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Ensemble learning of diffractive optical networks
Md Sadman Sakib Rahman1,2,3, Jingxi Li 1,2,3, Deniz Mengu1,2,3, Yair Rivenson1,2,3 and Aydogan Ozcan 1,2,3

Abstract
A plethora of research advances have emerged in the fields of optics and photonics that benefit from harnessing the
power of machine learning. Specifically, there has been a revival of interest in optical computing hardware due to its
potential advantages for machine learning tasks in terms of parallelization, power efficiency and computation speed.
Diffractive deep neural networks (D2NNs) form such an optical computing framework that benefits from deep
learning-based design of successive diffractive layers to all-optically process information as the input light diffracts
through these passive layers. D2NNs have demonstrated success in various tasks, including object classification, the
spectral encoding of information, optical pulse shaping and imaging. Here, we substantially improve the inference
performance of diffractive optical networks using feature engineering and ensemble learning. After independently
training 1252 D2NNs that were diversely engineered with a variety of passive input filters, we applied a pruning
algorithm to select an optimized ensemble of D2NNs that collectively improved the image classification accuracy.
Through this pruning, we numerically demonstrated that ensembles of N= 14 and N= 30 D2NNs achieve blind
testing accuracies of 61.14 ± 0.23% and 62.13 ± 0.05%, respectively, on the classification of CIFAR-10 test images,
providing an inference improvement of >16% compared to the average performance of the individual D2NNs within
each ensemble. These results constitute the highest inference accuracies achieved to date by any diffractive optical
neural network design on the same dataset and might provide a significant leap to extend the application space of
diffractive optical image classification and machine vision systems.

Introduction
Recent years have witnessed the emergence of deep

learning1, which has facilitated powerful solutions to an
array of intricate problems in artificial intelligence, includ-
ing image classification2,3, object detection4, natural lan-
guage processing5, speech processing6, bioinformatics7,
optical microscopy8,9, holography10–12, sensing13, and many
more14. Deep learning has become particularly popular
because of the recent advances in the development of
advanced computing hardware and the availability of large
amounts of data for training deep neural networks. Algo-
rithms such as stochastic gradient descent and error
backpropagation enable deep neural networks to learn the

mapping between an input and the target output distribu-
tion by processing a large number of examples. Motivated
by this major success enabled by deep learning, there has
also been a revival of interest in optical computing15–28,
which has some important and appealing features, such as
(1) parallelism provided by optics/photonics systems, (2)
potentially improved power efficiency through passive and/
or low-loss optical interactions, and (3) minimal latency.
As a recent example of an entirely passive optical

computing system, diffractive deep neural networks
(D2NNs)18,23,25,29–34 have been demonstrated to perform
all-optical inference and image classification through the
modulation of input optical waves by successive dif-
fractive surfaces trained by deep learning methods, e.g.,
stochastic gradient descent and error backpropagation.
Earlier generations of these diffractive neural networks
achieved >98% blind testing accuracies in the classifica-
tion of handwritten digits (MNIST) encoded in the
amplitude or phase channels of the input optical fields
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and were experimentally demonstrated using terahertz
wavelengths along with 3D printing of the resulting dif-
fractive layers/surfaces that form a physical network. In a
D2NN fabricated with linear materials in which nonlinear
optical processes including surface nonlinearities are
negligible, the only form of nonlinearity in the forward
optical model occurs at the opto-electronic detector
plane. Without the use of any nonlinear activation func-
tion, the D2NN framework still exhibits depth feature as
its statistical inference and generalization capabilities
improve with additional diffractive layers, which was
demonstrated both empirically18,25 and theoretically34.
The same diffractive processing framework of D2NNs has
also been utilized to design deterministic optical compo-
nents, e.g., ultra-short pulse shaping, spectral filtering and
wavelength division multiplexing30,32.
To further improve the inference capabilities of optical

