
UC Irvine
ICS Technical Reports

Title
Software performance estimation for Toshiba TLCS-R3900

Permalink
https://escholarship.org/uc/item/3c92q0x6

Authors
Chang, En-Shou
Gajski, Daniel D.

Publication Date
1996-06-11

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3c92q0x6
https://escholarship.org
http://www.cdlib.org/

Notice; This Materiai
may be protected
by Copyright Law
(Title 17 U.S.C.)

Software Performance Estimation

for

Toshiba TLCS-R3900

En-Shou Chang
Daniel D. Gajski

Technical Report #96-19
June 11, 1996

Department of Information eind Computer Science
University of California, Irvine

Irvine, CA 92717-3425
(714) 824-8059

echsmgt^ics.uci.edu

Abstract

This report contains information about software performance of Toshiba TLCS-
R3900 RISC processor evaluated by a software estimation technique proposed by J.
Gong et. al. This technique decomposes the program into basic block then evaluates
total execution time by analysis execution flow. The execution time of basic block
is computed by compiling subprogram into generic instructions then mapping to real
instruction. In addition, we analyze the pipeline stall phenomenon for TLCS-R3900.
A processor profile is proposed to count the effects. Based on this generic estimation
model, our estimator can produce accurate estimation without large computation time
and precious resource, such as compilers or simulators for each processor.

Si- B'Al^

c3
lO tP . t

1 Introduction

Software performaiice can be measured in three ways[l]:

in-circuit simulation, software simulation, and soft

ware estimation. The comparison of these three ap

proaches are summarized in Table 1.

In hardware simulation, system specification was

compiled into target machine code and performance

was measured by running the code on target processor.

This approach need one in-circuit simulator and one

compiler for each processor. Though the measured

metrics is accurate but the flexibility of the tool is low

due to the huge resource requirement.

In software simulation, system specification was com

piled into target machine code and performance was

measured by running the code in software simulator of

the target processor. This approach needs one com

piler and one simulator for each processor. In this

approach, the estimation accuracy is high (the same

as in-circuit simulation) and the fiexibility is higher

because software simulator is more accessible than in-

circuit simulator. But software simulator is very time

consuming.

In software estimation, the estimator calculates the

performance of the system specification based on a

profile of each processor. No compiler, software sim

ulator, or in-circuit simulator are needed. This ap

proach only consume less computation time and need

less resource, one technology file for each target pro

cessor and one estimator only. The accuracy is lower

than the previous two approaches.

Through the discussion above, we know the soft

ware estimator is more suitable for design automa

tion tools because its flexibility and speed allow de

sign space exploration. In this report, we develop an

estimation method that can produce accurate enough

metrics for system level design tools for Toshiba 32-bit

RISC microprocessor TLCS-R3900 family[2].

2 Software performance estima
tion

Software performance estimation can be divided into

two steps: (1) flow analysis and (2) basic block es

timation. In flow analysis, system specification was

divided into several basic blocks, as the exeunple in

Figure 1. Basic block is a straight-line code which has

no branches. Every branch among basic blocks is as

sociated with a probability that this branch will be

taken. The execution frequency of each basic block

can be calculated based on the graph of basic block

and branch probability[l].

After the execution time of each basic block was

measured in the second step, the execution time of

the wholespecification can be calculated by following

equation:

execution{S) = ^ execuUon{bi) (1)
^€5

where bi is basic block.

This report takes the same approach in [1] to do

software performance estimation for TLCS-R3900 pro

cessor. In basic block estimation, we adapt the generic

estimation model[3], which is shown in Figure 2. The

system specification was compiled into generic three

address instructions. For each processor, there is a

technology file providing the timing and instruction

size of each generic instruction. Then the execution

time of basic block can be calculated as follows:

execuiion{B) = ^ time{Ij) (2)
Ij€B

where Ij is the generated generic instruction.

