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Cost-effective description of strong correlation: Efficient implementations
of the perfect quadruples and perfect hextuples models

Susi Lehtola,1,a) John Parkhill,2,b) and Martin Head-Gordon1,3,c)
1Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Department of Chemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame,
Indiana 46556, USA
3Department of Chemistry, University of California, Berkeley, California 94720, USA

(Received 30 March 2016; accepted 22 September 2016; published online 7 October 2016)

Novel implementations based on dense tensor storage are presented for the singlet-reference perfect
quadruples (PQ) [J. A. Parkhill et al., J. Chem. Phys. 130, 084101 (2009)] and perfect hextuples
(PH) [J. A. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 024103 (2010)] models. The methods
are obtained as block decompositions of conventional coupled-cluster theory that are exact for four
electrons in four orbitals (PQ) and six electrons in six orbitals (PH), but that can also be applied to
much larger systems. PQ and PH have storage requirements that scale as the square, and as the cube
of the number of active electrons, respectively, and exhibit quartic scaling of the computational effort
for large systems. Applications of the new implementations are presented for full-valence calculations
on linear polyenes (CnHn+2), which highlight the excellent computational scaling of the present
implementations that can routinely handle active spaces of hundreds of electrons. The accuracy of
the models is studied in the π space of the polyenes, in hydrogen chains (H50), and in the π space
of polyacene molecules. In all cases, the results compare favorably to density matrix renormalization
group values. With the novel implementation of PQ, active spaces of 140 electrons in 140 orbitals
can be solved in a matter of minutes on a single core workstation, and the relatively low polynomial
scaling means that very large systems are also accessible using parallel computing. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4964317]

I. INTRODUCTION

Efficient handling of strong correlation is one of the still
unresolved questions in computational chemistry. Outside the
scope of the otherwise useful Kohn–Sham density-functional
theory,1–3 approaches to strong correlation lean heavily on
wave function theories. The conventional way to treat strong
correlation is through multiconfigurational self-consistent
field (MCSCF) theory, which scales exponentially as the
size of the active space grows. As a result, MCSCF cannot be
applied to active spaces significantly larger than 16 electrons
in 16 orbitals, although the barrier has been recently pushed
back through approximative stochastic4,5 and adaptive6–10

approaches to the full configuration interaction (FCI) problem.
Now, while MCSCF relies on a configuration interaction

(CI) type ansatz |Ψ⟩ = (1 + T̂) |Φ⟩ for the wave function,
where |Φ⟩ is the single-particle reference and |Ψ⟩ the true,
multiconfigurational wave function, one might ask whether
a coupled-cluster11 (CC) type ansatz |Ψ⟩ = exp(T̂) |Φ⟩ could
be used instead to formulate a MCSCF-type model. Often
the CC approach is also used to describe dynamic correlation
with a CI reference, as in the multireference CC (MR-CC)
approach,12 but MR-CC is much more complicated than
single-reference CC, and combining both strong correlation
and dynamic correlation within the same machinery would

a)Electronic mail: susi.lehtola@alumni.helsinki.fi
b)Electronic mail: john.parkhill@gmail.com
c)Electronic mail: mhg@cchem.berkeley.edu

be clearly advantageous. While in principle CC theory is
well able to describe static correlation, the problem that
arises upon its application is that the computational effort
of the resulting procedure is prohibitively expensive, even if
an active space is used.13 However, this problem has been
recently solved by Parkhill, Lawler, and Head-Gordon, who
proposed a truncation of CC for exactness within the active
space for a given number of strongly interacting electron
pairs,14,15 instead of the usual, global truncation based on the
excitation level. For example, the perfect quadruples14 (PQ)
model is formed by truncating CC theory with single through
quadruple (CCSDTQ) excitations to two pairs by keeping only
the amplitudes ta1...an

i1...in
that satisfy {ak, ik} ∈ {pair1} × {pair2}.

Similarly, the perfect hextuples15 (PH) model is a three-
pair truncation of CC theory with single through hextuple
excitations (CCSDTQ56), in which only the amplitudes that
satisfy {ak, ik} ∈ {pair1} × {pair2} × {pair3} are kept. Here,
the concept of a pair arises from connection to the perfect
pairing16–20 (PP) theory, in which pair i is described by
a quartet of orbitals: the alpha and beta orbitals i and ī,
respectively, that are occupied in the single-particle reference,
as well as the corresponding alpha and beta virtual orbitals i∗

and ī∗, respectively. In contrast to MCSCF, PQ and PH exhibit
polynomial scaling with respect to the size of the active space.
The storage requirements are modest, scaling as O(N2) for PQ
and O(N3) for PH, N being the number of active orbitals in the
calculation. The computational effort scales asymptotically as
O(N4) for both models.

0021-9606/2016/145(13)/134110/11/$30.00 145, 134110-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
http://dx.doi.org/10.1063/1.4964317
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:susi.lehtola@alumni.helsinki.fi
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:john.parkhill@gmail.com
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
mailto:mhg@cchem.berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4964317&domain=pdf&date_stamp=2016-10-07


134110-2 Lehtola, Parkhill, and Head-Gordon J. Chem. Phys. 145, 134110 (2016)

Another widely used approach for strong correlation is the
density matrix renormalization group (DMRG) method,21–25

which is exact in principle and which also offers polynomial
scaling with respect to system size. However, the method has a
significant prefactor: the storage and computational costs scale
as25,26 O(M2N3) and O(M3N3) +O(M2N4), respectively,
where M is the number of states kept in the calculation,
the exact solution being recovered at the limit M to ∞.
Furthermore, as a fundamentally one-dimensional approach,
DMRG has a history of being hard to use due to issues with
orbital ordering, although automatic orbital ordering schemes
have recently made DMRG calculations easier to perform.
We note that other approaches for a compact description of
strong correlation have also been suggested, such as the CC
valence bond (CCVB) method,27–29 extended CC,30–32 and the
multifacet graphically contracted function method.33,34

