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Abstract

The epidermal growth factor receptor (EGFR) is critical to normal cellular signaling pathways. 

Moreover, it has been implicated in a range of pathologies, including cancer. As a result, it is the 

primary target of many anti-cancer drugs. One limitation to the design and development of these 

drugs has been the lack of molecular-level information about the interactions and conformational 

dynamics of EGFR. To overcome this limitation, this work reports the development and 

characterization of functional fluorescently-labeled full-length EGFR in model membrane 

nanolipoprotein particles (NLPs) for in vitro fluorescence studies. To demonstrate the utility of the 

system, we investigate ATP-EGFR interactions. We observe that ATP binds at the catalytic site 

providing a means to measure a range of distances between the catalytic site and the C-terminus. 

These ATP-based experiments suggest a range of conformations of the C-terminus that may be a 

function of the phosphorylation state for EGFR. This work is a proof-of-principle demonstration 

of single-molecule studies as a non-crystallographic assay for EGFR interactions in real-time and 

under near-physiological conditions. The diverse nature of EGFR interactions means that new 

tools at the molecular level have the potential to significantly enhance our understanding of 

receptor pathology and are of utmost importance for cancer-related drug discovery.
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Introduction

Receptor tyrosine kinases (RTKs) are critical for normal cellular signaling, development and 

homeostasis [1]. For example, regulation of cell proliferation, survival and differentiation is 

strongly mediated by the ErbB family of RTKs, of which the cell-surface epidermal growth 

factor receptor (EGFR) is a prominent member [2]. Overexpression and aberrant signaling 

of EGFR lead to pathologies, including various forms of cancer [3], which has motivated the 

development of a variety of inhibitors that serve as cancer therapeutics [4]. While initially 

effective, cancer cells are known to develop strong resistance to EGFR targeted therapeutics 

[5, 6].

Structural and biochemical studies have revealed that EGFR exists in both inactive and 

active forms [7–11] and have already mapped out the activation pathways. EGFR binds 

multiple extracellular ligands to form homodimers and three functional heterodimers, 

enabling the recruitment of intracellular signaling molecules [12]. EGFR binds adenosine-

triphosphate (ATP) within the intracellular compartment at the catalytic site as both a 

monomer and dimer, suggesting that the monomer alone could also be active. Multiple sites 

for phosphorylation have also been reported [13], many of which are available in the 

monomer [14]. The molecular basis of ATP affinity has been extensively explored, including 

a series of mutations in the kinase domain to both increase and decrease ATP affinity [15, 

16]. These results are particularly interesting because competitive inhibitors, such as 

Gefitinib, are widely used cancer therapeutics [17]

These studies of ATP binding have primarily used X-ray crystallography and have been 

limited to the truncated intracellular domains. However, deriving structural models from X-

ray crystallography can lead to ambiguities associated with the identities and positions of 

receptor binding partners. Moreover, the observed conformations can be affected by the 

crystallization conditions, which may have important consequences for drug design. Finally, 

the dynamic nature of the interactions cannot be reported in real-time [18]. Consequently, 

much less is known about the transient conformational states that may exist during ligand-

induced signaling events [19].

To address these three issues, single-molecule fluorescence techniques have emerged as 

powerful tools for non-invasive real-time probing of conformational transitions and 

molecular recognition events [20, 21]. EGFR has been modified to attach fluorescent dyes 
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for ensemble spectroscopy studies [14]. However, there have only been a handful of reports 

demonstrating single-molecule detection, the majority of which have been limited to live cell 

imaging. These studies have reported the presence of EGFR complexes on the surface of 

living cells [22] and identified the kinetics of ligand binding and the subsequent formation of 

dimers and multimers on the cell surface [23, 24, 25]. Additionally, ligand-binding and 

dimerization kinetics have been measured in the presence of inhibitors [26 – 29], and 

particle tracking experiments have revealed previously unknown intermediate states during 

EGFR endocytosis [30].

While insightful, these single-molecule experiments were performed in the living cell, which 

inherently limits elucidation of the molecular building blocks of EGFR signaling. For 

example, background extraneous processes that contribute to or mask the biochemistry of 

interest must be fully accounted for, cell autofluorescence in the visible spectrum can mask 

signals from the label, and long observation times are not easily achieved because of a 

marked reduction in dye photostability [31]. Conversely, experiments performed outside the 

living cell have traditionally introduced additional obstacles. Specifically, truncated domains 

may exhibit altered dynamics or functionality as well as lack the full signaling response. 

Furthermore, isolation of full-length receptors from live cells is problematic because 

solubilizers are known to compromise their conformation and stability [32, 33]. 