3 Estimation model for TLCS-

R3900

According to the specification of TLCS-R3900 in[2],

we can model TLCS-R3900 as a 5-stage pipeline pro-

In-Circult
Simulation

Software
Simulation

Work Flow

'Specification
Machine Code

Processor

'Specification
Machine Code
Simulator

Flexibility Computation Accuracy

Software
Estimation

/Specification
(f Processor Profile High Low
Estimator

Table 1; Comparison of software estimation approaches

A:=A + 1;

for! in 1 to 10 loop
B:=B + 1;
C := C - A;

If (D > A) then
D D + 2:

else

D := D + 3;
end if;

E := D * 2;
end loop;

B := B * A;
C:= 3;

A := A + 1;

C;=C-A; ^

D>A D<=A

(P=0.5) i i fp=0.5)
D D + 2; D := D + 3;

ED • 2;

l>10
(p=0.1)

B:=B*A;
C:= 3;

l<==10

(P=0.9)

Figure i: (a) VHDL program, (b) basic block graph

Program

Compile to
generic instructions

Generic
Instructions

Estimator

Performance

Technology
files for target
processors

Figure 2: Generic estimation model

8086
instruction set
timing and size
information

88000
, instruction set
timing and size
information

ITLCS-R3900 I
j instruction set |
Itiming and size j
ijnformation |

cessor with certain exceptions.

Since the generic estimation model has shown good
results inestimation for non-pipelined processor in[3],
we now extend it to measure the performance of TLCS-

R3900, which is a pipeline processor. Fundamentally,
the overlap time of pipeline instruction can be re

flected in

execution{B) - ^ (a'mc(/j) - pipeMpth + 1)
Ij€B

-I- pipejdepih - 1 (3)

, but the result is not accurate due to pipeline stall.

TLCS-R3900 canissue one instruction perclock cy
cle in ideal situation. When one instruction depend on

the result of previous instructions or content a same

resource of previous instructions that are still in the

pipeline, this instruction would be paused andpipeline
was stalled. Figure 3 shows an example of pipeline

stall from TLCS-R3900 user manual[2].

The hardware model we use for TLCS-R3900 was

depicted in Figure 4. The TLCS-R3900 was profiled

as a sequence of function unit which can handle one

instruction at a time. Inorder to calculate thepipeline
stall, two pipeline stall tables were included in addi

tion to the execution time of each generic instruction.

Pipeline stalls in each generic instruction were al

ready covered in the execution timeofgeneric instruc

tion. Pipeline stalls between generic instructions were

stored in pipeline stall table. Pipeline stall table is a

two dimension array. Both the x and y dimension are

generic instructions. And the array value is the num

ber of pipeline stalls introduced when the instruction

indexed by x is following the instruction indexed by
y. The two pipeline stall tables have the sameformat,

but having different value. Data dependent pipeline

stall table, DDStall, is used when an instruction de

pend on the result of its previous instruction, while

resource contention pipeline stall table is used for in

structions that have no data dependency but require
the same resource at the same time. The execution

time ofa basic block can be formulated as Eq.(3).
Both technology files, for generic instruction tim

ing and for pipeline stall insertion, are attached in

Appendix A and B respectively.

4 Software performance for CPU
core

Performance of three typical programson TLCS-R3900

are estimated in this section. We also quote software

performance estimation ofsome commercial products

from[4] for comparison.

The elliptical filter[5] contains a few basic blocks

and most of its statements are inside one basic block.

The medical system[6] contains many basic blocks (more
than thirty) and each basic block only contains a few

statements. The MPEG decoder[7] has large number

of basic blocks and statements.

Table 2 shows the estimated performance of these

programs on four processors. The performance is mea

sured by clock cycle.

