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Abstract

We investigate a simple generative model for network formation. The model is designed to

describe the growth of networks of kinship, trading, corporate alliances, or autocatalytic chemical

reactions, where feedback is an essential element of network growth. The underlying graphs in these

situations grow via a competition between cycle formation and node addition. After choosing a

given node, a search is made for another node at a suitable distance. If such a node is found, a link

is added connecting this to the original node, and increasing the number of cycles in the graph;

if such a node cannot be found, a new node is added, which is linked to the original node. We

simulate this algorithm and find that we cannot reject the hypothesis that the empirical degree

distribution is a q-exponential function, which has been used to model long-range processes in

nonequilibrium statistical mechanics.

∗Also at Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
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I. INTRODUCTION

We present a generative model for constructing networks that grow via competition be-

tween cycle formation and the addition of new nodes. The algorithm is intended to model

situations such as trading networks, kinship relationships, or business alliances, where net-

works evolve by either establishing closer connections by adding links to existing nodes or

alternatively by adding new nodes. In arranging a marriage, for example, parents may

attempt to find a partner within their pre-existing kinship network. For reasons such as

alliance building and incest avoidance, such a partner should ideally be separated by a given

distance in the kinship network [1]. Such a marriage establishes a direct tie between families,

creating new cycles in the kinship network. Alternatively, if they do not find an appropriate

partner within the existing network, they may seek a partner completely outside it, thereby

adding a new node and expanding it.

Another motivating example is trading networks [2]. Suppose two agents (nodes) are

linked if they trade directly. To avoid the markups of middlemen, and for reasons of trust

or reliability, an agent may seek new, more distant, trading partners. If such a partner

is found within the existing network a direct link is established, creating a cycle. If not,

a new partner is found outside the network, a direct link is established, and the network

grows. A similar story can be told about strategic alliances of businesses [3, 4]; when a

business seeks a partner, that partner should not be too similar to businesses with which

relationships already exist. Thus the business will first take the path of least effort, and

seek an appropriate partner within the existing network of businesses that it knows; if this

is not possible, it may be forced to find a partner outside the existing network.

All of these examples share the common property that they involve a competition between

a process for creating new cycles within the existing network and the addition of new nodes

to the network. While there has been an explosion of work on generative models of graphs

[5–9], there has been very little work on networks of this type. The only exception that

we are aware of involves network models of autocatalytic metabolisms [3, 10–13]. Such

autocatalytic networks have the property that network growth comes about through the

addition of autocatalytic cycles, which can either involve existing chemical species or entirely

new chemical species. Previous work has focused on topological graph closure properties

[10, 12], or the simulation of chemical kinetics [13], and was not focused on the statistical
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properties of the graphs themselves. We call graphs of the type that we study here feedback

networks because the cycles in the graph represent a potential for feedback processes, such as

strengthening the ties of an alliance or chemical feedback that may enhance the concentration

corresponding to an existing node [1].

We study the degree distributions of the graphs generated by our algorithm [5, 6, 14], and

find that they are well-described by distribution functions that have recently been proposed

in nonequilibrium statistical mechanics, more precisely in nonextensive statistical mechanics

[15, 16]. Such distributions occur in the presence of strong correlations, e.g. phenomena

with long-range interactions. Our intuition for why these distributions occur here is that

the cycle generation inherently generates long range correlations in the construction of the

graph.

II. MODEL

The growth model we propose closely mimics the examples given above. For each time

step, a starting node i is randomly selected (e.g. the person or family looking for a marriage

partner) and a target node j (the marriage partner) is searched for within the existing

network. Node j is not known at the outset but is searched for starting at node i. The

search proceeds by attempting to move through the existing network for some d number of

steps without retracing the path. If the search is successful a new link (edge) is drawn from

i to j. If the search is unsuccessful, as explained below, a new node j′ is added to the graph

and a link is drawn from i to j′. This process can be repeated for an arbitrary number of

steps. In our simulations, we begin with a single isolated node but the initial condition is

asymptotically not important.

For each time step we randomly draw from a scale free distribution the starting node

i, the distance d (number of steps necessary to locate j starting at i assuming that such

a location does occur), and for each node along the search path, the subsequent neighbor

from which to continue the search. While node j isn’t randomly selected at the outset, it

is obviously guaranteed that the shortest path distance from i to j is at most d. We now

describe the model in more detail including the method for generating search paths, and the

criterion for a successful search.

• Selection of node i. The probability Pα of selecting a given node from among the
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N nodes of the existing network is proportional to its degree raised to a power α. The

parameter α > 0 is called the attachment parameter.