In order to apply MCSCF, DMRG, PQ, or PH to
studies of chemical systems, the additional description of
dynamic correlation is usually of utmost importance. While
MCSCF and DMRG typically rely on a two-pronged approach
to dynamic correlation through CI, CC, or perturbative
approaches, dynamic correlation can be treated on the same
footing as static correlation in PQ and PH,35 enabling the
two types of correlation to interact. Note that perturbative
approaches can be used as well in combination with PQ36

and PH.
What unites MCSCF, DMRG, PQ, and PH is that the

choice of the set of active orbitals is a problem, and often
the orbitals need to be optimized in order to fully capture
static correlation effects. Orbital optimization is hard for PQ
and PH, but earlier experience15 suggests that in many cases
orbitals optimized at the much simpler PP level of theory
might be sufficient for a wide variety of applications. Thus,
in the present work, only localized Hartree–Fock orbitals and
PP optimized orbitals will be considered. Orbitals optimized
with CCVB or unrestricted Hartree–Fock natural orbitals37–39

might also prove useful. However, because the feasible size of
the active space is much larger in PQ and PH than in MCSCF
or even DMRG, it is likely that for full-valence calculations,
the choice of the active space orbitals should not turn out to
be an impediment to the use of the PQ and PH models.

While encouraging results have been achieved with PQ
and PH, their existing implementations (while exhibiting the
correct O(N4) scaling with system size) have a too large
prefactor to allow their application to studies of chemical
problems. Because the previous implementations are based
on the use of sparse tensor algebra,40 it is worth asking if the
prefactor could be reduced by the use of dense tensor storage,
instead. Moreover, the existing sparse tensor implementation

does not take advantage of the mathematical structure of
the PQ and PH methods, which results in extra work for
bookkeeping and prevents efficient compiler optimization
from taking place.

In the present work, we describe the dense tensor
implementation of the PQ and PH models and benchmark the
resulting code against the previous implementation on linear
polyenes. Novel applications of the PQ and PH models are
demonstrated for the H50 chain, and the results are compared to
DMRG. Applications of PQ and PH to the strongly correlated
π space of the polyacene series are also presented. The
organization of the manuscript is the following. In Sec. II,
we illustrate how the truncation of CC theory is performed.
Next, in Sec. III, we describe various aspects of how the
procedure has been carried out in practice. In Sec. IV, we
present the scaling of the new code when applied to linear
polyenes, and the energies for the polyenes, the dissociation
of the H50 chain, as well as the polyacenes for which natural
occupation numbers are also presented. The study concludes
with a summary and brief discussion.

II. THEORY

The theory behind the CC approach is well established and
shall not be discussed further here.41,42 The starting point for
the present truncation is the CC equations in spin-integrated
form, consisting of tensors that belong to a certain spin block,
such as the αβ block of the double excitation amplitudes,
where α and β denote spin-up and spin-down, respectively.
As a truncation of CC theory, the models in the present
hierarchy inherit all the beneficial properties of CC such as
size extensivity, but also its drawbacks such as non-variational
behavior in cases where the excitation rank in CC is not high
enough to describe the static correlation effects.

In the following, we will omit the spin indices, because the
discussion applies to all spin blocks of all tensors that appear
in CC theory. We will mostly be focusing on the PQ model, as
it already illustrates all of the necessary aspects for a general
truncation method without being overly complicated. The
division of the orbital space that is used in the present work is
illustrated in Figure 1. The system, in a singlet reference state,
is composed of a set of inactive core orbitals, a set of N active
occupied orbitals, a set of N active virtual orbitals, and a set
of inactive virtual orbitals. The tensors such as the excitation
amplitudes t, the two-electron integrals v , the de-excitation
amplitudes λ, and the one- and two-electron density matrices
γ and Γ are truncated using a block decomposition. For
instance, for PQ, the double excitation tensor is expanded as

tabi j =
N

P=1

tPP
PPδiPδ jPδaPδbP +

N
P,Q=1
P,Q

tPQPPδiPδ jPδaPδbQ +

N
P,Q=1
P,Q

tQP
PPδiPδ jPδaQδbP +

N
P,Q=1
P,Q

tPP
PQδiPδ jQδaPδbP

+

N
P,Q=1
P,Q

tPP
QPδiQδ jPδaPδbP +

N
P,Q=1
P,Q

tPQ
PQ

δiPδ jQδaPδbQ +

N
P,Q=1
P,Q

tPQ
QP

δiQδ jPδaPδbQ +

N
P,Q=1
P,Q

tQQ
PP δiPδ jPδaQδbQ, (1)
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FIG. 1. Division of the orbital space. The active space orbitals are numbered
with the value of the pairing label. The hole indices are reversed, because the
strongest coupling typically occurs between the highest occupied and lowest
unoccupied orbitals.

where i and j denote occupied orbitals, a and b denote
virtual orbitals, P and Q are pairing labels that run over the
active space, and δPQ is the Kronecker delta. It is easy to
see that Equation (1) for the double excitation amplitudes
agrees with the original definition of the PQ model as the set
of amplitudes ta1...an

i1...in
that satisfy {ak, ik} ∈ {pair1} × {pair2}.