Reconstitution of EGFR into proteoliposomes has been achieved to systematically probe 

EGFR function [34]. However, despite the significant advantages that proteoliposomes 

provide over conventional methods, there are well-reported limitations with regards to use of 

their use [35]. Liposomes are often large, unstable, difficult to prepare with precisely 

controlled size and stoichiometry, and only offer access to one side of the membrane.

Consequently, cell-free expression techniques are rapidly evolving as an alternative option 

for protein production and are now often the primary choice for the synthesis of difficult 

targets [36], toxic proteins [37, 38], small bioactive peptides [39], membrane-bound 

receptors [40 - 42] and labeled proteins [43]. Here, the protein translation machinery of 

model organisms is used to express the protein of interest from an input cDNA sequence 

[44]. Cell-free expression has recently been used to produce soluble and functional ErbB 

receptors, including EGFR, reconstituted within 10-25 nm model-membrane 

nanolipoproteins (NLPs) [45]. The amphiphilic property of the NLPs provides a supported 

membrane mimetic that allows EGFR to be probed in a controllable, tunable and water-

soluble environment, in the absence of any extraneous biochemical processes [46].

In this work, we overcome the obstacles posed by live cell imaging, sample heterogeneity 

and detergent-induced solubilization by building on the cell-free expression protocol [45] to 

produce fluorescently-labeled, full-length EGFR reconstituted in lipid NLPs. We 

demonstrate the biochemical production of the NLPs, full photophysical characterization 

and their single-molecule detection. Full-length monomeric EGFR supported by NLPs can 

be immobilized and fluorescence from EGFR monitored over extended time periods by 

confocal scanning microscopy or they can be detected freely diffusing in solution via multi-

parameter fluorescence detection and fluorescence correlation spectroscopy. To demonstrate 

the utility of our platform, we explore adenosine triphosphate (ATP) interactions with 

EGFR. We observe ATP binding and measure a range of distances from the C-terminus. 
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These results suggest heterogeneity in the conformation of the C-terminus, which may be 

due to phosphorylation state, as observed previously [14]. The ability to perform in vitro 
single-molecule experiments on the full-length receptor, introduced here, will enable non-

invasive studies of transient and/or heterogeneous processes to facilitate the design of cancer 

therapeutics that target EGFR interactions.

Methods

Plasmids

ApoA1Δ49 was cloned into expression vector PD451-SR. The genes for EGFR were codon 

optimized for E. coli expression by DNA 2.0, and the SNAP gene was fused to the C-

terminal of EGFR. A schematic of EGFR-SNAP, the E. coli codon optimization of human 

EGFR, and the cDNA and protein sequences of ApoA1Δ49 are shown in Figure S1. The 

fused EGFR-SNAP was cloned into expression vector pJexpress414 (DNA 2.0)

DNA transformation and extraction

1 μg EGFR-SNAP DNA was transformed into DH5-α cells (BioPioneer Inc.). EGFR-SNAP 

DNA extraction and purification was performed using the Plasmid Maxi Kit (Qiagen). 

ApoA1Δ49 DNA extraction and purification was performed using the Plasmid Mini Kit 

(Qiagen).

Cell Free Expression of EGFR-NLPs

Cell-free expression of EGFR-SNAP NLPs was performed using the Expressway™ Maxi 

Cell-Free E. Coli Expression system (Life Technologies). Codon-optimized cDNA plasmid 

encoding full-length EGFR tagged at the C-terminus with a SNAP-tag was subcloned into 

expression vector pJexpress-414 (DNA 2.0) and used for protein expression. The SNAP-tag 

is a 20 kDa mutant of the human DNA repair protein O6-alkylguanine-DNA alkyltransferase 

(hAGT) that reacts specifically and rapidly with benzylguanine functionalized derivatives, 

enabling the covalent labeling of the SNAP-tag with a synthetic probe [47]. ApoA1Δ49 in 

expression vector PD451-SR was used as the apolipoprotein belt. Since the SNAP tag does 

not compete with ligand binding and has no antagonistic function, the effects of ligands or 

inhibitors on EGFR can be studied [48]. E. coli slyD-extract, IVPS E.coli reaction buffer 

(minus amino acids), amino acids (minus methionine), methionine, T7 enzyme mix, DNA 

templates and small unilamellar 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 

