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ABSTRACT OF THE DISSERTATION 

 

Gene expression deconvolution and co-expression methods  

by 

 

Chaochao Cai 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2013 

Professor Steve Horvath, Chair 

 

Gene expression analysis provides the link between genome information and phenotype, and is 

widely used in biomedical research. With the rapid advance of high-throughput technology, it is 

feasible to measure global mRNA expression in multiple samples at low cost. Over the past 

decade, many computational and statistical methods have been developed to interpret large-scale 

gene expression data. However, two questions still have not been thoroughly investigated: 1) 

how to study gene expression preservation across different tissues, like between brain and blood; 

and 2) how to analyze the gene expression data generated from heterogeneous tissues comprised 

of many cell types?   

Blood samples are an important surrogate to study neurological diseases due to the limited access 

of brain samples. My dissertation first investigated the gene expression preservation between 
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brain and blood by cross-referencing three brain expression data sets (from cortex, cerebellum 

and caudate nucleus) with two large blood data sets. While previous studies have focused on the 

preservation of individual gene expression levels across the two tissues, I utilized a systems 

biology approach to study the preservation of gene co-expression modules. Since 

oligodendrocytes, astrocytes, and neurons are not present in blood, it is not surprised that only a 

handful of human brain modules showed evidence of preservation in human blood while global 

transcriptome organization is poorly preserved. These shared relationships characterized here 

may aid future efforts to identify blood biomarkers for neurological and neuropsychiatric 

diseases when brain tissue samples are unavailable.  

For the second question, several previous publications have proposed gene expression 

deconvolution methods, including estimating cell abundances or cell type-specific gene 

expression (CTSE) values, for admixed samples comprised of distinct cell types. These methods 

have not yet been widely adopted since comprehensive empirical evaluations are needed to 

assess their reliability. Here I evaluated different types of expression deconvolution methods in 

four empirical data sets, including a neuro-scientific application. Since cell type-specific 

estimation of the mean value for individual genes is sometimes problematic, we propose to 

consider sets of genes (as opposed to individual genes) and show that this can increase the 

accuracy of CTSE estimation. Furthermore, comprehensive simulation studies are used to 

evaluate the effect of mis-specifying cell types. Our simulations indicated that erroneously 

omitting cell types from the analysis only has an adverse effect on CTSE estimation if the 

omitted cell type has a high abundance. We also present two R functions, 

proportionsInAdmixture and populationMeansInAdmixture, which implement cell abundance 

estimation and CTSE estimation, respectively.  
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CHAPTER 1: IS HUMAN BLOOD A GOOD SURROGATE FOR BRAIN TISSUE IN 

TRANSCRIPTIONAL STUDIES?  

 

Background 

There is no clear consensus regarding the use of blood-based gene expression data for addressing 

neurological and neuroscientific research questions. On the one hand, gene expression levels in 

whole blood are only weakly correlated with those in brain tissue [1, 2]. On the other hand, blood 

gene expression profiles have been used to study neuropsychiatric diseases such as bipolar 

disorder and schizophrenia [3-6], as well as neurological diseases such as Amyotrophic Lateral 

Sclerosis [7], Huntington's disease [8] and Alzheimer's disease [9]. There are at least two major 

reasons why the relationship between human brain and human blood expression profiles remains 

poorly understood. The first reason concerns data quality and quantity: it is notoriously difficult 

to measure human brain tissue expression levels because of potential biases from post-mortem 

effects and relatively low sample sizes. The second reason is that most previous studies have 

focused on the preservation of mean expression levels, as opposed to the preservation of co-

expression relationships. Given that the human brain transcriptome is organized into biologically 

meaningful co-expression modules [10], it is important to study the preservation of this 

organization in blood. 

Because human brain expression data is derived from post-mortem brain tissue, special attention 

must be paid to RNA quality, post-mortem interval, and pH. To minimize the influence of these 

factors, we used highly reproducible and validated brain gene expression data sets from a recent 

meta-analysis of publicly available brain expression data [10]. Data set 1 (referred to as CTX) 
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consisted of 67 control samples from 67 individuals representing four cortical areas [11-13]. 

Data set 2 (referred to as CN) consisted of 27 control samples from 27 individuals taken from the 

head of the caudate nucleus [14]. Data set 3 (referred to as CB) consisted of 24 control samples 

from 24 individuals taken from cerebellar hemisphere [11].  

By applying weighted gene co-expression network analysis (WGCNA) [15-17] to these data sets,  

Oldham et al. (2008) identified 19 cortex (CTX) modules, 23 caudate nucleus (CN) modules, and 

22 cerebellum (CB) modules. These modules were defined as branches of a hierarchical 

clustering tree and were labeled by different colors. Many modules were highly preserved across 

the three brain regions, which was why they received the same color label. For example, 45% (p 

= 2.8 x 10-53) of genes overlapped between the yellow cortex module (labeled yellow/CTX) and 

yellow caudate nucleus module (labeled yellow/CN). Similarly, 46% (p = 1.1 x 10-54) of genes 

overlapped between the blue/CTX and the blue/CN modules [10]. By considering cell type-

specific markers, several brain modules were found to contain genes that are preferentially 

expressed in oligodendrocytes, astrocytes or neurons [10]. 

Here we report the results of a comprehensive statistical analysis by cross-referencing the brain 

expression data with two large blood data sets (comprising a total of 1463 individuals). While 

previous studies have focused on the preservation of individual gene expression levels across the 

two tissues, we also investigated the preservation of gene co-expression modules. Since 

oligodenrocytes, astrocytes, and neurons are not present in blood, we were not surprised that 

only a handful of human brain modules showed evidence of preservation in human blood. 

Furthermore, we determined that these preserved modules could be combined into a single large 

module in blood. We also found that preserved intramodular hub genes tended to have heritable 

blood expression levels and were highly correlated with a small set of cluster of differentiation 
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(CD) genes. 

 

Results 

Blood gene expression data 

We used whole blood gene expression data from healthy controls in a Dutch data set (n = 405) 

and published lymphocyte gene expression data (n = 1240), herein referred to as the San Antonio 

Family Heart Study (SAFHS) data set [18]. The Dutch data set originally consisted of 405 

peripheral blood samples from healthy individuals (50.4% men and 49.6% women, mean age 

56.4 and range from 19-88). This data set was analyzed with Illumina Human HT-12 

microarrays. The SAFHS data set originally consisted of 1240 lymphocytes samples obtained 

from 1240 individuals (40.8% men and 59.2% women, mean age 39.3 and range from 15-94). 

This data set was analyzed with Illumina WG-6 microarrays. Using hierarchical clustering with 

inter-array correlations as a distance measure, we identified potential outlying arrays in an 

unbiased fashion. Since outlying arrays showed relatively low correlations with the other arrays 

(across the genes), they were deemed suspicious. To err on the side of caution, we removed these 

suspicious arrays from the analysis. Potential batch effects (due to different hybridization dates) 

were also removed using ComBat [19]. These are the same data pre-processing steps that 

Oldham et al. (2008) used in the brain data analysis. More sample pre-processing information 

can be found in Additional file 1-1.  

After these pre-processing steps, 380 samples remained in the Dutch data set and 1084 samples 

remained in the SAFHS data set. Multiple probes corresponding to one gene (symbol) were 
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combined into one measurement. Next, we merged the Affymetrix (brain) data with the Illumina 

(blood) data by gene symbol, which resulted in 8799 genes in each data set. 

 

Preservation of mean expression levels and connectivity 

We first studied the preservation of mean gene expression levels of the 8799 genes between 

brain and blood. The pairwise scatterplots in Additional file 1-2 related mean expression values 

in the three brain regions to mean expression values in the two blood data sets. We found 

significant but weak correlations (r range: [0.24,0.32]) between mean expression in brain and 

mean expression in blood.  

Next we investigated the extent to which co-expression patterns were preserved between brain 

and blood. For each gene, the network connectivity (also known as degree) is defined as the sum 

of its connection strengths with all other genes in the network. Thus, connectivity measures how 

correlated a gene is with all other genes (see Methods). Genes with high connectivity are 

informally referred to as "hub" genes. Overall, we found that gene connectivity was even less 

preserved (r range: [0.021, 0.11], Additional file 1-3) in blood than mean expression levels. 

These results show that global co-expression relationships are poorly preserved between brain 

and blood. However, Additional file 1-3 also shows some genes with high connectivity in both 

data sets. These genes may be part of sets of genes (co-expression modules) that are preserved 

between the two tissues. A more focused analysis that considered individual modules did reveal 

some evidence of preservation between the two tissues, as described below. 
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Preservation of brain co-expression modules in blood  

Oldham et al. (2008) applied rigorous gene filters to the brain data set to ensure that transcripts 

were present and had high connectivity in the brain data (see the Supplemental Information of 

Oldham et al. 2008). These filters reduced the number of probe sets in each network to 5549 

(CTX), 4050(CN), and 4029 (CB). After combining probes into single measures for each gene 

symbol and merging the data with the blood data sets, the CTX network contained 2640 genes, 

CN network contained 2063 genes and the CB network contained 2001 genes. 