Pα(i) =
[deg(i)]α

∑N
m=1[deg(m)]α

(1)

• Assignment of search distance d. An integer d is chosen with probability Pβ

where β > 1 is the distance decay parameter [22].

Pβ(d) =
d−β

∑∞
m=1m

−β
(2)

In our experiments, we use the approximation of
∑105

m=1 m−β for computing the denom-

inator of Eq. 2.

• Generation of search path . In the search for node j, assume that at a given instant

the search is at node r, where initially r = i. A step of the search occurs by randomly

choosing a neighbor of r, defined as a node l with an edge connecting it to r. We do

not allow the search to retrace its steps, so nodes l that have already been visited are

excluded. Furthermore, to make the search more efficient, the probability of choosing

node l is weighted based on its unused degree u(l), which is defined as the number of

neighbors of l that have not yet been visited[23]. The probability for selecting a given

neighbor l is

Pγ(l) =

[
1 + u(l)γ

]

∑M
m=1

[
1 + u(m)γ

] , (3)

where M is the number of unvisited nearest neighbors of node r. γ > 0 is called the

routing parameter. If there are no unvisited neighbors of r the search is terminated, a

new node is created, and an edge is drawn between the new node and node i. Otherwise

this process is repeated up to d steps, and a new edge is drawn between node j = l

and node i. In the first case we call this node creation, and in the second case, cycle

formation.

III. RESULTS

Typical feedback networks with N = 250 for (α, β, γ) of {(0, 1.3, 0), (0, 1.3, 1), (1, 1.3, 0),

(1, 1.3, 1)} are shown in Figures 1 and 2. The two figures display different depictions of the
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(c) (d)

(a) (b)

FIG. 1: Representations of typical network models with 250 nodes for β = 1.3. The panels

correspond to (a) α = 0, γ = 0, (b) α = 0, γ = 1, (c) α = 1, γ = 0 and (d) α = 1, γ = 1.

Sizes of nodes are proportional to their degrees. In the bottom graphs hubs emerge spontaneously

due to preferential attachment (α = 1) while on the right more clustering occurs because of the

larger routing parameter in cycle formation (γ = 1). Notice that the denomination preferential

attachment is also used in the literature in a slightly different sense, namely when the probability

of a new node to attach to a pre-existing one of the growing network is proportional to the degree

of the pre-existing one.
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(c) (d)

(a) (b)

FIG. 2: Representations of typical network models with 250 nodes for β = 1.3. The panels

correspond to (a) α = 0, γ = 0, (b) α = 0, γ = 1, (c) α = 1, γ = 0 and (d) α = 1, γ = 1. The

thickness of an edge is proportional to the number of successfully created feedback cycles in which

the edge has participated. The networks on the right of Figs. 1 and 2 show clusters of connected

hubs with well-traversed routes around the clusters, while in those on the left, more tree-like, hubs

connect but not in clusters with well-traversed routes around them.

same four graphs. In Figure 1 the sizes of the nodes represent their degrees and in Figure

2 the thickness of the edge is proportional to the number of successfully created feedback

cycles in which the edge participated (i.e. the number of times the search traversed this
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edge).

The attachment parameter α controls the extent to which the graph tends to form hubs

(highly connected nodes). When α = 0 there is no tendency to form hubs, whereas when

α is large there tend to be fewer hubs. As the distance decay parameter β increases the

network tends to become denser due to the fact that d is typically very small. As γ increases

the search tends to seek out nodes with higher connectivity, there is a higher probability of

successful cycle formation, and the resulting graphs tend to be more interconnected and less

tree-like.

Despite that fact that network formation in our model depends purely on local informa-

tion, i.e. each step only depends on information about nodes and their nearest neighbors, the

probability of cycle formation is strongly dependent on the global properties of the graph,

which evolve as the network is being constructed. In our model there is a competition be-

tween successful searches, which increase the degree of two nodes and leave the number of

nodes unaltered, and unsuccessful searches, which increase the degree of an existing node

but also create a new node with degree one. Successful searches lower the mean distance of

a node to other nodes, and failed searches increase this distance. This has a stabilizing effect

– a nonzero rate of failed searches is needed to increase distances so that future searches can

succeed. Using this mechanism to grow the network ensures that local connectivity struc-

tures, in terms of the mean distance of a node to other nodes, are somewhat similar across

nodes thus creating long-range correlations between nodes. Because these involve long-range

interactions, we check whether the resulting degree distributions can be described by the

form

p(k) = p0k
δe−k/κ

q (4)

where the q-exponential function ex
q is defined as

ex
q ≡

[
1 + (1− q)x

]1/(1−q)
(ex

1 = ex) (5)

if 1+ (1− q)x > 0, and zero otherwise. This reduces to the usual exponential function when

q = 1, but when q 6= 0 it asymptotically approaches a power law in the limit x →∞. When

q > 1, the case of interest here, it asymptotically decays to zero. The factor p0 coincides with

p(0) if and only if δ = 0; κ is a characteristic degree number. The q-exponential function

arises naturally as the solution of the equation dx/dt = xq, which occurs as the leading

behavior at some critical points. It has also been shown [17] to arise as the stationary
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solution of a nonlinear Fokker-Planck equation also known as the Porous Medium Equation.