(Avanti Polar Lipids) vesicles were added to a 1.5 mL microcentrifuge tube to a final volume 

of 100μL and incubated at 30°C for 30 minutes at 500 rpm. A feed buffer made from IVPS 

feed buffer, 75 mM amino acids (−methionine) and 75 mM methionine was subsequently 

added to the reaction. The reaction was incubated for 18 hours at 30°C and stored on ice 

prior to purification. Small unilamellar vesicles were prepared by sonicating a 25 mg/mL 

water solution of DMPC phospholipids until optical clarity was achieved. The lipid 

concentration was calculated using a phosphorus assay [49] (Figure S2) and lipids were 

added to the cell-free reaction at a final concentration of 2 mg/mL. 1 μg of EGFR-SNAP 

plasmid DNA and 0.05 μg ApoA1Δ49 DNA were added to the lysate. 2 × protease inhibitor 

(ThermoFisher Scientific) was also added at the beginning of the reaction. The reaction was 
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incubated at 30°C according to the manufacturer’s instruction. The entire incubation time 

was 18 hours.

Native Purification of NLPs

200 μL Ni-NTA resin slurry (Qiagen) was added to a 2 mL plastic column. Columns were 

thoroughly rinsed with ultra-pure water and equilibrated with 3 mL native lysis buffer (50 

mM NaH2PO4, 300 mM NaCl, pH 8.0) under gravity. Approximately 500 μL of lysis buffer 

was left on top of the column. The completed cell free reaction was added to the prepared 

Ni-NTA resin and mixed overnight at 4 °C on a nutator. Flowthrough was collected and the 

column was washed with 2 × 1 mL native lysis buffer containing 10 mM imidazole, 2 × 1 

mL native lysis buffer containing 25 mM imidazole and 2 × 1 mL native lysis buffer 

containing 50 mM imidazole. Samples were then eluted with 6 × 1 mL native lysis buffer 

containing 400 mM imidazole. Eluents were combined and dialyzed against 1 × PBS buffer 

(pH 7.5) using 10 kDa Slide-A-Lyzer Dialysis Casettes (ThermoFisher Scientific). Fresh 

buffer was added every hour in the first 3 hours. Samples were concentrated by centrifuging 

the sample in 30 kD columns at 4000 rcf for 10 minutes at 4 °C. Stock solutions were stored 

at 4°C.

SDS-PAGE

SDS-PAGE was performed using 12 % Mini-PROTEAN® TGX™ stain-free protein gels 

(10-well, 30 μL) from Bio-Rad. Samples were boiled for 5 minutes with 2× Laemmli 

Sample Buffer (Bio-Rad) supplemented with 2.5 % 2-mercaptoethanol (Sigma Aldrich). 

Gels were run at 170 V for ca. 45 minutes. A pre-stained molecular weight marker was used 

to determine the end-point of the electrophoresis. Imaging was performed using Gel Doc™ 

imager (Bio-Rad).

Fluorescent labeling of EGFR-NLPs

50 nmol SNAP surface 594 (New England Biolabs) was dissolved in 50 mL anhydrous 

dimethyl sulfoxide (DMSO) (Sigma Aldrich) and mixed by vortexing for 10 minutes to yield 

a labeling stock solution of 1 mM SNAP-tag substrate. This stock was diluted 1:4 in fresh 

DMSO prior to labeling to yield a 250 μM stock. EGFR-SNAP NLPs and SNAP surface 594 

were added to 1 × PBS buffer (pH 7.5) and 1 mM DTT at a 1:2 molar ratio (VT = 50 μL). 

The labeling reaction was incubated in darkness for 30 minutes at 37°C in a shaking 

incubator (150 rpm). Unreacted dye was subsequently separated from labeled species by 

spinning the solution at 14,000 rpm at 4°C in 30 kDa centrifugation filters. Labeled 

concentrations were estimated by absorption spectroscopy.

Ensemble Optical Spectroscopy

Absorption spectra of SNAP-Surface 594 labeled EGFR-NLPs and Alexa647-ATP in 

solution (1 × PBS buffer, pH 7.5) were measured on an Epoch (Biotek) spectrophotometer. 

Final SNAP Surface 594 and Alexa647 concentrations were determined using extinction 

coefficients of 120,000 M−1cm−1 and 270,000 M−1cm−1 at λmax, respectively. Corrected 

fluorescence emission spectra were collected using a Cary Eclipse fluorescence 

spectrophotometer (Agilent) with excitation wavelengths as specified in the main text.
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Single Molecule Spectroscopy

EGFR-NLP stock solutions were diluted to 1-10 pM in 1 × PBS buffer (pH 7.5) containing 

50 nM protocatechuate-3,4-dioxygenase (PCD), 5 mM protocatechuic acid (PCA) and 2 mM 

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). For immobilization 

experiments, the diluted solution was incubated in a flowcell consisting of a 25 mm diameter 

hybridization chamber (Grace Biolabs) sealed to a Ni-NTA coated coverslip (Microsurfaces, 