5 Practical performance estima
tion for TLCS-R3900

In general, commercial products use slow but inex

pensive DRAM as main memory and increase system

performance by way of using cache. There is certain

amount of build-in cache with TLCS-R3900 proces

sor family. It take only one clock cycle to access data

from cache. But, it would take several clock cycle to

access data if there is a cache-missing. Since the cache

misses depend on characteristics and size ofprogram,
replacement policies, size, and levels ofcache, the only

feasible way known is that user provides the missratio

and cost. Table 3 shows some estimation ofpractical

LV r2,20(r0)
ADD r3,rl,r2

E H U

D ES E H

E : Execution

M: Memory access
W: Write to register
ES : Pipeline stall

Figure 3: An example of pipeline stall

^FU2^ 54FU5

Register/Cache

Technology File

• Timing for each generic instruction

• Resource Contention Stall Table (RCStall)

reg
add

reg add 0 0

assign

• Data Dependency Stall Table (DDStall)

Figure 4: Hardware model of TLCS-R3900

execution{B) =^j^^g{time{Ij)staH{Ij - l,Ij) ^ pipe^depth + \) + pipe.depth~\

wherp - IIj) ifIj dosc not depend on /j_i
" XDDSiaUilj.ulj) if ii depend on /j_i

This table

is not authorized

to be put on public domain
by project sponsor.

Table 2: Software performance of 4 CPU cores

performance estimated hardware

program without with specification
1 cache-missing cache-missing

elliptic filter 370 444 clock period = 50MHz
medical system 1031 1237 DRAM access time = 70n8

MPEG decoder 496.7K 596.0K cache miss-ratio = 5%

elliptic filter 370 666 1 clock period = 50MHz
medical system 1031 1856 DRAM access time = 70n8

MPEG decoder 496.7K 894.1K cache miss-ratio = 20%

elliptic filter 370 370 clock period = 20MHz
medical system 1031 1031 DRAM access time = 40ns

MPEG decoder 496.7K 496.7K cache miss-ratio = 20%

Table 3: Estimation of practical performance of TLCS-R3900

software performance of TLCS-R3900. pies. The estimated perform

these ratios to get the optirr

6 Ooncluding r0]lld.rks ods that can evaluate the i

ples. The estimated performance can be multiplied by

these ratios to get the optimized performance. Meth

ods that can evaluate the performance of optimized

code by profiling the optimization techniques, such as

loop-unrolling and register allocation, require further

study.

We computed cache overhead by user-provided miss

ratio and cost. Since sometimes the user does not

know much about the performance of the cache, some

methods that can evaluate cache overhead according

to profile of cache mechanism and program character

istics require further study, too.

References

[1] D. Gajski, F. Vahid, S. Narayan, and J. Gong,

Spectfication and design of embedded systems. New

Jersey: Prentice Hall, 1994.

In this report, we have shown the software perfor

mance estimation that can produce result with a few

resource and computation time for Toshiba TLCS-

R3900 processor. This flexible approach was very suit

able for design tools of system level hardware/software

COdesign.

Compiler optimization and cache miss are two is

sues about software estimation on which we didn't do

well so far. When implementing the specification in

software, most program will be compiled with opti

mization option. The speed-up of optimized code de

pends on the application, the compiler, and processor.

A feasible solution is to find out a statistically the

speed-up ratios by running a certain number of exam

[2] T.Co., S2-Bii RISC MICROPROCESSOR TLCS-

RS900 FAMILY USERS MANUAL. Toshiba Co.,

[3] J. Gong, D. Gajski, and S. Narayan, "Software

estimation from executable specifications." UC

Irvine, Dept. of ICS, Technical Report 93-05,1993.

[4] C.-Y. Huang and D. Gajski, "Software perfor

mance estimation for pipeline and superscalar pro

cessors." UC Irvine, Dept. of ICS, Technical Re

port 95-20,1995.

[5] N. Dutt and C. Ramachandran, "Benchmarks

for the 1992 high level synthesis workshop."

UC Irvine, Dept. of ICS, Technical Report 92-

107,1992.

[6] A. Wu, "Amicroprocessor-based ultrasonicsystem

for measuring bladder volumes." Master Thesis in

Electrical and Computer Engineering at University

of Arizona, Tucson, 1985., 1985.

[7] A. Thordarson and D. Gajski, "Comparison of

manual and automatic behavioral synthesis on

mpeg algorithm." UC Irvine, Dept. of ICS, Tech

nical Report 95-09,1995.

