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Method

Efficient and accurate KIR and HLA genotyping
with massively parallel sequencing data

Li Song,'%* Gali Bai,'> X. Shirley Liu,'® Bo Li,>” and Heng Li'-?

7Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; ? Department of Biomedical
Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA; 3Lyda Hill Department of Bioinformatics, University of

Texas Southwestern Medical Center, Dallas, Texas 75390, USA

Killer cell immunoglobulin like receptor (KIR) genes and human leukocyte antigen (HLA) genes play important roles in
innate and adaptive immunity. They are highly polymorphic and cannot be genotyped with standard variant calling pipe-
lines. Compared with HLA genes, many KIR genes are similar to each other in sequences and may be absent in the chro-
mosomes. Therefore, although many tools have been developed to genotype HLA genes using common sequencing
data, none of them work for KIR genes. Even specialized KIR genotypers could not resolve all the KIR genes. Here we
describe TIK, a novel computational method for the efficient and accurate inference of KIR or HLA alleles from RNA-
seq, whole-genome sequencing, or whole-exome sequencing data. TIK jointly considers alleles across all genotyped genes,
so it can reliably identify present genes and distinguish homologous genes, including the challenging KIR2DL5A/ KIR2DL5B
genes. This model also benefits HLA genotyping, where TIK achieves high accuracy in benchmarks. Moreover, TIK can
call novel single-nucleotide variants and process single-cell data. Applying TIK to tumor single-cell RN A-seq data, we found
that KIR2DL4 expression was enriched in tumor-specific CD8* T cells. TIK may open the opportunity for HLA and KIR gen-

otyping across various sequencing applications.
[Supplemental material is available for this article.]

Polymorphisms in immune receptor genes diversify the immune
response, which strengthens the resilience of a population to
diseases. In particular, the major histocompatibility complex
(MHC) encoded by the highly polymorphic human leukocyte an-
tigen (HLA) genes can present various peptides depending on the
personal HLA sequences. The peptides on MHC could trigger dif-
ferent immune responses, thus affecting the severity of a disease
like SARS-CoV-2 infections (Migliorini et al. 2021) in a person.
Besides HLA genes, the killer cell immunoglobulin like receptor
(KIR) gene family residing on 19q13.4 is also highly polymorphic
and can modulate the activity of natural killer (NK) cells and T cells
(Vilches and Parham 2002). There are 17 KIRs in humans, includ-
ing eight inhibitory KIRs (KIR2DL1, KIR2DL2, KIR2DL3,
KIR2DLS5A, KIR2DLSB, KIR3DL1, KIR3DL2, and KIR3DL3), seven
activating KIRs (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DSS,
KIR3DS1, and KIR2DL4), and two pseudogenes (KIR2ZDP1 and
KIR3DP1). Regarding the regulation function, KIR2ZDL4 is special
in that it exerts the activating signal and also has the potential
for inhibition (Faure and Long 2002). Although most of the KIRs
interact with MHC class I molecules, the KIR ligand space could
be broad, and this involves KIRs in various immune-regulation
mechanisms. For example, one immune-evasion mechanism in
several tumor types is to up-regulate HHLA2, which binds with
KIR3DL3 to inhibit T cell and NK cell activity (Bhatt et al. 2021).
In summary, the identification of the alleles, or genotyping, of
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these highly polymorphic genes in a person can lead to a better un-
derstanding of infectious diseases (Walter and Ansari 2015), vacci-
nation (Bolze et al. 2022), organ transplantation (Ruggeri et al.
2002; Zamir et al. 2022), autoimmune diseases (Li et al. 2022),
and cancer (Purdy and Campbell 2009; Naranbhai et al. 2022).
Because of the importance of these polymorphic genes, re-
searchers created the Immuno Polymorphism Database (IPD) to
curate the HLA and KIR allele sequences (IPD-IMGT/HLA and
IPD-KIR, respectively) (Robinson et al. 2020). IPD-IMGT/HLA is
the foundation for numerous computational methods, such as
seq2HLA (Boegel et al. 2012), OptiType (Szolek et al. 2014),
PolySolver (Shukla et al. 2015), HLA-HD (Kawaguchi et al. 2017),
Kourami (Lee and Kingsford 2018), HISAT-genotype (Kim et al.
2019), HLA*LA (Dilthey et al. 2019), and arcasHLA (Orenbuch
et al. 2020), that can infer HLA alleles from RNA-seq, whole-ge-
nome sequencing (WGS), or whole-exome sequencing (WES)
data. However, many of the HLA genotypers have hardwired the
HLA information in the program or require specialized reference
sequences, so they could not be directly applied to KIR genotyping.
Besides, KIR genes have unique biological features that make the
sequence analysis challenging. First, KIR genes can be lost on a
chromosome except for the four framework KIR genes (KIR2DL4,
KIR3DL2, KIR3DL3, and KIR3DP1) (Pende et al. 2019), whereas
the HLA class I (HLA-A, HLA-B, HLA-C) and HLA class II (including
HLA-DPB1, HLA-DQB1, HLA-DRB1) genes are expected to be pre-
sent. Second, some KIR genes are highly similar to each other,
such as KIR3DL1 and KIR3DS1, and HLA genes are more distinct
(Supplemental Fig. S1). As a result, the KIR genotyper PING
(Norman et al. 2016; Marin et al. 2021) could not disentangle all
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the KIR genes during allele predictions, and it is designed for the
KIR-targeted amplified data. Other methods, such as KIR*IMP
(Vukcevic et al. 2015) and KPI (Roe and Kuang 2020), focus on
gene-level analysis rather than delving into allelic variations.
Motivated by the biological relationship between KIRs and HLAs
and the limitations in existing genotyping methods, we developed
a flexible and user-friendly computational method, The ONE gen-
otyper for Kir and hla (T1K), to accurately genotype KIR and HLA
genes of a sample from the genomic or RNA sequencing data.