Inc.). NLPs were attached to the surface by interactions between the His-tag on ApoA1Δ49 

and the Ni-NTA. Single-molecule measurements were carried out on a home-built confocal 

microscope as previously described [50]. Briefly, a Ti:Sapphire laser (Vitara-S, Coherent; λc 

= 800 nm, Δλ = 70 nm, 20 fs pulse duration, 80 MHz repetition rate was focused into a 

nonlinear photonic crystal fiber (FemtoWhite 800, NKT Photonics) to generate a 

supercontinuum and then filtered to produce excitation at 550 nm or 640 nm. The excitation 

intensity was ca. 450 nJ/cm2 on the sample plane. Excitation and fluorescence collection 

were performed by the same oil immersion objective lens (UPLSAPO100X0, Olympus, NA 

= 1.4). Fluorescence emission was passed through a dichroic filter (SP01-561RU, 

Laser2000, for 550 nm excitation, FF01-629/56-25, Semrock, for 640 nm excitation) before 

being passed through a series of bandpass filters (BLP01-647R, Laser2000, 

FF02-685/40-25, Semrock, FF02-675/67-25, Semrock, ET700/75m, Chroma). Donor and 

acceptor wavelength bands were detected on avalanche photodiodes (SPCM-AQRH-15, 

Excelitas). Photon arrival times were recorded by a time-correlated single-photon counting 

module (PicoHarp 300, Picoquant). The instrument response function for the apparatus was 

measured to be 0.35 ns (full-width at half-maximum). Time resolved fluorescence decays 

were obtained with λex = 550 nm at 71 μW. Decay parameters were obtained from the 

maximum likelihood estimation fitting of the variation in fluorescence intensity, I(t), 

deconvoluted with the instrument response function, to a monoexponential decay of the form 

I(t)=I0 + ae−t/τ 0 where τ is the lifetime.

Single Molecule Photobleaching Analysis

Data analysis was carried out using laboratory written routines developed in MATLAB 

R2013a. Intensity trajectories were recorded using binned photon-by-photon detection. 

Population histograms were constructed from 100 fluorescence intensity trajectories. 

Individual trajectories were analyzed using a change point algorithm, whereby a recursive 

generalized likelihood ratio test determines the location of a photobleaching step based on 

individual photon arrival times, and expectation-maximization clustering and the Bayesian 

information criterion is applied to identify the number of photobleaching steps [51].

Fluorescence Correlation Spectroscopy

FCS measurements were performed on the same confocal microscope. Samples were diluted 

to 1-10 pM and samples were allowed to freely diffuse within a 25 mm diameter 

hybridization chamber sealed to a glass coverslip coated with polyethylene glycol (PEG, 

MW = 5000). The average laser power (λex = 550 nm) was 60 μW. Fluorescence signals 

were autocorrelated and 3 million photons were typically collected for each measurement. 

All measurements are reported for a temperature of 21°C and 30 % humidity. 

Autocorrelation functions, G(τ) were fitted to equation 1 [52].
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G τ = C + 1
N ⋅ 1

1 + τ

V2 ⋅ τD

1
1 + τ

V2 ⋅ τD

⋅ 1 − t f + t f ⋅ e
− τ

ts Eq. 1

where C is a constant, τ is the lag time, N is the number of molecules in the confocal 

volume, τD is the translational diffusion time, V is a measure of the detection volume 

defined as Zo/wo, where Zo and wo are the distances at which the 3D Gaussian volume has 

decayed to 1/e in the axial and radial directions, respectively, τf is the triplet fraction and τs 

is the triplet lifetime. The counts per molecule (CPM) were subsequently calculated using 

Equation 2,

CPM = 1
N (1 − τ f ) Eq. 2

where I is mean intensity. FCS datasets were also fitted using a 2-diffusing species model of 

the form

G(t) = (1 − Y)G1(t) + YG2(t) Eq. 3

where Y represents the fraction of molecules associated with species 2. ATP solutions were 

prepared in 1 × PBS buffer, 1 mM MnCl2, 2 mM DTT, pH 7.5 and incubated with EGFR for 

30 minutes prior to measurement. Human phosphor-EGFR antibodies capable of detecting 

EGFR phosphorylated at Y1068 were purchased from R&D Systems, USA, and used 

without additional purification.

