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Memory and Cognition in Schizophrenia

JY Guoa,b, JD Raglanda, and CS Cartera,b

aDepartment of Psychiatry and Behavioral Sciences, Imaging Research Center, University of 
California at Davis, Sacramento, CA, United States

bDepartment of Psychology, Center for Neuroscience, University of California at Davis, Davis, CA, 
United States

Abstract

Episodic memory deficits are consistently documented as a core aspect of cognitive dysfunction in 

schizophrenia patients, present from the onset of the illness and strongly associated with 

functional disability. Over the past decade research using approaches from experimental cognitive 

neuroscience revealed disproportionate episodic memory impairments in schizophrenia (Sz) under 

high cognitive demand relational encoding conditions and relatively unimpaired performance 

under item-specific encoding conditions. These specific deficits in component processes of 

episodic memory reflect impaired activation and connectivity within specific elements of frontal-

medial temporal lobe circuits, with a central role for the dorsolateral prefrontal cortex (DLPFC), 

relatively intact function of ventrolateral prefrontal cortex and variable results in the hippocampus. 

We propose that memory deficits can be understood within the broader context of cognitive 

deficits in Sz, where impaired DLPFC related cognitive control has a broad impact across multiple 

cognitive domains. The therapeutic implications of these findings are discussed.
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Cognitive impairments have long been accepted as core features of schizophrenia (Sz) that 

contribute significantly to disability and are generally treatment refractory 1. Indeed, Keefe 2 

recently recommended including cognitive impairment in the formal diagnostic criteria for 

this illness and highlighted the need for research on developing treatments to improve 

cognitive abilities in Sz. Numerous neuropsychological studies demonstrate a broad range of 

measurable cognitive deficits in Sz including impairments in attention, working memory 

(WM), episodic memory, processing speed and executive functions 3. Among these 

traditional cognitive domains, episodic memory has frequently been highlighted as showing 

the largest effect sizes among cognitive deficits in Sz 4, regardless of factors such as 
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antipsychotic medication treatment 5, duration of illness 6, stage of illness 7 or level of 

psychotic symptoms 8, and of being particularly relevant for the functional deficits that 

characterize the illness 9.

In recent years, episodic memory has been extensively studied in Sz using fine grained 

cognitive neuroscience methods to identify the specific components of memory systems that 

are impaired in the illness. These studies have led the field to two important conclusions, 

both of which have implications for our understanding of the illness and for the development 

of novel therapeutics. Firstly, these studies, reviewed in detail below, suggest that specific 

aspects of episodic memory are either spared or impaired, in contrast to the more global 

learning and memory impairment seen in amnestic disorders 10. Secondly, deficits in 

episodic memory may be best understood in the context of a broader pattern of deficits in 

higher cognitive functions in Sz that are often accompanied by dorsolateral prefrontal 

(DLPFC) dysfunction, and most likely to be observed when organizational and cognitive 

control demands are high.

Cognitive models of episodic memory deficits in Schizophrenia

Experimental cognitive studies of episodic memory in schizophrenia have generally focused 

on the function of recall and recognition mechanisms in the brain. In healthy subjects the use 

of recall paradigms has revealed many discrete component memory processes including the 

serial position effect (e.g. primacy and recency) 11, 12, the impact of levels of processing 

(deep and shallow encoding) 13 and the effects of self-initiated organizational encoding 

strategies 14, 15. Schizophrenia patients have been shown to exhibit comparable serial 

position effects as healthy controls (HC), suggesting intact shallow encoding, and are able to 

benefit from instructions to use semantic strategies to support encoding 16–19. However, they 

fail to self-initiate these semantic encoding strategies, suggesting impaired deep encoding 

mechanisms 20. These results, in aggregate, highlight the view that there are specific 

strategic memory deficits that limit encoding into episodic memory under high levels of 

processing demand in the illness, overlaid on a set of basically intact more automatic 

learning and memory mechanisms.

To obtain a deeper understanding of encoding and retrieval mechanisms, cognitive 

neuroscience researchers employed a variety of recognition paradigms, where individuals 

learn material during a study phase and are then probed as to whether it is “old” or “new” 

during a test phase. One common approach has been to examine recognition performance 

using incidental encoding paradigms in which individuals alternate between two types of 

encoding: item-specific (e.g. words denoting living things) or relational (e.g. beer and milk 

from beverage category). Several analytic methods can then be used to pull apart two forms 

of retrieval: familiarity (e.g., novelty detection) or recollection (e.g., associative recognition) 
21. Performance on old/new recognition tests has been modelled using either signal-

detection theory or threshold model approaches. Signal-detection assumes that recognition 

judgements fall on a continuously distributed memory strength variable (e.g. old items with 

high familiarity fall on the high end and new items with low familiarity fall on the low end) 
22, 23. The threshold model assumes discrete mental states where only items with sufficient 

episodic details to describe the state of memory (over threshold) can be recalled 24, 25. A 
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third “dual-process” modelling approach obtains confidence ratings that are examined using 

a receiver operator characteristics (ROC) analysis to generate quantitative and orthogonal 

recollection and familiarity parameter estimates 26, 27. Recollection involves a sense of 

“remembering” and is accompanied by retrieval of qualitative aspects of the encoding event, 

such as context-item associations or source details. Conversely, familiarity involves a sense 

of “knowing” based on a global (or gist-like) sense of memory strength or novelty, and is not 

accompanied by retrieval of qualitative details of the encoding context.

In a series of studies using a dual-process modelling approach in Sz, Ragland and colleagues 

demonstrated that familiarity is unimpaired when item encoding is utilized, familiarity is 

severely impaired when a relational encoding strategy is required, and recollection is 

severely impaired regardless of encoding processes used (Figure 1) 28–30. In relation to these 

findings, a meta-analysis which reviewed nineteen studies of recollection and familiarity in 

Sz using a variety of quantitative methods including remember/know/new, process 

dissociation, and ROC modeling found that effect sizes of impairments in Sz are medium to 

large on recollection and small to medium on familiarity estimates 31. Thus it appears that 

Sz patients can successfully utilize encoding strategies that focus on item features to support 

a sense of familiarity, however, relational encoding strategies do not promote successful 

familiarity processes and recollection shows the most pervasive impairment regardless of 

what encoding strategy is applied.