KIR genes are selectively expressed in T cells, including CD8*
T cells (Bjorkstrom et al. 2012). The T cell is the central component
in adaptive immunity, and CD8" T cells can recognize antigens
presented on MHC class I and eliminate corresponding cells
such as cancer cells. Because KIR can regulate these important
CD8* T cells, it is fundamental to understand the KIR expression
patterns. Therefore, we used public single-cell RNA-seq (scRNA-
seq) data (Simoni et al. 2018) of the tumor-infiltrating CD8" T cells
to check whether certain KIR alleles could be related to tumor
immunity.

Results

Overview of the method

The principle of T1K is to find abundant alleles and genes based on
the read alignments (Fig. 1A). A similar strategy is adopted in meth-
ods like HISAT-genotype (Kim et al. 2019) and arcasHLA (Orenbuch
et al. 2020). The allele sequences can be obtained from the IPD or a
custom database. T1K first extracts candidate reads from the raw
data FASTQ files or an alignment BAM file. T1K computes the abun-
dance of all the input alleles simultaneously using the weighted ex-
pectation-maximization (EM) algorithm (Dempster et al. 1977) to
maximize the likelihood of read alignments to the reference alleles.
By modeling all the alleles together, T1K can handle the reads that
are mapped to multiple highly similar KIR genes. T1K reports the al-
lele at the allele series level (three digits for KIR and six digits for HLA
by default), so it will sum the abundances of each allele within the
same allele series. For simplicity, we will continue using the term al-
lele for the genotyping results. If there are more than two valid al-
leles for a gene, T1K picks the pair of alleles that maximizes the
total number of reads that can be aligned to all the selected alleles.
Therefore, T1K reports, at most, two alleles per gene, that is, no
more than 34 alleles when genotyping KIRs. T1K then applies a
Poisson model to calculate the quality score for each called allele
to further filter the false alleles. In addition to genotyping each sam-
ple, T1K provides postprocessing methods to extend the genotyp-
ing results. These include novel single-nucleotide polymorphism
(SNP) detection on representative alleles and the report of single-
cell-level allele abundances.

Performance of KIR genotyping on simulated data

We examined the KIR genotyping accuracy of T1K with 1000 sim-
ulated KIR-specific RNA-seq data. There are two types of errors,
where false positive (FP) means T1K falsely reports an allele not
in the ground truth, and false negative (FN) means the method
misses a true allele. T1K made 33 errors (FN + FP) for the 16,038 al-
leles across all the simulated samples. One of the key ideas in T1K is
to estimate the abundances of all the alleles together to include
multiple-gene mapped reads. To test the benefit of this strategy,
we removed the reads assigned to multiple genes, which is a filter
adopted in arcasHLA. After the filtering, this arcasHLA-like strategy
made 383 errors, supporting the importance of considering all the

alleles simultaneously (Fig. 1B). In this and following evaluations,
we ignored alleles with a quality score of zero in T1K.

To handle absent KIR genes or homozygous genes, T1K filters
an allele if its abundance is lower than a user-specified fraction of
the abundance of another allele for this gene. If the threshold is set
too low, then T1K will have too many candidate alleles to have ro-
bust genotyping results. If the filter threshold is too high, it will
lose true alleles. We evaluated the impact of different thresholds
on allele prediction accuracy. T1K produced highly accurate pre-
dictions in a wide range of threshold settings between 0.1 and
0.25, suggesting that T1K is robust to the selection of this param-
eter (Supplemental Fig. S2). The default threshold is set at 0.15 as
this setting resulted in the best accuracy.