Single Molecule FRET Analysis

Data analysis was carried out using laboratory written routines developed in MATLAB 

R2013a. Donor (SS594) and acceptor (Alexa 647) intensity bursts (ID and IA, respectively) 

were recorded using binned photon-by-photon detection. Energy transfer efficiencies, E, 

were calculated via

E =
IA − βID − αIA

IA − βID − αIA + γID
Eq. 4

where βID corrects for leakage of donor emission into the acceptor channel, αIA corrects for 

direct excitation of the acceptor, and γ accounts for differences between donor and acceptor 

detection efficiencies (μ) and quantum yields (φ) [53]:
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γ =
μA
μD

x
φA
φD

Eq. 5

To ensure that FRET histograms contained monomeric EGFR-NLPs, a threshold algorithm 

was used to select molecules which displayed intensity bursts in the range 10-60 counts per 

100 ms, a typical intensity distribution reflecting the intensity profile at the confocal spot.

Transmission Electron Microscopy

Cell-free expressed EGFR-NLPs were analyzed by negative stain transmission electron 

microscopy. 5 μL droplets of sample in 1 × PBS buffer (pH 7.5) were added to glow-

discharged carbon-coated 400 mesh copper grids and incubated for 5 minutes at room 

temperature to allow non-specific binding of the NLPs to the grids. The solutions were 

removed by gently blotting the side of the grid with filter paper. The grids were subsequently 

washed with 1.5 % aqueous uranyl acetate for 30 seconds, dried and analyzed in the electron 

microscope. NLPs were imaged with a Tecnai FEI transmission electron microscope (120 

kV, 0.35 nm point resolution). Micrographs were selected to represent the average 

distribution, density and size of the NLPs. Disc-like objects were sampled using the 

forbidden line unbiased counting rule applied to quadrats positioned systematic uniform 

random on micrographs which were displayed in Image J [54]. The mean caliper diameter 

was measured both horizontally and vertically and the average of both measurements 

calculated for each structure.

Results and Discussion

Construction and Characterization of labeled EGFR NLPs

Plasmid encoding a 6× His-tagged version of human apolipoprotein A-I lacking the amino-

terminal 49 (ApoA1Δ49) in expression vector PD451-SR was used to drive the spontaneous 

assembly of NLPs in the presence of 1,2-ditertradecanoyl-sn-glycero-3-phosphocholine 

(DMPC) vesicles as schematically shown in Figure 1a. The cell-free expression system 

produced full-length EGFR-SNAP and ApoA1Δ49 proteins in the presence of DMPC, after 

Ni-affinity purification, as detected by stain-free SDS-PAGE (150 kDa and 20 kDa, 

respectively) (Figure 1b). The production of NLPs was confirmed by transmission electron 

microscopy (TEM) and a quantitative analysis of the micrographs (Figure 1c,d) revealed an 

average diameter of 44.7 nm (N = 267) (Figure 1c). The hydrodynamic diameter of the 

NLPs in solution was further confirmed to be 30.1 nm by dynamic light scattering (DLS) 

(Figure 1e).

Prior to single-molecule evaluation, EGFR-SNAP NLPs fluorescently labelled with SNAP 

Surface 594 (SS594) were characterized in solution using ensemble steady-state optical 

spectroscopy, along with the free dye for comparison. The absorption spectrum of the 

labelled EGFR-SNAP NLPs is very similar to that of the free dye, with only minor changes 

in peak positions and profile (Figure 1f). Similarly, the fluorescence emission spectrum 
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(Figure 1g) was essentially identical to that of the free dye, indicating minimal 

photophysical perturbation of SS594 upon attachment to the SNAP-tag.

Single-molecule measurements were first made on the labelled EGFR-SNAP NLPs freely 

diffusing in aqueous solution by using confocal microscopy. Fluorescence correlation 

spectroscopy (FCS) of the NLPs at 1 nM in solution produced a correlation curve that could 

be fitted using the same model [49] as for the free dye, incorporating fluctuations caused by 

diffusion and triplet formation (Figure 2a). The recovered diffusion time for EGFR-SNAP 

NLPs is 167 ± 2 μs, whereas the value measured for the free SNAP surface 594 dye is 59.8 

± 1 μs. The fraction of molecules in the triplet state under both conditions was comparable 

(0.314 in the case of the free dye and 0.342 in the case of NLPs) and the recovered triplet 

state lifetime was 6.9 μs and 2.5 μs respectively (Table S1). The similarity in photon count 

rate per molecule for NLPs (82 ± 3 kHz mol−1) and free dye (85 ± 3 kHz mol−1) further 

demonstrates minimal photophysical perturbation of the dye post-attachment.