Neural circuitry dysfunction underlying episodic memory deficits in 

Schizophrenia

While early neuropychological studies of episodic memory focused on the critical role of the 

medial temporal lobe (MTL), and specifically the hippocampus, in episodic memory 32, 33, 

with the advent of whole brain functional imaging in the 1990’s it became clear that 

encoding and retrieving information in episodic memory depends on dynamic interactions 

between mutliple prefrontal and medial temporal lobe systems 34, 35. It is not suprising that 

functional imaging studies in schizophrenia pointed to alterations in the function of these 

networks during memory performance. The overall pattern of results in these studies suggest 

that, as in behavioral studies of component memory mechanisms, there is a specificity of 

these effects to distinct elements of neural circuitry that has implications for our 

understanding of the illness and future therapeutics.

The majority of previous functional imaging studies of episodic memory encoding processes 

in Sz reported reduced DLPFC activation during deep encoding e.g. 36, Meta-analysis: 37, while 

one study by Bonner-Jackson 18 found increased DLPFC and inferior frontal gyrus 

activation during deep encoding in Sz patients compared to HC that was interpreted as a 

compensative hyperactivation. Guimond and colleagues 19 further illustrated that 

hypoactivation of the left DLPFC plays a critical role in the impairment of self-initiating 

semantic encoding strategies in Sz. Interestingly, these studies also showed unimpaired 

activation in the ventrolateral prefrontal cortex (VLPFC) when patients were provided item-

specific encoding strategies 37, 38. With regard to the MTL component of episodic memory 

circuitry, to date, fMRI studies in Sz have yielded heterogeneous results with hyper- or 
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hypoactivation of MTL structures during novel stimuli encoding, such as hypoactivation in 

the right posterior hippcampus and hyperactivation in the right anterior hippocampus 39, 

hyperactivation in the left inferior temporal gyrus, right MTL and bilateral parahippocampus 
40, and hypoactivation in the bilateral parahippocampal and hippocampal-parietal network 
41. Such contradictory results may reflect whether a given study controls for encoding 

success 42, on the types of materials being encoded 18 and whether deep or shallow levels of 

processing are examined. When Ragland and colleagues 38 utilized a deep versus shallow 

encoding paradigm to control for strategic memory deficits, they found unimpaired VLPFC 

activation during shallow encoding, and reduced DLPFC and increased hippocampal and 

thalamic activation during deep-encoding. In summary, these combined results point to 

consistently reduced DLPFC activation during deep encoding, and when no encoding 

strategies are provided, relatively intact VLPFC activation during shallow or item-specific 

encoding, and mixed findings of both under- and over-activation or no group differences in 

the MTL and hippocampus.

To understand neural circuits underlying episodic memory recognition processes, Ragland et 

al. 43 demonstrated DLPFC hypoactivation in Sz patients compared to controls during 

old/new recognition of items following relational vs item-specific encoding, whereas no 

group differences were found in VLPFC activation regardless of encoding condition. 

However, Lepage et al. 44 revealed hypoactivation in left DLPFC, right VLPFC, and two 

medial frontal cortices in Sz patients compared to controls during recognition following 

relational versus item encoding. Across both studies, reduced DLPFC activity was 

associated with recognition deficits in Sz, whereas VLPFC results were more variable – 

possibly due to whether or not encoding strategies were provided 45 or had to be self-

initiated 44. However, at a meta-analytic level 37, there is an absence of VLPFC group 

differences, while the DLPFC appears consistently impaired. Functional connectivity 

evidence of reduced hippocampal to DLPFC connectivity and enhanced hippocampal to 

VLPFC connectivity 46 suggests that the VLPFC may be engaged in patients to support item 

encoding and familiarity-based retrieval in an effort to compensate for more intractable 

DLPFC and hippocampal dependent relational encoding and recollective memory deficits.

Given the strong association between the hippocampus and episodic memory in classical 

neuropsychology it is not surprising that this has been a primary focus in fMRI studies of 

episodic memory impairment in Sz See review: 47. However, accumulating inconsistent 

evidence of hippocampal hyperactivation, hypoactivation and no differences in Sz patients 

compared to controls have complicated our understanding of the role of the hippocampus in 

these deficits. An early PET study demonstrated that Sz patients exhibited increased 

regionalcerebral blood flow (rCBF) in the hippocampus during recall after perceptual 

encoding and decreased hippocampal rCBF during recall after semantic encoding compared 

to controls 48, suggesting a dysfunction of cortico-hippocampal network integration in Sz 49. 

However, two subsequent meta-analyses have revealed that Sz patients exhibit abnormal 

brain activation in the prefrontal cortex during encoding but not in the medial temporal lobe 

during either encoding or retrieval 37, 50. More recent studies have revisited the role of 

hippocampal dysfunction in Sz by utilizing paradigms that require recollection and 

associative processing or by examining differences along the longitudinal axis of this 

structure. Regarding this longitudinal axis, the anterior hippocampus has fairly consistently 
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shown increased resting state activity in Sz (e.g. cerebral blood volume (CBV) and cerebral 

metabolic rate of oxygen (CMRO2)) See book chapter: 51, See review: 52 in SZ. For example, 

Schobel et al. 53 reported increased CBV in anterior subfield of hippocampus (CA1) and the 

orbitofrontal cortex in Sz patients without a history of antipsychotic medication exposure. 

The same group extended this result in the early prodromal stages of the illness with a 

follow-up study, in which individuals at ultra-high risk (UHR) of psychosis exhibited 

increased CBV in the left anterior hippocampus (CA1) and spreads to anterior subiculum 

after psychosis onset 54. Thus, CA1 hypermetabolism has been considered as a regional 

vulnerability characterizing psychotic symptoms in Sz See review: 55. Furthermore, a 

substantial body of work in basic and behavioral neuroscience suggests that anterior and 

posterior divisions subserve different functions in episodic memory (figure 

2)56, See review: 57, e.g. 58, 59. Specifically, posterior hippocampal subregions are more likely to 

be involved in visual spatial memory encoding 60, whereas anterior hippocampal subregions 

are more involved in other complex behaviors (e.g., anxiety related behaviors 61and stress 
62). When Ragland and colleagues 63 recently examined this using an eye-tracking fMRI 

paradigm that manipulated either item information or spatial information in previously 

studied scenes, they found that the task-specific impairment (worse relational versus item 

memory) was explained by a reduction in posterior hippocampal activation for relational 

versus item changes. However, the anterior hippocampus, unexpectedly, showed 

hyperactivation in Sz patients for the item change condition. If the above findings of 

differential impacts of Sz on anterior versus posterior hippocampal function are confirmed in 

future studies, it suggests that looking separately at the head and tail of the hippocampus 

may help to reconcile some of the current variability in the literature.