As this kind of notation is unusual to most chemists, we will
try to clarify the meaning of Equation (1) in the following.
In the convention adapted above, all the orbitals in the alpha
and beta occupied and virtual spaces are numbered from 1
to N , which is also the range spanned by the pairing labels.
Because we have assumed that the spin has been integrated
out, all the quantities in Equation (1) are scalar numbers. The
indices i, j,a,b are fixed by the left hand side of the equation,
which represents the element of the excitation tensor under
decomposition. Applying the decomposition to, for example,
the element tcc

kk
with k , c will only yield a contribution from

the last term of Equation (1) (which equals tcc
kk

), because the
first term would require k = c and all the other terms would
contribute only for P = Q which has been excluded in the
summations.

The restriction to identically sized active occupied and
virtual spaces becomes apparent here, as the same pairing
labels cannot be used for spaces of different sizes. Each
value of a pairing label corresponds to a quartet of orbitals:
the alpha and beta occupied orbital and the alpha and beta
virtual orbital. The tensor decomposition in Equation (1) is
known in mathematics as a block decomposition.43,44 For
PH, in addition to the 8 cases shown in Equation (1), one
obtains 63 more, corresponding to all the inequivalent ways
of distributing three labels to four indices: for instance, in PQ
tQP
QQ

is equivalent to tPQPP as the dummy summation indices P
and Q can be interchanged. Having enumerated the different
subtensor representations for all the necessary tensors, one
proceeds by inserting them into the CC equations and by

performing the summations over the Kronecker deltas. When
this is done, one ends up with a formulation of PQ or PH
theory in terms of the dense subtensors. For example, in the
case of PH, the original hextuple excitation operator Tabcde f

i jklmn
,

which is a rank-12 tensor, is reduced to a set of rank-3 tensors,
and any summations that are left over are only with respect to
the pairing labels. While, in principle, the doubles contribution
to the opposite spin correlation energy

Ec ←

i jab

tabi j v
ab
i j (2)

has 8 × 8 = 64 distinct subtensor contributions in PQ (and
5041 in PH), it is seen that due to orthogonality of the
Kronecker indices, the PQ expression becomes simply

Ec ←

P

tPP
PPv

PP
PP +

N
P,Q=1
P,Q

tPQPPv
PQ
PP

+

N
P,Q=1
P,Q

tQP
PPv

QP
PP +

N
P,Q=1
P,Q

tPP
PQv

PP
PQ

+

N
P,Q=1
P,Q

tPP
QPv

PP
QP +

N
P,Q=1
P,Q

tPQ
PQ

vPQ
PQ

+

N
P,Q=1
P,Q

tPQ
QP

vPQ
QP
+

N
P,Q=1
P,Q

tQQ
PP v

QQ
PP . (3)

The limitation to P , Q in Equation (3) and similar equations
can be easily lifted by establishing a convention in which all
diagonals of the subtensors vanish.

One can identify a set of 8 subtensors in Equations (1)
and (3): tPP

PP(P), tPQPP (P,Q), tQP
PP (P,Q), tPP

PQ(P,Q), tPP
QP(P,Q),

tPQ
PQ

(P,Q), tPQ
QP

(P,Q), and tQQ
PP (P,Q). The first term in

Equation (1), tPP
PP(P), can be identified as the PP amplitude

(singles are usually not included in the definition of PP as the
orbitals are normally optimized). As the simplest truncation
(exactness for two electrons in two orbitals), PP has a special
place within the hierarchy of the truncated models. Because
PP couples every occupied orbital to a specific virtual orbital,
the amplitudes are independent and can be solved for in
a closed form. Orbital optimization can then be done in a
routine fashion even for large systems.45 The terms tPP

PP(P),
tPQ
PQ

(P,Q), and tPQ
QP

(P,Q) in Equation (1) are the basis of the
imperfect pairing (IP) model,46 which is considerably more
complicated than PP but has still been originally been derived
by hand, and for which orbital optimization is still a routine
task.

However, in addition to the terms in Equation (1) that
represent double excitations, PQ also includes single, triple,
and quadruple excitations, and unlike PP and IP, PQ is not
restricted to opposite-spin correlation, so the derivation of
the equations for PQ would be a challenging task by hand.
Fortunately, it is an ideal task for a computer.

The antisymmetry between same-spin indices can be used
to eliminate redundant storage of equivalent contributions
(e.g., tQP

PQ
= −tPQ

PQ
for the αα and β β blocks in Equation (1)).

The resulting storage costs for the subtensors that appear at
the PP, PQ, and PH levels of theory are shown in Table I.
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TABLE I. Storage costs for the t and λ amplitudes, one-electron integrals f ,
two-electron integrals v, and one- and two-particle density matrices γ and Γ,
respectively, that appear in unrestricted PP, PQ, and PH. PP includes all rank-1
subtensors, PQ includes all rank-1 and rank-2 subtensors, and PH includes all
rank-1 through rank-3 subtensors.

Rank-1 Rank-2 Rank-3

t/λ 3 17 64
f 10 6 0
v 13 109 96
γ 6 6 0
Γ 13 107 96

For instance, for PQ, the storage cost is 17N2 + 3N for
the amplitudes, 113N2 + 19N for the density matrices, and
115N2 + 23N for the integrals. The figures in Table I also
include the classes of integrals that are only needed for
the calculation of the CC pseudoenergy; for a t amplitude-
only program, the amount of integrals would be slightly
smaller. Table II details the distribution of the total amplitude
subtensors into the individual excitation ranks.