To determine whether a module found in a reference data set (e.g. human cortex) can also be 

found in a test data set (e.g. the Dutch blood data set), we used a powerful module preservation 

statistic approach implemented in the R software function modulePreservation [16] (desribed in 

Methods). This permutation test procedure evaluates whether module genes show significant 

evidence of network connectivity preservation in the test data. This module preservation test 

results in a statistic (referred to as preservation Z statistic or Zsummary statistic) for each 

module. The higher the preservation Z statistic is for a given brain module, the stronger the 

evidence that the brain module is preserved in a given blood data set. Under the null hypothesis 

of no module preservation, the preservation Z statistic follows an approximately standard normal 

distribution. Comprehensive simulation studies led to the following thresholds: a module shows 

no evidence of preservation if its Z statistic is smaller than 2; a Z statistic larger than 5 (or 10) 

indicates moderate (strong) module preservation. 

We started out by evaluating the preservation of CTX modules in the Dutch and SAFHS blood 

data sets. The horizontal barplots in Fig. 1-1a show that the preservation Z statistics of the blue, 

yellow, and green CTX modules were above the threshold of 10 in both blood data sets, i.e. these 
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modules showed strong evidence of preservation. Similarly, Fig. 1-1b presents the module 

preservation results for the CN modules identified by Oldham et al. (2008). Only the yellow CN 

module was strongly preserved in both blood data sets. Fig. 1-1c shows that only the blue CB 

module was strongly preserved in both blood data sets. In total, we find that five brain modules 

were strongly preserved in human blood. More details and numeric values are presented in 

Additional file 1-4.  

The preserved modules tended to be relatively large: Out of 2640 CTX network genes (from 

merging the CTX data with the blood data), 690 were part of the blue module, 421 were part of 

the green module and 658 were part of the yellow module. The preserved (yellow) CN module 

contained 254 genes out of 2063 CN network genes. The preserved CB (blue) module contained 

819 out of 2001 CB network genes. Thus, 67% of genes in the cortex network, 12% of genes in 

the caudate nucleus network, and 41% of genes in the cerebellum network were part of a 

preserved module.   

One can also visualize the evidence of module preservation by clustering the genes in the blood 

data sets. Since the brain modules were defined as branches of a hierarchical clustering tree 

(dendrogram), we used the identical approach to define modules in the blood gene expression 

data. Additional file 1-5 shows dendrograms of the blood gene expression data. As described in 

the Methods section, blood modules were defined as branches of the dendrogram [16, 17]. The 

first color-band underneath each dendrogram encodes blood module colors. The remaining color 

bands display the overlap with the preserved modules from each respective brain region. Visual 

inspection of these dendrograms revealed that genes from the preserved modules (based on the 

permutation test) tended to cluster together in the blood data. The fact that some colors were not 

contiguous shows that the preservation is not perfect. Below, we define measures of module 
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membership to identify the subsets of genes inside each of the five preserved modules that 

showed the strongest evidence of preservation. 

 

Relationships among preserved modules in blood 

While the brain modules were clearly distinct in the brain data sets, their preserved counterparts 

no longer appeared distinct in the blood data sets. To explore the relationships among preserved 

modules in blood, we summarized module expression profiles by forming the first principal 

component, which is referred to as the module eigengene (ME) [20]. For example, 

ME(blue/CTX) denotes the module eigengene of the blue cortex module. The ME can be 

considered a weighted average of the gene expression profiles in a module. If the ME of one 

module is highly correlated with that of another module in the blood data, then the genes inside 

the two modules have similar blood expression patterns, i.e. the two modules cannot be 

distinguished. 

For the Dutch data set and the SAFHS data set, Fig. 1-2 shows that ME(blue/CTX), 

ME(blue/CB), ME(yellow/CTX), and ME(yellow/CN) had highly significant positive 

correlations (r >= 0.95, p <= 10-40) with each other, but highly significant negative correlations (r 

<= -0.95, p <= 10-40) with ME(green/CTX). This result indicates that the five preserved brain 

modules can hardly be distinguished in an unsigned gene coexpression network in blood, as they 

coalesce into one large preserved module. It is natural to ask whether these five modules were 

distinct in the original brain data sets. Additional file 1-6 shows that the three preserved CTX 

modules (blue/CTX, green/CTX, and yellow/CTX) were only moderately correlated in the CTX 

data: the correlation between ME(blue/CTX) and ME(yellow/CTX) was 0.52; the correlation 
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between ME(blue/CTX) and ME(green/CTX) was -0.09; the correlation between 

ME(yellow/CTX) and ME(green/CTX) was -0.69. The brain data did not allow us to correlate 

MEs of different brain regions, since the data consisted of samples from different individuals. 

 

Preservation of module membership between brain and blood 

We defined a measure of module membership (MM) by correlating the ME with each gene 

expression profile [21]. For example, MMbluei = cor (xi, MEblue) measures how correlated the 

expression profile of the i-th gene is with the blue ME. If MMbluei is close to 0, the i-th gene is 

not part of the blue module. But if MMbluei is close to 1 (or -1), it is highly positively (or 

negatively) correlated with the blue module genes. The module membership measure is highly 

related to intramodular connectivity [21]; thus, a gene with high absolute value MMbluei turns 

out to be a highly connected hub gene inside the blue module.  

For each of the five preserved modules, we defined module membership measures in the 

respective brain data set and the two blood data sets (Additional file 1-7, 1-8, and 1-9). Fig. 1-3 

shows that MM measures were highly correlated between the two blood data sets, indicating that 

the MM measure can be robustly defined in blood.  

The extremely significant correlation test p-values in the scatterplots reflect the large sample 

size, i.e. numbers of genes. It may be more meaningful to consider the correlation coefficient 

value, e.g. a correlation value of 0.76 indicates a strong (but not perfect) linear relationship. We 

combined the MM measures for the Dutch and SAFHS data to arrive at a summary measure for 

human blood, which was referred to as "Blood MM measure". Additional file 1-10 reports the 
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correlations between the summary blood MM measure and the two individual blood MM 

measures. 

Fig. 1-4 shows that MM values for the three preserved CTX modules (yellow/CTX, green/CTX, 

and blue/CTX) were highly correlated in the blood data sets, which reflects what we already 

know from our eigengene-based analysis (Fig. 1-2): these modules are indistinguishable in 

blood. Specifically, MM of yellow/CTX was positively correlated with MM of blue/CTX (|r| = 1, 

p < 10-200, Fig. 1-4a), while MM of green/CTX was negatively correlated with MM of both 

yellow/CTX and blue/CTX (Fig. 1-4b-c). Given the exceptionally high correlations between the 

individual MM measures, it made sense to combine them by forming a weighted average, which 

flipped the sign of the negatively related green CTX module. We refer to the weighted average 

MM (across the modules) as the "combined MM measure". Additional file 1-11 shows that the 

combined MM value was highly correlated with the original MM value from the three modules. 

Although the three modules were distinct in the cortex data, their MM measures also showed 

high correlations in cortex (Fig. 1-4d-f), which allowed us to define a combined MM measure for 

the CTX data. The combined cortex MM measure was significantly correlated (r = 0.69, p < 10-

200, Fig. 1-5a) with the combined blood MM measure. At the same time, the CN MM measure 

and the CB MM measure also showed significant correlations with the blood MM measure (r = 

0.45, p < 2.9×10-107, Fig. 1-5b; r = 0.28, p < 7.6×10-38, Fig. 1-5c). These results support the 

original finding that the five co-expression modules (blue/CTX, green/CTX, yellow/CTX, 

yellow/CN and blue/CB) exhibit significant preservation in blood. 

 

Definition of preserved intramodular hub genes 
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We refer to genes with high module membership in a preserved module as a preserved 

intramodular hub gene. Preserved hub genes show highly significant evidence of being centrally 

located inside a preserved module. Specifically, we defined preserved CTX module hub genes as 

having consistently high positive or negative combined MM in both cortex and blood. Toward 

this end, we thresholded the combined MM measures in both blood and cortex at a value of 

+0.35 and -0.35 (corresponding to a correlation test p-value < 5x10-13 in blood). These thresholds 

resulted in 357 preserved CTX hub genes, which are colored in red in Fig. 1-5a. For the 

preserved yellow CN module and preserved blue CB module, we found 305 preserved CN hub 

genes (colored yellow in Fig. 1-5b) and 277 preserved CB hub genes (colored blue in Fig. 1-5c) 

using the same threshold. 

In summary, only 357 genes (13.5%) from the CTX network, 305 genes (14.8%) from the CN 

network and 277 genes (13.8%) from the CB network are preserved intramodular hub genes. 

These preserved intramodular hub genes exhibited the following overlap: the sets of preserved 

CTX (357) genes and preserved CN (305) genes shared 123 genes (Fisher's exact p-value < 

2.2x10-16). The sets of preserved CTX (357) genes and preserved CB (277) genes shared 109 

genes (Fisher's exact p-value < 2.2x10-16). The sets of preserved CN (305) genes and preserved 

CB (277) genes shared 64 genes (Fisher's exact p-value < 1.8x10-15). All three sets of preserved 

intramodular hub genes shared 36 genes. The names of these preserved hub genes and their MM 

values can be found in Additional file 1-12. The biological role of the 36 genes is discussed 

below. 

The union of the three sets of preserved intramodular hub genes contains 678 genes. A functional 

enrichment analysis of the 678 genes reveals that some of these preserved hub genes play a role 

in infectious disease and infection mechanism (p = 8.6×10-10), post-translational modification (p 
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= 2.4×10-8), and RNA post-transcriptional modification (p = 2.9×10-8) (Fig. 1-6). A more 

detailed functional enrichment analysis for each set of preserved CTX, CN, and CB module 

genes can be found in Additional file 1-13. 