computing hardware, coupling diffractive optical systems

with jointly trained electronic neural networks that form
opto-electronic hybrid systems has also been repor-
ted19,25,29, where the front end is optical/diffractive and
the back end is all-electronic. Despite all this progress,
there is still much room for further improvements in the
diffractive processing of optical information. Here, we
demonstrate major advances in the optical inference and
generalization capabilities of the D2NN framework by
feature engineering and ensemble learning over multiple
independently trained diffractive neural networks, where
we exploit the parallel processing of optical information.
To create this advancement, we first focus on diversifying
the base D2NN models by manipulating their training
inputs by means of spatial feature engineering. In this
approach, the input fields are filtered in either the object
space or the Fourier space by introducing an assortment
of curated passive filters before the diffractive networks
(see Fig. 1). Following the individual training of 1252
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Fig. 1 Schematic diagram of the ensemble diffractive network system. a Example of a D2NN using a feature-engineered input, where an input
mask with a passive transmission window opened at a certain position is employed against the object plane. An object from the CIFAR-10 image
dataset is shown as an example and is encoded in either the amplitude channel or the phase channel of the input plane of the diffractive network.
b Same as in (a) but using a passive input mask placed on the Fourier plane of a 4-f system; here, a bandpass filter is shown as an example. c An
ensemble D2NN system, formed by N different feature-engineered D2NNs, is shown where each diffractive network of the ensemble takes the form
of (a) or (b). The final ensemble class score is computed through a weighted summation of the differential detector signals obtained from the
individual diffractive networks. Through feature engineering and ensemble learning, we achieved blind inference accuracies of 62.13 ± 0.05%,
61.14 ± 0.23% and 60.35 ± 0.39% on the CIFAR-10 test image dataset using N= 30, N= 14 and N= 12 D2NNs, respectively. The standard deviations
are calculated through 3 repeats using the same hyperparameters
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unique D2NNs with various features, we used an iterative
pruning strategy to obtain ensembles of D2NNs that work
in parallel to improve the final classification accuracy by
combining the decisions of the individual diffractive
classifiers. Based on this feature engineering and iterative
pruning strategy, we numerically achieved blind testing
accuracies of 61.14 ± 0.23% and 62.13 ± 0.05% (referring
to the mean ± standard deviation, which was calculated
using three independent runs) on the classification of
CIFAR-1035 test images with ensemble sizes of N= 14
and N= 30, respectively. Stated differently, 14 D2NNs (30
D2NNs) selected through this pruning approach work in
parallel to collectively reach an optical inference accuracy
of 61.14 ± 0.23% (62.13 ± 0.05%) on the CIFAR-10 test
images, which provides an improvement of >16% over the
average classification accuracy of the individual D2NNs
within each ensemble, demonstrating the ‘wisdom of the
crowd’. This image classification performance is the
highest achieved to date by any diffractive optical network
design applied on the same dataset. We believe that this
substantially improved inference and generalization per-
formance provided by feature engineering and ensemble
learning of D2NNs marks a major step in opening up new
avenues for optics-based computation, machine learning
and machine vision-related systems, benefiting from the
parallelism of optical systems.

Results
Ensemble learning refers to improving the inference

capability of a system by training multiple models instead
of a single model and combining the predictions of the
constituent models (known as base models, base learners
or inducers). It is also possible to learn how to combine
the decisions of the base learners, which is known as
meta-learning36 (learning from learners). Ensemble
learning is beneficial for several reasons37; if the size of the
training data is small, the base learners are prone to
overfitting and, as a result, suffer from poor general-
izability to unseen data. Combining multiple base learners
helps to ameliorate this problem. In addition, by com-
bining different models, the hypothesis space can be
extended, and the probability of getting stuck in a local
minimum is reduced. An important aspect to consider
when generating ensembles is the diversity of the learned
base models37. The learned models should be diverse
enough to ensure that different models learn from dif-
ferent attributes of the data, such that through their
‘collective wisdom’, the ensemble of these models can
eliminate the implicit variance of the constituent models
and substantially improve the collective inference per-
formance. One approach to enrich the diversity of the
base models is to manipulate the training data used to
train different classifiers, making them learn different
features of the input space in each trained model.

In addition to the training of these unique and indepen-
dent classifiers, pruning methods that aim at finding small
ensembles while also achieving competitive inference
performance are also very important37.
Based on these considerations, Fig. 1a, b depict the two

types of D2NNs29 (base learners) selected to constitute
our ensemble diffractive system. The difference between
these two types lies in the placement of the input mask
(passive) used to filter out different spatial features of the
object field to variegate the information fed to the base
D2NN classifiers. In the structure of Fig. 1a, the input
filter is placed on the object plane, whereas the structure
of Fig. 1b uses an input filter on the Fourier plane of a 4-f
system placed before the D2NN. Further heterogeneity is
introduced by diversifying the input filter profiles for both
types of D2NNs depicted in Fig. 1a, b (see Supplementary
Table S1). For example, input filters with transmissive
windows of different shapes (rectangular, Gaussian,
Hamming, or Hanning windows) and in different loca-
tions are used at the object plane. The input filters used at
the Fourier plane also vary in terms of their pass/stop
bands (see the “Materials and methods” section for more
details). In designing the object plane filters, we used
windows of various shapes and sizes and in various
locations to help the individual D2NNs independently
learn the object features at different spatial positions and
windows of the input plane. Similar considerations were
also made during the design of the Fourier plane filters.
Although a filtering operation at the Fourier plane can be
represented by an equivalent convolution on the object
plane, the two types of input filters serve different pur-
poses. The spatial domain filters provide attention (similar
to the attention mechanism used in deep learning38) to
spatial features and regions of interest at the input plane,
while the Fourier plane filters provide different engineered
point spread functions and convolution operations that
are uniformly applied over the entire sample field of view;
in this sense, these two sets of filters complement each
other in the desired inference task.
To further improve the diversity of the base models, the

input object information is encoded into either the
phase channel with four different dynamic ranges or the
amplitude channel of the illumination field. Using all of
these different hyperparameter choices and their combi-
nations, 1252 unique D2NN classifiers were trained to
form the initial network pool. In total, 340 of these net-
works had the input object information encoded in the
amplitude channel, while 912 of them had phase-encoded
inputs; 276 of the amplitude-encoded D2NNs had an
input filter located on the object plane, and 64 had an
input filter located on the Fourier plane; 656 of the phase-
encoded-input networks had a filter on the object plane,
and 256 had a filter on the Fourier plane. For these 1252
unique D2NN classifiers, each diffractive neural network
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subsequently acts on the filtered version of the input
image, and therefore, the trained diffractive layers of each
base D2NN directly act on the space domain information
(not on the frequency or Fourier domain).
The preparation of this initial set of 1252 unique D2NNs