Due to the truncation of the amplitudes and integrals,
PP, PQ, and PH are not invariant to rotations in the
occupied–occupied or virtual–virtual blocks, unlike their
parent CC theories. The same will also apply perfect octuples
(POs) theory, which would be a truncation of CC theory with
single through octuple excitations (CCSDTQ5678) based on
exactness for eight electrons in eight orbitals. This is somewhat
counterintuitive, because in contrast to PP, PQ, and PH, the
full set of one- and two-electron integrals is used in PO,
encoding in principle all there is to know about the system.
But, the triple through octuple excitation operators would still
not be fully described within PO, as the truncation is based on
orbital labels, the used set of orbitals would still be an issue in
PO. However, seeing as the issues with the choice of orbitals
clearly ease up going from PP to PQ to PH, PO might not be
very sensitive to the orbitals after all.

Due to the one-to-one coupling of occupied and virtual
orbitals, PP (and IP) is obviously dependent on the relative
ordering of the occupied and virtual orbitals. But, the same
property also applies to the PQ and PH models. For instance,
if one interchanges the virtual orbitals 2 and 3, the PQ doubles
amplitude t12

12 in the original numbering would become t13
12 in

the renumbered system. However, t13
12 is not included in the

PQ model, so the description of the system has changed. By

TABLE II. Number of amplitude subtensors at different levels of truncation,
including all spin blocks. PP includes all rank-1 subtensors, PQ includes all
rank-1 and rank-2 subtensors, and PH includes all rank-1 through rank-3
subtensors.

Rank-1 Rank-2 Rank-3

T1/Λ1 2 2
T2/Λ2 1 9 8
T3/Λ3 5 29
T4/Λ4 1 21
T5/Λ5 5
T6/Λ6 1

a similar analysis, it is easy to see that the dependence on
the orbital orderings holds for all tensors that are truncated
in the subtensor expansion. Due to this common property,
we refer to the hierarchy of the PP, PQ, and PH (as well as
higher) models as the perfect pairing hierarchy to underline
the pairing of the orbital quartets, formed of occupied and
virtual alpha and beta orbitals, at each level of theory.

The origin of the dependence on the relative ordering
of the occupied and virtual orbitals is easy to understand on
physical grounds. In order to reduce the computational scaling,
we wished to retain only the strongest interactions between
orbitals. The pairing of occupied orbitals to virtual orbitals
introduces a sense of locality in the model that results in fast
convergence of the truncation, as in the usual local dynamic
correlation methods.47,48 The models in the PP hierarchy are,
however, invariant to swaps between pairs (i.e., quartets) of
orbitals.

The models in the PP hierarchy assume a pairing of the
occupied and virtual orbitals before the calculation is began.
While PP optimized orbitals will produce the best possible
pairing in the sense of reproducing the lowest energy at the PP
level of theory, it is not clear that the PP orbitals, which usually
turn out to be well-localized, will be optimal for the PQ or PH
models: for instance, in polyacenes, the optimal orbitals for
CCVB (which describes more strong correlation than PP) turn
out to be a bit more delocalized than PP orbitals.29 In all our
experience so far, the optimal orbitals have turned out to be
localized. However, as stated in the Introduction, variational
optimization of the orbitals for PQ and PH is hard, which
means that one may need to resort to approximate methods of
obtaining localized orbitals with matching virtual orbitals. But,
this may not be a problem after all: while orbital optimization
is necessary at the PP level of theory due to its aggressive trun-
cation (which also makes the optimization problem tractable),
it is plausible that the use of optimal orbitals is less important
at higher levels of the hierarchy, because at every step the
models become closer to FCI which is orbital invariant.
Reasonable orbitals can be obtained from a Hartree–Fock
or density-functional theory calculation by localizing the
occupied orbitals using, e.g., the Foster–Boys49 (FB),
Edmiston–Ruedenberg50 (ER), or Pipek–Mezey51,52 (PM)
criteria, after which matching virtual orbitals can be obtained,
e.g., by using the Sano procedure.53 In the present work, both
PP orbitals and generalized Pipek–Mezey orbitals52 are used.

III. IMPLEMENTATION

We have written a C++ program that generates C++
source code for the PP, PQ, and PH models, starting from
CC equations in spin-orbital form. In the generated code,
the subtensors are stored in memory separately as arrays.
Subtensor symmetry, like tPQ

PQ
(P,Q) = tPQ

PQ
(Q,P) for the same-

spin doubles excitation amplitudes, is not used in the storage.
As is usual for CC theory, the implementation is based on
the use of intermediates in evaluating nested tensor products,
such as in the singles contribution to the doubles amplitude

tabi j ←

klcd

tak tbl tci t
d
j v

cd
kl .
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Pairings are also generated for the intermediates, and the index
antisymmetries of the intermediates are used to eliminate
labelings that vanish by Pauli exclusion. The truncation of
the intermediates and integrals is controlled separately from
that of the excitation amplitudes. For PQ the integrals are
truncated to 2 pairs while the intermediates can be truncated
to either 2 or 3 pairs, and for PH a 3-pair truncation is always
used. As a result, the solution of PQ will scale as O(N3) or
O(N4), depending on which truncation of the intermediates is
used, and PH will also scale as O(N4). In the present work,
both PQ and PH use 3-pair intermediates, yielding asymptotic
O(N4) scaling for both models.

The program performs the pairings by brute force by
looping over all the necessary index permutations of the
amplitude diagrams in spin-orbital form, performing the
integration over spin into different spin blocks, and performing
the pairing for each block separately. The generation of the
PQ model was found to take roughly 3 min on a single core
of a workstation, while generation of the PH model took 14.5
days on 32 cores on a cluster node. Almost all the time for
the PH model was spent in pairing the hextuple t excitation
amplitudes.

The equations for the subtensor contributions are saved
on disk in human-readable form. OpenMP parallelization is
performed over the individual contributions. For example,
the PQ model has 4529 different contributions to the t
amplitudes, while PH has 213 234 different contributions
to the t amplitudes. Altogether, the generated PQ equations
take 27 megabytes of disk space in 10 080 files, while the PH
equations take four gigabytes of disk space in almost a quarter
million files.