 

Preserved intramodular hub genes have more heritable expression levels 

In the original publication of the SAFHS data, the authors calculated the heritability of each gene 

expression level and created a heritability table [18]. The gene expression heritability measures 

the proportion of expression trait variance attributable to genetic variance. These data allowed us 

to test whether preserved intramodular hub genes have more highly heritable expression levels 

than non-preserved intramodular hub genes. The red, yellow and blue bars in Fig. 1-5d-f show 

the mean heritability (y-axis) for the preserved CTX, CN and CB hub genes, respectively. To 

facilitate a comparison, we also report the mean heritability for all genes in heritability table 

(from Goring et al. 2008, grey bars) and for all genes in the merged blood and brain data set 

(black bars).   

Fig. 1-5d shows that that the preserved CTX hub genes (n=357, red bar) have a significantly 

(analysis of variance test p = 10-108) higher mean heritability (32%) than all genes in heritability 

table (n=18525, mean heritability: 23%) and all genes in the CTX network (n=2640, mean 

heritability: 29%). Analogous results were observed for the CN data set (p = 8.7 x 10-92, Fig. 1-

5e) and the CB data set (p = 8.1 x 10-93, Fig. 1-5f). These differences in heritability did not 

reflect differences in mean expression levels, as can be seen from Fig. 1-5g-i, which report mean 

blood expression values (y-axis) across the different groups of genes. While preserved 

intramodular hub genes and brain network genes had significantly higher mean expression values 
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than all genes in the heritability table (grey bar), preserved intramodular hub genes did not have 

higher mean expression levels than brain network genes (black bars). 

 

Relationships between preserved modules and cluster of differentiation genes 

We also investigated the relationships between the preserved modules and a special class of cell 

surface markers: cluster of differentiation (CD) genes, which are routinely used to characterize 

blood cell types. If a module is enriched with cell type-specific genes, then its module eigengene 

should have a strong correlation with the expression values of CD genes that are specific to that 

cell type. A high positive correlation would therefore suggest that a particular cell type might be 

related to the module. We found that the MEs of the five preserved modules had highly 

significant (p < 10-40) positive correlations with the following CD genes: CD58, CD47, CD48, 

CD53 and CD164. Statistical details for the individual modules are presented in Additional file 

1-14.  

In the following, we briefly describe what is known about the products of these CD genes while 

Additional file 1-15 presents more detailed gene information (adapted from 

http://www.genecards.org and http://pathologyoutlines.com).  

CD58 (present on Antigen Presenting Cells) is known to be a ligand of the T lymphocyte CD2 

protein, and functions in adhesion and activation of T lymphocytes. 

CD47 (present on leukocyte, neuroblast, glial cell and other cells) is a membrane protein, which 

is involved in the increase in intracellular calcium concentration that occurs upon cell adhesion 

to extracellular matrix. 
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CD48 (present on lymphocyte and other cells) is an activation-associated cell surface 

glycoprotein, and involved in facilitating interaction between activated lymphocytes.  

CD53 (present on leukocyte, glial cell and other cells) is cell surface glycoprotein and involved 

in the regulation of development, activation, growth and motility. 

CD164 (present on leukocyte, glial cell and other cells) is a type I integral transmembrane 

sialomucin that functions as an adhesion receptor. It is involved in hematopoiesis, migration of 

umbilical cord blood, prostate cancer metastasis, infiltration of bone marrow, myogenesis and 

myoblast migration. 

 

Module preservation between different brain regions 

As mentioned in the introduction, many brain modules were found to be highly preserved across 

the three brain regions, which is why they received the same color label. Here we use a more 

powerful approach for measuring module preservation (based on the modulePreservation R 

function) than then one used in the original analysis by Oldham et al. Therefore, we use the 

modulePreservation function to re-analyze brain module preservation across brain regions. For 

example, we evaluate which CTX brain modules are preserved in the CN and CB data. Detailed 

results of this analysis can be found in Additional file 1-16. For CTX brain modules, we find that 

11 out of 19 CTX module show at least moderate evidence of preservation (Preservation Z 

statistic > 5) in both CN and CB data. For CN brain modules, we find that 12 out of 23 CN 

modules also show at least moderate evidence of preservation (Preservation Z statistic > 5) in 

both CTX and CB data.  For CB brain modules, we find that 12 out of 22 CB modules show at 

least moderate evidence of preservation (Preservation Z statistic > 5) in both CTX and CN data. 
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In summary, 55% modules showed preservation cross the different brain regions. These results 

are congruent with those presented in the original analysis by Oldham et al. It is particularly 

interesting to study which of our 5 preserved blood/brain modules are preserved in other brain 

regions. 

For the 3 preserved CTX/blood modules (blue, green and yellow), we find that all 3 of them 

showed very high evidence of preservation in both CN (Preservation Z statistic >= 16.6) and CB 

data (Preservation Z statistic >= 8.7).  

For the preserved (yellow) CN/blood module, we find very high evidence of preservation in 

CTX data (Preservation Z statistic = 19.1) , but only moderate/weak evidence  preservation in 

CB data (Preservation Z statistic = 3.8).  

For the preserved (blue) CB/blood module, we find very high evidence of preservation in both 

CN (Preservation Z statistic = 20.8) and CB data (Preservation Z statistic > 16.0). Further, details 

can be found in Additional File 1-16. 

Overall, we find strong evidence that the preserved brain/blood modules are also preserved in 

multiple brain regions. 

 

Discussion 

Few studies are able to access human neural tissue for studying diseases [22]. Given the 

difficulty of procuring human brain tissue versus the relative ease of measuring blood expression 

levels, a question of great practical importance is to determine to what extent blood is a 

reasonable surrogate for brain in gene expression studies. Here we relate highly reproducible 
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brain expression data from a recent meta-analysis of human brain data sets to two large blood 

data sets. Overall, we find that mean expression levels are weakly preserved between three brain 

regions and blood (r range [0.24, 0.32]). Since gene expression profiles in human brain regions 

are organized into highly reproducible co-expression modules [10], it is important to determine 

which of these modules show evidence of preservation in blood. Only three out of 19 cortex 

modules, one out of 23 caudate nucleus modules and one out of 22 cerebellum modules show 

strong evidence of preservation. In blood, these five modules exhibit very similar expression 

patterns as can be seen from the very high absolute correlations (|r| > 0.96) between their 

respective eigengenes (Fig. 1-2).  

Although few modules were preserved, they tended to be relatively large. 67% of genes in the 

cortex network were part of one of the three preserved modules; 41% of genes in the cerebellum 

network and 12% of the caudate nucleus network genes were part of their respective preserved 

modules. Intramodular hub genes inside preserved modules are centrally located in both 

modules. The number of intramodular hubs depends on the threshold used for the module 

membership measures in brain and blood. 13.5% (357) of genes in the cortex network, 14.8% 

(305) of genes in the caudate nucleus network, and 13.8% (277) of genes in the cerebellum 

network were defined as preserved intramodular hub genes. Using our posted data and R 

software code, the reader can change the thresholds used for defining these hub genes. Our 

biological characterization of preserved intramodular hub genes is highly robust with respect to 

the chosen threshold values. 

In mice, mean expression levels of heritable genes have been found to be highly correlated 

between mouse hippocampus and spleen [23]. We do not find that heritable genes exhibit highly 
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correlated mean expression levels between brain and blood (Additional file 1-17). However, we 

find that the preserved intramodular hub genes tend to be more heritable (Fig. 1-5). 

The preserved CTX blue, green, and yellow modules were found to be enriched with neuronal 

markers, glutamatergic synapse genes, and metabolism-related genes, respectively. The 

preserved CN yellow module was also found to be enriched with metabolism-related genes, 

while the preserved CB blue module was enriched with neuronal markers and genes encoding 

synaptic proteins [10]. In blood, studying the enrichment with regard to brain cell type markers is 

not meaningful. However, one can classify blood cell types using human clusters of 

differentiation (CD) genes. Interestingly, the following CD molecules consistently have 

significant positive correlation with genes inside the preserved modules: CD58, CD47, CD48, 

CD53 and CD164. 

A functional enrichment analysis of brain module preservation reveals basic functional pathways 

preserved between the two tissues. Fig. 1-6 shows that these preserved intramodular hub genes 

are significantly enriched for genes that play a role in infectious disease and infection 

mechanism, post-translational modification and RNA post-transcriptional modification. Other 

categories include Cell Death, Energy Production, Nucleic Acid Metabolism, Molecular 

Transport and Protein Trafficking (Fig. 1-6). The 36 intramodular hub genes that were preserved 

in all three sets exhibit several common functional themes. First, nearly 20% of these genes, 

including ASF1A, ATF2, DR1, HCFC1R1, HMGN4, MBD3, and RAD21, are known to play roles 

in modifying chromatin structure. Some of these modifications have been shown to induce 

transcription (e.g. ATF2, DR1, HMGN4), while others produce repressive effects (e.g. MBD3).  

A number of other genes in the group of 36 encode signalling proteins that are thought to play 

roles in a wide variety of cellular processes, including ARPP-19, CSNK1G3, MAP4K5, PPP1CB, 
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and YWHAQ.  A third category of genes relates to protein trafficking and includes RAB1A, SNX2, 

SNX3, while a fourth category consists of genes involved in mitochondrial function, including 

DLAT, SUCLA2, and YME1L1. Some of the proteins encoded by these 36 genes may physically 

interact, such as ATP6AP2, which associates with the transmembrane sector of vacuolar ATPases 

(proton pumps), and ATP6V1C1, which is a subunit of the vacuolar ATPase protein complex. 

