apolipoprotein E ε4 (APOE4) carrier status (carrier/
noncarrier), and consent for PET scanning. Patient safety vis-
its occurred every 2 weeks during the first 8 weeks of treat-
ment, with telephone assessments occurring on alternating
weeks. Follow-up visits were every 4 weeks until week 24 and
every 12 weeks thereafter. On study termination, patients were
monitored for 12 weeks after the last interim analysis to as-
sess AEs and laboratory findings. A follow-up dermatologic ex-
amination was performed 6 months after treatment with the
study drug was discontinued.

Statistical Analysis
The sample size of 135 participants per randomization arm was
chosen empirically and was estimated to be associated with a
98% probability of observing a specific AE if the true incidence
was 3%. The incidence of AEs and SAEs was tabulated by treat-
ment group and summarized descriptively. The incidence of po-
tentially clinically relevant changes or events in laboratory test
values was tabulated by status at baseline (normal vs abnormal).
An intent-to-treat approach was taken for the analysis of time to
progression to dementia, while all evaluable patients were in-
cluded in the analyses related to outcome measures requiring
baseline and at least 1 treatment assessment.

For each cognition assessment, the change from baseline
was analyzed using a mixed-effects, repeated-measures model
with a restricted maximum likelihood estimation. Time was
treated as a categorical variable. An unstructured covariance
matrix was used to represent the correlation of the repeated-
measures within-patient errors. The adjusted mean change
score from baseline and the 95% CI for the treatment differ-
ence between avagacestat and placebo were calculated for each
visit. For CSF biomarkers, the geometric mean over baseline
of Aβ42 was analyzed. The mean change from baseline of total
tau, phosphorylated tau, and volumetric MRI (hippocampal,
ventricular, and whole brain) were also analyzed. No adjust-
ments were made for multiple comparisons. Nominal P val-
ues were provided for descriptive purposes.

The PET substudy assessed the correlation between stan-
dard uptake values (mean of 4 assessed regions) and CSF Aβ42
concentrations. In addition, concordance was determined be-
tween PET-determined assessment of pathologic amyloid bur-
den (using qualitative scale) and pathologic CSF at baseline.

Results
Demographic variables across the study groups are summarized
in Table 1. A total of 1358 patients were enrolled. Of these, 787
individuals (58.0%) were excluded prior to CSF testing. Of 571
patients who met the clinical inclusion criteria and completed
the lumbar puncture, 263 participants (46.1%) met the CSF bio-
marker criteria for study entry and were randomized (Figure 1).
Median treatment duration was approximately 22 months with
a maximum of 41 months over both arms. After all participants
had the opportunity to receive study treatment for at least 1 year,
an interim analysis revealed minimal reductions in CSF amyloid
and no significant treatment differences in the avagacestat arm
vs placebo. The sponsor, in consultation with the DMC and ex-
ternal experts in the field, terminated the trial given the lack of
apparent efficacy and unfavorable risk-benefit profile evident
from the interim analysis.

Safety and Tolerability
Avagacestat doses of 50 mg/d were well tolerated with low
treatment discontinuation rates, whereas the 125-mg/d dose
had greater rates of discontinuation than placebo owing to gas-
trointestinal tract and skin AEs. Following this observation, the
protocol was amended so that the highest dose was 50 mg/d
with the ability to allow for down-titration to 25 mg/d. Forty-
six patients in the avagacestat group and 44 patients in the pla-
cebo group down-titrated to doses of 25 mg/d for tolerability
reasons. Discontinuation rates were similar between groups
(19.6% at a dose of 50 mg/d and 43% at a dose of 125 mg/d).
Common AEs in avagacestat patients included diarrhea, nau-
sea, vomiting, fatigue, weight loss, decreased appetite, dizzi-
ness, and nonmelanoma skin cancer (NMSC) (Table 2 and
eTable 1 in Supplement 2). Incident cerebral microbleeds were
observed in both the avagacestat (3.0%) and placebo (1.5%)
groups, but none were considered symptomatic. Vasogenic
edema occurred in 3 participants in the avagacestat arm and 1
in the placebo arm (none was considered symptomatic). No
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trends were observed in either treatment group for the inci-
dence of cerebral microhemorrhages.

Most SAEs occurred in participants randomized before the
protocol-specified avagacestat dose reduction from 125 mg/d
to 50 mg/d. The SAE rates were higher with avagacestat (49
participants [37.1%]) compared with placebo (31 [23.7%]), at-
tributable to a higher incidence of NMSC. Of these SAEs, 8
(6.1%) were squamous cell carcinoma (avagacestat group) and
5 (3.8%) were basal cell carcinoma (placebo group). Although
NMSCs were considered SAEs, none were life-threatening, and
all were readily managed with conventional excision meth-
ods without recurrence or evidence of metastasis.