was followed by iterative pruning, with the aim of
obtaining ensembles of significantly reduced size, i.e., with
a much smaller number of D2NNs (base models) in the
ensemble. Ensemble pruning was performed by assigning
weights to each class score provided by the individual
D2NN classifiers and defining the ensemble class score
as a weighted sum of the individual class scores. At each
iteration of ensemble pruning, the weights were optimized
through gradient descent and error backpropagation
method to minimize the softmax-cross-entropy (SCE) loss
between the predicted ensemble class scores and their
one-hot labelled ground truth, and the set of weights
providing the highest accuracy were chosen (see the
“Materials and methods” section). Then, the ‘significance’
of the individual D2NNs in a given state of the ensemble
was quantified and ranked by the absolute summation (i.e.,
the L1 norm) of their weights, based on which a certain
fraction of the networks was then eliminated from the
ensemble due to their relatively minor contributions. In
addition to this greedy search, periodic random elimina-
tion of the individual classifiers from the ensemble was
also used in the pruning process to expand the solution
space (see the “Materials and methods” section for details).

Based on this pruning process, the iterative search
algorithm resulted in a sequence of D2NN ensembles
with gradually decreasing sizes. To select the final
ensemble with a desired size (i.e., the number of unique
networks), we set a maximum limit on the ensemble size
(referred to as the ‘maximum allowed ensemble size’, i.e.,
Nmax) and searched for the D2NN ensemble that achieves
the best performance in terms of inference accuracy on
the validation dataset (i.e., the test dataset was never used
during the pruning phase). As we followed this procedure
for different values of the pruning hyperparameters,
D2NN ensembles with different sizes and blind testing
accuracies were created; we repeated our search three
times for each set of hyperparameters, which helped us
quantify the mean and standard deviation of the infer-
ence accuracy for the resulting D2NN ensembles. We
repeated the pruning process three times for each com-
bination of hyperparameters and reported the mean
and standard deviation over these repeats in the form of
mean ± standard deviation. Based on these analyses,
Fig. 2a reveals that as the maximum allowed ensemble
size (Nmax) increases, the blind testing accuracies
increase; Fig. 2b shows a similar trend reporting the blind
testing accuracies as a function of N, i.e., the number of
D2NNs in the selected ensemble. Figure 2c further
reports the relationship between N and Nmax during the
pruning process, which indicates that on average, these
two quantities vary linearly (with a slope of ~1).
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While the results reported in Fig. 2a, b demonstrate
the significant gains achieved through the ensemble
learning of diffractive networks, they also highlight a
diminishing return on the blind inference accuracy of
the ensemble with an increasing number of D2NNs
selected. For example, with ensemble sizes of N= 14
and N= 30 D2NNs, we achieved blind inference and
image classification accuracies of 61.14 ± 0.23% and
62.13 ± 0.05%, respectively, on the CIFAR-10 test data-
set. Increasing the ensemble size to, e.g., N= 77 D2NNs,
resulted in a classification accuracy of 62.56% on the
same test dataset. Because of this diminishing return
achieved by larger ensemble sizes, we further focused
on the case of Nmax= 14 to better explore this optimal
point: Table 1 reports the blind testing accuracies
(means ± standard deviations) achieved for different
pruning hyperparameters for a maximum allowable
ensemble size of 14. These results summarized in Table
1 reveal that, although not intuitive, the periodic ran-
dom elimination of diffractive models during the
pruning process results in better classification accura-
cies than pruning with no random model elimination;

see the columns in Table 1 with T=∞, where T refers
to the interval between periodic random elimination of
D2NN models. In Table 1, the best average blind testing
accuracy (61.14 ± 0.23%) that was achieved for Nmax=
14 is highlighted with a green box. For three individual
repeats of the pruning process using the same hyper-
parameters, the classification accuracies achieved by the
resulting 14 D2NNs were 60.88, 61.33 and 61.21%.
Figure 3 further presents a detailed analysis of the latter
N= 14 ensemble that achieved a blind testing accuracy
of 61.21%, which is the median for the 3 repeats. Six of
the selected base D2NN classifiers have input filters on
the object plane, while the remaining eight have input
filters on the Fourier plane (Fig. 3a). Figure 3b shows
the magnitudes of the class-specific weights optimized
for the base classifiers of this N= 14 ensemble. Even if
these optimized weights are ignored and made all to be
equal to 1, the same diffractive ensemble of 14 D2NNs
achieves a similar inference accuracy of 61.08%, a small
reduction from 61.21%.
In addition, Fig. 3c shows the true positive rates for each

class, corresponding to the individual members of N= 14

Table 1 Comparison of the blind testing accuracy results achieved under different pruning hyperparameters, with a
maximum allowed ensemble size of Nmax= 14 (see Fig. 4).