Time correlated single photon counting was performed in parallel to demonstrate that the 

photophysics of the SS594 was unperturbed post-labelling. Here pulsed laser excitation and 

simultaneous photon-counting allowed measurement of fluorescence intensity and lifetime 

from single-molecule photon streams as EGFR NLPs traversed the confocal volume. An 

ensemble analysis of this population (Figure 2b) reveals that the fluorescence decay can be 

fitted to a single exponential with a lifetime of 1.85 ± 0.09 ns, indicating a single dye 

environment and the absence of dynamics on the millisecond timescale. This was 

comparable to the lifetime extracted from the free dye in solution (1.99 ± 0.21 ns) (Figure 

2b). The presence of a single lifetime population indicates that there is a single labelled 

species that is unquenched. Collectively, this photophysical characterization demonstrates 

the utility of the construct for fluorescence studies.

Next, we demonstrate that the majority of NLPs contain monomers via stepwise 

photobleaching of SS594. NLPs were immobilized onto a Ni-NTA coated glass coverslip via 

the 6× His tag on ApoA1Δ49 as showing in Figure 3a. This approach has been widely 

adopted for immobilizing NLPs to surfaces, avoiding the need for direct covalent attachment 

of the receptor and allowing long-term observation of the receptors within a near-native 

environment [55, 56]. The surface was imaged by raster scanning the sample across the 

confocal volume, allowing intensity and lifetime of single molecules to be collected 

sequentially. The number of molecules inside a particular disc was measured by recording 

the number of photobleaching steps in time traces of the fluorescence signal from individual 

diffraction-limited spots. This revealed levels of constant intensity followed by stepwise 

photobleaching of the fluorophores (Figure 3b). The stability of the signals before a 

bleaching event is notable, with no dynamics on the time scales studied, providing further 

evidence that the fluorophore is not perturbed by attachment to the SNAP tag, because any 

interactions will lead to quenched states in which the dye fluorescence turns off. This 

observation therefore allows a reliable estimate of the number of labelled EGFR receptors 

within a NLP. A total of 80 % of the traces displayed one-step photobleaching events while 

16 % displayed two steps (Figure 3c). Fewer three- and four-step bleaching events were 

observed. Thus most of the detected NLPs contained only one EGFR receptor. An evaluation 

of the fluorescence intensity and on-times showed that at an excitation power of 180 nW, an 
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average of 50 counts/100 ms was obtained, and that the fluorophores photobleached over 

timescales of ca. 10 seconds (Figure S3). To demonstrate that the binding of the NLPs to the 

surface through the His/Ni-NTA interaction is long-lived, the excitation power was reduced 

5-fold to 36 nW, resulting in prolonged intensity-time trajectories (Figure S4), indicating 

that the loss of fluorescence shown in Figure 3b is due to photobleaching and not 

dissociation from the surface. Moreover the lifetime distribution obtained from immobilized 

NLPs (Figure 3d) closely matched the ensemble value observed in solution, demonstrating 

negligible photophysical perturbation of single SS594 dyes post-attachment. It is possible 

that various EGFR conformations exist during the experiments, but these do not lead to 

substantial changes in lifetime, as may be expected during protein-induced fluorescence 

enhancement or quenching processes. This will enable researchers to accurately monitor 

changes in lifetime as a function of condition (e.g. via FRET) with confidence that 

photophysical changes are not caused by dye-protein interactions in the steady-state.

To assess the functional integrity of NLP bound SS594-labeled EGFR, we examined 

receptor phosphorylation by FCS using an antibody that specifically recognizes EGFR 

phosphorylated at tyrosine residue 1068. FCS is a well-established tool for identifying 

receptor-ligand binding [57], and because the in vitro translation reactions contain both the 

ATP and metal ion cofactors necessary for EGFR kinase activity, changes in the FCS 

diffusion time in the presence of antibody are a strong indicator of EGFR activity. After Ni-

affinity purification was performed to remove cell-free expression lysate components, the 

purified EGFR-NLPs were incubated with ATP, Mn2+ and Y1068 antibody to allow for 

antibody-binding. FCS demonstrated that the diffusion time of 0.5 nM EGFR NLPs in 

phosphorylation buffer increased by 20.4 ± 1.1 % in the presence of 1 μM antibody, 

indicating that the purified EGFR NLPs are capable of phosphorylation (Figure 4a). In a 

complementary approach, the diffusion time of 250 pM Alexa647-labeled Y1068 antibody 

in the absence and presence of EGFR-NLPs was investigated. Here, the diffusion time of the 

labelled antibody (621 μs) was ca. 6-fold longer than that of the free dye (101 μs), and 

increased further to 643 μs in the presence of phosphorylated EGFR NLPs even when an 

antibody: EGFR molar ratio of 1: 4 was used (Figure 4b, Table S2). Importantly, the 

diffusion time of the labelled antibody remained invariant when incubated with empty NLPs 