Cognitive impairments in schizophrenia as a context for understanding 

deficits in episodic memory

As noted above, episodic memory is just one of a range of cognitive domains that are 

impaired in Sz e.g. 64, 65. For example, Keefe et al. 66 demonstrated that Sz patients 

performed at 2.5 standard deviation below controls in 7 domains: speed of processing, 

attention/vigilance, working memory, verbal learning and memory, visual learning and 

memory, reasoning/problem solving and social cognition, indicating a profound cognitive 

impairment in schizophrenia. Across the cognitive domains that have been interrogated from 

an experimental cognitive neuroscience perspective, attention and working memory were 

also shown to be robustly impaired in the illness. In the following section we will briefly 

review findings in these two higher cognitive domains and then introduce the concept of 

cognitive control, which may provide an integrative framework for understanding impaired 

congition in Sz and a link between the specific impairments in episodic memory that are 

seen in the illness and the broader range of congitive deficits that are also observed.

Attention

In examining component processes of attention, selective attention can be examined by 

Stroop Color and Word task 67, wherein participants are required to name the ink color of 

color words (e.g., the word “green” written in red ink). Altered Stroop task performance in 

Sz, reflected by increased errors or reaction times has been reported by many investigators 
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68–70. Subsequent neuroimaging studies suggested that these deficits are associated with 

reduced activity in frontal-parietal attentional control systems and anterior cingulate related 

conflict monitoring 71. Sustained attention/vigilance can be examined by various types of 

continuous performance tests (CPT) 72, See review: 73. In general, patients have shown no 

performance difference on vigilance versions of the CPT compared to controls e.g. 74, 75, 76. 

When task difficulty is increased through the use of degraded stimuli 77, patients are reliably 

impaired. However, whether this reflects a pure vigilance deficit or the contribution of 

increased perceptual discrimination on decision making is unclear. In neuroimaging studies, 

Sz patients have exhibited reduced activation in ACC and inferior frontal gyrus, increased 

activation in inferior parietal lobule and mixed results in subcortical regions during various 

types of CPT tasks e.g. 78, 79–83. These contrasting results may reflect interaction of 

sustained attention and other cognitive demands. Indeed, Roth and colleagues 84 revealed 

that both X-CPT and identical pairs (IP)-CPT reliably detected more impaired sustained 

attention in Sz smokers compared to nonsmokers when IP-CPT exhibited larger effect size 

to detect group differences than X-CPT, suggesting IP-CPT taxes working memory.

Working memory

Working memory impairments in Sz are characterized by reduced accuracy and increased 

response time, which have been documented in various stages of Sz, such as UHR 
See meta-analysis: 85, early onset of schizophrenia patients 86, first-episode schizophrenia 

patients See meta-analysis: 87 and especially in chronic Sz 88. The majority of neuroimaging 

findings suggest that regions comprising the dorsal frontal-parietal network are affected in 

Sz, and that this neuropathology may underlie WM impairments in Sz 89. It has also been 

proposed that the inverted U–shaped relation of DLPFC activation to WM loads is shifted to 

the left side in Sz patients compared to controls e.g. 89, 90, 91, 92. Similar abnormal brain 

activation is also revealed in the dorsal parietal cortex in Sz suggesting a frontal-parietal 

dysfunction underlying high cognitive demands during WM 93.

Cognitive control

Cognitive control is defined as the ability to actively maintain contextual information 

(including information related to stimuli, task rules and goals) in order to guide task-relevant 

responding 94, 95. Cognitive control is domain general, supporting a wide variety of 

cognitive domains, including attention, working memory and episodic memory e.g. 96, 97–99. 

Cognitive control is supported by a distinct neural network in which the DLPFC serves as a 

central hub See meta-analysis: 100, 101. Theoretical models of cognitive control have dissociated 

proactive (or endogeneously guided) and reactive (in response to conflict, errors and other 

indicators of negative utility) elements subserved by both distinct and overlapping neural 

systems 102, 103. In schizophrenia research, there is considerable evidence that DLPFC 

hypoactivation is related to impaired proactive control in first episode Sz 104, 105, medication 

naive Sz 106 and chronic Sz 71. Moreover, Sz patients show a significant reduction of 

DLPFC-related functional connectivity (e.g. fronto-parietal functional connectivity) under 

conditions requiring high cognitive control 107, See review: 108.
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Cognitive control and episodic memory deficits in Schizophrenia

Drawing on the cognitive model of episodic memory outlined at the beginning of this 

review, the pattern of impaired and preserved component processes of episodic memory seen 

in Sz suggests that memory impairments may be most severe when DLPFC mediated 

cognitive control demands are greatest. Thus, a general cognitive control deficit model 

provides a parsimonious link between the prominent deficits in episodic memory and the 

broader range of higher cognitive deficits including impaired attention and working memory. 

As reviewed above, the design of relational versus item memory task was intended to 

distinguish high and low cognitive control conditions by introducing paired versus item 

specific cues, while the majority of studies revealed a strong link of deficits in the DLPFC 

with the more cognitive control demanding associated relational encoding condition 
28, 37, 109. This view is also supported by the results of the meta-analysis by Ragland et al. 
37, which showed the most prominent prefrontal deficits in Sz during both encoding and 

retrieval of episodic memory tasks. Specifically, persistent DLPFC deficits are not secondary 

to providing semantic encoding strategies, suggesting a general impairment of cognitive 

control. The hypothesis that there is impaired cognitive control of episodic memory in Sz 

has also been directly tested using a directed forgetting paradigm (DF), where HC are 

required to successfully encode and retrieval target stimuli into long-term memory while 

intentionally preventing non-target stimuli from being encoded. During a subsequent 

recognition phase, participants are required to respond to a probe of to-be-remembered 