For the reported classification accuracies, the means and standard deviations are from the three independent repeats of the pruning process using the same
hyperparameters. The lower table describes the schemes used for ri denoted by (i), (ii) and (iii). The green box highlights the D2NN ensemble achieving the best
average blind testing accuracy (N= 14), and the red box highlights the D2NN ensemble achieving the best average blind testing accuracy per network (N= 12)
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D2NNs as well as the ensemble. The improvements in the
true positive rates of the ensemble over the mean per-
formance of the individual classifiers for different data

classes lie between 13.47% (for class 0) and 19.98% (for
class 6). Figure 3d further presents a comparison of the
classification accuracies of the individual diffractive
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classifiers compared against their ensemble. Through
these comparative analyses reported in Fig. 3c, d, it is
evident that the performance of the ensemble is sig-
nificantly better than any individual D2NN in the
ensemble, demonstrating the ‘wisdom of the crowd’
achieved through our pruning process.
In Table 1, we also report another metric, i.e., ‘the

accuracy per network’, which is the average accuracy
divided by the number of networks in the ensemble, to
reveal the performance efficiency of the ensembles that
achieve at least a 60% average blind testing accuracy for
the CIFAR-10 test dataset. The best performance achieved
in Table 1 based on this metric is highlighted with a red
box: N= 12 unique D2NNs selected by the pruning pro-
cess with Nmax= 14 achieved a blind testing accuracy of
60.35 ± 0.39%, where the accuracy values for the indivi-
dual 3 repeats were 60.77, 60.00 and 60.29%. Details of the
latter ensemble with a blind testing accuracy of 60.29%,
which is the median for the 3 repeats, can be found in
Supplementary Fig. S1, revealing the selected input filters
and the class-specific weights of the 12 D2NNs in this
ensemble.
Our results reveal that encoding the input object

information in the amplitude channel of some of the base
D2NNs and in the phase channel of the other D2NNs
helps to diversify the ensemble. Supplementary Table S2
further confirms this conclusion by reporting the blind
testing accuracies achieved when the initial ensemble
consists of only the 912 D2NNs whose input is encoded in
the phase channel. A direct comparison of Table 1 and
Supplementary Table S2 reveals that including both types
of input encoding (phase and amplitude) within the
ensemble helps improve the inference accuracy. Using
only phase encoding for the input of D2NNs, the best
average blind testing accuracy achieved using Nmax= 14
was 60.74 ± 0.17% with an ensemble of N= 14 D2NNs. A
detailed description of the median of these D2NN
ensembles with a classification test accuracy of 60.65% is
provided in Supplementary Fig. S2. Supplementary Fig. S3
shows the details of another phase-only input encoding
ensemble with N= 12 D2NNs, achieving a blind testing
accuracy of 60.43%.
Furthermore, it is noteworthy that the top 10 D2NNs in

terms of their individual blind testing accuracies from the
initial pool of 1252 networks were not selected in any of
the D2NN ensembles of Fig. 3 and Supplementary Figs.
S1, S2 and S3. This finding corroborates our conjecture
that the individual performance of a base model might not
be indicative of its performance within an ensemble. In
fact, several of the base D2NNs selected in the ensembles
of Fig. 3 and Supplementary Figs. S1, S2 and S3 had blind
testing accuracies <40%, whereas the blind testing
accuracies of the best models (not chosen in any of the
ensembles) were >50%.

Thus far, the pruning strategy that we have investigated
is based on assigning weights to each differential class
score of the individual D2NNs. Based on a differential
detection scheme29, these class scores are computed
through the normalized difference of the signals from the
class detector pairs. To further explore whether this
weight assignment can be improved, we also considered a
more general case, where the trainable weights are
assigned not only to the class scores but also to each of
the detectors, representing a broader solution space
compared to differential balanced detection29. We opti-
mize this augmented set of weights in two different
schemes: (1) the detector signal weights are optimized
simultaneously with the class score weights in each
iteration of the pruning process, and (2) the detector
signal weights and the class score weights are alternatively
optimized in different iterations (see the “Materials and
methods” section for details). The results of these alter-
native pruning strategies are shown in Supplementary
Tables S3 and S4. With Nmax= 14, the best testing
accuracy reported using optimization scheme (1) was
61.02%; when using optimization scheme (2), we achieved
a blind test accuracy of 61.35%. Compared to the previous
classification accuracy (61.14%) achieved using only the
weights assigned to class scores, these new results present
a very similar performance. This comparative analysis
further confirms our previous observation that although
the weights are vital for ensemble pruning, their ultimate
effect on the inference accuracy is not substantial.

Discussion
Although forming an ensemble of separately trained

D2NNs ensues a major improvement in the classification
and generalization performance of diffractive networks,
further improvements could reduce the performance gap
with respect to state-of-the-art electronic neural net-
works. The classification accuracies of widely known all-
electronic classifiers on the greyscale CIFAR-10 test image
dataset can be summarized as follows29: 37.13% for sup-
port vector machine (SVM)39, 66.43% for LeNet40, 72.64%
for AlexNet2, and 87.54% for ResNet3. While the blind
testing accuracy for an ensemble of N= 30 unique dif-
fractive optical networks (62.13 ± 0.05%) comes close to
the performance of LeNet, which was the first demon-
stration of a convolutional neural network (CNN), there is
still a large performance gap with respect to the state-of-
the-art CNNs, and this fact suggests that there might be
more room for improvement, especially through a wider
span of input feature engineering within larger pools of
D2NNs, forming a much richer and more diverse initial
condition for iterative pruning.
The presented improvement in the classification per-