(Figure S5). Evidence confirming the presence of resonance energy transfer between SS594 

on EGFR and Alexa-647 on the Y1068 antibody were obtained in phosphorylation buffer 

from the decrease in the average fluorescence lifetime of the donor in the presence of the 

acceptor, which reduced by 4.9 %, 8.3 % and 36.4 % when EGFR: Y1068 antibody molar 

ratios of 2:1, 1: 2 and 1: 20 were tested, respectively (Figure 4c). The increase in FRET 

efficiency indicates that antibody binding occurs within the intracellular domain and is 

consistent with previous work that demonstrates EGFR functionality via ligand interaction 

when contained within supported membrane mimetics composed of DMPC phospholipids 

[45, 58]. The combination of FCS and FRET measurements are consistent with antibody 

binding to the intracellular compartment of functional EGFR and thus emphasize the 

potential of EGFR NLPs as a versatile platform.
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Exploration of EGFR-ATP Interactions using FCS and Single-Molecule FRET

The production of single, fluorescently labeled EGFR monomers within NLPs enables 

studies of transient states and interactions, which we demonstrate by investigating the 

interaction between EGFR and ATP. We use two complementary fluorescence approaches: 

FCS and multi-parameter FRET detection. Both techniques confirmed binding ATP-EGFR 

interactions. The FCS diffusion times of freely-diffusing EGFR in NLPs in the absence and 

presence of 100 nM and 1 μM ATP were found to be 167, 169 and 172 μs, respectively 

(Figure 5a). These diffusion times correspond to a detectable increase in the average 

hydrodynamic radius, from 6.14 nm in the absence of ATP, to 6.21 nm and 6.32 nm in the 

presence of 100 nM and 1 μM ATP, respectively, and are attributed to ATP binding. No 

difference in the diffusion times without the standard error of the mean were observed when 

the ATP concentration was increased beyond the reported Km[ATP] [59] and Kd[ATP] [14] 

values for EGFR to 10 μM and 1 mM, respectively, indicating relatively high fractional 

occupancy was achieved at 1 μM (Figure S6). Fitting parameters associated with the 

application of Equation 1 to the FCS curves are shown in Table S1. Negligible dimeric/

multimeric EGFR NLPs were recovered when the FCS curves were fitted to a 2-diffusing 

species model indicated in Equation 3 (Y = 0.002) (Figure S7).

Evaluation of less concentrated samples of EGFR NLPs (1-10 pM) yielded intensity time 

traces, which exhibited clear single-molecule intensity bursts, providing a unique 

opportunity to evaluate EGFR-ATP interactions via FRET. As shown in Figure 5b, the 

fluorescence time trajectory obtained for 10 pM SS594 labeled EGFR NLPs (donor) in the 

presence of Alexa Fluor 647 (acceptor) labeled ATP shows coincident bursts of 

fluorescence. Over the duration of the measurements there were no observations of SS5994 

bursts >60 counts per 100 ms, indicating that the FRET data collected refers to the 

interaction between ATP and the EGFR monomer only. Under direct excitation of SS594 

(λex = 550 nm), the appearance of fluorescence at both donor and acceptor wavelengths at 

the same time in the focal volume demonstrates the interaction of EGFR and ATP. For each 

fluorescence photon burst, a FRET efficiency, EFRET, was computed and collected into a 

histogram [60]. The histogram is centered on a FRET efficiency of 0.44 ± 0.02 (FWHM = 

0.29 ± 0.05) corresponding to an estimated labeling site to phosphorylation site distance of 

8.61 ± 0.39 nm (Figure 5c). The estimated distance is in good agreement with the distance 

between the catalytic cite and C-terminus previously reported [14], when the labeling 

positions are taken into consideration.

The wide distribution in our FRET histogram suggests a range of conformations of the C-

terminus. Previous work demonstrated a conformational change in the C terminus of EGFR 

based on the phosphorylation state, which may contribute to the width of the distribution 

observed here [14]. However, here we observe a range of FRET distances, indicating a broad 

range of conformations. These different conformations of the phosphorylated EGFR may 

play a role in modulating the nucleotide-binding properties of the kinase domain [61].

While in vitro analysis of monomeric EGFR provides a means to overcome complexity, 

recent evidence points to ligand-induced multimerization of EGFR [62], the assembly of 

which optimally organizes kinase-active dimers for auto-phosphorylation [63]. In this 

regard, the utility of the cell-free expression platform presented here may be extended to 
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enable active dimers and multimers of EGFR to be embedded within single NLPs [58] of 

defined diameter and radius of curvature [64, 65]. Relatively low expression yields (< 0.5 

ng/μL) do mean conventional activity assays such as Western Blotting are ineffective, but 

nevertheless, the application of single-molecule techniques are rapidly evolving to enable 

such systems to be spectroscopically accessed.