Among patients who received 125 mg/d of avagacestat
throughout the study, 3 cases of gastrointestinal tract–
related AEs were observed, ranging in severity from mild mi-
crocolitis to serious pancolitis.

Treatment-Emergent AEs and Laboratory Findings
Participants who received avagacestat demonstrated greater
weight loss than did those who received placebo (mild, 6.1%
vs 1.5%; moderate, 4.5% vs 0% weight loss). No significant dif-
ferences in vital signs were observed between the groups.
Treatment-emergent glycosuria, defined by any single posi-
tive urine glucose test result, was observed in 58.0% of ava-
gacestat-treated patients but was not associated with treat-
ment discontinuation, serum glucose changes, or evidence of
glomerular injury. No decreases in glomerular filtration rate,
cystatin C level, or clinically meaningful changes in albumin
to creatinine or protein to creatinine ratios were found (eTable
2 in Supplement 2). Laboratory test abnormalities occurring
in the avagacestat group at greater than twice the frequency
observed in the placebo group included uric acid levels less
than the lower limit of normal (men: avagacestat, 20 of 72
[27.8%] and placebo, 2 of 76; women: avagacestat, 7 of 59
[11.9%] and placebo, 0), low calcium levels (avagacestat, 18 of
131 [13.7%] and placebo, 5 of 130 [3.8%]), glucosuria (avagace-
stat, 76 of 131 [58.0%] and placebo, 11 of 129 [8.5%]), and in-

organic phosphorous (avagacestat, 50 of 116 [43.1%] and pla-
cebo, 11 of 125 [8.8%]) (eTable 3 in Supplement 2). Mean effects
on renal function and electrolyte values normalized on dis-
continuation of the drug during follow-up.

Success of Screening Algorithm:
Progression to Dementia Rates
Patients in the randomized (biomarker-positive) cohort pro-
gressed to dementia at a higher rate than did the observa-
tional (biomarker-negative) cohort (Figure 2). Time-to-
progression analysis did not suggest long-term differences
between the randomized groups (hazard ratio, 1.354; 95% CI,
0.825-2.222). In the randomized group, the overall rates of pro-
gression were 8.9% and 19.7% for placebo and avagacestat, re-
spectively, after 1 year and 29.0% and 30.7% for placebo and
avagacestat, respectively, after 2 years. Longitudinal decline
in the randomized groups was greater than in the observa-
tional cohort, as were rates of progression (4.9% after 1 year
and 6.5% after 2 years).

Clinical Outcome Measures
Clinical outcomes across treatment arms are summarized in
Table 3. There were no statistically significant differences com-
pared with placebo among treatment groups with regard to the
Alzheimer’s Disease Cooperative Study Activities of Daily Liv-
ing MCI version, Alzheimer’s Disease Assessment Scale–
cognitive subscale, Mini-Mental State Examination, and Clini-
cal Dementia Rating Sum of Boxes outcome measures.
Differential effects in subgroups based on APOE4 carrier sta-
tus or background cholinesterase inhibitor use were not ap-
parent. There were no statistically significant treatment dif-
ferences by geographic region.

CSF Biomarkers and Volumetric MRI
The CSF Aβ biomarker results provided modest evidence of tar-
get engagement at the avagacestat, 50-mg/d, dose (eTable 4
in Supplement 2). At weeks 24 and 104, lowering of CSF Aβ40

Table 1. Baseline Demographics, Clinical Characteristics, and CSF Biomarker Criteria: Randomized Sample

Characteristic
Placebo
(n = 131)

Avagacestat
(n = 132)

Total
(N = 263)

Age, mean (SD), y 71.6 (7.78) 71.9 (7.63) 71.7 (7.7)

Male sex, % 58 55.3 57

Educational level, mean (SD), y 15.15 (3.482) 14.95 (3.549) 15.05 (3.510)

APOE4 carrier, No. (%) 88 (67.2) 90 (68.2) 178 (67.7)

Cognition evaluation scores, mean (SD)

ADAS-Cog 11.2 (4.5) 11.4 (4.80) 11.3 (4.65)

ADCS ADL-MCI 45.7 (4.76) 44.6 (5.26) 45.2 (5.04)

CDR-SB 1.93 (0.966) 1.95 (1.027) 1.94 (0.995)

MMSE 27.1 (1.67) 27.0 (1.91) 27.0 (1.79)

Summary of Aβ42, tau, and CSF criteria

Aβ42, mean (range), pg/mLa 206.7 (44-387) 197.7 (81-441) 202.2 (44-441)