Performance of KIR genotyping on real data

We investigated T1K’s accuracy of KIR genotyping on real data. We
compared T1K against the experimentally validated KIR alleles from
1000 Genomes Project samples (1KGP) (The 1000 Genomes Project
Consortium 2012), which genotyped KIR3DL1/KIR3DS1 and
KIR3DL2 (Norman et al. 2016). Because this annotation did not dis-
tinguish KIR3DL1 and KIR3DS1, we focused on the comparison of
KIR3DL2. We initially ran T1K on both RNA-seq and WES data
(Supplemental Table S1). However, KIR genes were expressed only
in a subset of immune cells. Most of the RNA-seq samples (444 out
of the 463) only had fewer than two KIR genes with a positive quality
score allele. We thus ignored the RNA-seq data owing to lack of infor-
mation. We investigated T1K’s accuracy of KIR3DL2 using WES data.
The KIR3DL2 annotation was at the full digit level, so we converted
the annotated alleles to the first three digits. Furthermore, because
KIR3DL2 is the framework gene, they should be on both chromo-
somes. Hence we regarded the single-allele (homozygous) prediction
of T1K as one allele showing up twice. After this, both the T1K and
the 1KGP KIR3DL2 annotations had a pair of alleles per sample. For
the matching criteria of a sample, we considered alleles as a pair to
avoid overcounting the matches of the homozygous case. For ex-
ample, when T1K predicted the single-allele KIR3DL2*001 for a
sample and the annotation was KIR3DL2*001/KIR3DL2*002, we
counted it as one match and one mismatch. Based on these crite-
ria, there was no need to distinguish between sensitivity and pre-
cision, which both equal the fraction of matched alleles. In the
KIR3DLZ2 annotation, there were alleles without available genomic
sequences in the IPD-KIR database, such as KIR3DL2*003, so we
excluded those samples from the analysis. For the remaining 202
WES samples, we evaluated T1K's accuracy of the 404 KIR3DL?2 al-
leles, where T1K achieved 99.0% (400/404) accuracy.

The previous analysis only interrogated a subset of KIR2DL4 al-
leles, so we used 26 samples from the Human Pangenome Reference
Consortium (HPRC) (Supplemental Table S2) to conduct a compre-
hensive evaluation of all the KIR genes. These samples have both
phased reference genomes and Illumina whole-genome sequencing
short reads. To identify the KIR alleles on the phased genomes, we
aligned the IPD-KIR allele genome sequences to each genome. The
alignment could be used to identify KIR gene regions and to select
the alleles with minimal differences in the exonic region as the
ground truth (Methods). We then used T1K to predict alleles from
the Illumina short reads, and compared the results against the
ground truth. T1K achieved high sensitivity and identified 96.8%
of alleles found on the phased reference genomes (Fig. 1C). While
being highly sensitive, T1K also had high precision such that
~95.0% of the called alleles can be validated in the phased genomes.
The strategy of incorporating secondary read assignments with
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alleles present in an allele whitelist coded in OptiType’s Python script.

worse alignments in the intronic region improved the precision by
2.6% in this evaluation.

The phased reference genomes also provide the ground truth
of novel genomics variations. We evaluated the unambiguous
SNPs in the correct alleles predicted by T1K and found that
95.0% of these SNPs inferred by T1K can be validated on the
phased genome (Supplemental Fig. S3). T1K could not resolve
the ambiguous SNPs and did not try to compute the SNPs in the
case of hybrid genes, so in such cases, the sensitivity was low. In
this evaluation, the unambiguous SNPs of T1K constituted
~41.2% of the total novel variations found on the phased genome.

PING (Norman et al. 2016; Marin et al. 2021) is another pipe-
line specialized in KIR genotyping. However, this pipeline was de-
signed for targeted sequencing data and reported errors on the
above WGS data. PING provided five real data sets in the package
as test examples on which we examined the results from T1K and

PING. On its own data, PING could not completely distinguish
KIR2DL2/KIR2DL3, KIR2DS3/KIR2DS5, KIR3DL1/KIR3DS1, and
KIR2DLSA/KIR2DL5B, whereas T1K provides full resolution at
the gene level. When inspecting the remaining well-separated
KIR genes, 95.5% of T1K’s genotyping results were supported by
PING (Supplemental Table S3), and PING had five unsolved cases.
With four threads (default in PING), T1K took 9 min to genotype
all the samples, whereas PING spent 235 min. Even though
PING reported more information such as gene copy numbers,
PING’s longer running time could still be mainly because its allele
calling method was slower than T1K's.

Performance of HLA genotyping on real data

We compared T1K against other HLA genotypers to further evalu-
ate T1K on real RNA-seq and WES data. Because arcasHLA and
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OptiType were reported as the most effective methods in several
HLA genotyping benchmark studies (Orenbuch et al. 2020;
Thuesen et al. 2022; Claeys et al. 2023; Yu et al. 2023), we included
these two methods in our evaluations. We used the HLA annota-
tion from 1KGP as the ground truth (Abi-Rached et al. 2018) and
compared the performance on samples with both RNA-seq data
and WES data (Supplemental Table S1). Because the HLA annota-
tion of 1KGP was at the four-digit level, for example, HLA-
A*01:01, we converted the results from T1K and arcasHLA from
six digits to four digits. It is not likely to miss the 1KGP-annotated
HLA genes on a chromosome, so we expanded the homozygous
prediction of T1K as one allele showed up twice. This is the para-
digm of arcasHLA, OptiType, and the 1KGP annotation. The
matching criterion is similar to the case of the previous KIR3DL2
evaluation by considering the match for each allele pair. For the
gene for which 1KGP had more than two annotated alleles, we se-
lected the pair that matched the best with the benchmarked meth-
od. When evaluating HLA-DQB1, we ignored the samples with no
1KGP annotation. As before, the fraction of matched alleles would
equal both sensitivity and precision and was suitable to represent
the accuracy. We first evaluated the results of T1K, arcasHLA, and
OptiType on the RNA-seq data (Fig. 1D). T1K achieved the highest
accuracy in HLA-A, HLA-B, HLA-C, and HLA-DQB1, where its accu-
racies were ~99.3% and 99.0% on HLA class I alleles and class II al-
leles, respectively.