formance of D2NNs obtained with feature engineering
and ensemble learning is not cost-free. Due to the
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multiple optical paths that are part of this framework, the
number of diffractive layers and the opto-electronic
detectors to be fabricated and used increases in propor-
tion to the number of networks (N) used in the final
ensemble, which results in an increased complexity for
the optical network setup. The required training time also
increases significantly because of the need for a large
number of individual networks in the initial pool, which
was 1252 individual D2NNs in our case. However, this
training process is a one-time effort, and the inference
time or latency remains the same by virtue of the parallel
processing capability of the diffractive optical system;
stated differently, the information processing occurs
through diffraction of light within each D2NN of the
ensemble, and because all of the individual diffractive
networks of an ensemble are passive devices that work in
parallel, we do not expect a slowdown in the inference
speed. In addition, the detection circuitry complexity of
the diffractive optics-based solutions is still minimal
compared to its electronic counterparts, and the hardware
complexity of D2NN ensembles can be reduced even
further by using an additive sum of the individual class
scores instead of the weighted sum at the cost of a very
small reduction in the inference accuracy. For example,
for the ensemble of D2NNs depicted in Fig. 3, if a simple
additive sum of the individual class scores is used instead
of the optimized class-specific weights, the blind classifi-
cation accuracy reduces only slightly from 61.21% to
61.08%. This finding suggests that a further reduction in
the hardware complexity is attainable with a very small
reduction in the inference accuracy by discarding the
specific weights of the class scores. However, these
weights still play a very significant role in the pruning
process, as they help in our selection of the diffractive
models to be retained in each iteration during ensemble
pruning by measuring/quantifying the significance of the
individual networks in an ensemble (see the “Materials
and methods” section). Some of the drawbacks associated
with the relatively increased size and complexity of optical
hardware should also become less restrictive since
advances in integrated photonics and fabrication tech-
nologies have led to continuous miniaturization of opto-
electronic devices41. The physical dimensions of an indi-
vidual D2NN model with a fixed number of diffractive
layers are dictated by the illumination wavelength. For
example, the longitudinal dimension of the D2NN designs
used in our models is ~240 λ, which refers to the distance
between the input and the output planes, and the lateral
dimension is ~100 λ, which refers to the width of each
diffractive layer. Using state-of-the-art fabrication tech-
nologies, it is possible to create diffractive structures with
a feature size of a few hundred nanometres42,43, poten-
tially extending the application of diffractive systems to,
e.g., the visible spectrum. The realization of D2NNs in the

visible spectrum would also significantly reduce the
overall size of the ensemble. In addition to these 3D
nanofabrication technologies based on multiphoton
polymerization, multilayer photolithographic methods44

could also be used for the fabrication of D2NN systems.
For the same purpose, nanoimprint lithography and roll-
to-roll patterning techniques45,46 might be less expensive
alternatives to some of these relatively costly fabrication
techniques. Such miniaturized D2NNs operating at visible
wavelengths would also present 3D alignment challenges,
requiring high-resolution structuring of free-space dif-
fractive layers, which need to be precisely aligned with
each other. Recent work on the design of misalignment-
resilient31 D2NN models could be useful for practical
implementations of such diffractive systems operating at
visible wavelengths. Furthermore, while the miniaturiza-
tion of D2NN systems with the currently available large-
area nanofabrication methods is feasible to support an
ensemble of diffractive networks that operate at visible
wavelengths, high-throughput fabrication and integration
of miniaturized optical components such as filters and
lenses might be challenging due to the relative bulkiness
of such optical components. However, the recently
emerging research in meta-surface-based flat optics47,48

has enabled significant miniaturization of traditionally
bulky optical components, and this research could be
further utilized for practical realizations of miniaturized
D2NN ensembles.
In addition to the issues of hardware complexity and

size, to maintain a desired signal-to-noise (SNR) ratio at
the output detectors, the optical input (illumination)
power of the system needs to be increased in proportion
to the ensemble size. However, due to the availability of
various high-power laser sources, this higher demand
for illumination power of the system should not be a
significant obstacle for its operation. While the use of
high-power lasers might not offer a cost-effective
solution, all-optical object detection and classification
applications that require extremely fast inference on the
spot (e.g., for threat detection) might still justify their
use. In addition, since D2NNs are inherently passive,
the availability of low-loss materials for the fabrication
of diffractive layers might lead to power-efficient dif-
fractive networks, partially offsetting the high-power
illumination requirement. Furthermore, given that
broadband diffractive networks have already been
reported to process pulsed optical inputs30,32,33, the
utilization of pulsed lasers, such as those that are widely
used in telecommunications and microscopy applica-
tions, might help to provide sufficient SNR at each
detector plane of the ensemble. Another potential
solution to reduce the input power requirement could
be to time-gate the illumination signals to different
diffractive networks at the cost of some increase in the
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inference time by illuminating each individual D2NN of
the ensemble sequentially, i.e., one by one.
The passive nature of a physically fabricated D2NN