Tau, mean (range), pg/mLa 127.7 (36-571) 127.0 (34-414) 127.3 (34-571)

Aβ42 <200 pg/mL, No./total No. (%) 61/131 (46.6) 77/132 (58.3) 138/263 (52.5)

Tau/Aβ42 ≥0.39, No./total No. (%) 116/130 (89.2) 119/132 (90.2) 235/262 (89.7)

Aβ42 and ratio of Aβ42 <200 pg/mL
and tau ≥0.39, No./total No. (%)

48/130 (36.9) 64/132 (48.5) 112/262 (42.7)

Abbreviations:
ADAS-Cog, Alzheimer’s Disease
Assessment Scale–Cognitive Subscale;
ADCS-ADL, Alzheimer’s Disease
Cooperative Study–Activities of Daily
Living; APOE4, apolipoprotein E ε4;
CDR-SB, Clinical Dementia
Rating Scale Sum of Boxes;
CSF, cerebrospinal fluid;
MCI, mild cognitive impairment;
MMSE, Mini-Mental State
Examination.
a Mean value is based on the

geometric mean.
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by 10% to 15% was noted for all dose groups. A reduction of
5% to 9% was noted in CSF Aβ42, which was not significantly
different from placebo levels.

Higher atrophy rates were observed in the avagacestat arm
vs the placebo arm for whole brain, ventricles, and hippocam-
pus as measured by volumetric MRI. The differences were sig-
nificant at weeks 24 and 56 and were not significant at week
104, probably owing to the lower number of observations
(eTable 5 in Supplement 2). This finding was consistent with
previously reported36,37brain atrophy results with other amy-
loid-lowering treatments. The observational cohort (20 par-
ticipants) demonstrated approximately half the change in vol-
ume across all 3 regions at week 104 (±12 weeks) compared with
the randomized cohort.

PET Substudy
The concordance between qualitative amyloid-positive PET
and pathologic CSF was 87.7% (κ = 0.68; 95% CI, 0.48-0.87)
(eFigure in Supplement 2). We found a statistically signifi-
cant correlation between the mean standard uptake values
across 4 areas of interest and the CSF total tau to Aβ42 ratio at
baseline. Similar Spearman rank correlation coefficients were
also observed with each of the 4 regions: posterior cingulate
(0.41; P < .001), lateral temporal (0.53; P < .001), frontal lobe
(0.52; P < .001), and parietal lobe (0.47, P < .001) (eTable 6 and
eTable 7 in Supplement 2).

Discussion
The aims of this study were to assess the safety of avagaces-
tat and demonstrate the feasibility of prospectively enriching
a PDAD clinical trial population using biomarker criteria con-
sistent with AD pathology. The study met its clinical trial en-
richment aims but failed to demonstrate clinically meaning-
ful pharmacodynamic effects of avagacestat.

Avagacestat treatment did not demonstrate signals of ef-
ficacy and was associated with dose-limiting effects on toler-
ability and safety. Doses of avagacestat, 50 mg/d, were well tol-
erated during long-term administration while doses of 125 mg/d
were not tolerable and led to unacceptable rates of treatment
discontinuation. Safety and tolerability of avagacestat, 50 mg/d,
used for up to 46 months in the PDAD population were con-
sistent with those observed in an earlier population with mild
to moderate AD who received the drug for 6 months.10 Al-
though avagacestat was developed for its amyloid precursor
protein selectivity over Notch, some of the AEs observed were
likely related to Notch inhibition. In animal models, Notch in-
hibition is associated with goblet cell metaplasia38 and
NMSCs.39 In the present study, there were more cases of mild
to severe colitis and NMSC among the avagacestat group than
in the placebo arm. Similar trends were previously observed
with avagacestat10 and semagacestat.40 The risk of incident
NMSC appeared to abate 3 to 6 months after treatment dis-
continuation.

Functional effects on proximal renal tubule cell function
(as measured by asymptomatic laboratory changes in glycos-
uria, calcium, phosphate, and uric acid) were observed in this

study, as described previously.10 These effects included el-
evated rates of glycosuria accompanied by clinically nonsig-
nificant decreases in serum uric acid, calcium, and potas-
sium levels.

Although phase 1 studies41 of avagacestat that were 1 month
in duration suggested tolerable doses to achieve a mean
60% to 65% reduction in CSF amyloid levels, significant AEs
were observed in the present phase 2 trial after longer-term
use of the drug and necessitated dose reduction that was as-
sociated with only a modest effect on amyloid production. Ava-
gacestat, 50 mg/d, minimally reduced (10%-15%) CSF Aβ40 lev-
els. No diurnal variation was apparent, potentially attributable
to the half-life of avagacestat being more than 48 hours.