Technology file for TLCS-R3900

Anything alter '#' are comments.
This is the technology file lor Toshiba TLCS-R3900 processor (CY7C601).
DirectNem mesms direct memory addressing.
IndirectHem means indirect memory addressing.
The mapped instruction: M Hultiplication

A ALU

D Devide : 34 extra CTcle.34 extra cycle,
LAB — 3 extra word lill-in

S Store

X HOP

J Jump
B Branch

? stall

L load

1 extra cycle
1 extra cycle

OP DESTIHATIGN SOURCE1 S0URCE2 time(clock cycles)
DIV Register Constant Constemt 42 24 LL?D

DIV Register Constant Register 41 20 L?D

DIV Register Register Constant 41 20 L?D

DIV Register Register Register 39 16 D

DIV Register DirectHem Constant 42 24 LL?D

DIV Register Constant DirectHem 42 24 LL?D

DIV Register DirectHem Register 41 20 L?D

DIV Register Register DirectHem 41 20 L?D

DIV Register DirectHem DirectHem 42 24 LL?D

DIV Register IndirectHem Constant 43 28 LLL7D

DIV Register Constant IndirectHem 43 28 LLL7D

DIV Register IndirectHem Register 43 24 L?L?D

DIV Register Register IndirectHem 43 24 L?L?D

DIV Register IndirectHem DirectHem 43 28 LLL7D

DIV Register DirectHem IndirectHem 43 28 LLL7D

DIV Register IndirectHem IndirectHem 44 32 LLLL7D

DIV DirectHem Constant Constant 43 28 LL7DS

DIV DirectHem Constant Register 42 24 L7DS

DIV DirectHem Register Constant 42 24 L7DS

DIV DirectHem Register Register 40 20 DS

DIV DirectHem DirectHem Constemt 43 28 LL7DS

DIV DirectHem Constant DirectHem 43 28 LL7DS

DIV DirectHem DirectHem Register 42 24 L7DS

DIV DirectHem Register DirectHem 42 24 L7DS

DIV DirectHem DirectHem DirectHem 43 28 LL7DS

DIV DirectHem IndirectHem Constant 44 32 LLL7DS

DIV DirectHem Constant IndirectHem 44 32 LLL7DS

DIV DirectHem IndirectHem Register 44 28 L7L7DS

DIV DirectHem Register IndirectHem 44 28 L7L7DS

DIV DirectHem IndirectHem DirectHem 44 32 LLL7DS

DIV DirectHem DirectHem IndirectHem 44 32 LLL7DS

DIV DirectHem IndirectHem IndirectHem 45 36 LLLL7DS

ALU Register Constant Constant 8 12 LL7A

ALU Register Constant Register 7 8 L7A

ALU Register Register Constant 7 8 L7A

Register
Register
Register

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

DirectMem

DirectMeo

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

Register
Register

Register
Register

DirectMem

DirectMem

DirectMem

DirectMem

Register
Register
Register

Register
Register

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

Register
DirectMem

Constant

DirectMem

Register
DirectMem

IndirectMem

Constant

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

Constant

Constant

Register
Register

DirectMem

Constant

DirectMem

Register
DirectMem

IndirectMem

Constant

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

Empty
Empty
Empty

Empty
Empty
Empty
Empty
Empty

Constant

Constant

Register
Register

DirectMem

Constant

DirectMem

Register

DirectMem

IndirectMem

Constemt

IndirectMem

Register
IndirectMem

DirectMem

Register
Constant

DirectMem

Register
DirectMem

DirectMem

Const amt

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

IndirectMem

Constant

Register
Constant

Register
Constsoit

DirectMem

Register
DirectMem

DirectMem

Constant

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

IndirectMem

Constant

Register
DirectMem

IndirectMem