We next compared the results of T1K and OptiType on WES
data. arcasHLA was excluded from this evaluation as it was incom-
patible with genomic sequencing data. T1K'’s allele prediction
accuracy was worse than that of OptiType, where T1K and
OptiType had 96.1% and 98.0% average accuracy on HLA class I
genes, respectively (Fig. 1E). Although OptiType did not genotype
HLA class II genes, T1K reached an accuracy of 95.8% for HLA-
DQBI and 98.5% for HLA-DRB1. The T1K WES accuracy was lower
than its RNA-seq accuracy for the same donors. This may be owing
to the intronic sequences and the UTRs. For example, one of the
errors that T1K made was the false-positive prediction of HLA-
A*02:783 in two samples. There were three differences between
HLA-A*02:783 and HLA-A*02:01:01:01 near the end of exon
3. Meanwhile, this part of exon 3 and the intron after exon 3 in
HLA-A*02:783 were identical to the last part of HLA-U*01:03 and
its UTR (Supplemental Fig. S4). As a result, many WES reads from
HLA-A*02:01 and HLA-U can also be aligned to HLA-A*02:783,
causing its abundance inflation. In RNA-seq data, the reference se-
quences directly join exons 3 and 4, which could reduce the con-
founding abundances from the HLA-U allele.

OptiType by default filters read alignments from rare alleles or
non-HLA class I genes based on a list of frequent alleles hardcoded
in its source code. As HLA-A*02:783 was not on this list, OptiType
avoided the errors related to the allele. We hypothesized the lower
accuracy of T1K on WES data compared with that of OptiType was
owing to the complexity of the complete allele reference file. To
validate the assumption, we added a T1K option to only retain
read assignments from the alleles in a user-specified whitelist.
Using a whitelist derived from OptiType’s frequent alleles list, we
improved T1K accuracy from 96.1% to 98.3%, surpassing
OptiType (Fig. 1E). The observation suggests some alleles in the
complete IPD-IMGT database may confuse genotyping and lead
to errors. However, this whitelist strategy might cause false nega-
tives. For example, OptiType could not predict HLA-B*35:41 as
this allele was filtered in the frequent allele list, whereas T1K'’s de-
fault mode found it in NA12827 validated by the 1KGP annota-
tion. A whitelist curated for T1K could probably improve the T1K

accuracy further. We did not go down this path to avoid overfitting
to the benchmark data set.

Speed and memory usage

As consequences of the comprehensiveness of IPD-IMGT/HLA and
the high expression of HLA genes, HLA genotyping using RNA-seq
data is the most time-consuming and memory-demanding task in
our study. Therefore, we compared the computation efficiency of
T1K, arcasHLA, and OptiType on the 10 largest RNA-seq samples
that were used in the HLA genotyping evaluation (Supplemental
Table S4). Both T1K and OptiType started from the raw read
FASTQ file, and arcasHLA used the aligned BAM file as input. All
three methods could finish each sample within 3 h given eight
threads. Because arcasHLA extracted the candidate reads directly
from the reads mapped to Chromosome 6 in the BAM file, its over-
all running time was faster than that of T1K and OptiType. When
comparing the speed on the genotyping step after obtaining can-
didate reads, T1K and arcasHLA had similar running times.
Although T1K and arcasHLA required <40 GB memory, Optitype
consumed >200 GB memory on three of the benchmarked
samples.

Expression of KIRs in CD8* T cells

The advancement of scRNA-seq technology enables us to explore
the KIR expression patterns in immune cells computationally. To
avoid the confounding effects of dropout events from low-cover-
age platforms like 10x Genomics scRNA-seq data (Zheng et al.
2017), we chose Smart-seq (Hagemann-Jensen et al. 2020) data
for robust genotyping and abundance estimation. We first exam-
ined the KIR allele usage across 29 immune cell types by running
T1K on 118 cells with Smart-seq data from four healthy donors’
blood (Monaco et al. 2019). In each donor, the NK cell consistently
expressed the highest number of KIR alleles, followed by 8T cells
and effector CD8" T cells (Supplemental Fig. S5). This observation
supported that KIRs were expressed in a subset of T cells (Halary
et al. 1997; Bjorkstrom et al. 2012; de Vries et al. 2023).