model, while an advantage in terms of power require-
ments, is also a disadvantage, as it creates limitations for
dynamically changing datasets. Incorporating dynamic
spatial light modulators (SLMs) to implement the dif-
fractive layers would augment the D2NN framework to
become reconfigurable at the cost of additional hardware
complexity and power. Furthermore, diffractive networks
have been shown to benefit from transfer learning, where
the performance of an already fabricated D2NN can be
improved by inserting new additional diffractive layers or
replacing some of the existing diffractive layers with newly
trained layers18,32 benefiting from the modularity of the
D2NN design.
Another partial limitation of the proposed approach is the

computation time that is needed for the training of the initial
diffractive ensemble. In this paper, we trained a total of 1252
D2NNs, which resulted in a relatively large computational
burden and a long training time. However, this is a one-time
effort, and a significant reduction in the training time might
be possible through further optimization of the numerical
implementation of our optical forward models. Further-
more, since our investigation of the optimized ensembles
after the pruning stage revealed that many types of filters
were rarely represented/selected in the final ensembles (see
Supplementary Table S1), there is also the possibility to
significantly reduce the total number of diffractive networks
to be trained as part of the initial ensemble.
Finally, the diffractive networks reported in this work

utilize coherent illumination and operate at a single illu-
mination wavelength. Recent studies have reported
diffractive networks that can process a continuum of
wavelengths30,32,33, which lends itself to the possibility of
multiplexing the object information at different wavelength
channels of the illumination. The inference accuracy of an
ensemble diffractive model might benefit from this wave-
length diversity by utilizing diffractive networks that process
specific colour channels (e.g., red, green and blue), either
jointly or individually. These are promising research direc-
tions for future D2NN ensemble designs that might further
enhance their blind inference performance.
In summary, we significantly improved the statistical

inference and generalization performance of D2NNs using
feature engineering and ensemble learning. We indepen-
dently trained 1252 unique D2NNs that were diversely
engineered with various passive input filters. Using a
pruning algorithm, we searched through these 1252
D2NNs to select an ensemble that collectively improves
the image classification accuracy of the optical network.
Our results revealed that ensembles of N= 14 and N= 30
D2NNs achieve blind testing accuracies of 61.14 ± 0.23%
and 62.13 ± 0.05%, respectively, on the classification of

CIFAR-10 test images, which constitute the highest
inference accuracies achieved to date by any diffractive
optical neural network design applied to this dataset. The
versatility of the D2NN framework stems from its applic-
ability to different parts of the electromagnetic spectrum
and the availability of miscellaneous fabrication techniques
such as 3D printing and lithography. Together with further
advances in the miniaturization and fabrication of optical
systems, the presented results and the underlying platform
might be utilized in a variety of applications, e.g., ultrafast
object classification, diffraction-based optical computing
hardware, and computational imaging tasks.

Materials and methods
Implementation of D2NNs
As the basic building block of our diffractive ensemble,

all the individual D2NN base classifiers presented in this
paper consist of five successive diffractive layers, which
modulate the phase of the incidence optical field and are
connected to each other by free-space propagation in air.
The propagation model we used was formulated based
on the Rayleigh-Sommerfeld diffraction equation18,25,
assuming that each diffractive feature (or ‘neuron’) on the
diffractive layers serves as a source of modulated sec-
ondary waves, which jointly form the propagated wave
field. The presented results and analyses of this manu-
script are broadly applicable to any part of the electro-
magnetic spectrum as long as the diffractive features and
the physical dimensions are accordingly scaled with
respect to the wavelength of light. Using a coherent illu-
mination wavelength of λ, for all the diffractive network
designs, the size of each neuron and the axial distance
between two successive diffractive layers were set to be
~0.5 λ and 40 λ, respectively, which guarantees an ade-
quate diffraction cone for each neuron to optically com-
municate with all the neurons of the consecutive layer and
enables the diffractive optical network to be ‘fully con-
nected’. Each photodetector at the output plane of a
D2NN is assumed to be a square of width 6.4 λ. Since
we employed a differential detection scheme here29, the
detectors were divided into two groups, namely, positive
detectors and negative detectors, and were collectively
used to compute the differential class scores for network
k, i.e., Zck, through the following equation:

zck ¼ zþck � z�ck
zþck þ z�ck

ð1Þ

where zþck and z�ck denote the optical signals from the
positive and negative detectors for class c, respectively.
Since the dataset used in this paper, i.e., the CIFAR-10
image dataset, has 10 classes, and a pair of positive
and negative detectors constitutes the score for each
class, therefore, there are a total of 20 detectors at the
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detector/output plane of a single D2NN. An empirical
factor of K= 0.1, also called the ‘temperature’ coefficient
in the machine learning literature49, was a non-trainable
hyperparameter utilized to achieve more efficient con-
vergence during the training phase by dividing Eq. 1 by K.
In addition, the input object was encoded either in the
amplitude or in the phase channel of the input illumina-
tion, which is assumed to be a uniform plane wave
generated by a coherent source. The phase encoding of
the input objects took values from either of the following
four intervals: 0–0.5π, 0–π, 0–1.5π or 0–2π.