Intriguingly, for a number of other genes in this group, biological functions remained to be 

elucidated (e.g. FAM3C, FLJ20254, LANCL1, PRNP, RABGGTB, and WRB). We note that many 

of these 36 preserved intramodular hub genes are expressed ubiquitously.  Therefore, it is 

possible, perhaps even probable, that these genes are also co-expressed in other tissue types 

beyond brain and blood. Their co-expression may therefore help serve to maintain differentiated 

cells in a particular state (e.g. chromatin modifying genes) in response to a particular 

environment (e.g. signalling genes), as well as enable other shared, basic cellular processes (e.g. 

protein trafficking, energy metabolism). 

Our study has several strenghts including the use of multiple large data sets, carefully validated 

brain co-expression modules from Oldham et al 2008, and a powerful statistical approach for 

evaluating module preservation. 

But our study also has several limitations including the following. First, the brain expression data 

were measured using the Affymetrix platform, while the blood expression data were measured 

using the Illumina platform. Since platform differences bias our results towards the null 

hypothesis of no preservation, we can be confident about preservation, but less confident about 

lack of preservation. The weak correlations between mean expression profiles may reflect 

platform differences. A second limitation is that we studied the preservation of brain modules in 

blood (and not vice versa). Our goal was to determine the preservation of robustly defined and 
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well annotated brain modules. Defining blood modules and studying their preservation in brain 

tissue is beyond the scope of this article. A third limitation is the relatively small set of genes 

considered for the co-expression module preservation study. Oldham et al. had applied stringent 

filtering criteria to construct the brain network, which greatly reduced the number of probes 

considered in that study. After combining probes by gene symbol and merging the brain and 

blood data, the co-expression module preservation study focused on 2604 CTX, 2001 CB, and 

2063 CN network genes. We focused on this relatively small set of genes since their connectivity 

pattern in brain was found to be highly reproducible across array platforms and independent data 

sets (Oldham et al 2008). But we should point out that our study of mean expression preservation 

involved 8799 genes. A fourth limitation is that we only use correlation network methodology. 

Many alternative co-expression network methods have been proposed in the literature [22, 24-

26]. We focus on WGCNA since this method was used in Oldham et al (2008). An exploration 

of alternative procedures is beyond our scope but we encourage the reader to apply their method 

to our posted data. 

 

Conclusions 

In summary, we find that transcriptome organization is poorly preserved between brain and 

blood and only a handful of large brain co-expression modules that exhibit strong overall 

evidence of preservation in blood. However, these modules are not preserved whole cloth. 

Instead, only certain aspects of these modules (i.e. subsets of genes appear to be involved in 

basic cellular processes, such as metabolism) exhibit strong preservation of gene co-expression 

relationships. The subset of preserved co-expression relationships characterized here may aid 
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future efforts to identify blood biomarkers for neurological and neuropsychiatric diseases when 

brain tissue samples are unavailable. 

 

Methods 

Weighted gene co-expression network analysis and preservation visualization 

The statistical analysis software (WGCNA R package) and R tutorials for constructing a 

weighted gene co-expression network can be found in [16]. The WGCNA package first 

calculates all pairwise Pearson correlations coefficients across all samples. In a weighted 

network, the resulting Pearson correlation matrix is transformed into a adjacency matrix (aij = 

|cor(xi , xj )|β), which represent the pairwise connection strengths. The power β facilitates a soft-

thresholding approach that preserves the continuous nature of the co-expression relationships 

[17]. As a power we chose the default value of 6. An advantage of weighted networks is that they 

are highly robust with regard to the choice of the soft threshold parameter value. As a network 

dissimilarity measure we used 1 - the topological overlap measure as input for average linkage 

hierarchical clustering. The topological overlap measure is a highly robust measure of 

interconnectedness [27]. We used the dynamic branch cutting method to define modules as 

branches of the hierarchical clustering tree [28]. Unassigned background genes, outside of each 

of the modules, were denoted with the color grey.   

 

Connectivity and module membership measures 

Whole network connectivity for a certain gene is defined as the sum of its connection strengths 



 20 

with all other genes in the network. Mathematically, it can be calculated easily as the sum of a 

given column in the adjacency matrix. Intramodular connectivity is defined as the sum of the 

connection strengths between a particular gene and all other genes in the same module. Module 

membership (MM), or eigengene-based connectivity (kME), is another measure of connectivity. 

It is defined as MMqi = cor(xi, MEq), where xi is the expression profile of i-th gene and MEq is 

the eigengene of q-th module. The larger the absolute values of MM, the greater the similarity 

between the i-th gene and the q-th ME. If the absolute value of MM is 0, it means that this gene 

is not part of the module. Although the MM measure is highly correlated with intramodular 

connectivity [21], the MM measure is preferred since it can be easily extended to genes outside 

the original module, and the statistical significance (p-value) of MM can be calculated for every 

gene with respect to every module. 

 

Correlation tests 

To measure the relationship between brain tissue connectivity and blood tissue connectivity (and 

for relating mean expressions), we used a robust estimator of the correlation (the biweight 

midcorrelation implemented in the WGCNA R package) to protect against outliers. Simulation 

studies show that the biweight midcorrelation is more robust than the Pearson correlation but 

often more powerful than the Spearman correlation.  

 

Correcting p-values for multiple comparison tests 

To protect against false positives due to multiple testing, we also report Bonferroni corrected p-
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values. The Bonferroni correction method is the most conservative approach for correcting for 

multiple comparisons. The corrected p-value is defined by the product of the uncorrected p-value 

times the number of tests. Since we carried out 50 correlation tests in this article, a Bonferroni 

corrected p-value is defined by multiplying the uncorrected p-values by 50.  

 

Module Preservation analysis 

Our module preservation analysis is based on the modulePreservation R function implemented in 

the WGCNA R package. The modulePreservation function implements several powerful network 

based statistics for evaluating module preservation. These statistics are summarized into the 

composite preservation called Zsummary. For each module in the reference data (e.g. brain data) 

one observed a value Zsummary in the test data (e.g. a blood data set). An advantage of the 

preservation Z statistic is that it makes few assumptions regarding module definition and module 

properties. Traditional cross-tabulation based statistics are inferior for the purposes of our study. 

While cross-tabulation approaches are intuitive, they have several disadvantages. To begin with, 

they are only applicable if the module assignment in the test data results from applying a module 

detection procedure to the test data. Even when modules are defined using a module detection 

procedure, cross-tabulation based approaches face potential pitfalls. A module found in the 

reference data set will be deemed non-reproducible in the test data set if no matching module can 

be identified by the module detection approach in the test data set. Such non-preservation may be 

called the weak non-preservation: "the module cannot be found using the current parameter 

settings of the module detection procedure''. On the other hand, one is often interested in strong 

non-preservation: "the module cannot be found irrespective of the parameter settings of the 
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module detection procedure''. Strong non-preservation is difficult to establish using cross-

tabulation approaches that rely on module assignment in the test data set. A second disadvantage 

of a cross-tabulation based approach is that it requires that for each reference module one finds a 

matching test module. This may be difficult when a reference module overlaps with several test 

modules or when the overlaps are small. A third disadvantage is that cross-tabulating module 

membership between two networks may miss that the fact that the patterns of connectivity 

between module nodes are highly preserved between the two networks. 

The correlation network based statistics implemented in the modulePreservation function do not 

require the module assignment in the test network but require the user to input the gene 

expression data. 

 

Functional Enrichment Analysis  

The Ingenuity Pathways Analysis (Ingenuity® Systems, http://www.ingenuity.com) software 

was used to determine whether sets of genes (e.g. preserved intramodular hub genes) were 

significantly enriched with known gene ontologies. This software ranks the pathways by their 

Fisher exact test p-value of functional enrichment. We chose the default background gene list 

(here all all human genes) for the analysis. Ingenuity only reports uncorrected p-values. The gene 

lists published in our Additional files allow the reader to choose alternative backgrounds or 

software tools. 
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Figure 1-1 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Studying the brain module preservation in human blood 

The row bars correspond to brain co-expression modules found by Oldham et al. (2008). 

Modules are labeled by a color. For each module color, there are two horizontal bars which 

correspond to the module preservation Z statistics in the Dutch blood data and the SAFHS blood 

data, respectively. The two red vertical lines correspond to thresholds of moderate preservation 

(5) and strong preservation (10). Panel (a) shows that only three (yellow, green, and blue) out of 

19 cortex modules showed strong preservation in both blood data sets. Panel (b) shows that only 
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one (yellow) out of 23 caudate nucleus modules was strongly preserved in both blood data sets.  

Panel (c) shows that only one (blue) out of 22 cerebellum modules was strongly preserved in 

both blood data sets. In summary, only five modules from Oldham et al. (2008) show strong 

evidence of preservation in human blood. 