Besides merging contributions that require identical sets
of intermediates, no attempt has been made to search for an
optimal reduced set of contributions. This procedure reduces
the amount of separate contributions by roughly one half
from the numbers given above. While common subexpression
elimination techniques commonly performed in conventional
CC theory could clearly be used here, it appears that because
of the introduction of a large variety of subtensors, more
optimal sets of intermediates could be found with a thorough
graph search.

Only a single copy of the integrals is kept in memory. A
disk based direct inversion in the iterative subspace54 (DIIS)
approach is used to accelerate the convergence of the CC
amplitudes.55

In contrast to conventional CC theory, the pairing of
the indices introduces elementwise (Hadamard) products in
the pairwise tensor products. Now, while the number of
permutations of a rank-n tensor increases as n!, the number
of possible products of two rank-n tensors would increase as
(n!)2, which becomes unmanageable even for relatively small
n. For this reason, our implementation is based on hardcoded
C++ computation kernels for each permutationally invariant
type of contribution, where indices are either fixed (output
index appears only on one of the two tensors), elementwise
multiplied over (output index appears on both tensors), or
contraction indices (index appears on both tensors but is not
an output index). The kernels are machine generated in an
external library, both as a for-loop-only implementation and as

code calling basic linear algebra subprogram (BLAS) routines
wherever applicable. When the library is generated, the two
kinds of implementations are benchmarked to determine
which one to use for a given kernel.

The two-electron integrals are evaluated in the program
from B matrices that can be generated by the resolution of the
identity56 (RI) or Cholesky decomposition57 (CD) techniques,
as their integral transforms scale more favorably than that
of the traditional two-electron integrals, and as the RI/CD
representation allows for cherrypicking of the wanted integral
elements. The Fock and RI/CD B matrices may currently
be obtained from either Q-Chem58,59 or ERKALE.60,61 Both
programs have been utilized in the present work: Q-Chem for
calculations using PP orbitals and ERKALE for calculations
with localized Hartree–Fock orbitals. In the latter case, the
active occupied orbitals are localized using the generalized
Pipek–Mezey method52 using the intrinsic atomic orbital
partial charge estimate.62 The gradient descent method used
for the localization has been described elsewhere.63 After
the occupied space has been localized, corresponding virtual
orbitals are obtained for each active occupied orbital using
the Sano procedure.53 All calculations performed with Q-
Chem used exact integrals for the formation of the Fock
matrices, and RI or CD for forming the B matrices for the
two-electron integrals for the CC procedure. The calculations
performed with ERKALE used only Cholesky integrals for
both the Fock and B matrices. To ensure near-exactness, a very
small truncation threshold (10−8) was used for the Cholesky
procedure both in ERKALE and Q-Chem.

IV. RESULTS

A. Scaling

To demonstrate the scaling of the novel implementations
of PQ and PH with respect to the original implementation of
the PQ model, we study full-valence calculations on linear
all-trans polyenes CnHn+2 with the geometries described in
Ref. 26. The STO-3G basis set64 and PP optimized orbitals
are used, and the two-electron integrals are formed with RI
using the auxiliary basis set corresponding to the correlation
consistent double-ζ basis set.65 The timings shown correspond
to the use of a single core on one of the authors’ (S.L.)
desktop computer with an Intel Core i7-4770 processor and
32 gigabytes of memory. No data are shown for sparse
PH, because due to inefficiencies in its implementation,
getting sensible scaling data would have required hundreds of
gigabytes of memory.

While the use of local PP orbitals in a quasi-1D molecule
clearly would favor algorithms employing sparsity, the results
shown in Figure 2 emphatically show the tremendous speedup
achieved with the dense tensor formalism that does not
use screening of small elements at all. The distribution
of the computational work with the PQ model is shown
in Table III. As is seen, most of the work in the model
is performed in the multiplications, with permutations also
contributing a nontrivial fraction of the total runtime. The
compute kernels and permutations account altogether for 85%
of the runtime of the model, with another 11% being spent
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FIG. 2. Scaling of the new dense tensor implementations of PQ and PH
compared to the earlier implementations40 based on sparse tensors. Note the
logarithmic scale.

on dynamic memory management. A small fraction of the
total runtime for large systems is lost due to inefficiencies
in the present implementation, which are also obvious in
Figure 2 for small systems for which the time for solution
is quasi-constant. (Due to the larger size of the equations,
the inefficiencies are even larger for PH.) The scaling
plot also shows some bumps, which are likely artifacts
of background processes running simultaneously on the
workstation.

The mathematical scaling of the models is determined
by the individual multiplication kernels that appear in the
model. The individual multiplication kernels for the three-pair
intermediate PQ model are shown in Table IV. Here, all the
kernels that contain a contraction use BLAS implementations.
For instance, the heaviest kernel in Table IV is implemented
with a dgemv call within a for-loop over x, over which there is
an elementwise product. Similarly, the second-heaviest kernel
is also a dgemv call inside a for-loop over the y index. The
7th heaviest kernel is just a single dgemm call. As can be

TABLE III. Distribution of computational effort in the solution of the PQ
model for C52H54. The timings include all steps in solving the PQ model: the
solution of the t and λ amplitudes as well as the formation of the one- and
two-particle density matrices γ and Γ, respectively.