Constemt

Register
DirectMem

IndirectMem

Constant

Register
Constant

Register
Constant

DirectMem

Register
DirectMem

DirectMem

Constemt

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

5 4 A

8 12 LL?A

8 12 LL?A

7 8 L?A

7 8 L?A

8 12 LL?A

9 16 LLL?A

9 16 LLL7A

9 12 L?L?A

9 12 L?L?A

9 16 LLL?A

9 16 LLL7A

10 20 LLLL7A

9 16 LL7AS

8 12 L7AS

8 12 L7AS

6 8 AS

9 16 LL7AS

9 16 LL7AS

8 12 L7AS

8 12 L7AS

9 16 LL7AS

10 20 LLL7AS

10 20 LLL7AS

10 16 L7L7AS

10 16 L7L7AS

10 20 LLL7AS

10 20 LLL7AS

11 24 LLLL7AS

7 8 L7A

5 4 A

7 8 L7A

9 12 L7L7A

8 12 L7AS

6 8 AS

8 12 L7AS

10 16 L7L7AS

8 12 LL7M

7 8 L?M

7 8 L7M

5 4 M

8 12 LL7M

8 12 LL7M

7 8 L7H

7 8 L7M

8 12 LL7M

9 16 LLL7M

9 16 LLL7M

9 12 L7L7M

9 12 L7L7M

9 16 IXL7M

9 16 LLL7M

MUL Register
MUL DirectMem

KUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

MUL DirectMem

CMP Register
CMP Register
CMP Register
CMP Registet
CMP Register
CMP Register
CMP Register
CMP Register
CMP Register
CMP Register
CMP Register
CMP Register
CMP Register
CMP Register
CMP Register
CMP Register
HOV Register
MOV Register
MOV Register
MOV Register
MOV DirectMem

HOV DirectMem

MOV DirectMem

MOV DirectMem

MOV IndirectMem

MOV IndirectMem

MOV IndirectMem

MOV IndirectMem

HOP EmptyHOP

CJUMP

JUMP

RET

CALL

DEFAULT

Empty

Empty
Empty
Empty
Empty

IndirectMem

Constant

ConstsLnt

Register
Register

DirectMem

Constant

DirectMem

Register
DirectMem

IndirectMem

Constant

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

Constant

Constant

Register
Register

DirectMem

Constant

DirectMem

Register

DirectMem

IndirectMem

Constant

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

Empty

Empty
Empty

Empty

Empty
Empty
Empty
Empty

Empty

Empty
Empty

Empty
Empty

Empty
Empty
Empty

Empty
Empty

IndirectMem

Constemt

Register

Constant

Register
Constsmt

DirectMem

Register
DirectMem

DirectMem

Constant

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

IndirectMem

Constant

Register
Constant

Register
Constant

DirectMem

Register
DirectMem

DirectMem

Constant

IndirectMem

Register
IndirectMem

DirectMem

IndirectMem

IndirectMem

Constant

Register
DirectMem

IndirectMem

Constant

Register
DirectMem

IndirectMem

Constemt

Register
DirectMem

IndirectMem

Empty
Empty

Empty

Empty
Empty
Empty

10 20

9 16

6 8

9 16

8 12

9 16

10 20

10 20

10 16

10 16

10 20

10 20

11 24

0 0

8 16

5 4

LLLL7M

LL?MS

L?MS

L?MS

MS

LL7MS

LL7MS

L?MS

L?MS

LL?MS

LLL7MS

LLL7MS

L?L?MS

L?L?MS

LLL7MS

LLL7MS

LLLL7MS

LL?

LL?

L?

L?

LL?

LLL?

LLL?

L?L?

L?L?

LLL?

LLL?

LLLL?

L?

A?

L?

L?L?

LS

S

LS

L?LS

LLS

L?S

LLS

LLLS

X

B

J

JLA

ASJ

X

Pipeline stall file for TLCS-R3900 (partial)

Lines starting vith '#' in the beginning of this file are comments.

The number in the first line after the comment is processor type,
1 for pipeline, 2 for in_order_issue supersced.er and
3 for out.order.issue superscaler.

If this metric is for pipeline processor, the format after the
processor.type is as follows:

row.number, column_number

row.nnmber x column.number matric for data dependent stall
row_nnmber x column.number matric for resource conflict stall

All these number are separated by space or new.line.