 

Figure 1-2 

 

 

 

 

 

 

 

Figure 1-2. Relationships between the five preserved modules in the two blood data sets 

The expression profiles of each preserved module were summarized by the respective module 

eigengene (defined as the first principal component). The correlations between the module 

eigengenes can be used to measure relationships between the modules (Langfelder and Horvath 

2007). The hierarchical cluster tree shows the correlation relationships between the module 

eigengenes in the Dutch blood data (a) and the SAFHS blood data (b). The tables show the 
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pairwise correlation coefficients (upper number) between the eigengenes and the correlation test 

p-values (lower number). The colors of the table entries color code the values of the correlations 

(green and red correspond to negative and positive correlations).  Note that the four modules 

ME(blue/CTX), ME(yellow/CN), ME(yellow/CTX), and ME(blue/CB) were highly positively 

correlated with each other but negatively correlated with ME(green/CTX). 

 

Figure 1-3 

 

 

 

 

 

 

 

 

 

Figure 1-3. Module membership measure of preserved modules is highly reproducible 

between the two blood data sets 
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For each of the five preserved brain modules, the scatterplots show that module membership 

measure was reproducible between the SAFHS blood data (x-axis) and the Dutch blood data (y-

axis).  Each dot corresponds to a gene. The red diagonal line corresponds to y=x. Results are 

shown for the following preserved modules: (a)  yellow/CTX, (b) blue/CTX, (c) green/CTX, (d) 

yellow/CN module, and (e) blue/CB. We report both uncorrected correlation test p-values and 

Bonferroni corrected p-value (inside of brackets). The extremely significant correlation test p-

values reflect the large sample size (number of gene). It may be more meaningful to focus on the 

correlation coefficients. Overall, we find that the module membership measures are highly 

reproducible. 

 

Figure 1-4 
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Figure 1-4. Relationships between the module membership measures of the three preserved 

cortex modules 

Relationships between the module membership of blue/CTX, yellow/CTX and green/CTX 

modules in blood (a-c) and in the original cortex brain samples (d-f).  Panel (a) shows that the 

correlation between MMyellow and MMblue equaled 1 in the blood data, which reflects the fact 

that these modules were indistinguishable in blood. In contrast, panel (d) shows that correlation 

between MMyellow and MMblue equaled 0.62 in cortex. Figure (b-c) shows that MMgreen had 

a correlation close to -1 with MMyellow (b) and MMblue (c) in blood. We report both 

uncorrected correlation test p-values and Bonferroni corrected p-value (inside of brackets). 

Given the very high correlations between MMgreen, MMyellow, and MMblue in blood, we 

combined the three measures in an overall module membership measure referred to as 

MM.combined.Blood. Analogously, we combined the three MM measures for the cortex 

network (referred to as MM.combined.CTX). 
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Figure 1-5 

 

 

 

 

 

 

 

 

Supplementary materials 

 

Table 1-S1. RT-PCR primers 

 

 

 

Figure 1-5. Definition and characterization of preserved intramodular hub genes 

The scatterplots show how the combined measure of module membership in blood 

MM.combined.Blood (or MM.Blood, y-axis) related to the analogous measure in cortex (a), 
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caudate nucleus (b), and cerebellum (c). Preserved intramodular hub genes were defined as those 

genes whose combined MM measure in blood and brain tissue is larger than +0.35 (or smaller 

than -0.35), since these genes showed highly significant evidence of being part of the preserved 

modules in both tissues. For the CTX, CN, and CB networks, the roughly 300 preserved 

intramodular hub genes are colored in red (a), yellow (b), and blue (c). We report both 

uncorrected correlation test p-values and Bonferroni corrected p-value (inside of brackets). 

Barplots (d-f) show the mean heritability of the blood expression profiles (y-axis) across 

preserved intramodular hub genes (blue bars), across genes in the CTX (d), CN (e), and CB (f) 

networks (black bars), and across all genes on the blood array (grey bar). Note that the preserved 

intramodular hub genes have significantly higher mean heritability than non-preserved 

intramodular hub genes. Barplots (g-i) show the mean blood expression values (y-axis) across 

the same groups of genes. Note that the preserved intramodular hub genes and the brain network 

genes have significantly higher mean expression values in blood than all genes on the array (grey 

bar). However, preserved intramodular hub genes do not have higher mean expression levels 

than the (roughly 2500) genes that form the brain network (black bars). 
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Figure 1-6 
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Figure 1-6. Ingenuity analysis result for 678 preserved hub genes  

Functional enrichment analysis of the preserved intramodular hub genes found in CTX, CN or 

CB data (selected in Figure 1-5) (678 genes). Only gene categories with significant enrichment 

p-values are presented. FO (inside brackets) denotes fold overrepresentation (defined as observed 

counts divided by expected counts under the null hypothesis). To calculate the Fisher's exact p-

values and FOs, we use the Ingenuity default background (here all human genes). 

 

 Additional files: 

The corresponding addtional files for this section can be downloaded from the following linkage: 

http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/Bloodbrain/Additional/ 
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CHAPTER 2: EMPIRICAL EVALUATION OF EXPRESSION DECONVOLUTION 

METHODS 

 

Background 

Gene expression studies often assess the mRNA abundances in biological samples that are 

comprised of multiple cell populations, which often have distinct gene expression patterns [29, 

30]. For example, whole blood expression levels may reflect expression levels from different cell 

populations such as T cells, B cells, monocytes, eosinophils or nature killer cells [30-34]. Since 

cell counts vary greatly across different individuals [35, 36], analysis methods that ignore the 

varying cell population composition may have reduced statistical power to detect disease related 

genes and pathways [34, 37, 38].  

To address the challenge of sample heterogeneity due to cell types, one can use experimental 

methods for separating out expression patterns from distinct cell populations or computational 

methods (referred to as expression deconvolution methods). Commonly used experimental 

methods include fluorescent-activated cell sorting (FACS) [39-41] and laser capture micro 

(LCM)-dissection [42]. For example, FACS has been used to cleanly separate populations of 

neurons, astrocytes, and oligodendrocytes in the mouse brain based on gene expression patterns 

[43]. Similarly, selective cell sorting using a combination of fluorescent labeling and aspiration 

was performed to transcriptionally profile 12 distinct neuronal subpopulations in the adult mouse 

forebrain [44]. Furthermore, LCM has been effective at isolating small brain regions for analysis 

in human tissues, where genetic toll are not available. For example, it has been used to extract 
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RNA from small groups of pyramidal neurons in CA1 and CA3 in order to transcriptionally 

distinguish these two regions of the human hippocampus [42, 45].  

Experimental methods are sometimes not applicable for isolating pure cell populations, e.g. they 

may not yield sufficient quantities of mRNA which is why computational approaches for 

"deconvoluting" expression data are very appealing. Venet et al. (2001) appear to be the first to 

propose a computational deconvolution method that can both estimate cell abundances and mean 

cell type-specific (CTSE) expression values [46] in mixed samples. Many subsequent articles 

describe related approaches. For example, Lu et al. (2003) computationally estimated the 

abundance of yeast cells in different stages of the cell cycle [47]. A similar approach was 

proposed by Bar-Joseph et al. (2004) [48]. We recently described a method which predicted the 

cell abundance based on cell markers [49], referred to as the cell marker (CM) method. Apart 

from estimating the abundances of different cell types, one can also aim to estimate the mean 

expression value of each gene in a "pure" cell type using expression data from mixed samples 

[34, 50, 51].  

Although expression deconvolution methods have shown promise in individual applications, 

there is a need to provide a comprehensive and unbiased evaluation across a range of real data 

applications. Here we compare several types of deconvolution methods in four different gene 

expression data sets (involving blood and brain tissues). Using simulation studies we evaluate the 

effect of mis-specifying or omitting certain cell types from the analysis. Since cell type-specific 

estimation of the mean value for individual genes is sometimes problematic, we propose to 

consider sets of genes (as opposed to individual genes) and show that this can increase the 

accuracy of the CTSE estimation. We also present two R functions that implement these 

methods. 
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Results 

Overview of expression deconvolution methods 

There is a rich literature on expression deconvolution methods [31, 34, 46-48, 52-54] reviewed 

in Zhao et al. (2010) [36]. We distinguish four categories of deconvolution methods (described in 

Table 1). The first category aims to estimate cell abundances [47], e.g. it allows one to estimate 

the proportion of CD8 T cells in a blood sample. The second category estimates mean cell type-

specific expression (CTSE) level of a gene in a given cell type based on known cell abundance 

measures [34]. For example, it would allow one to estimate the mean expression value of a gene 

in CD8 T cells based on whole blood gene expression data as long as cell count data are 

available. The third category estimates mean CTSE levels of individual genes based on estimated 

cell abundances, e.g. such a method was described in [51]. The fourth category estimates mean 

CTSE levels of sets of genes (as opposed to individual genes) based on estimated cell 

abundances.  

Estimating the cell type abundances (population proportions) 

Here we evaluate 2 statistical methods for estimating the abundances of cell populations in a 

mixed sample (comprised of several distinct cell populations). Since the first method is based on 

a multivariate linear regression model (LRM), it is referred to as LRM abundance estimation 

method. As described in Methods, the method assumes that the expression value of a given gene 

in a mixed sample is a linear combination of its mean expression values in the pure cell types 

[46]. The abundance (proportion) of a given cell type is estimated based on its coefficient value 

in the LRM. We have implemented the LRM abundance method in the R function 

proportionsInAdmixture, which as indicated by the name, allows one to estimate the proportions 
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of populations (e.g. T cells, B cells) in an admixture (e.g. whole blood). The LRM method 

assumes that the mean expression values in the pure cell populations are known for a subset of 

genes. While this assumption is restrictive, the method is attractive since it allows one to directly 

estimate the proportions via the coefficient values. 