Time spent in multiplication kernels
(Table IV)

3617.84

Time spent in addition kernels 42.34
Time spent in permutations 2331.36
Memory allocation 761.73
Integrals 9.27
Diagonal zeroing 39.72
Denominator application 0.17

Sum of above 6802.40

Total elapsed wall time 7047.52

TABLE IV. Multiplication kernels that appear in the three-pair intermediates
PQ model with timings for the C52H54 molecule.

Kernel Time (s) Scaling BLAS

o(x)← l(x)r (x) 0.00 N No
o(x, y)← l(x, y)r (x, y) 0.01 N 2 No
o(x)← l(x)r (x) 0.05 N No
o(x, y)← l(x)r (y) 0.07 N 2 No
o(x)← yl(x, y)r (y) 0.56 N 2 Yes
o(x, y, z)← l(y, z)r (x) 1.27 N 3 No
o(x, y)← l(x, y)r (y) 13.51 N 2 No
o(x)← yl(x, y)r (x, y) 21.25 N 2 Yes
o(x, y)← l(x, y)r (x) 23.31 N 2 No
o(x, y)← zl(x, z)r (y, z) 24.90 N 3 Yes
o(x, y, z)← l(x, y, z)r (z) 28.69 N 3 No
o(x, y)← l(x, y)r (x, y) 47.89 N 2 No
o(x, y, z)← wl(y, z, w)r (x, w) 83.04 N 4 Yes
o(x, y, z)← l(x, z)r (y, z) 110.31 N 3 No
o(x, y, z)← l(x, y, z)r (x) 125.27 N 3 No
o(x, y, z)← wl(x, y, w)r (z, w) 127.99 N 4 Yes
o(x, y, z)← l(x, y, z)r (x, z) 145.91 N 3 No
o(x, y, z)← l(x, y, z)r (x, y) 151.28 N 3 No
o(x, y, z)← l(x, y)r (y, z) 501.45 N 3 No
o(x, y, z)← l(x, y)r (x, z) 502.06 N 3 No
o(x, y)← zl(x, y, z)r (y, z) 521.73 N 3 Yes
o(x, y)← zl(x, y, z)r (x, z) 1187.29 N 3 Yes

seen from the kernels, PQ on C52H54 with an active space
of 202 electrons in 202 orbitals is still in the cubic scaling
regime, as the heaviest kernels on the list are cubic scaling. In
contrast, PH on C14H16 with an active space of 72 electrons
in 72 orbitals is on the verge of turning from cubic to quartic
scaling, as while the heaviest kernel (3.3 processor hours)
is cubic scaling, the second-heaviest kernel (2.7 processor
hours) is quartic scaling.

The novel implementation of PQ is fast even for large
orbital spaces, and typically much greater effort is spent in
the orbital optimization with either the self-consistent field
method or PP, as well as the integral transforms: detailed
timings for the different steps in the calculation are shown in
Table V. As can be seen from Figure 2, the PQ calculation
for an active space of 140 electrons in 140 orbitals can be
performed in a matter of minutes on a single core with the
current version of the code that has not yet been heavily
optimized. Even lower scaling could also be obtained by
truncating the intermediates in PQ to two pairs, but this would
also limit the accuracy of the model.14

B. Accuracy

To study the accuracy of the generated models in the
perfect pairing hierarchy, in the following, we apply the PP,
PQ, and PH models on the π space of the polyenes used
above for the scaling study, the symmetric and asymmetric
dissociation of the H50 chain, as well as the strongly correlated
π space of polyacene molecules. Hydrogen chains and
polyacenes are standard chemical models for testing models
of strong correlation.66–69 The π space correlation energies for
the polyenes are shown in Table VI, from which the accuracy
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TABLE V. Comparison of wall timings in seconds for the computational procedure of PQ and PH as a function of active orbitals norb. The third through fifth
column detail the base procedure: SCF solution followed by the PP orbital optimization and the formation of the RI B matrix, while columns 6, 7, 8, and 9
(10, 11, 12, and 13) give the time needed to compute the integrals for PQ (PH), the total time for the t amplitude iterations needed to solve PQ (PH), as well as
the fraction of total runtime in percent spent in permutation operations and floating point compute kernels, respectively.

Molecule norb SCF PP B matrix PQ ints PQ t PQ perm PQ flop PH ints PH t PH perm PH flop

C4H6 22 0.23 0.35 0.68 0.00 66.63 1.3 1.8 0.05 6 942.94 4.8 14.2
C6H8 32 0.27 0.73 0.86 0.01 75.42 1.8 3.9 0.15 12 228.76 8.8 28.2
C8H10 42 0.35 1.45 1.13 0.03 90.27 2.7 7.5 0.39 20 436.82 12.8 41.9
C10H12 52 0.44 2.37 1.65 0.06 105.08 4.3 12.7 0.79 39 056.60 16.8 48.9
C12H14 62 0.64 3.65 2.47 0.11 120.68 5.6 17.8 1.49 59 499.11 19.2 54.5
C14H16 72 1.10 5.05 3.89 0.18 144.63 7.1 21.7 2.72 83 323.67 20.4 58.4
C16H18 82 1.71 7.10 5.89 0.26 144.47 9.2 29.8
C18H20 92 2.48 9.92 8.83 0.37 169.61 11.9 34.9
C20H22 102 3.54 13.07 13.56 0.48 197.28 13.7 39.6
C22H24 112 6.98 19.06 18.81 0.68 225.59 15.5 44.0
C24H26 122 7.83 24.13 26.78 0.89 274.37 18.5 47.5
C26H28 132 9.11 30.51 37.99 1.11 332.18 20.6 50.0
C28H30 142 10.53 37.52 55.58 1.40 400.48 22.5 52.8
C30H32 152 12.07 46.01 70.23 1.73 510.74 26.5 51.5
C32H34 162 13.64 55.16 104.76 2.11 610.46 27.1 53.4
C34H36 172 15.62 66.35 130.54 2.51 713.33 27.6 54.9
C36H38 182 17.26 77.59 161.94 2.99 847.72 28.5 56.1
C38H40 192 19.32 94.63 242.02 3.50 1055.37 31.7 55.3
C40H42 202 21.33 107.16 339.07 4.14 1351.42 30.8 51.7
C42H44 212 25.34 125.60 436.98 4.77 1566.79 32.0 51.7
C44H46 222 27.52 143.47 586.43 5.48 1888.20 32.5 51.4
C46H48 232 30.12 166.73 1108.01 6.28 2020.66 32.0 51.7
C48H50 242 33.16 188.38 1366.80 7.31 2343.37 32.4 51.6