Feature engineering of diffractive networks
We used two types of feature-engineered diffractive net-

work architectures: one diffractive architecture employed an
input filter placed on/against the object plane that filters the
spatial signals directly, while the other architecture used an
input filter placed on the Fourier plane of a 4-f system to
filter certain spatial frequency components of the object.
Unless the filters are specifically mentioned to be trainable,
these input filter designs were pre-defined, keeping the
transmittance of their pixels constant during the training of
the diffractive networks (see Supplementary Table S1 for
examples). Each feature-engineered diffractive network
subsequently acts on the filtered input image, directly pro-
cessing the input information on the spatial domain, not the
frequency or Fourier domain.
The object plane filters are designed to be the same size

as the object, containing transmissive patterns, the
amplitude distribution of which takes one of the following
forms: (1) 2D Gaussian functions defined with variable
shapes and centre positions; (2) multiple superposed 2D
Gaussian functions defined with variable centre positions;
(3) 2D Hamming/Hanning functions defined with variable
centre positions; (4) square windows of different sizes at
variable centre positions; (5) multiple square windows at
variable centre positions; (6) patch-shaped windows
rotated at variable angles; (7) circular windows at variable
centre positions; (8) sinusoidal gratings with variable
periods and orientations; (9) Fresnel zone plates with
variable x-y spatial positions; and (10) superpositions of
Gaussian functions and square windows at variable spatial
x-y positions.
For the second type of D2NN with a Fourier plane input

filter, using the same Rayleigh-Sommerfeld diffraction
equation mentioned above, we numerically implemented a
4-f system with two lenses; the first lens transforms the
object information from the spatial domain to the frequency
domain, and the second lens does the opposite. On the
Fourier plane that is 2f distance away from the object plane,
a single amplitude-only input filter, designed in one of the
following forms, is employed: (1) various combinations of
circular/annular passbands, which are defined by specifying
a series of equally spaced concentric ring-like areas, such

that it can serve as a low/high-pass, single-band-pass or
multi-band-pass filter or (2) a single trainable layer enabling
the system to learn an input spatial frequency filter on its
own. On the output image plane of the 4-f system that is 4f
distance away from the object plane, a square aperture is
placed with the same size as the object or 1.5 times the size
of the object before feeding the resulting complex-valued
field into the diffractive network. In the numerical imple-
mentation, the lens has a focal length f of ~145.6 λ and a
diameter of 104 λ.
For each type of input filter design, the number of

trained base D2NNs and some input filter examples can
be found in Supplementary Table S1.

Training details
All the D2NNs and their weighted ensembles in this

paper were numerically implemented and trained using
Python (v3.6.5) and TensorFlow (v1.15.0, Google). An
Adam optimizer50 with the default parameters from
TensorFlow was used to calculate the back-propagated
gradients during the training of the individual optical
models and the ensemble weights. The learning rate,
starting from an initial value of 0.001, was set to decay at a
rate of 0.7 every 8 epochs. The publicly available CIFAR-10
dataset consists of 50,000 training images and 10,000 test
images35. The training images were split into sets of 45,000
and 5000 images for training and validation, respectively.
All the blind testing accuracies reported in this paper
(individual D2NN and ensemble models) were evaluated
on the 10,000 test images, which were never used during
the training of the individual networks nor during the
optimization of the weights for the ensemble pruning
(detailed in the following subsection). Since the images in
the original CIFAR-10 dataset contain three colour chan-
nels (red, green and blue) and monochromatic illumina-
tion is used in our diffractive optical network models,
the built-in rgb_to_grayscale function in TensorFlow was
applied to convert these colour images to greyscale. In
addition, to enhance the generalization capability of the
trained D2NNs, we randomly flipped the images (left to
right) with a probability of 0.5 while training. For training
the individual D2NNs, we used a batch size of 8, trained
each model for 50 epochs using the training image set and
selected the best model based on the classification per-
formance on the validation image set. The D2NN loss
function for a given network k was the softmax-cross-
entropy between the differential class scores zck and their
one-hot labelled ground-truth vector g:

D2NN Loss ¼ �E
XC

c¼1

gc log
exp zckð Þ

PC
c¼1 exp zckð Þ

 !" #
ð2Þ

where E[.] denotes the expectation over the training
images in the current batch, C=10 denotes the total
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number of classes in the dataset, and gc represents the c
th

entry of the ground-truth label vector g.

Ensemble pruning
The method we followed for ensemble pruning

involved iterative elimination of the D2NN members
from the initial pool of 1252 unique networks based on
a quantitative metric, which is indicative of an indivi-
dual network’s ‘significance’ in the collective inference
process. However, since a member’s individual perfor-
mance supremacy might not always translate to an
improvement in the ensemble, during the iterative
process, we occasionally eliminated some members
randomly. Ensemble pruning with intermittent random
elimination of members was found to result in better
performing ensembles compared to pruning without

random elimination, as detailed in the “Results” section
and Table 1.
Our pruning method (see Fig. 4) was initiated with an

ensemble that consisted of all the n0= 1252 individually
trained D2NN models. An ensemble class score zc was
defined as:

zc ¼
X

k

wckzck ð3Þ

where zck is the score predicted for class c by member/
network k (Eq. 1) and wck is the corresponding class-
specific weight. The weight vectors wk ¼ wckf gCc¼1, k= 1,
2, …, n0, were optimized by minimizing the softmax-
cross-entropy loss of the class scores predicted by the
ensemble of D2NNs; C=10 denotes the total number of
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=

(i + 1)% T
= 0?