Conclusions

We have reported the cell-free expression and detection of functional fluorescently-labelled 

EGFR-SNAP in model membrane NLPs, freely diffusing and immobilized, using single-

molecule spectroscopy. The fluorescent properties of the SNAP-substrate label were 

maintained upon conjugation to EGFR-SNAP, indicating the utility of this approach for 

studies of labeled receptors. The coupling of FCS and multi-parameter FRET detection with 

the development of labeled EGFR NLPs provides a facile yet powerful approach for 

quantitatively measuring interactions involving this important class of biomolecule in 

solution. Here, we simultaneously detect the presence of free and ATP-bound EGFR via 

changes in diffusion time and FRET. We observe a range of conformations of the C 

terminus, possibly due to the phosphorylation state. This work forms the basis of a new 

method for the investigation of the behavior of the EGFR-family of membrane receptors at 

the single-molecule level, which provides information that is currently hidden from 

ensemble averaging methods (such as NMR and X-ray crystallography) and live cell 

imaging, where extraneous background signals can hide the biochemistry of interest. This is 

a proof-of-principle demonstration of the single-molecule detection of EGFR within 

controllable, tunable and near physiological lipid NLPs and opens a platform for the 

screening of monoclonal antibodies and small molecule inhibitors associated with this 

important class of biomolecule.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of fluorescently-labeled EGFR-SNAP NLPs
(a) Schematic representation of fluorescently labelled EGFR NLPs. (b) Image of denaturing 

SDS-PAGE gel of cell-free expressed ApoA1Δ49 and EGFR-SNAP post Ni-affinity 

purification and dialysis. (c) TEM micrographs of EGFR-SNAP NLPs negatively stained 

with 1.5 % (w/V) uranyl acetate. Scale bars = 50 nm (d) Size distribution histogram obtained 

from TEM micrographs. (e) Dynamic light scattering distribution obtained from EGFR-

SNAP NLPs in 1× PBS buffer (pH 7.5). (f) Absorption spectra and (g) normalized 

fluorescence emission spectra of SNAP surface 594 labelled EGFR-SNAP NLPs (red) and 

free SNAP surface 594 (black) in solution (pH 7.5).
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Figure 2. Characterization of EGFR-SNAP NLPs using FCS and TCSPC
(a) Fluorescence correlation curves of SS594 labelled EGFR-SNAP NLPs (red) and free 

SS594 in solution (black) (pH 7.5). (b) Time resolved fluorescence decays of the labelled 

NLPs (red) and free SS594 (black). Bold lines are single exponential decay fits. The grey 

line represents the instrument response function.
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Figure 3. Single-molecule fluorescence detection of immobilized EGFR-SNAP NLPs
(a) Schematic of the immobilization scheme for attaching NLPs to a Ni-NTA surface via the 

his-tag on ApoA1Δ49. (b) Representative 1- and 2-step (blue) photobleaching trajectories. 

The black solid lines are fits to the data as determined by a changepoint algorithm. 

Histograms of (c) photobleaching steps and (d) lifetimes observed from immobilized NLPs 

in 1 × PBS buffer (pH 7.5) are also shown.
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Figure 4. NLP associated EGFR is tyrosine phosphorylated
(a) FCS autocorrelation curves of 0.5 nM freely-diffusing EGFR NLPs in the absence 

(black) and presence (red) of 1 μM Y1068 antibody in phosphorylation buffer (λex = 550 

nm). (b) FCS autocorrelation curves of Alexa 647 free dye (green), Alexa647 labeled 1068 

antibody in phosphorylation buffer in the absence (blue) and presence (red) of EGFR-NLPs 

(λex = 640 nm). (c) Time-resolved fluorescence decays of SS594 EGFR NLPs in the 

absence and presence of 1 nM (green) and 10 nM (blue) Alexa647-labeled Y1068 antibody 

(λex = 550 nm). Solid black lines represent exponential fits. The grey line represents the 

instrument response function.
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Figure 5. Fluorescence correlation spectroscopy and FRET detection of EGFR NLPs in the 
presence of ATP
(a) FCS autocorrelation curves of 1 nM freely-diffusing EGFR NLPs in the absence and 

presence of ATP at increasing concentrations. (b) Representative SS594 (donor, green) and 

Alexa647 (acceptor, red) intensity trace demonstrating co-localized single molecule bursts 

and (c) the corresponding FRET histogram.
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