of the PP hierarchy already becomes apparent: even for the
largest system, PH captures 99.3% of the full correlation
energy.

Next, while H50 is chemically uninteresting, it is an
excellent system for studying models for strong correlation.
When the interatomic separation is increased, the system
switches from a metallic state to an insulating state with strong
multireference character in the intermediate region that is not
captured by CC with full single and double (CCSD) or CC
with full single and double and perturbative triple excitations

TABLE VI. Polyene π space correlation energy in the STO-3G basis set
with generalized Pipek–Mezey localized occupied orbitals paired with Sano
virtuals with the PP, PQ, and PH models, compared to DMRG values from
Ref. 26. The size of the active space coincides with the number of C atoms in
the molecule. Note that PQ and PH are exact for the (4e,4o) system in C4H6.

Molecule PP PQ PH DMRG

C4H6 −0.080 460 −0.091 502 −0.091 502 −0.091 502
C8H10 −0.143 334 −0.172 876 −0.176 908 −0.177 127
C12H14 −0.205 042 −0.253 097 −0.261 466 −0.262 297
C16H18 −0.266 492 −0.333 088 −0.345 899 −0.347 403
C20H22 −0.327 882 −0.413 030 −0.430 310 −0.432 498
C24H26 −0.389 257 −0.492 961 −0.514 717 −0.517 591
C28H30 −0.450 629 −0.572 889 −0.599 123 −0.602 684
C32H34 −0.512 000 −0.652 816 −0.683 528 −0.687 777
C36H38 −0.573 371 −0.732 743 −0.767 934 −0.772 870
C40H42 −0.634 742 −0.812 669 −0.852 338 −0.857 963
C44H46 −0.696 112 −0.892 595 −0.936 743 −0.943 056
C48H50 −0.757 483 −0.972 521 −1.021 147 −1.028 149

(CCSD(T)).26 In the symmetric dissociation, the equispaced
chain is stretched apart into noninteracting H atoms. In the
asymmetric dissociation, the system is composed of 25 H2
molecules with bond length R = 1.4a0, where a0 is the Bohr
radius, which are placed on the z axis, and the energy is
studied as a function of the intermolecular distance. Here, the
STO-6G basis set64 and PP optimized orbitals are used. The
two-electron integrals for PQ and PH are generated with CD.
The DMRG data have been taken from Ref. 26.

The obtained total energies for asymmetric dissociation
are shown in Figure 3. For large intermolecular separation,
the system is essentially composed of noninteracting H2
molecules, for which already PP is exact. When the molecules
are pushed closer, the differences in the performance of the
models become apparent: while PP quickly starts deviating
from the exact solution, PQ and PH stay more accurate on
a wider range of correlation strength. This is also clearly
visible in the fraction of correlation energy captured by the
models shown in Figure 4. For the most strongly correlated
geometry, in which the atoms are equidistant, PP, PQ, and PH
capture 35.2%, 63.9%, and 87.9% of the correlation energy,
respectively. PH becomes practically exact (disagreeing from
the DMRG correlation energy by at most 1%) at the distance
d = 2.0a0, where it captures 99.2% of the correlation energy.
For PQ, practical exactness is reached at d = 2.8a0 with 99.4%
of the correlation energy retained. PP reaches exactness at
d = 4.2a0, where it describes 99.0% of the correlation.

The symmetric dissociation is a much harder problem,
but even here the models fare seemingly well, as shown by
the total and correlation energy plots in Figures 5 and 6,
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FIG. 3. Asymmetric dissociation of the H50 chain into equidistant hydrogen
molecules with fixed bond length R = 1.4a0.

respectively. As before with the asymmetric stretch, a clear
hierarchy is again seen between the models, with the most
strongly correlated geometry showing 22.0%, 47.6%, and
80.9% of the correlation energy being captured by PP,
PQ, and PH, respectively. As the chain is pulled apart, the
models quickly become more accurate, PH reaching practical
exactness at separation d = 2.8a0 where it captures 99.0% of
the correlation energy. Unfortunately, for larger interatomic
spacings, the CC iterations diverged for PQ and PH (both with
the zero and PP guess for the amplitudes); thus, some data
points are missing. However, because PP appears to become
better and better for large separations, the divergence issue
might be solved by the use of a better preconditioner.

The linear polyacenes are known to exhibit multiradical
behavior in the π space.70 Next, we will try to match the

FIG. 4. Fraction of correlation energy captured by the PP, PQ, and PH models
for the asymmetric dissociation of the H50 chain.

FIG. 5. Symmetric dissociation of the H50 chain into equidistant hydrogen
atoms.