(TBR) or to-be-forgotten (TBF) stimuli See review: 110. Behavioral data index the engagement 

of cognitive control, as reflected by a longer reaction time to TBF than TBR stimuli and 

greater recognition of TBR than TBF stimuli (DF effect) e.g. 111. fMRI neuroimaging studies 

consistently demonstrate that intentional forgetting engages DLPFC and parietal regions, 

suggesting that inhibition of encoding a recent stimuli is effortful 112, 113. Moreover, brain 

lesion studies also support a causal relationship of frontal lobe lesions with reduced DF 

effects and abnormally high recognition of TBF stimuli 114. In Sz, behavioral studies 

reported reduced DF effect in patients compared to controls 115, 116. During fMRI, Ragland 

and colleagues 117 found that increased DLPFC activation was associated with increased 

cognitive control during intentional forgetting trails in controls, but not in Sz patients. Sz 

patients show prominent deficits in some aspects of episodic memory (e.g. relational 

encoding, intentional forgetting) while other aspects appear to be spared, which is a pattern 

of selective deficits that is seen across a range of cognitive domains including attention, 

working memory and cognitive control. Common elements across the neural systems that 

support these “domain specific” deficits include the DLPFC, which must integrate with 

parietal, cingulate and medial temporal networks under demands for high levels of 

contextual processing and cognitive control. As a central, and domain general, hub in these 

domain specific networks the DLPFC can be understood as a critical target for efforts to 

restore cognitive functioning, including episodic memory, in Sz.

Conclusion

In the current review, we have argued that memory deficits in Sz are specific to encoding and 

retrieval conditions with high cognitive demands and which depend on cognitive control and 

relational memory functions of the DLPFC as it participates in frontal-MTL network 
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function. Such deficits provide a link for understanding the relationship between episodic 

memory deficits and other cognitive deficits, such as attention and WM in the illness. 

Therapeutically, these conclusions support the development of treatments that target the 

function of the DLPFC, pharmacologically or through neurostimulation. Such an approach 

should have generalizable benefits for memory as well as other kinds of cognitive deficits in 

Sz.

Acknowledgements

We sincerely thank our colleague Vanessa Zarubin for her diligent proofreading.

Reference

1. Bora E, Yucel M, Pantelis C. Cognitive impairment in schizophrenia and affective psychoses: 
implications for DSM-V criteria and beyond. Schizophrenia bulletin 2010; 36(1): 36–42. [PubMed: 
19776206] 

2. Keefe RS. Should cognitive impairment be included in the diagnostic criteria for schizophrenia? 
World Psychiatry 2008; 7(1): 22–28. [PubMed: 18458774] 

3. Kahn RS, Keefe RS. Schizophrenia is a cognitive illness: time for a change in focus. JAMA 
psychiatry 2013; 70(10): 1107–1112. [PubMed: 23925787] 

4. Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the 
evidence. Neuropsychology 1998; 12(3): 426–445. [PubMed: 9673998] 

5. Goldberg TE, Weinberger DR. Effects of neuroleptic medications on the cognition of patients with 
schizophrenia: a review of recent studies. The Journal of clinical psychiatry 1996; 57 Suppl 9: 62–
65. [PubMed: 8823353] 

6. Rushe TM, Woodruff PW, Murray RM, Morris RG. Episodic memory and learning in patients with 
chronic schizophrenia. Schizophr Res 1999; 35(1): 85–96. [PubMed: 9988844] 

7. Hoff AL, Riordan H, O’Donnell DW, Morris L, DeLisi LE. Neuropsychological functioning of first-
episode schizophreniform patients. The American journal of psychiatry 1992; 149(7): 898–903. 
[PubMed: 1609868] 

8. Aleman A, Hijman R, de Haan EH, Kahn RS. Memory impairment in schizophrenia: a meta-
analysis. The American journal of psychiatry 1999; 156(9): 1358–1366. [PubMed: 10484945] 

9. Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? The 
American journal of psychiatry 1996; 153(3): 321–330. [PubMed: 8610818] 

10. Ragland JD, Cools R, Frank M, Pizzagalli DA, Preston A, Ranganath C et al. CNTRICS final task 
selection: long-term memory. Schizophrenia bulletin 2009; 35(1): 197–212. [PubMed: 18927344] 

11. Murdock BB Jr. The serial position effect of free recall. Journal of Experimental Psychology 1962; 
64(5): 482–488.

12. Deese J, Kaufman RA. Serial effects in recall of unorganized and sequentially organized verbal 
material. J Exp Psychol 1957; 54(3): 180–187. [PubMed: 13475644] 

13. Craik FIM, Lockhart RS. Levels of processing: A framework for memory research. Journal of 
Verbal Learning and Verbal Behavior 1972; 11(6): 671–684.

14. Bousfield WA. The Occurrence of Clustering in the Recall of Randomly Arranged Associates. The 
Journal of General Psychology 1953; 49(2): 229–240.

15. Tulving E Subjective organization in free recall of “unrelated” words. Psychological Review 1962; 
69(4): 344–354. [PubMed: 13923056] 

16. Ragland JD, Moelter ST, McGrath C, Hill SK, Gur RE, Bilker WB et al. Levels-of-processing 
effect on word recognition in schizophrenia. Biological psychiatry 2003; 54(11): 1154–1161. 
[PubMed: 14643082] 

17. Koh SD, Peterson RA. Encoding orientation and the remembering of schizophrenic young adults. 
Journal of abnormal psychology 1978; 87(3): 303–313. [PubMed: 681601] 

Guo et al. Page 8

Mol Psychiatry. Author manuscript; available in PMC 2019 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Bonner-Jackson A, Haut K, Csernansky JG, Barch DM. The influence of encoding strategy on 
episodic memory and cortical activity in schizophrenia. Biological psychiatry 2005; 58(1): 47–55. 
[PubMed: 15992522] 

19. Guimond S, Hawco C, Lepage M. Prefrontal activity and impaired memory encoding strategies in 
schizophrenia. Journal of psychiatric research 2017; 91: 64–73. [PubMed: 28325680] 

20. Brebion G, Amador X, Smith MJ, Gorman JM. Mechanisms underlying memory impairment in 
schizophrenia. Psychological medicine 1997; 27(2): 383–393. [PubMed: 9089831] 

21. Murray LJ, Ranganath C. The dorsolateral prefrontal cortex contributes to successful relational 
memory encoding. The Journal of neuroscience: the official journal of the Society for 
Neuroscience 2007; 27(20): 5515–5522. [PubMed: 17507573] 

22. Lockhart RS, Murdock BB. Memory and the theory of signal detection. Psychological Bulletin 
1970; 74(2): 100–109.

23. Banks WP. Signal detection theory and human memory. Psychological Bulletin 1970; 74(2): 81–
99.

24. Memory Kintsch W. and decision aspects of recognition learning. Psychological Review 1967; 
74(6): 496–504. [PubMed: 4867890] 

25. Macmillan N, Douglas Creelman C. Response bias: Characteristics of detection theory, threshold 
theory, and “nonparametric” indexes, vol. 1071990, 401–413pp.