The second method, referred to as cell marker (CM) abundance estimation method, cannot be 

used to estimate proportions directly. Instead, it provides an abundance estimate that will be 

correlated with the true proportion. This method is attractive since it makes fewer assumptions 

than the LRM method. It only requires that the user specify the cell marker genes, i.e. genes that 

are expected to be highly correlated with the true proportions. To find cell marker genes for a 

cell type, one can use genes that have a high expression value in this cell type but have low 

expressions value in other cell types that are part of the mixture. Once a set of cell markers has 

been identified, one can simply average their expression values to arrive at an abundance 

estimate (which is expected to have a linear relationship with the true abundance). While the 

average CM marker expression value is often highly correlated with the true cell abundance, it 

cannot be used to estimate the absolute number (or proportion) of the cell type without making 

further assumptions. In this paper, the fraction fq of population q in a mixed sample is given by 

𝑓q = 𝑥q/∑ 𝑥i
𝑝
1  (Equation 1), where xi denotes the mean expression value of the marker genes in 

population i. For example, if there are three cell populations in the admixed samples and the 

mean expression values of marker genes for these three cell populations are 100, 400, 500, then 

the fractions are estimated to be 100/(1000) = 0.1, 400/(1000) = 0.4, 500/(1000) = 0.5 

respectively.  

Cell Type-Specific Expression (CTSE) methods 
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If successful, CTSE deconvolution methods would allow one to estimate the mean value of a 

given gene in a given cell type based on expression values collected from a cell mixture. For 

example, these methods promise to allow one to calculate the mean value of a gene in CD8 T 

cells when only whole blood expression data are available.  

Here we consider regression-based methods that assume that the abundances of cell types vary 

across the admixed samples [34, 51]. We distinguish approaches that assume cell abundances in 

each (admixed) sample are known from approaches that use estimated abundances (e.g. based on 

the LRM or CM based methods). Shen-Orr et al, describe a CTSE estimation method that 

assumes that the cell type abundances are known [34], e.g. complete blood count data often 

provide this information. Kuhn et al proposed an approach that does not require that the user 

specify cell proportions [51]. Instead, this approach estimates the abundances.  

In this article, we address the following two questions about CTSE methods. i) How well do 

CTSE estimates predict the true observed mean expression values in pure cell types? ii) Do 

CTSE estimation methods based on estimated cell abundances perform as well as those that use 

true observed abundances? In other words, is it worth the trouble to collect cell count data on 

each individual? 

 

Measures of estimation accuracy: correlation and MSE 

To measure the performance of expression deconvolution methods we used two accuracy 

measures: i) the correlation, r, between true value and the predicted (estimated) value and ii) the 

mean square error, MSE, between the true value and its estimated value. Thus, a good estimation 

method will have a high correlation value and a low MSE. These measures capture different 
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properties of an estimation method. For example, the CM abundance estimate can be highly 

correlated with the true cell type abundance but its MSE will typically be high since it is poorly 

calibrated. 

 

Empirical evaluation of abundance estimation methods 

We applied the LRM and CM based abundance methods to three expression data sets with 

known cell type abundance measures, which served as gold standard to evaluate the estimation 

methods. The data are described in Methods. The transformed blood cell data set [31] and the rat 

tissue data set [34] were generated by experimentally mixing multiple cell populations in pre-

defined ratios. We first applied the two abundance estimation methods to the transformed blood 

cell data set, which is comprised of four blood cell lines (interpreted here as 4 distinct cell 

populations): Raji, IM-9 (both from B cells), Jurkat (from T cells), and THP-1 (from monocyte). 

The data set contained 12 mixed samples for which the true proportions of the underlying pure 

cell types were known (according to the mixture ratios).  

Figure 2-1a shows that the LRM method leads to highly accurate abundance estimates 

(correlations r range from 0.75 to 0.99). Figure 2-1b shows that the CM method performs as well 

as that of the LRM when one uses the correlation between predicted and observed abundances as 

accuracy measure (r ranges from 0.83 to 0.96). But as expected, the CM method is inferior to the 

LRM when it comes to the mean square error, MSE, since the CM method will typically be 

poorly calibrated (mean MSE of the CM method is 3.2×10-2 versus MSE = 2.1×10-2 for the LRM 

method). The disparity between the two accuracy measures (correlation versus MSE) is 
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particularly pronounced for the THP1 cell population where the CM method returns higher 

correlation value (0.96 versus 0.75) while it gives a larger MSE (4.9 ×10-2 versus 3.1 ×10-2). 

Figure 2-1c-d shows how the abundance estimation methods performed on the kidney 

transplantation data set comprised of blood expression data from kidney transplantation patients 

[35] for whom cell count data were also available. Here the LRM method is superior to the CM 

irrespective of the accuracy measure: mean r = 0.73 versus mean r = 0.53, MSE = 2.0 ×10-2 

versus MSE = 2.8 ×10-2. Figure 2-1e-f shows the results for the rat tissue data set. Here the LRM 

and CM method have similar performance when it comes to correlating observed and predicted 

abundances (mean r = 0.94 versus mean r = 0.82) but the LRM method tends to superior when it 

comes to MSE (MSE = 1.4 ×10-2 versus MSE = 1.9 ×10-2). 

The performance of the expression deconvolution methods are summarized in Table 2 and Table 

3, which present correlation values and MSE values, respectively. When we average our results 

across all the considered data sets we find: i) that the mean correlation of the LRM method 

(mean r = 0.85) is slightly higher than that of the CM method (mean r = 0.74) and ii) that mean 

MSE of the LRM method (mean MSE = 1.9×10−2) is significantly lower than that of the CM 

method (mean MSE = 2.7×10−2). In conclusion, the LRM method is superior to the CM method 

when it comes to abundance estimation.  

 

Empirical evaluation of cell type-specific expression (CTSE) estimation methods  

Here we evaluate the CTSE methods that aim to estimate the mean expression value of a gene in 

a given cell type based on mixed samples. These methods assume that the cell abundances vary 

across the mixed samples and that estimates of the cell abundances are available for each mixed 
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sample. In some tissues (such as blood), the true proportions of the underlying cell populations 

can be readily measured but in other heterogeneous tissues it can be desirable to estimate cell 

abundances, e.g. using the LRM or CM estimation method. To test whether estimated (predicted) 

abundances can be used as surrogates for measured abundances, we studied whether CTSE 

estimate based on true measured abundances are more accurate than those estimated via the 

LRM or CM method. 

We first estimated the CTSE for each cell population based on measured abundances, and 

correlated the predicted mean values with the observed mean expression values. As shown in 

Table 2 (Additional File 2-1 contains corresponding scatter plots), a high correlation is observed 

between observed and estimated CTSE: mean r = 0.91, 0.82, and 0.96 in the transformed blood 

cell data set, kidney transplantation data set, and rat tissue data set, respectively. This result 

illustrates the utility of Shen-Orr’s CTSE method based on true observed abundances. Besides, 

this result can also serve as a benchmark for evaluating CTSE methods based on estimated 

abundance measures.  

Strikingly, we find that the CTSE results based on estimated abundances are almost as good as 

those based on the true, measured abundances. Figures 2-2a-b show the results for the 

transformed blood data set where the mean r based on LRM estimates is 0.94, the mean r for CM 

based abundances is 0.91 which compares favorably with the mean r based on true, measured 

abundances is 0.91 (Additional File 2-1a). The results for the kidney transplantation data set 

(Figure 2-2c-d) and the rat tissue data (Figure 2-2e-f) also show that the LRM and CM based 

abundance return similar CTSE estimates as those based on the measured abundances.  
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In summary, the performance of predicted abundances is close to measured abundances during 

CTSE estimation, and can serve as surrogate when measured abundances are not accessible (the 

mean r from LRM CTSE is 0.89 which is the same value as that observed based on measured 

abundances). The results from LRM based abundances generally have better performance than 

the ones from CM based abundances (mean r = 0.89 versus mean r = 0.83, Table 2), which is 

consistent with our previous results regarding abundance estimation. 

 

Set based CTSE analysis (SB-CTSE)  

Here, we generalize the idea of cell type-specific expression from individual genes to entire gene 

sets. We hypothesized that the averaging afforded by considering sets of genes (as opposed to 

individual genes) averages out the noise and may therefore increase the accuracy of the CTSE 

method. While having estimates for individual genes will always be more valuable than having 

such estimates for entire sets of genes, there will be important applications where set specific 

estimates are sufficient. For example, it could be useful to estimate the mean expression value of 

a defined set of T cell activation genes when studying how the adaptive immune system changes 

between states (e.g. acute rejection vs. stable kidney transplants). Many approaches and 

resources exist for selecting sets of genes. One could specifically identify such genes in the 

process of a biomarker discovery project using gene co-expression modules [16, 17, 28] or use 

empirical approaches based on literature-based gene ontology categories, gene sets from the 

Molecular Signatures Database [10, 55], or pathways from the KEGG data base. 

As indicated by the name, the observed SB-CTSE of a particular gene set is simply defined by 

averaging the cell-specific expression levels of the genes inside the set. To predict the set 
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specific CTSE, one can simply average the predicted gene based-CTSEs. Apart from the mean 

value, one could also use alternative approaches for summarizing the expression levels of a gene 

set, e.g. the median or other approaches implemented in the collapseRows R function [49]. In the 

following, we report several examples of predicting SB-CTSEs.  