DMRG energies in the STO-3G basis from Ref. 70 using
their geometries. Generalized Pipek–Mezey localized active
occupied orbitals paired with Sano virtuals were used. The
energies obtained with the PP, PQ, and PH models compared
against the DMRG reference are shown in Table VII. Here, the
models capture 44%–59%, 69%–88%, and 96%–99% of the
DMRG correlation energy for PP, PQ, and PH, respectively.
We can also compare the natural occupation numbers produced
by PP, PQ, and PH against the ones from DMRG; this is done
in Figure 7. While PP and PQ successfully capture a significant
amount of the correlation energy, they fail to capture the strong
correlation effects in the π space of the polyacenes. For PP,
the occupation number plot has an almost step function like
character, while PQ reproduces some curvature but is still
far from the DMRG reference. In contrast, PH reproduces

FIG. 6. Fraction of correlation energy captured by the PP, PQ, and PH models
for the symmetric dissociation of the H50 chain.
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TABLE VII. Polyacene π space correlation energy in the STO-3G basis set with generalized Pipek–Mezey
localized occupied orbitals paired with Sano virtuals with the PP, PQ, and PH models, compared to DMRG
values from Ref. 70. Note that PQ and PH are exact for the (4e,4o) system in C4H6.

Molecule Active space PP PQ PH DMRG

2acene (10e,10o) −0.104 902 −0.157 684 −0.177 098 −0.178 294
3acene (14e,14o) −0.144 544 −0.213 115 −0.249 895 −0.254 307
4acene (18e,18o) −0.190 182 −0.279 345 −0.325 491 −0.332 661
5acene (22e,22o) −0.228 839 −0.335 088 −0.401 098 −0.412 627
6acene (26e,26o) −0.265 084 −0.393 537 −0.479 533 −0.495 683
8acene (34e,34o) −0.322 287 −0.495 219 −0.641 147 −0.668 526
10acene (42e,42o) −0.382 622 −0.595 840 −0.803 505 −0.838 580
12acene (50e,50o) −0.444 834 −0.698 165 −0.968 521 −1.007 378a

aDMRG value of Ref. 70 was not converged.

FIG. 7. Polyacene π space natural orbital occupation numbers. (a) PP. (b) PQ. (c) PH. (d) DMRG data from Ref. 70.

a clear signal of strong correlation that is strikingly similar
to the DMRG reference values. Quantitative agreement with
DMRG is not, however, reached, which we primarily attribute
to the use of non-optimal orbitals. Indeed, other choices
for the orbital localization method (see the supplementary
material) demonstrate that a different choice for the active
space orbitals affects the natural orbital occupation numbers,
as well as the fraction of energy captured. Furthermore,
as generalized Pipek–Mezey localized Hartree–Fock orbitals
were found to yield better energies than PP optimized orbitals
at the UPH level of theory, we conclude that as has been
seen for CCVB,29 PQ and PH presumably need orbitals
that are less localized than those reproduced by PP, and the
best choice for the (non-optimized) orbitals is still an open
question.

V. SUMMARY AND DISCUSSION

We have described the low-scaling dense tensor
implementation of a family of truncated CC methods and
generated efficient implementations of the PQ and PH models.
High-rank tensors are expressed in terms of a considerable
number of subtensors, and summations over Kronecker delta
indices are performed before computer code is generated. As
straightforward truncations of CC theory, the models inherit
all the properties of the parent theory, such as size extensivity,
and pre-existing machinery for the calculation of properties
could be used.

We have demonstrated impressive speedups (of roughly
200-500 times) compared to the earlier implementation
that already had the correct O(N4) scaling for PQ, and

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-029638
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-029638
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demonstrated the rapid convergence of the PP, PQ, and PH
models in describing strong correlation with applications to
linear, all-trans polyenes, the dissociation of the H50 chain, as
well as linear polyacenes. Although only minimal basis sets
have been used in the present work due to limited availability
of high-level reference data, the runtime of the models after
integral transformation is basis set independent due to the use
of an active space (and the lack of orbital optimization that
has not been pursued in the present work). While the models
are already computationally fast enough to allow their use in
studies of chemical problems, we believe that they can still be
made even faster by a variety of approaches. Most importantly,
the role of the intermediates in the paired theories is clearly
different from the intermediates in full-rank CC theory. A
thorough procedure for identifying common factors between
different contributions, as well as a graph-type approach for
determining the optimal set of intermediates, could plausibly
yield a further order of magnitude speedup to the existing
implementation. In the case of closed-shell molecules, spin
summation of the model would reduce storage costs for the
amplitudes by roughly 50% and cut down on computational
costs as well. A reorganization of the way the amplitude
updates are performed might yield convergence in a smaller
number of iterations.71 Because of the mathematical structure
of the models, the storage of the tensors is already distributed,
and massively parallel implementations of the models could
be pursued.

While we have demonstrated that the truncation hierarchy
advocated in the present work allows for applications to large
systems, it is further important to note that in systems with
little static correlation, it is possible to further speed things up.
While in PQ and PH the tensors that correspond to excitations
of different ranks have similar storage requirements (within
an order of magnitude) as shown in Table II, the runtime tends
to be dominated by the highest excitations due to the larger
amount of antisymmetrizations necessary in the CC diagrams.
Thus, should the higher excitation operators turn out to be
insignificant, disabling them can yield further speedups. For
example, the PH model with only single and double (and
triple and quadruple) excitations enabled is essentially a local
CCSD (CCSDTQ) approach, if the treatment is based on
localized orbitals.

As we have seen in the application to the acene series,
the choice of orbitals may be important for the perfect pairing
hierarchy of models, which we will address in future work. In
addition, we wish to extend the PQ and PH models to open-
shell systems, as well as to include the description of dynamic
correlation. The similarities between the PP truncation
hierarchy and local CC methods could also be further explored.

SUPPLEMENTARY MATERIAL

See supplementary material for results on the polyacenes
with various choices for the active space orbitals.
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