Because of the CD8" T cell’s important role in adaptive immu-
nity, we next explored the KIR allele usage pattern in this cell type
further. We analyzed 32 CD8" T cells with Smart-seq scRNA-seq
data (Simoni et al. 2018). These cells were from multiple donors,
including cancer patients, so we first grouped the cells belonging
to the same person by matching the HLA class I genes based on
T1K’s results. After that, we ran T1K again on the cells from the
same donor for KIR genotyping and obtained the allele abun-
dance. To compare the KIR allele expression pattern, we normal-
ized the abundances to expression fractions within each cell (for
an example, see Fig. 2A; for complete results, see Supplemental
Fig. S6). We observed that KIR alleles or KIR genes were expressed
selectively in each cell again (Bjorkstrom et al. 2012), and most
cells expressed fewer than seven KIR alleles (Fig. 2B). KIR2DL4
and KIR3DL2 genes were detected in the most number of cells
(27 and 21, respectively), and they were the only KIR genes that
had both alleles expressed in a cell (Fig. 2C). These two KIR genes
were two of the four framework KIR genes, whereas another frame-
work KIR gene, KIR3DL3, was much less expressed. Furthermore,
the remaining framework KIR gene KIR3DP1 was not expressed
by any cells, implying that the pseudogene might not be function-
alin CD8" T cells.

We next investigated the KIR allele expression pattern in dif-
ferent phenotypes of the tumor-infiltrating CD8" T cells, where
CD39* T cells are tumor-specific T cells and CD39™ T cells are
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Figure 2. KIRallelesin CD8" T cells. (A) KIR allele expression fractions in four cells from a colorectal cancer (CRC) patient. (B) The number of expressed KIR
alleles in a cell. For example, seven cells expressed two KIR alleles. (C) The number of cells that express the KIR gene, splitting by the cases of single-allele

expression or both-allele expression. Only detected KIR genes are displayed
CD39" CD8" T cells. Each line connects a KIR allele in the CD39~ cell and

. (D) Comparison of the KIR allele fractions between CD39~ CD8" T cells and

the CD39* T cell from the same patient. The P-values are computed with a

Wilcoxon signed-rank test and have been adjusted by the Benjamini-Hochberg procedure.

bystanders (Simoni et al. 2018). Because a donor contributed, at
most, one CD397 cell and one CD39" cell in these data, we consid-
ered each KIR allele expression fraction of a patient as a pair
(CD39~ vs. CD39") and ignored the patients without paired cells.
When comparing the allele expression fractions, KIR2DL4 alleles
were significantly enriched in the tumor-infiltrating CD39* T cells
(two-sided Wilcoxon signed-rank test, raw P-value= 5.5x1074,
adjusted P-value=0.006) (Fig. 2D). The enrichment of KIR2DL4
remained significant when applying the unpaired two-sided
Mann-Whitney U test (P-value=0.013). Previous work has report-
ed activating function of KIR2DL4 in NK cells (Faure and Long
2002), yet its role in the functionally similar cytotoxic CD8* T cells
remains elusive. Our observations necessitate future exploration of
KIR2DL4 functionality in a subset of CD8* T cells and tumor
immunity.

Discussion

We have conducted comprehensive evaluations to show that T1K
is a highly accurate genotyping method. For example, we used
phased genomes from HPRC to validate the allele predictions.
These approaches are computation-based, and they might be less
reliable than experimental techniques, such as using PCR with al-
lele-specific primers to examine the alleles. To increase our confi-
dence in T1K, we investigated the HLA genotyping by evaluating
with 1KGP annotations, which were experimentally validated ex-
tensively in the original study. As KIR genes have their own unique
features, experimental validation might still be needed for KIR gen-
otyping, but this is beyond the scope of the current study.

Although HLA and KIR allele sequences are well curated by
IPD, there are other polymorphic genes. Some polymorphic genes,
like CYP2D6 relating to drug metabolism (Wang et al. 2009), are
cataloged by the PharmVar database (Gaedigk et al. 2018). T1K
provides flexible and user-friendly modules to create custom refer-
ences to genotype these non-IPD-curated genes. In addition, KIR
genes are in the leukocyte receptor complex (LRC), and LRC con-
tains other immune receptor gene families such as LILR and
LAIR. It has been shown that a subset of the regulatory receptor
genes LILR on neutrophils is genetically diverse in the population
(Lewis Marffy and McCarthy 2020). To analyze the polymor-
phisms in the gene without a curated database, one could retrieve
the allele sequences from resources like the HPRC genomes and
create a custom database for T1K to genotype new samples.
Similarly, we could find novel HLA and KIR alleles from these ge-
nome studies, such as KIR3DL2*003’s genome sequences.

There could be structural polymorphisms in KIR loci that are
too complex to process with the current implementation, such as
hybrid or duplicated KIR genes (Traherne et al. 2010). T1K could
not align the reads to hybrid KIR genes owing to the high diver-
gence to the reference sequences. This might decrease the allele
prediction accuracy and the power to detect variations. In addi-
tion, the quality score filter and the abundance fraction filter
might suppress a true allele if the other haplotype has copy num-
ber gains. Future works like graph representations of the KIR gene
sequences at the exon level and specialized statistical models for
copy number inference could resolve these complex variations.