Using sets defined via co-expression modules. 

First, we applied it to the transformed blood cell data set. Here gene sets were defined based on 

the pure cell types (Jurkat, THP-1, IM9, and Raji) expression data with signed WGCNA 

approach [16, 17, 28]. The scatter plots in Figure 2-3a-b show how the measured (observed) SB-

CTSE values relate to the estimated SB-CTSE values. As expected, estimating CTSE for sets of 

genes is more accurate than estimating CTSE for individual genes (mean correlation across 

multiple cell types is r = 0.99 for SB-CTSE versus mean r = 0.92 for individual genes). Next, we 

also applied SB-CTSE to the kidney transplantation data set based on co-expression modules. 

Again the modules were defined based on included pure cell types (CD8, CD4, CD19, and 

CD14) with signed WGCNA. The scatterplots in Figure 2-3c-d show that the observed SB-CTSE 

measure correlates highly with the predicted SB-CTSE (mean r = 0.91) which compares 

favorably to the results for gene based CTSE (mean r = 0.76). Finally, we evaluated SB-CTSE 

applied to modules in the rat tissue data set (Figure 2-3e-f). Here the modules were defined based 

on expression data from Lung, Liver and Brain. And the accuracy of SB-CTSE is also better 

(mean r = 0.99) than gene based CTSE estimate (mean r = 0.92). 

Using sets defined as pathways from the Molecular Signatures Database 

We applied SB-CTSE method to the transformed blood cell data set based on the Molecular 

Signatures Database V.3 (6769 gene sets). The results are shown in Additional File 2-3. The 
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scatter plots show that CTSE for sets of genes (pathways) is more accurate than estimating CTSE 

for individual genes (mean correlation across multiple cell types is r = 0.95 for SB-CTSE versus 

mean r = 0.86 for individual genes).  

We also applied SB-CTSE to the kidney transplantation data where gene sets were defined using 

64 curated immune pathways reported in (Additional File 2-5) [56]. Again the prediction 

accuracy for SB-CTSE (mean r = 0.92) is higher than that of a gene based analysis (mean r = 

0.76). 

In conclusion, we find that SB-CTSE outperforms gene based CTSE in 7 comparisons which 

indicates that the averaging afforded by SB-CTSE analysis increases the estimation accuracy. 

 

Accurate estimation of regional expression levels in heterogeneous brain regions 

Given the high complexity and relative inaccessibility of brain tissue, methods for separating out 

expression patterns from distinct cell populations have particular importance. Many experimental 

separation methods, e.g. laser capture micro-dissection, can be used to isolate different cell 

populations before expression profiling [45]. While pure cell assays provide invaluable resources 

to the neuro-science community, they are often not possible due to cost, tissue degradation, 

experimental design, or ethical considerations. 

To evaluate whether computational deconvolution methods can be useful in neuro-scientific 

applications, we applied them to data from the NIH Blueprint Non-Human Primate Atlas 

(http://www.blueprintnhpatlas.org/). This atlas includes hundreds of microarrays run on five 

regions of the rhesus macaque brain across postnatal development. In particular, samples were 
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collected from hippocampus and striatum at both the gross anatomical level, as well as for 

specific subdivisions of these same structures (Figure 2-4a-b). While in our other applications, 

we were interested in cell types and cell type-specific expression patterns, this neuro-scientific 

application did not involve cell types but rather brain regions (structures). We wanted to evaluate 

whether macro-dissected samples from hippocampus (interpreted as mixed samples) could be 

used to estimate mean expression levels of genes in eight subdivisions (interpreted as pure 

populations in the admixture). The following sub-divisions of the hippocampus (Sub, CA1sr, 

CA1so, CA1sp, CA2sp, CA3sp, DGpo, and DGgcl; CA4sp and DGsgz were omitted due to high 

similarity to CA3sp and DGgcl, respectively) play a role analogous to that of the cell types in our 

previous deconvolution examples.  

We briefly digress to mention that the reason why we use the term "population" instead of cell 

type in the names of our R functions (proportionsInAdmixture and 

populationMeansInAdmixture) is that we anticipate that they can be used in many applications 

that do not involve cell types, such as the example presented here. 

In order to apply the LRM abundance estimation method, we first applied Bayes ANOVA to 

eight "pure" expression samples corresponding to sub-regions in the laser micro-dissection 

(LMD) microarray data. By definition, Bayes ANOVA allows one to identify genes that vary 

significantly across the sub-regions. The 320 genes with the lowest p-value were used as input of 

the LRM abundance method (implemented in proportionsInAdmixture) to estimate the 

proportion of each hippocampal sub-region present in each macro-dissected (mixed) sample. The 

estimated proportions were used as input of the CTSE approach (implemented in the R function 

populationMeansInAdmixture) to estimate the hippocampal subregion-specific mean expression 

values based on the macro-dissected gene expression patterns (for example, in CA1-so: Figure 2-
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4c). The proportion for DGpo and Subiculum were both calculated to be 0, and therefore we 

could not estimate the expression patterns of genes from these areas. Overall, we found moderate 

correlations (0.46, 0.55, 0.64, 0.80, and 0.84) between predicted and observed expression levels 

(Figure 2-4d), suggesting that the CTSE method is applicable to deconvoluting expression 

patterns in distinct brain regions, in addition to pure cell populations.  

We hypothesized that the estimation accuracy could be improved if similar pure samples (i.e. 

sub-regions comprised of relatively similar cell types) would be combined. Figure 2-4e shows a 

multidimensional scaling plot of all the data from young adult macaque (T = 48). Note that 

samples from all sub-regions (except subiculum) clustered into three distinct groups based on the 

predominant cell type in that area: CA1-sp, CA2-sp, CA3-sp, and CA4-sp are pyramidal cell 

layers; DGgcl and DGsgz contain mostly granule cells; and CA1-so, CA1-sr, and DGpo contain 

a mix of GABAergic neurons and glial cells. Interestingly, the macro-dissected samples appear 

between these three groups on the plot, further suggesting that these samples could be a mix of 

many of these cell populations. Using predominant cell type as our classifying variable, we 

repeated the procedure described above to compare the estimated (predicted) versus observed 

mean expression value of genes for each cell class. We were able to predict these expression 

levels with very high accuracy (Figure 2-4f; r >= 0.97 in each case). 

To further test this method in the context of heterogeneous brain tissue, we repeated our analysis 

using mRNA from different compartments of striatum. Striatum tissue could be split into five 

distinct groups based on composition of similar cell types and expression patterns: Acb/Tu, 

Cd/Pu, GPe/GPi, ic, and isl (Additional File 2-6a). As with hippocampus, the macro-dissected 

samples from striatum have expression patterns between these five groups on an MDS plot, 

suggesting a heterogeneous make-up of these samples. Once again, we find high correlations of 
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estimated versus actual mean expression levels of genes for each striatal sub-compartment 

(Additional File 2-6b-f): in Acb/Tu r = 0.98, in Cd/Pu r = 0.91, in GPe/GPi r = 0.72, in ic r = 

0.95, and in isl r = 0.65. Overall, these results show that the CTSE method has merit for gene 

expression deconvolution of brain region-specific expression levels assuming the regions are 

sufficiently distinct. 

 

Simulations for evaluating the effect of mis-specifying cell populations 

A critical issue of expression deconvolution methods is to specify the cell populations that make 

up a mixed sample. However, in real data applications one may not know all of the cell types. Or 

one may not even be interested in estimating CTSE for each possible cell type. Therefore, it is 

important to determine whether the expression deconvolution methods perform well when the 

cell populations are mis-specified, e.g. when one cell type is omitted from the analysis. We first 

assumed that one cell population is erroneously omitted from the analysis and used simulations 

to study the consequences of this omission.  

We simulated the gene expression data using the previously mentioned linearity assumption 

(Equation 2), i.e. the expression level of a gene in a mixed sample is a weighted average of its 

expression value in the respective pure cell populations. 400 genes, 4 cell populations, and 50 

mixed samples are simulated. The mean values of the 400 genes in each of the four pure cell 

populations are given by the matrix X400×4. Thus, these simulated values serve as known gold 

standard for evaluating the estimates of the CTSE method. Each cell population had varying 

levels of abundances across the 50 samples. The cell counts of the 4 cell types were drawn from 

a Poisson distribution. The abundances of the 4 cell types differed greatly: on average each 
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mixed sample contained 53% P1 cells, 27% P2 cells, 13% P3 cells and 7% P4 cells. We 

simulated dependencies between cell abundances, e.g. the proportion of P3 and P4 were highly 

correlated (r = 0.44) across the 50 mixed samples. The simulated proportions of the 4 cell types 

in the 50 mixed samples were given by the matrix P4×50. Under the linearity assumption 

(Equation 2), the expression data of the 400 genes in the 50 mixed samples is given by 

X.mixed400×50 = X400×4 ×P4×50 + noise where random Gaussian noise was added.  

First, we used the simulation data to evaluate the LRM and CM abundance estimation methods. 