Various mesoscopic mechanisms (involving multiplicative noise) have already been identified

which yield this type of solution [18].

Finally, the q-exponential distribution also emerges from maximizing the entropy Sq [15]

under a constraint that characterizes the number of degrees per node of the distribution.

Let us briefly recall this derivation. Consider the entropy

Sq ≡ 1− ∫∞
0 dk [p(k)]q

q − 1

[
S1 = SBG ≡ −

∫ ∞

0
dk p(k) ln p(k)

]
, (6)

where we assume k as a continuous variable for simplicity, and BG stands for Boltzmann-

Gibbs. If we extremize Sq with the constraints [15]

∫ ∞

0
dk p(k) = 1 (7)

and ∫∞
0 dk k [p(k)]q∫∞
0 dk [p(k)]q

= K > 0 , (8)

we obtain

p(k) =
e−βk

q∫∞
0 dk′ e−βk′

q

∝ e−k/κ
q (k ≥ 0) , (9)

where the Lagrange parameter β ≡ 1/κ is determined through Eq. (8). Both constraints

(7) and (8) impose q < 2.

Now to arrive at the Ansatz (4) that we have used in this paper, we must provide some

plausibility to the factor k δ in front of the q-exponential. It happens this factor is the

most frequent form of density of states in condensed matter physics (it exactly corresponds

to systems of arbitrary dimensionality whose quantum energy spectrum is proportional to

an arbitrary power of the wave-vector of the particles or quasi-particles; depending on the

system, δ can be positive, negative, or zero, in which case the Ansatz reproduces a simple

q-exponential). Such density of states concurrently multiplies the Boltzmann-Gibbs factor,

which is here naturally represented by e−k/κ
q . In addition to this, Ansatz (4) provided

very satisfactory results in financial models where a plausible scale-free network basis was

given to account for the distribution of stock trading volumes [19]. An interesting financial

mechanism using multiplicative noise has been recently proposed [20] which precisely leads

to a stationary state distribution of the form (4). It is for this ensemble of heuristic reasons
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FIG. 3: Degree distributions and fits to a q-exponential for simulations of networks with N = 5000

and 10 realizations. The dots correspond to the empirically observed frequency of each degree;

the lowest row of dots in each case corresponds to observing one node with that degree. The solid

curves represent the best fit to a q-exponential. In each case α has the three values {0, 0.5, 1},
corresponding to black, blue and red respectively. (a) β = 1.2, γ = 0; (b) β = 1.2, γ = 1; (c)

β = 1.4, γ = 0 and (d) β = 1.4, γ = 1. Note that the scale of the x-axes changes. The parameters

of the fitted generalized q-exponential functions are given in Table I.
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TABLE I: Parameters for the best fit to a q-exponential function for networks with different

parameters. The first three columns are the parameters of the network model, and the next three

columns are the parameters for the fit to the q-exponential. The exponent b is defined by b ≡ 1
q−1−δ

(see the text). The last two columns are p-values for nonparametric statistical Kolmogorov-Smirnov

(K-S) and Wilcoxon rank sum (W) tests. The standard acceptance criterium is to have p > 0.05,

i.e., less than one failure in twenty. The asterisk depicts the one case where the null hypothesis

was rejected. Consequently, if we demand that both K-S and W tests are satisfied, we obtained

failure in only one among the twelve cases that we have analyzed.

Network model Fitted parameters p-values for nonparametric tests

α β γ q κ δ b K-S test W test

0 1.2 0 1.08 1.7 0 12.5 0.90 0.54

0.5 1.2 0 1.2 2.1 -0.6 5.6 0.91 0.50

1 1.2 0 1.65 2.75 -1.4 2.94 1.0 0.80

0 1.2 1 1.21 1.5 0 4.76 0.80 0.429

0.5 1.2 1 1.38 1.8 -0.6 3.23 0.15 0.096

1 1.2 1 2.1 2.8 -1.5 2.41 0.76 0.65

0 1.4 0 1.16 1.91 0 6.25 1.0 0.83

0.5 1.4 0 1.31 2.35 -0.6 3.83 1.0 0.95

1 1.4 0 1.85 3.2 -1.4 2.58 0.07 0.03*

0 1.4 1 1.16 5.4 0 6.25 0.96 0.92

0.5 1.4 1 1.42 4.5 -0.6 2.98 0.73 0.44

1 1.4 1 2.9 3 -1.5 2.03 0.24 0.35

that we checked the form (4). The numerical results that we obtained proved a posteriori

that this choice was a good one.