26. Yonelinas AP. Receiver-operating characteristics in recognition memory: evidence for a dual-
process model. Journal of experimental psychology Learning, memory, and cognition 1994; 20(6): 
1341–1354.

27. Yonelinas AP, Dobbins I, Szymanski MD, Dhaliwal HS, King L. Signal-detection, threshold, and 
dual-process models of recognition memory: ROCs and conscious recollection. Consciousness and 
cognition 1996; 5(4): 418–441. [PubMed: 9063609] 

28. Ragland JD, Ranganath C, Barch DM, Gold JM, Haley B, MacDonald AW 3rd, et al. Relational 
and Item-Specific Encoding (RISE): task development and psychometric characteristics. 
Schizophrenia bulletin 2012; 38(1): 114–124. [PubMed: 22124089] 

29. Owoso A, Carter CS, Gold JM, MacDonald AW 3rd, Ragland JD, Silverstein SM et al. Cognition 
in schizophrenia and schizo-affective disorder: impairments that are more similar than different. 
Psychological medicine 2013; 43(12): 2535–2545. [PubMed: 23522057] 

30. Ragland JD, Blumenfeld RS, Ramsay IS, Yonelinas A, Yoon J, Solomon M et al. Neural correlates 
of relational and item-specific encoding during working and long-term memory in schizophrenia. 
NeuroImage 2012; 59(2): 1719–1726. [PubMed: 21907293] 

31. Libby LA, Yonelinas AP, Ranganath C, Ragland JD. Recollection and familiarity in schizophrenia: 
a quantitative review. Biological psychiatry 2013; 73(10): 944–950. [PubMed: 23245761] 

32. Diana RA, Yonelinas AP, Ranganath C. Imaging recollection and familiarity in the medial temporal 
lobe: a three-component model. Trends Cogn Sci 2007; 11(9): 379–386. [PubMed: 17707683] 

33. Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory. 
Annual review of neuroscience 2007; 30: 123–152.

34. Weiss AP, Heckers S. Neuroimaging of declarative memory in schizophrenia. Scandinavian journal 
of psychology 2001; 42(3): 239–250. [PubMed: 11501738] 

35. Preston AR, Eichenbaum H. Interplay of hippocampus and prefrontal cortex in memory. Current 
biology: CB 2013; 23(17): R764–773. [PubMed: 24028960] 

36. Barch DM, Csernansky JG, Conturo T, Snyder AZ. Working and long-term memory deficits in 
schizophrenia: is there a common prefrontal mechanism? Journal of abnormal psychology 2002; 
111(3): 478–494. [PubMed: 12150424] 

37. Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC. Prefrontal 
activation deficits during episodic memory in schizophrenia. The American journal of psychiatry 
2009; 166(8): 863–874. [PubMed: 19411370] 

38. Ragland JD, Gur RC, Valdez JN, Loughead J, Elliott M, Kohler C et al. Levels-of-processing effect 
on frontotemporal function in schizophrenia during word encoding and recognition. The American 
journal of psychiatry 2005; 162(10): 1840–1848. [PubMed: 16199830] 

Guo et al. Page 9

Mol Psychiatry. Author manuscript; available in PMC 2019 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Jessen F, Scheef L, Germeshausen L, Tawo Y, Kockler M, Kuhn KU et al. Reduced hippocampal 
activation during encoding and recognition of words in schizophrenia patients. The American 
journal of psychiatry 2003; 160(7): 1305–1312. [PubMed: 12832246] 

40. Ragland JD, Gur RC, Valdez J, Turetsky BI, Elliott M, Kohler C et al. Event-related fMRI of 
frontotemporal activity during word encoding and recognition in schizophrenia. The American 
journal of psychiatry 2004; 161(6): 1004–1015. [PubMed: 15169688] 

41. Rasetti R, Mattay VS, White MG, Sambataro F, Podell JE, Zoltick B et al. Altered hippocampal-
parahippocampal function during stimulus encoding: a potential indicator of genetic liability for 
schizophrenia. JAMA psychiatry 2014; 71(3): 236–247. [PubMed: 24382711] 

42. Pirnia T, Woods RP, Hamilton LS, Lyden H, Joshi SH, Asarnow RF et al. Hippocampal 
dysfunction during declarative memory encoding in schizophrenia and effects of genetic liability. 
Schizophr Res 2015; 161(2–3): 357–366. [PubMed: 25497222] 

43. Ragland JD, Ranganath C, Harms MP, Barch DM, Gold JM, Layher E et al. Functional and 
Neuroanatomic Specificity of Episodic Memory Dysfunction in Schizophrenia: A Functional 
Magnetic Resonance Imaging Study of the Relational and Item-Specific Encoding Task. JAMA 
psychiatry 2015; 72(9): 909–916. [PubMed: 26200928] 

44. Lepage M, Montoya A, Pelletier M, Achim AM, Menear M, Lal S. Associative memory encoding 
and recognition in schizophrenia: an event-related fMRI study. Biological psychiatry 2006; 60(11): 
1215–1223. [PubMed: 16814264] 

45. Ragland JD, Ranganath C, Phillips J, Boudewyn MA, Kring AM, Lesh TA et al. Cognitive Control 
of Episodic Memory in Schizophrenia: Differential Role of Dorsolateral and Ventrolateral 
Prefrontal Cortex. Frontiers in human neuroscience 2015; 9: 604. [PubMed: 26617507] 

46. Wolf RC, Vasic N, Hose A, Spitzer M, Walter H. Changes over time in frontotemporal activation 
during a working memory task in patients with schizophrenia. Schizophr Res 2007; 91(1–3): 141–
150. [PubMed: 17258892] 

47. Heckers S Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 2001; 11(5): 
520–528. [PubMed: 11732705] 

48. Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ et al. Impaired recruitment 
of the hippocampus during conscious recollection in schizophrenia. Nature neuroscience 1998; 
1(4): 318–323. [PubMed: 10195166] 

49. Fletcher P The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nature 
neuroscience 1998; 1(4): 266–267. [PubMed: 10195156] 

50. Achim AM, Lepage M. Episodic memory-related activation in schizophrenia: meta-analysis. The 
British journal of psychiatry: the journal of mental science 2005; 187: 500–509. [PubMed: 
16319401] 

51. Bauman MD, Ragland JD, Schumann CM Feeling and Remembering: Effects of Psychosis on the 
Structure and Function of the Amygdala and Hippocampus In: Tamminga EII Carol A., 
Reininghaus Ulrich, Jim van Os (ed). Psychosis: Transdiagnostic Conceptualizations and 
Implications for TreatmentIn press.

52. Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. 
Schizophr Res 2015; 167(1–3): 4–11. [PubMed: 25449711] 

53. Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D et al. Differential 
Targeting of the CA1 Subfield of the Hippocampal Formation by Schizophrenia and Related 
Psychotic Disorders. Archives of general psychiatry 2009; 66(9): 938–946. [PubMed: 19736350] 

54. Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I et al. Imaging patients 
with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and 
implicates glutamate as a pathogenic driver. Neuron 2013; 78(1): 81–93. [PubMed: 23583108] 

55. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of 
hippocampal dysfunction in ageing and disease. Nature reviews Neuroscience 2011; 12(10): 585–
601. [PubMed: 21897434] 

56. Ramos JM. Long-term spatial memory in rats with hippocampal lesions. The European journal of 
neuroscience 2000; 12(9): 3375–3384. [PubMed: 10998120] 

Guo et al. Page 10

Mol Psychiatry. Author manuscript; available in PMC 2019 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



57. Ramos JM. Hippocampal damage impairs long-term spatial memory in rats: comparison between 
electrolytic and neurotoxic lesions. Physiology & behavior 2008; 93(4–5): 1078–1085. [PubMed: 
18255105] 

58. Broadbent NJ, Gaskin S, Squire LR, Clark RE. Object recognition memory and the rodent 
hippocampus. Learning & memory 2010; 17(1): 5–11. [PubMed: 20028732] 

59. Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdottir HN, Stackman RW Jr., The rodent 
hippocampus is essential for nonspatial object memory. Current biology: CB 2013; 23(17): 1685–
1690. [PubMed: 23954431] 

60. Small SA, Nava AS, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Circuit mechanisms underlying 
memory encoding and retrieval in the long axis of the hippocampal formation. Nature 
neuroscience 2001; 4(4): 442–449. [PubMed: 11276237] 

61. Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T et al. Regional 
dissociations within the hippocampus—memory and anxiety. Neuroscience & Biobehavioral 
Reviews 2004; 28(3): 273–283. [PubMed: 15225971] 

62. Fanselow MS, Dong H-W. Are The Dorsal and Ventral Hippocampus functionally distinct 
structures? Neuron 2010; 65(1): 7. [PubMed: 20152109] 

63. Evan Ragland JL;Hannula Deborah; Niendam Tara; Lesh Tyler; Solomon Marjorie; Carter 
Cameron; Ranganath Charan. A Gradient of Hippocampal Function and Dysfunction During 
Relational Memory in People With Schizophrenia Schizophrenia bulletin 2016.

64. Keefe RS, Harvey PD. Cognitive impairment in schizophrenia. Handb Exp Pharmacol 2012; (213): 
11–37. [PubMed: 23027411] 

65. Green MF. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. 
The Journal of clinical psychiatry 2006; 67(10): e12. [PubMed: 17107235] 

66. Keefe RSE, Fox KH, Harvey PD, Cucchiaro J, Siu C, Loebel A. Characteristics of the MATRICS 
Consensus Cognitive Battery in a 29-site antipsychotic schizophrenia clinical trial. Schizophrenia 
Research 2011; 125(2): 161–168. [PubMed: 21075600] 

67. Stroop JR. Studies of interference in serial verbal reactions. Journal of Experimental Psychology 
1935; 18(6): 643–662.

68. Carter CS, Robertson LC, Nordahl TE. Abnormal processing of irrelevant information in chronic 
schizophrenia: Selective enhancement of Stroop facilitation. Psychiatry research 1992; 41(2): 137–
146. [PubMed: 1574540] 

69. Carter CS, Mintun M, Cohen JD. Interference and facilitation effects during selective attention: an 
H215O PET study of Stroop task performance. NeuroImage 1995; 2(4): 264–272. [PubMed: 
9343611] 

70. Carter CS, Mintun M, Nichols T, Cohen JD. Anterior cingulate gyrus dysfunction and selective 
attention deficits in schizophrenia: [O-15]H2O PET study during single-trial Stroop task 
performance. American Journal of Psychiatry 1997; 154(12): 1670–1675. [PubMed: 9396944] 

71. Kerns JG, Cohen JD, MacDonald AW, Johnson MK, Stenger VA, Aizenstein H et al. Decreased 
conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. 
American Journal of Psychiatry 2005; 162(10): 1833–1839. [PubMed: 16199829] 

72. Riccio CA, Reynolds CR, Lowe P, Moore JJ. The continuous performance test: a window on the 
neural substrates for attention? Archives of Clinical Neuropsychology 2002; 17(3): 235–272. 
[PubMed: 14589726] 

73. Borgaro S, Pogge DL, DeLuca VA, Bilginer L, Stokes J, Harvey PD. Convergence of different 
versions of the continuous performance test: clinical and scientific implications. Journal of clinical 
and experimental neuropsychology 2003; 25(2): 283–292. [PubMed: 12754684] 

74. Addington J, Addington D. Attentional vulnerability indicators in schizophrenia and bipolar 
disorder. Schizophr Res 1997; 23(3): 197–204. [PubMed: 9075297] 

75. Buchanan RW, Strauss ME, Breier A, Kirkpatrick B, Carpenter WT, Jr. Attentional impairments in 
deficit and nondeficit forms of schizophrenia. The American journal of psychiatry 1997; 154(3): 
363–370. [PubMed: 9054784] 

76. Sponheim SR, McGuire KA, Stanwyck JJ. Neural anomalies during sustained attention in first-
degree biological relatives of schizophrenia patients. Biological psychiatry 2006; 60(3): 242–252. 
[PubMed: 16460700] 