If this metric file is for out.order.issue superscaler processor,
the format after the processor.type is as follows:

max.issue fu.type queue.size.typel num.ful

queue_8ize_typen num_fun
In this part, max.issue is the max of concurrently issued instructions,

fu.type is the ntunber of function unit type,
queue.size.typel to queue.size.typen is the size of
the queue in front of the function unit executing
this tjrpe of machine instruction, num.fux is the number of copyies
of this fu type.

exec.time type COMMENTS

exec.time type COMMENTS

exec.time type COMMENTS
XXIXXXXXXXXXXXXXXXXXIXX

Each line says the execution time and instruction type of a
machine instruction. The first line is for the

machine instruction whose id is 1. Instruction type
is used lor determine parallel issue instruction.
Typically, instructions are grouped ina same type
if they aore executed by a same function unit.
Anything after the two numbers in a line are comments.
This paurt ends with a line staarting with nonnumeric
symbol.

id.l depend.!.1 depend.1.2 ... id.a depend.a.l depend.a.2 X
id.l depend.!.1 depend.!.2 ... id.b depend.b.l depend.b.2 X

id.! depend.!.! depend.!.2 ... id.n depend.n.! depend.n.2 X
Each line says the mapped machine instruction for a generic

instruction. The first line is for the first generic

instrtion. Each generic instruction must be napped to one
and only one line. 'depend_x_z' says depedency among these
machine instructions lor a same generic instruction,
il 'depend.x.x' is -1, it means this machine instruction
depends on the previous machine instruction. Every
machine instruction can have tvo depedency at most.
II there is no depedency, set 'depend_x_x' greater or
equal to 0. EACH LINE HUST EHDS WITH A HOHHUHERIC SYMBOL.

number_l type_l

number.1 type.l

number.l type.l number.n type.n XXX
Each line is a grouping rule. Up to the number of instructions

in the specified types can be issued in par8J.lel. Each
line ends with a nonnumeric symbl. This part is the end
of this metric file.

number.a type.a XXX
number.b type.b XXX

If this file is for an in_order_issue superscalar processor,
the format is the same as the one for out_order_issue

superscalar processor without the first part, that is
the following line:
f_queue_size instr.type queue.size.typei ... queue.size.typen

This file is for Toshiba TLCS-R3900 processor whose architecture is
in-order-issue supersced.er.
1 5

138 138

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 00000000 DIVl

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 00000000 DIV2

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 00000000 DIV3

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

00000000 00 0000000000 0000000000

0000000000 00000000 DIV4

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 00000000 DIV&

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 00000000 DIV6

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 00000000 DIV7

0001000000 0000000001 0000000000

0000010000 0000000000 0100000000

0000010001 0000010000 0000000000

0100000000 0000000000 0000000000

0100000000 00000000 CKP13

0001000000 0000000001 0000000000

0000010000 0000000000 0100000000

0000010001 0000010000 0000000000

0100000000 0000000000 0000000000

0100000000 00000000 CMP14

0001000000 0000000001 0000000000

0000010000 0000000000 0100000000

0000010001 0000010000 0000000000

0100000000 0000000000 0000000000

0100000000 00000000 CNP16

0001000000 0000000001 0000000000

0000010000 0000000000 0100000000

0000010001 0000010000 0000000000

0100000000 0000000000 0000000000

0100000000 00000000 CMP16

0001.0 00000 0000000001 0000000000

0000010000 0000000000 0100000000

0000010001 OOOOOIOOOO 0000000000

0100000000 0000000000 0000000000

0100000000 00000000 NOVl

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

.0 000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 00000000 M0V2

0001000000 0000000001 0000000000

0000010000 0000000000 0100000000

0000010001 OOOOOIOOOO 0000000000

0100000000 0000000000 0000000000

0100000000 00000000 M0V3

0001000000 0000000001 0000000000

OOOOOIOOOO 0000000000 0100000000

000001 0 001 OOOOOIOOOO 0000000000

0100000000 0000000000 0000000000

0100000000 00000000 N0V4

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 00000000 M0V5