In addition to showing T1K’s functionality, we explored the
KIR expression patterns in CD8* T cells. We observed that
KIR2DL4 was enriched in tumor-specific CD39* CD8* T cells,
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suggesting that KIR2ZDL4 might be related to tumor immunity.
This analysis was based on a Smart-seq data set with 32 cells, so
more data need to be collected to validate and study the role of
KIR2DL4 in CD8" T cells. We did not explore KIR genes on 10x
Genomics scRNA-seq data owing to the concern over dropouts,
but the analysis might be feasible and reliable at the cell cluster lev-
el. With the expanding knowledge of KIRs’ function, we expect the
genotypes inferred from T1K could be a valuable resource for biol-
ogists to study and find appropriate cancer treatment strategies in
the future.

In sum, we have implemented the novel computational
method T1K that can genotype KIR genes or HLA genes from var-
ious sequencing platforms, including RNA-seq, WES, and WGS
data. T1K showed that the EM algorithm-based approach was
highly accurate and efficient even when inferring all of the thou-
sands of alleles in the database simultaneously. We showed that
KIR2DL4 alleles were more expressed in tumor-specific CD8" T
cells than the bystander tumor-infiltrating CD8" T cells. We expect
T1K’s versatile framework will contribute to KIR, HLA, and other
polymorphic gene studies in the future.

Methods

Sequencing data

We generated 100 simulated samples using Mason (Holtgrewe
2010). Each sample was generated with the options “illumina -i
-s 17 -sq -mp -n 100 -11 500 -hs 0 -hi 0 -pi O -pd O -pmmb 0.0005
-pmm 0.001 -pmme 0.003 -nN -N read_count.” Each sample select-
ed six to nine random KIR genes and two random alleles (allowing
the same) for each KIR gene. The parameter “read_count” in the
mason command was set to have 50 read pairs for each allele on
average. The read length is 100 bp.

For the real data set in the KIR genotyping evaluation, we used
26 samples (Supplemental Table S1) from the Human Pangenome
Reference Consortium (HPRC) (Wang et al. 2022; Liao et al. 2023)
with both haplotype-resolved reference genomes and an Illumina
WGS paired-end short read of 150-bp read length. For the HLA
genotyping comparison, we downloaded 463 samples from
1KGP that have annotated HLA genotype, RNA-seq, and WES-
seq data (Supplemental Table S3). We used STAR (Dobin et al.
2013) with default parameters to align the RNA-seq data to the hu-
man reference genome hg38. Two of the WES samples (HG00104
and NA18487) had damaged FASTQ files, so we excluded them
from the WES genotyping analysis. For the Smart-seq analysis,
we downloaded the scRNA-seq data from the NCBI BioProject da-
tabase (https://www.ncbi.nlm.nih.gov/bioproject/) under acces-
sion numbers PRJNA418779, PRINA453180, and PRJNA453183.

Reference sequences

IPD curates a comprehensive set of allele sequences for both HLA
and KIR genes, so T1K builds the reference sequences based
upon it as many other methods. In this work, T1K used IPD-KIR
v2.10.0 for KIR genotyping and IPD-IMGT/HLA v3.44.0 for HLA
genotyping. OptiType has its own processed HLA reference se-
quence in the package, and we ran arcasHLA with IPD-IMGT/
HLA v3.44.0. In this study, we used T1K v1.0.2, PING (GitHub
commit 1d1b5d1), arcasHLA v0.2.5, and OptiType v1.3.5.

The T1K reference database is prepared differently depending
on whether the input sequences contain introns. For RNA-seq
data, T1K concatenates the exons parsed from the EMBL-ENA for-
matted DAT file for each allele. For WGS or WES, we added the 200
bp from each flanking intron on two sides of every exon. If two ex-

ons’ flanking introns overlap, we will merge the intervals. For the
long introns, we add a one-character “N” at the boundary to indi-
cate the gap in the intronic region. For all data types, we padded
the sequences with 50-bp sequences from 3’ and 5’ UTRs to give
more anchors for the read alignment. The DAT file also annotates
whether a sequence is partial, and T1K will ignore those partial
sequences.

When the UTR is exonized, such as HLA-C*04:09N and
KIR2DL3*010, the allele contains sequences that are missing in
other alleles. As a result, reads from the UTR region are more likely
to be mapped to the UTR-exonized alleles and cause inflation of
the abundance estimation. To alleviate the mapping bias, T1K
trims the last exon of an allele if the allele is longer than the com-
mon allele length of the gene. The trimming is only applied to the
last exon, and the trimmed last exon length equals this gene’s
most frequent last exon length. In this way, T1K will keep the se-
quence if there are insertions in the middle of the allele.
Although this strategy will remove allele-specific sequences,
the remaining variations, including the stop codon, might be
sufficient for genotyping. For example, T1K still correctly identi-
fied HLC-C*04:09N in NA12718 and NA12777 in the 1KGP
evaluation.