Guo et al. Page 11

Mol Psychiatry. Author manuscript; available in PMC 2019 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



77. Nuechterlein K, Parasuraman R, Jiang Q. Visual sustained attention: image degradation produces 
rapid sensitivity decrement over time. Science 1983; 220(4594): 327–329. [PubMed: 6836276] 

78. Volz HP, Gaser C, Häger F, Rzanny R, Pönisch J, Mentzel HJ et al. Decreased frontal activation in 
schizophrenics during stimulation with the Continuous Performance Test - a functional magnetic 
resonance imaging study. European Psychiatry 1999; 14(1): 17–24. [PubMed: 10572321] 

79. Honey GD, Pomarol-Clotet E, Corlett PR, Honey RA, McKenna PJ, Bullmore ET et al. Functional 
dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain: 
a journal of neurology 2005; 128(Pt 11): 2597–2611. [PubMed: 16183659] 

80. Liddle PF, Laurens KR, Kiehl KA, Ngan ET. Abnormal function of the brain system supporting 
motivated attention in medicated patients with schizophrenia: an fMRI study. Psychological 
medicine 2006; 36(8): 1097–1108. [PubMed: 16650349] 

81. Gur RE, Turetsky BI, Loughead J, Snyder W, Kohler C, Elliott M et al. Visual attention circuitry in 
schizophrenia investigated with oddball event-related functional magnetic resonance imaging. The 
American journal of psychiatry 2007; 164(3): 442–449. [PubMed: 17329469] 

82. Eyler LT, Olsen RK, Jeste DV, Brown GG. Abnormal brain response of chronic schizophrenia 
patients despite normal performance during a visual vigilance task. Psychiatry Research: 
Neuroimaging 2004; 130(3): 245–257.

83. Morey RA, Inan S, Mitchell TV, Perkins DO, Lieberman JA, Belger A. Imaging frontostriatal 
function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Archives 
of general psychiatry 2005; 62(3): 254–262. [PubMed: 15753238] 

84. Roth M, Hong LE, McMahon RP, Fuller RL. Comparison of the Effectiveness of Conners’ CPT 
and the CPT-Identical Pairs at Distinguishing Between Smokers and Nonsmokers with 
Schizophrenia. Schizophrenia research 2013; 148(0): 29–33. [PubMed: 23791390] 

85. Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, Howes O et al. Cognitive functioning in 
prodromal psychosis: a meta-analysis. Archives of general psychiatry 2012; 69(6): 562–571. 
[PubMed: 22664547] 

86. White T, Schmidt M, Karatekin C. Verbal and visuospatial working memory development and 
deficits in children and adolescents with schizophrenia. Early Interv Psychiatry 2010; 4(4): 305–
313. [PubMed: 20977687] 

87. Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-
episode schizophrenia: a meta-analytic review. Neuropsychology 2009; 23(3): 315–336. [PubMed: 
19413446] 

88. Ho BC, Wassink TH, O’Leary DS, Sheffield VC, Andreasen NC. Catechol-O-methyl transferase 
Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology 
and frontal cerebral blood flow. Molecular psychiatry 2005; 10(3): 229, 287–298.

89. Deserno L, Sterzer P, Wustenberg T, Heinz A, Schlagenhauf F. Reduced prefrontal-parietal 
effective connectivity and working memory deficits in schizophrenia. The Journal of neuroscience: 
the official journal of the Society for Neuroscience 2012; 32(1): 12–20. [PubMed: 22219266] 

90. Perlstein WM, Carter CS, Noll DC, Cohen JD. Relation of prefrontal cortex dysfunction to 
working memory and symptoms in schizophrenia. The American journal of psychiatry 2001; 
158(7): 1105–1113. [PubMed: 11431233] 

91. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R et al. Physiological 
dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral cortex (New 
York, NY: 1991) 2000; 10(11): 1078–1092.

92. Cannon TD, Glahn DC, Kim J, Van Erp TG, Karlsgodt K, Cohen MS et al. Dorsolateral prefrontal 
cortex activity during maintenance and manipulation of information in working memory in 
patients with schizophrenia. Archives of general psychiatry 2005; 62(10): 1071–1080. [PubMed: 
16203952] 

93. Barch DM, Csernansky JG. Abnormal parietal cortex activation during working memory in 
schizophrenia: verbal phonological coding disturbances versus domain-general executive 
dysfunction. The American journal of psychiatry 2007; 164(7): 1090–1098. [PubMed: 17606661] 

94. Cohen JD, Servan-Schreiber D. Context, cortex, and dopamine: A connectionist approach to 
behavior and biology in schizophrenia. Psychological Review 1992; 99(1): 45–77. [PubMed: 
1546118] 

Guo et al. Page 12

Mol Psychiatry. Author manuscript; available in PMC 2019 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



95. Posner MI, & Snyder CRR Attention and cognitive control In: Solso RL (ed). Information 
Processing and Cognition: Loyola Symposium. Erlbaum Associates.: New Jersey, 1975.

96. Koechlin E, Summerfield C. An information theoretical approach to prefrontal executive function. 
Trends in Cognitive Sciences 2007; 11(6): 229–235. [PubMed: 17475536] 

97. Goulas A, Uylings HBM, Stiers P. Mapping the Hierarchical Layout of the Structural Network of 
the Macaque Prefrontal Cortex. Cerebral Cortex 2014; 24(5): 1178–1194. [PubMed: 23258344] 

98. Badre D, D’Esposito M. Functional Magnetic Resonance Imaging Evidence for a Hierarchical 
Organization of the Prefrontal Cortex. Journal of Cognitive Neuroscience 2007; 19(12): 2082–
2099. [PubMed: 17892391] 

99. Ridderinkhof KR, van den Wildenberg WP, Segalowitz SJ, Carter CS. Neurocognitive mechanisms 
of cognitive control: the role of prefrontal cortex in action selection, response inhibition, 
performance monitoring, and reward-based learning. Brain and cognition 2004; 56(2): 129–140. 
[PubMed: 15518930] 

100. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 Functional 
Neuroimaging Studies of Executive Function in Schizophrenia. Archives of general psychiatry 
2009; 66(8): 811–822. [PubMed: 19652121] 

101. Ray KL, Lesh TA, Howell AM, Salo TP, Ragland JD, MacDonald AW et al. Functional network 
changes and cognitive control in schizophrenia. NeuroImage Clinical 2017; 15: 161–170. 
[PubMed: 28529872] 

102. Kerns JG, Cohen JD, MacDonald AW 3rd Cho RY, Stenger VA, Carter CS. Anterior cingulate 
conflict monitoring and adjustments in control. Science 2004; 303(5660): 1023–1026. [PubMed: 
14963333] 

103. Braver TS, Cohen JD, & Barch DM The Role of Prefrontal Cortex in Normal and Disordered 
Cognitive Control: A Cognitive Neuroscience Perspective In: IDTSRT Knight (ed). Principles of 
frontal lobe function. Oxford University Press: Oxford, England, 2002, pp 428–448.