No significant differences were observed in key clinical
outcome measures across treatment groups. The lack of a fa-
vorable clinical effect suggested a low likelihood that avagace-
stat would demonstrate meaningful clinical effects in long-
term, large-scale studies. Progression to dementia was not
significantly different between the avagacestat and placebo

Table 2. Summary of AEs

Characteristic
Placebo
(n = 131)

Avagacestat
(n = 132)

Any SAE, No. (%) 31 (23.7) 49 (37.1)

Cardiac disorders 1 (0.8) 3 (2.3)

GI tract disorders 1 (0.8) 6 (3.5)

Neoplasms 12 (9.2) 23 (17.4)

Injury, poisoning, and procedural
complications

4 (3.1) 7 (5.3)

Any AE leading to treatment discontinuation,
No. (%)

13 (9.9) 46 (34.8)

Any GI tract AE 3 (2.3) 19 (14.4)

Any skin AE 1 (0.8) 7 (5.3)

Any nervous system disorder 2 (1.5) 8 (6.1)

Any AE, No. (%) 110 (84.0) 126 (95.5)

Any GI tract AE 48 (36.6) 87 (65.9)

Diarrhea 24 (18.3) 41 (31.1)

Nausea 4 (3.1) 35 (26.5)

Vomiting 2 (1.5) 14 (10.6)

Any skin AE 50 (38.2) 72 (54.5)

Rash 8 (6.1) 27 (20.5)

Any neoplasms 20 (15.3) 25 (18.9)

BCC 5 (3.8) 8 (6.1)

SCC skin 1 (0.8) 8 (6.1)

SCC 0 8 (6.1)

Malignant melanoma 1 (0.8) 0

Other AEs

Fatigue 9 (6.8) 24 (18.2)

Weight decreased 2 (1.5) 14 (10.6)

Appetite decreased 3 (2.3) 14 (10.6)

Dizziness 13 (9.9) 20 (15.2)

Depression 11 (8.4) 7 (5.3)

Anxiety 12 (9.2) 4 (3.0)

Cerebral microbleed 2 (1.5) 4 (3.0)

Vasogenic edema 1 (0.8) 3 (2.3)

Abbreviations: AE, adverse event; BCC, basal cell carcinoma;
GI, gastrointestinal; SAE, serious AE; SCC, squamous cell carcinoma.
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groups. However, avagacestat led to higher brain, ventricu-
lar, and hippocampal atrophy rates. Similar increases in brain
atrophy rates have been reported with other amyloid-

lowering treatments, such as AN179236 and bapineuzumab.37

Although amyloid level lowering would be expected to pro-
vide a clinical benefit, it remains uncertain what degree of amy-

Table 3. Mean Changes From Baseline to Weeks 24, 56, and 104 in Cognitive and Functional Outcomesa

Characteristic

Placebo
(n = 131)

Avagacestat
(n = 132)

Week 24 Week 56 Week 104 Week 24 Week 56 Week 104
ADAS-Cog score

No. of patients 114 102 66 100 77 45

Mean change (SE) 1.02 (0.38) 1.15 (0.46) 2.52 (0.72) 1.14 (0.41) 1.52 (0.52) 3.15 (0.83)

Difference vs placebo 0.12 −0.36 −0.63

P value .83 .59 .57

ADCS ADL-MCI score

No. of patients 107 101 64 98 75 45

Mean change (SE) 0.09 (0.42) −1.36 (0.52) −3.57 (0.83) −1.28 (0.45) −2.10 (0.57) −4.41 (0.97)

Difference vs placebo −1.28 −0.74 −0.84

P value .02 .33 .51

CDR-SB

No. of patients 111 103 66 100 76 45

Mean change (SE) 0.13 (0.12) 0.76 (0.13) 1.65 (0.25) 0.35 (0.13) 0.74 (0.15) 1.12 (0.29)

Difference vs placebo 0.24 −0.02 −0.20

P value .20 .90 .16

MMSE score

No. of patients 114 103 67 99 77 46

Mean change (SE) −1.20 (0.23) −1.48 (0.32) −2.24 (0.42) −1.60 (0.25) −2.39 (0.36) −2.95 (0.49)

Difference vs placebo −0.39 −0.83 −0.71

P value .23 .08 .27

Abbreviations: ADCS-MCI-ADL, Alzheimer’s Disease Cooperative Study Mild
Cognitive Impairment Activities of Daily Living; ADAS-Cog, Alzheimer’s Disease
Assessment Scale–Cognitive Subscale; CDR-SB, Clinical Dementia Rating Sum of
Boxes; MMSE, Mini-Mental State Examination.
a Estimates are based on a repeated-measures model including terms for

treatment, assessment time, treatment by time interaction, baseline value,
apolipoprotein E ε4 carrier status, and cholinesterase inhibitor use at baseline.
For all statistical analyses, no adjustments were made for multiple
comparisons. Nominal P values are provided for descriptive purposes and
should be interpreted with caution.