Form a set Sd,i of
last nd,i networks in

the sorted pool

Form a set Sd,i of nd,i
networks randomly picked
from last pni networks in

the sorted pool
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Initialize and optimize 
class specific weights 
wk for the networks in 

the pool Si to maximize 
accuracy

+ 1
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Initial pool

=

Sort the pool of
networks based

=
=

Update 

and store the 
weights
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i

S0 Nk k=1
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ni+ 1 = 1 ?

Si+ 1
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Fig. 4 Flow chart of the ensemble pruning process. The meaning of the symbols is as follows: i is the iteration number; S is the set of ensembles,
resulting after each iteration; Si is the ensemble after iteration i; ni is the number of networks in the ensemble after iteration i; wk is the weight vector
for network k; T is the interval between the random eliminations of D2NNs; Sd,i is the set of networks to eliminate from the ensemble in iteration i; nd,i
is the number of networks to eliminate from the ensemble in iteration i; ri is the fraction of networks to retain in iteration i; m is the ratio of the
number of randomly eliminated networks to the number of networks eliminated based on ranking; p is the fraction of the networks in the ensemble
to which random elimination is applied. At the end of the pruning process, S comprises a series of D2NN ensembles (formed by Si) of gradually
decreasing size
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classes in our dataset. To reduce overfitting of the weights
to the training data examples, an L2 loss term was also
included in our pruning loss function:

Pruning loss ¼ �E
XC

c¼1

gc log
exp zcð Þ

PC
c¼1 exp zcð Þ

 !" #

þα
1
2

Xn0

k¼1

XC

c¼1

w2
ck

 ! ð4Þ

where α is set to 0.001, E[.] denotes the expectation over
the image batch, and gc represents the cth entry of the
ground-truth label vector g. During the optimization of the
ensemble, in each iteration of the backpropagation
algorithm, all the image samples in the validation set were
fed into the ensemble model (i.e., the batch size equals 5 K);
using training images for weight optimization during
ensemble pruning resulted in overfitting and therefore
was not implemented. The class-specific weights were
optimized using the gradient descent algorithm (Adam50)
for 10,000 steps. After optimizing the weights, the
individual members/networks were ranked based on a
quantitative metric. An intuitive choice for this metric is
the individual prediction accuracy of each network.
However, a better metric for measuring the significance
of individual networks in an ensemble was found to be the
L1 norm of the individual weight vectors optimized for the
validation accuracy. The superiority of the weight L1 norm
as a metric was substantiated by the fact that it consistently
resulted in ensembles achieving much better blind testing
accuracies. After ranking the members based on their
weight vectors, a certain fraction of them was eliminated
from the bottom (i.e., the lowest-ranked members), and the
procedure was repeated with the reduced ensemble until
only one member was left in the ensemble. As mentioned
earlier, at every T-th iteration of the pruning process, this
member/network elimination was performed randomly
instead of via ranking-based elimination. However, to avoid
elimination of the members with the largest weights,
random elimination was selected within a fraction p of the
networks counted from the bottom; p was 2/3 in our case.
Once the pruning process was complete (see Fig. 4), a
maximum allowable ensemble size (Nmax) was set, and the
ensemble with the best performance on the validation
dataset and satisfying the size limit was chosen. The test
image dataset was never used during the pruning process.
To further explore an extended weight assignment

scheme, we used a modified version of Eq. 3:

zc ¼
X

k
wck

wþ
ckz

þ
ck � w�

ckz
�
ck

wþ
ckz

þ
ck þ w�

ckz
�
ck

ð5Þ

where wþ
ck and w�

ck are the newly introduced weights
assigned to the positive and the negative detector of each

detector pair, respectively. Accordingly, the pruning loss
defined in Eq. 4 was changed to be:

Pruning loss ¼ �E
XC

c¼1

gc log
exp zcð Þ

PC
c¼1 exp zcð Þ

 !" #

þα
1
2

Xn0

k¼1

XC

c¼1

w2
ck

 !

þβ
1
2

Xn0

k¼1

XC

c¼1

w�2
ck þwþ2

ck

 !
ð6Þ

where and β are both empirically set to 0.001. During the
pruning process, when weight assignment scheme (1)
described in the Results section was used, all the weights
wck, w

þ
ck and w�

ck were simultaneously optimized for 10,000
iterations. In weight assignment scheme (2) described in
the “Results” section, the optimization of wck and (wþ

ck ,
w�
ck) was performed alternatively; each time, one group of

weights was optimized for 100 iterations, and in total, 50
cycles were used to obtain an equivalent number of total
iterations (10,000), the same as in scheme (1).
For all the training and optimization tasks detailed

above, we used multiple desktop computers all with one
or two GTX 1080 Ti graphical processing units (GPUs,
Nvidia Inc.), Intel® Core™ i7-8700 central processing
units (CPUs, Intel Inc.) and 64 GB of RAM, running the
Windows 10 operating system (Microsoft Inc.). The
typical training time for one D2NN model on a single
GPU is ~3 h. The time required for the iterative ensemble
pruning process depends on the pruning hypermeters,
varying between 0.75 and 7.5 h.
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