104. Lesh TA, Westphal AJ, Niendam TA, Yoon JH, Minzenberg MJ, Ragland JD et al. Proactive and 
reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode 
schizophrenia. Neuroimage-Clin 2013; 2: 590–599. [PubMed: 24179809] 

105. Yoon JH, Minzenberg MJ, Ursu S, Ryan Walter BS, Wendelken C, Ragland JD et al. Association 
of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in 
schizophrenia: relationship with impaired cognition, behavioral disorganization, and global 
function. The American journal of psychiatry 2008; 165(8): 1006–1014. [PubMed: 18519527] 

106. MacDonald AW 3rd, Carter CS, Kerns JG, Ursu S, Barch DM, Holmes AJ et al. Specificity of 
prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated 
patients with first-episode psychosis. The American journal of psychiatry 2005; 162(3): 475–484. 
[PubMed: 15741464] 

107. Fornito A, Yoon J, Zalesky A, Bullmore ET, Carter CS. General and specific functional 
connectivity disturbances in first-episode schizophrenia during cognitive control performance. 
Biological psychiatry 2011; 70(1): 64–72. [PubMed: 21514570] 

108. Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: 
mechanisms and meaning. Neuropsychopharmacology: official publication of the American 
College of Neuropsychopharmacology 2011; 36(1): 316–338. [PubMed: 20844478] 

109. Blumenfeld RS, Parks CM, Yonelinas AP, Ranganath C. Putting the pieces together: the role of 
dorsolateral prefrontal cortex in relational memory encoding. J Cogn Neurosci 2011; 23(1): 257–
265. [PubMed: 20146616] 

110. Anderson MC, Hanslmayr S. Neural mechanisms of motivated forgetting. Trends Cogn Sci 2014; 
18(6): 279–292. [PubMed: 24747000] 

111. Fawcett JM, Taylor TL. Forgetting is effortful: Evidence from reaction time probes in an item-
method directed forgetting task. Memory & Cognition 2008; 36(6): 1168–1181. [PubMed: 
18927035] 

112. Wylie GR, Foxe JJ, Taylor TL. Forgetting as an Active Process: An fMRI Investigation of Item-
Method–Directed Forgetting. Cerebral Cortex 2008; 18(3): 670–682. [PubMed: 17617657] 

Guo et al. Page 13

Mol Psychiatry. Author manuscript; available in PMC 2019 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



113. Nowicka A, Marchewka A, Jednoróg K, Tacikowski P, Brechmann A. Forgetting of Emotional 
Information Is Hard: An fMRI Study of Directed Forgetting. Cerebral Cortex 2011; 21(3): 539–
549. [PubMed: 20584747] 

114. Conway MA, Fthenaki A. Disruption of Inhibitory Control of Memory Following Lesions to the 
Frontal and Temporal Lobes. Cortex 2003; 39(4): 667–686. [PubMed: 14584548] 

115. Racsmány M, Conway MA, Garab EA, Cimmer C, Janka Z, Kurimay T et al. Disrupted memory 
inhibition in schizophrenia. Schizophrenia Research 2008; 101(1): 218–224. [PubMed: 
18258417] 

116. Müller U, Ullsperger M, Hammerstein E, Sachweh S, Becker T. Directed forgetting in 
schizophrenia. European archives of psychiatry and clinical neuroscience 2005; 255(4): 251–257. 
[PubMed: 16133743] 

117. Ragland JD, Ranganath C, Phillips J, Boudewyn MA, Kring AM, Lesh TA et al. Cognitive 
Control of Episodic Memory in Schizophrenia: Differential Role of Dorsolateral and 
Ventrolateral Prefrontal Cortex. Frontiers in human neuroscience 2015; 9(604).

118. Diana RA, Yonelinas AP, Ranganath C. Imaging recollection and familiarity in the medial 
temporal lobe: a three-component model. Trends in Cognitive Sciences 2007; 11(9): 379–386. 
[PubMed: 17707683] 

Guo et al. Page 14

Mol Psychiatry. Author manuscript; available in PMC 2019 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Panel 1, Mean (±SEM) familiarity and recollection in healthy controls (blue circles) and Sz 

patients (red triangles). (A) Familiarity reveals a group by encoding interaction, with more 

severe patient deficits following relational versus item-specific encoding, (B) Recollection 

reveals a main effect of group across both encoding conditions, with lower patient versus 

control performance. See Ragland, Ranganath 28 for additional results. Panel 2, Meta-

analysis of recollection and familiarity deficits across 19 previous studies utilizing 

remember/know/new (RKN), receiver-operator characteristic (ROC), or process dissociation 
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(PD) methods. (A) Recollection and familiarity estimates were recalculated with three 

probabilities models from three types of studies respectively, showing more impaired 

recollection in Sz patients than controls across studies. (B) Effect sizes of Sz on recollection 

were slightly larger than on familiarity. See 31 for study references.
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Figure 2: 
In controls, DLPFC provides control of relational encoding and VLPFC controls item-

specific semantic processing, and hippocampus binds associations between item and context 

information during encoding (panel A). At retrieval, recollection engages the hippocampus 

and familiarity engages mainly perirhinal cortex, with little hippocampal engagement (See 
30, 33, 118 for theoretical models) (panel B). Panel C illustrates disrupted DLPFC (blue) 

activation during encoding and retrieval in Sz, while VLPFC (orange) remains intact during 

item encoding, suggesting an important role for cognitive control deficits underlying 
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episodic memory impairment in Sz. On the other hand, relational and spatial memory 

dysfunction in Sz is associated with reduced posterior hippocampal activation in Sz, whereas 

increased anterior hippocampal activation has been associated with item memory.
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