Figure 2. Cerebrospinal Fluid (CSF) Biomarker Entry Criteria on Time to Adjudicated Progression to Dementia
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Number of study participants at risk at each time point who had not progressed
to dementia. All participants met clinical criteria for mild cognitive impairment
but only those in the randomized arms (avagacestat and placebo) met
pathologic CSF biomarker criteria cutoff values of Aβ42 level of less than
200 pg/mL or total tau [T-tau]:Aβ42 ratio of 0.39 or greater. Observational

cohort participants did not meet pathologic CSF criteria at study entry.
Progression from prodromal AD to dementia was confirmed by an independent
adjudication committee. At 2 years, rates of progression to dementia were
30.7% in avagacestat participants, 29.0% in the placebo group, and 6.5% in the
observational cohort.
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loid reduction would be adequate to achieve positive effects
on clinical outcome measures.

Participants in the biomarker-positive group exhibited
clinical decline, including progression to dementia that was
greater than that observed in the biomarker-negative obser-
vational cohort, confirming the usefulness of PDAD criteria.
Objective MRI measurements further support the clinical dif-
ferentiation of the biomarker-positive vs biomarker-negative
groups. The MRI volume change observed in the biomarker-
negative cohort was approximately half that observed in the
biomarker-positive group. Finally, we confirmed previous
observations42 that CSF amyloid levels correlated with PET-
amyloid imaging. This finding suggests that CSF and amyloid
PET biomarkers may be used interchangeably to identify PDAD.

The high screening failure rates among participants in our
study suggests that efforts to refine entry criteria are needed
to improve recruitment efficiency in clinical trials; however,
changes to screening criteria must be carefully considered so
as not to negatively affect the rates of cognitive decline or pro-
gression to dementia. Limitations of the present study in-
clude its small sample size, high screen failure rate in enroll-
ment of participants, use of a research CSF amyloid assay not
approved as a diagnostic test, and high intraindividual vari-
ability associated with the use of clinical rating scales. Addi-
tionally, investigators and study participants were aware of CSF
biomarker results, which may have biased cognitive assess-
ments in the biomarker-negative observational cohort. How-
ever, objective evidence, including MRI volumes (automated
and semi-automated analytic procedures performed by blinded
readers) as well as a review of all cases of clinical progression
to dementia by an independent adjudication committee, sup-
port the observed differences in disease course between the
biomarker-positive and -negative groups.

The enrichment strategy of enrolling individuals with
PDAD who had a specific hippocampal pattern of memory im-

pairment, an MRI pattern consistent with AD, and a support-
ing molecular diagnostic CSF biomarker pattern was success-
ful in achieving the expected increased rates of dementia
progression during the trial. However, not all participants with
PDAD progressed to dementia during the study period. Long-
term follow-up and additional prospective studies are needed
to further validate the construct of PDAD vs simply describ-
ing such populations as “CSF-positive patients with MCI.” Ad-
ditional analyses of this study will add insights on the rela-
tive value of various baseline biomarkers (eg, patterns of
atrophy on MRI, CSF biomarker profile, and PET radiotracer
amyloid imaging) in predicting clinical progression.

Conclusions
This trial failed to demonstrate clinically meaningful effects
of avagacestat on CSF amyloid biomarkers or clinical out-
come measures. Although avagacestat was relatively well tol-
erated at 50 mg/d, minimal pharmacodynamic effects on amy-
loid reduction were observed at that dose. A higher incidence
of AEs and untenable discontinuation rates at 125 mg/d pre-
cluded evaluation of avagacestat at doses associated with more
robust reductions in CSF amyloid.

We believe this to be the first prospective randomized clini-
cal trial in an amyloid biomarker–confirmed PDAD popula-
tion. The findings provide important validation for the re-
cently evolved nosology of prodromal stages of AD. The trial
design was unique in that the biomarker criteria were pre-
defined and each patient’s CSF sample was analyzed in real-
time prior to randomization. Although our study failed to dem-
onstrate that avagacestat meaningfully affects the course of
AD, the results show the feasibility of prospectively identify-
ing PDAD and enriching a clinical trial population with pa-
tients at increased risk of progressing to dementia.
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