To study the node degree distribution p(k), i.e. the frequency with which nodes have k

neighbors, we simulate 10 realizations of networks with N = 5000 for different values of the

parameters α, β and γ. Some results are shown in Figure 3. We fit q-exponential functions

to the empirical distributions using the Gauss-Newton algorithm for nonlinear least-squares

estimates of the parameters. Due to limitations of the fitting software we used, we had to
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manually correct the fitting for the tail regions of the distribution. In Table I we give the

parameters of the best fits for various values of α, β, and γ, demonstrating that the degree

distribution depends on all three parameters. The solid curves in Figure 3 represent the

best fit to a q-exponential.

The fits to the q-exponential are extremely good in every case. To test the goodness of

fit, we performed Kolmogorov-Smirnov (KS) and Wilcoxian (W) rank sum tests. Due to the

fact that the q-exponential is defined only on [0,∞), we used a two sample K-S test [21]. To

deal with the problem that the data are very sparse in the tail, we excluded data points with

sample probability less than 10−4. For the K-S test the null hypothesis is never rejected,

and for the W test one case out of twelve is rejected, with a p value of 0.03. Thus we can

conclude that there is no evidence that the q-exponential is not the correct functional form.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0

Dependence of δ parameter
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β = 1.5, γ = 0.5
β = 1.5, γ = 1

FIG. 4: Dependence of the q-exponential parameter δ on the network parameters α, β, and γ.

From Eq. (4) we straightforwardly verify that, in the k → ∞ limit, we obtain (see also

Figure 3) a Pareto distribution, of the form ak−b, where a ≡ p0(
κ

q−1
)1/(q−1) and b ≡ 1

q−1
− δ.

This corresponds to scale-free behavior, i.e. the distribution remains invariant under the

scale transformation k → Kk. In general, however, scale free behavior is only approached

asymptotically, and the q-generalized exponential distribution, which contains the Pareto

distribution as a special case, gives a much better fit.

Parameters of model vs. q-exponential. To understand how the parameters of the q-

exponential depend on those of the model, we estimated the parameters of the q-exponential
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for α = {0, 0.25, 0.5, 0.75, 1}, β = {1.1, 1.2, 1.3, 1.4, 1.5} and γ = {0, 0.5, 1}. Figure 4 studies

the dependence of δ on the graph parameters, and Figure 5 studies the dependence of q and

κ.

It is clear that δ depends solely on the attachment parameter α. The other two q-

exponential parameters (q and κ) depend on all three model parameters. The parameter κ

diverges when β and γ grow large and α = 0. The q parameter grows rapidly as each of the

three model parameters increase.

In Figure 6 we study the distribution of edge weights, where an edge weight is defined
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FIG. 5: Dependencies of q-exponential parameters q and κ that were fitted to network models.
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FIG. 6: Distribution of edge weights. Edge weights represent the number of successfully created

feedback cycles in which an edge participated. The parameter β = 1.3, but α and γ vary. These

calculations are based on 100 realizations of networks growing to N = 500. The edge weights

distribution experiences only a slight change to the right when increasing distance decay parameter

β while varying α but keeping γ constant.

as the number of times an edge participates in the construction of a feedback cyle (i.e. how

many times it is traversed during the search leading to the creation of the cycle). From this

figure it is clear that this property is nearly independent of the attachment parameter α,

but is strongly depends on the routing parameter γ.

IV. CONCLUSIONS

In this paper we have presented a generative model for creating graphs representing

feedback networks. The construction algorithm is strictly local, in the sense that any given

step in the construction of a network only requires information about the nearest neighbors of

nodes. Nonetheless, the resulting networks display long-range correlations in their structure.

This is reflected in the fact that the q-exponential distribution, which is associated with

long-range correlation in problems in statistical mechanics, provides a good fit to the degree

distribution.
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We think this adds an important contribution to the literature on the generation of

networks by illustrating a mechanism that specifically focuses on the competition between

consolidation by adding cycles, which represent stronger feedback within the network, and

growth in size by simply adding more nodes. In future work, we hope to apply the present

model to real networks such as biotech intercorporate networks, medieval trading networks,

marriage networks, and other real examples.
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