Candidate reads

The first step of T1K is to extract the reads from the interested genes
provided in the reference sequences, such as KIR and HLA genes.
For user convenience, T1K is compatible with both aligned BAM
input and FASTQ input, and the choice of input format does not
affect the genotyping outcome in our tests. For reads that are
aligned to alternate contigs, that are unmapped, or that are in
the FASTQ file, the extraction algorithm is similar to the overlap
detection algorithm in TRUST4 (Song et al. 2021) by checking
the colinear seeds hit. Suppose the total length of the reference se-
quences is L, and the seed length used in this step is log,L + 1. For
example, in the RNA reference sequence of HLA genotyping, L is
about 16 million, so seed length equals 13. As a result, a k-mer in
a read hits about once to the reference sequence in expectation.
Because reference sequences are highly redundant, the seed length
overestimates the hit probability and will not incur much compu-
tation overhead. A read will be a candidate if the chain covers 20%
of the read length. When given the BAM input, most of the reads
mapped outside the genotyped genes can be directly ignored, so
T1K was ~30% faster than the FASTQ input.

Read assignment

To conduct abundance estimation, T1K assigns each read, or a read
fragment, to its best-aligned alleles. The best alignments are the
ones with the most matched nucleotides between the reference se-
quence and a read. The reference sequences are highly redundant,
and a read can be aligned to thousands of alleles. This becomes the
computation bottleneck in RNA-seq analysis, where HLA genes
can express millions of reads. We notice that the ultrahigh cover-
age will create a large number of identical reads. Therefore, T1K will
first sort the reads by the nucleotide sequence and then only con-
duct the alignment for the duplicates once. For paired-end data,
T1K conducts the same procedure by regarding each read fragment
as two independent read ends and then selects the two compatible
read-end alignments, resulting in the optimal read pair alignment
score.

T1K further supplements the read alignment by strategically
incorporating assignments with lower scores. In the reference se-
quences for genomic sequencing data, we only include part of
the introns flanking the exons and mark the remaining parts as
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gaps. This strategy could create alignment bias near the boundary.
For example, if allele A has a deletion at position x before the gap,
allele A’s intron will contain the first nucleotide of the correspond-
ing gap in other alleles. As a result, a read aligned after position x
and partially overlapping with the gap will have one more base
matched with allele A than other alleles. To reduce this bias, T1K
considers the alignment part extending in the gap as all matches.
Furthermore, the IPD-KIR is much less comprehensive than IPD-
IMGT/HLA, and the inadequate information on intron sequences
could lead to false negatives. Therefore, we add the option to incor-
porate the read assignments with one more mismatch in the non-
exonic region than the best alignment.

To avoid low-quality reads and false-positive read assign-
ments, T1K filters the assignments with a low alignment identity.
In the case of KIR genotyping, we require at least 80% of matched
bases. For HLA genotyping, we have tested several cutoffs and
found 97% gave a good performance, where 97% was also the
threshold proposed in OptiType. For WGS data, because reads
can come from the whole genome and are more likely to introduce
false positives, we need to use a more stringent alignment similar-
ity threshold at 90%. We have made these settings in the “--preset”
option of T1K. Additionally, T1K can take a user-specified allele
whitelist to only retain the assignments from the listed alleles. In
the evaluation of HLA genoptying, the whitelist in T1K_whitelist
was created by iterating through the alleles in T1K default database
and only keeping the ones whose first four digits showed up in the
OptiType’s frequent allele list.

Abundance estimation

T1K estimates the abundances of all the alleles by maximizing the
likelihood of read assignments. The log-likelihood function is

= H(Zi%IrEl)v

where 6; is the abundance fraction or probability of allele i
among all alleles, L; is the length of allele i, and I,; is one if
allele i is one of read r's alignment target and zero otherwise. If L;
is much less than (500 bp by default) than the most common allele
length of the gene, we will force L; to be the mode of the allele
length. We apply the EM algorithm to find the solution by intro-
ducing the latent variable z,; indicating read r is from allele i. So,
the conditional expectation of the log-likelihood function can
be written as

_ 6;
5, 3 0 0

in E-step at iteration ¢, where

6"V /L;
>ei (61 V/Ly)

In M-step, we compute the updated abundances that maximize
the conditional expectation, which is

g0 i B,107Y)
1 - — .
5 e Blr107Y)

In the above equations, we use i, j to index alleles and r to index the
read. The initial abundance for each allele is proportional to the al-
lele series frequency in the database. For example, HLA-
A*01:01:01:01 is in the HLA-A*01:01:01 series and the size of
this series is 91 in the reference sequences for RNA-seq data, so
its initial abundance is 91 times higher than the singleton HLA-
A*01:82 allele. The intuition is that the large allele series suggests

E(z,10"7Y) =

that it is better studied and could be more common in the popula-
tion. The iterations terminate when the update changes the © by
less than 107° in total or the number of iterations exceeds 1000.
Finally, the abundance for allele i is

3 6"V /Li / Li
r€y e (67 /L) "\1000) 7

which is the definition of the fragments per thousand bases (FPK).

T1K implements two methods to expedite the execution of
the EM algorithm. First, we group the reads assigned to the same
set of alleles together. Therefore, the EM algorithm is weighted.
Second, we adopt the SQUAREM algorithm (Varadhan and
Roland 2008), which has a faster convergence rate than the vanilla
EM algorithm. To impose sparsity, we implement the heuristics
that removes the low abundant alleles every 10 iterations based
on the abundances estimated in that iteration. This is similar to
the sparsity method in arcasHLA.

Allele selection

The EM algorithm calculates the abundance for each allele with all
digits. Because T1K does not focus on the variations in introns, it
reports the alleles at a higher level with fewer digits. For example,
T1K reports KIR and HLA alleles at three-digit and six-digit levels,
respectively. The abundance for each higher-level allele series is
the summation of the allele abundances in the same series. For
simplicity, we still indicate the allele series as an allele. T1K selects
the allele with the highest abundance as the dominant allele and
filters other alleles with abundances less than a user-specified frac-
tion (default, 15%) of the dominant allele.

Although the abundance filter can remove the noise allele in
most cases, there could still be more than two alleles passing the
abundance filter. T1K refines the selection by picking a pair of al-
leles that can improve the number of valid read assignments.
Starting from the two most abundant alleles for each gene, T1K
changes one of the alleles to find the allele that increases the
read assignments the most. T1K repeats this procedure based on
the pairs of alleles selected in the previous iteration until the num-
ber of explained read assignments could not be improved. This
strategy favors the two most abundant alleles and is faster than
enumerating all the allele pairs in most cases.

Genotyping quality score

T1K also scores each called allele to represent the confidence. The
principle is to conduct the statistical test that compares the com-
puted abundance with the noise abundance. The noise abundance
for one allele A of gene G; is calculated as X;.; aAbund(G;)sim(G;, Gj) +
BAbund(B), where Abund(G;) is the abundance of genej, sim(G;, G)) is
the sequence similarity between genes G; and G;, Abund(B) is abun-
dance for the other allele of gene G; if it is heterozygous, and ¢, B are
user-defined constants to control the magnitude of noise. We
model the abundance as a Poisson distribution and compute
the P-value by testing the observed abundance under the hypothe-
sis of noise Poisson distribution. The quality score is reported as
—logjo(P-value). Similar to the MAPQ in read alignment software
like BWA-MEM (Li and Durbin 2009), we set 60 as the upper limit
of the quality score.

SNP detection

Even though T1K reports the genotyping results at the allele-series
level, it keeps track of the actual alleles in the process and reports
one allele per series as the representative. This information can
be used to identify SNPs that are missing from the reference
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database. For SNP detection, we realign the reads to the representa-
tive alleles. We process a position i of allele A with a high mismatch
rate; that is, the number of alignments supporting an alternative
nucleotide is at least half of the number for the reference nucleo-
tide. Because of allele similarities, these reads could still be equally
good assigned to other alleles. Therefore, T1K uses the multiple-
mapped reads to incorporate other alleles and piles the allele se-
quences around position i. This procedure can be thought of as
read alignment-guided multiple sequence alignment. The SNP
could happen to any of the incorporated alleles. To select the al-
leles containing SNPs, T1K follows the law of parsimony by intro-
ducing the least number of SNPs to explain the most read
assignments (Supplemental Fig. S7). In more detail, T1K tries all
the nucleotide combinations at position i across the piled alleles
to check how many reads can have matched bases at position i
in any of the alleles. T1K then determines the SNP based on the nu-
cleotide combination with the most reads having matched base at
position i. In case of a tie, T1K will select the combination with the
least number of SNPs. If the tie could not be broken by the SNP
number rule, T1K will report all the equivalent results and mark
them as ambiguous. Suppose there are N alleles found for position
i, the enumeration step will consider 4~ combinations. Because N
is small in practice, the enumeration step is still very fast.

Single-cell processing

T1K supports scRNA-seq data such as Smart-seq data. Because cells
could have cell-specific allele expression patterns, we conducted
the genotyping for each cell individually and then merged the re-
sults. The merge step filters alleles with too low total quality scores
and selects the two alleles with the highest quality scores for each
gene. After obtaining the allele calling consensus, T1K will remove
irrelevant alleles from the reference sequences and reconduct the
genotyping on the reduced reference sequences.

Allele annotation on HPRC phased genomes

To identify the KIR alleles on a phased reference genome from
HPRC in our benchmark study, we align the KIR genomic (exon
and intron) sequences from the IPD-KIR to the genome. The first
step is to conduct the alignment using minimap2 (Li 2018) for
quick KIR region discovery. Each KIR region must have at least
99% of bases covered in the alignment interval. Second, we realign
the sequences from IPD-KIR to each KIR region with BWA-MEM to
obtain accurate base-level alignments. Finally, the alleles with the
least number of differences in the exonic sequences are selected.

Software availability

The T1K source code and evaluation code for this work are avail-
able at GitHub (https://github.com/mourisl/T1K and https://
github.com/mourisl/T1K_manuscript_evaluation, respectively)
and as Supplemental Code.
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