We assumed that X400×4 is known but P4×50 is unknown. The LRM abundance method 

(implemented in the proportionsInAdmixture R function) based on the known pure mean 

expression values X400×4 allowed us to estimate the unknown proportions P4×50. The resulting 

abundance for each cell population is compared with true abundances in Figure 2-5a. Ignoring 

the least abundant cell population (P4) barely has an effect on the LRM method when it comes to 

estimating the abundances of the remaining three cell pupations (Figure 2-5b) (mean r = 0.84 

compared to that where all cell types are correctly specified mean r = 0.86). Even ignoring the 

more abundant cell populations (such as P1) has a negligible effect on the abundance estimation 

accuracy (Figures 2-6c-e) (mean r = 0.79).  

Next we evaluated how omitting a cell population affects the performance of CTSE estimation. 

Here we assume that the user inputs the true abundance estimates of all but 1 cell population the 

R function populationMeansInAdmixture. Figure 2-6 shows that the CTSE estimation is 

adversely affected if cell types with large abundance are erroneously omitted from the analysis: 

when the most abundant cell type, P1, is omitted, the CTSE estimation accuracy is greatly 

diminished (mean r = 0.52, Figure 2-6e). However, omitting low abundance cell types had only a 

negligible effect when it came to estimating mean CTSE levels in abundant cell types. 
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In conclusion, we find that erroneously omitting cell types from the analysis has a minor effect 

on estimating cell type abundances but one should not omit high abundance (i.e. >50%) cell 

types when it comes to estimating mean expression values in cell types (i.e. CTSE estimation 

methods). 

 

Conclusions 

We carried out comprehensive evaluations to assess the reliability of several expression 

deconvolution methods (Table 1) in 4 empirical datasets. We started out by comparing two 

different approaches for estimating cell abundances: i) a multivariate linear regression model 

(LRM) method, which assumes that the mean expression values in each cell population are 

known and ii) the cell type marker (CM) method, which assumes only that cell markers are 

known.  

However, the abundances from the CM method are calculated based on the mean expression 

level of marker genes and are on a different scale (depending on the normalization procedure) 

from that of the true cell proportion (ranging from 0 to 1). We have found it useful to calibrate 

the CM estimate as described in Equation 1. While this calibration step greatly improves the 

performance of the CM method, our studies show that the resulting estimate is inferior to that of 

the LRM method; the CM approach has a larger mean square error (CM MSE = 2.7×10−2 versus 

LRM MSE = 1.9×10−2). Our empirical studies show that both methods (abundance estimate, 

CTSE estimate) work well for estimating cell abundances. Although the LRM method is more 

accurate, the CM method remains attractive for the following reasons: i) it makes fewer 

assumptions (in particular it does not require that the user know the mean expression values of 
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marker genes in the cell type under consideration), ii) it is easily implemented, and iii) it can be 

readily used for estimating the cell abundances of a single cell type of interest.  

Next we use these abundance estimation approaches for estimating CTSE values. Strikingly, the 

accuracy of CTSE estimates based on the LRM abundances is similar to CTSE estimates based 

on true measured abundances, which obviates the need to measure cell abundances directly. Our 

empirical data show that CTSE estimates based on LRM abundance estimates are far more 

accurate than those based on CM abundance estimates (LRM mean r = 0.89 versus CM mean r = 

0.83). Thus, we recommend using abundance estimates based on the LRM method as surrogates 

for measured abundances if the latter are not available. Simulations indicate that erroneously 

omitting cell types from the analysis only has an adverse effect on CTSE estimation if the 

omitted cell type has a high abundance. 

Since cell type-specific estimation of the mean value for individual genes is probably not 

accurate enough for many real data applications, we propose to focus on gene sets instead of 

individual genes. Set based CTSE (SB-CTSE) can be carried out with a variety of different gene 

sets, e.g. literature based pathways or co-expression modules. In our applications we find that 

SB-CTSE often outperforms gene based CTSE analyses: SB-CTSE based on co-expression 

modules leads to a mean r = 0.95, SB-CTSE based on pathways from the Molecular Signatures 

Database leads to a mean r = 0.96 while gene based CTSE leads to a mean r = 0.87.  

While most expression deconvolutions will involve cell populations, we show that these methods 

are also useful in other settings, e.g. to study brain region-specific expression values based on 

macro-dissected brain expression data.  
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Methods 

Transformed blood cell data set (GEO accession number: GSE11058): 

Four pure cell line samples were obtained from the American Type Culture Collection (ATCC) 

as following: Jurkat (T cell leukemia), THP-1 (acute monocytic leukemia), IM9 (B 

lymphoblastoid multiple myeloma) and Raji (Burkitt B-cell lymphoma). They were selected 

since they show similar but distinguishable expression profiles. These cell lines provided the 

abundant sources of pure cells necessary to support experimental mixing of different types of 

cells in different ratios. Finally, 4 mixed samples were created based on defined proportions. 

Both pure cell lines and mixed samples were profiled with Affymetrix HGU133 expression 

microarrays in triplicate [31]. 

 

Kidney transplantation data set (GEO accession number: GSE24223): 

Whole peripheral blood from 10 kidney transplant patients was collected into PaxGene (Qiagen) 

tubes immediately prior to administration of immunosuppression and transplantation and at 

weeks 1, 2, 4, 8, and 12. Blood Samples from 5 healthy controls (2 males and 3 females, 25–45 

years of age) were collected following the same protocol at a single time point. In parallel, 

magnetic beads were used to isolate the following four cell subset populations from whole blood: 

CD14 (monocyte/macrophage), CD19 (B cells), CD4, and CD8 T cells. These samples were 

analyzed with Affymetrix HGU133 Plus 2.0 GeneChips, following standard protocols. Finally, 

expression profiling from 64 whole blood samples, 7 CD14 samples, 6 CD19 samples, 10 CD4 

samples, and 9 CD8 samples were included [35]. 
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Rat tissue data set (GEO accession number: GSE19830): 

Three pure rat tissues, including brain, liver, and lung, were experimentally mixed at 11 different 

proportions. Besides these 11 mixed samples, there are also 3 pure tissue samples. All these 

samples are analyzed with rat-specific RAE230_2 whole-genome expression arrays 

(Affymetrix), and each sample was analyzed in triplicate. So, there were totally 42 expression 

profiles in this data set [34]. 

 

Brain region data set (Unpublished): 

A technical white paper describing LMD sample preparation, microarray profiling and 

preprocessing in detail is available at http://www.-blueprintnhpatlas.org/nhp/docs.html. Brain 

tissue was collected from five brain regions (including hippocampus and striatum) for a total of 

12 rhesus macaque monkeys (N = 3 at each of four post-natal developmental time points: T = 0, 

3, 12, and 48 months). Microarrays from T = 0 were excluded from these analyses, as the 

expression levels from this time point show considerable differences from T = 3, 12, and 48 

(Unpublished observations). LMD was performed on a Leica LMD6000 (Leica Microsystems, 

Inc., Bannockburn, IL), using the Nissl stain as a guide to identify target brain regions. 

Microdissected tissue was collected directly into RLT buffer with ß-mercaptoethanol, and 

processed following the manufacturer’s directions for the RNeasy Micro kit (Qiagen Inc., 

Valencia, CA) to isolate RNA. Samples passing RNA quality control (QC) were amplified, 

labeled, and hybridized to catalog GeneChip Rhesus Macaque Genome Arrays from Affymetrix 
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containing 52,803 probe sets/sequences. Macro-dissected samples were collected from macaque 

brain using manual dissection and processed following a similar procedure.  

 

Linear regression based cell abundance estimate and CTSE estimate 

As its name says, our R function proportionsInAdmixture implements methods for estimating the 

proportions of different cell populations in a mixture (based on multivariate regression). In this 

function, the expression profile of a mixed sample is modeled as a linear combination of the 

expression profile of each cell population comprising that sample. The function takes as input the 

expression profiles of mixed tissue samples and known expression values in pure cell 

populations. It outputs estimates of the proportions of the various cell types. The aim is to 

estimate the proportion of each cell population for all the mixed samples. 

The methods implemented in this function were motivated by the gene expression deconvolution 

approach described by Abbas et al (2009), Lu et al (2003), Wang et al (2006), and Kuhn et al 

(2011). Similar to the notation from Kuhn et al (2011), the expression value y of gene g in a 

given mixed sample is modeled by 

 

where xpg is the expression profile of gene g in the pure cell population p, fp is the fraction of 

population p in the mixed sample, and eg is measure error for gene g. 

All of the considered expression deconvolution approaches start with Equation 2. When 

estimating the fractions fp one assumes that the values xpg are known. (This implemented in the 
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function proportionsInAdmixture) When estimating the values xpg, one assumes that the fp 

values are known (Implemented in the function populationMeansInAdmixture). 

However, the two deconvolution approaches differ in the genes that are being considered. When 

estimating fp (proportions) one does not need to consider all genes. Instead, it is advisable to 

focus on a subset of genes whose mean values vary greatly across the cell populations (e.g. cell 

type markers that are over expressed in specific cell types). Cell markers can be found based on 

published data or by finding genes that are differentially expressed between pure cell populations 

(using a T-test or ANOVA across the pure populations). When estimating cell type-specific 

expressions, (i.e. xpg) any set of genes could be used (e.g. all available genes or genes that form 

a pathway). In order to arrive at stable estimates of cell type-specific expression one need to 

analyze mixture samples whose composition with respect to the cell types varies. In other words, 

if a cell type has a constant abundance (e.g. fp = 0.10) then one cannot estimate the 

corresponding cell-specific expression levels. 

A third variant of the deconvolution approach is to combine these two approaches in the sense 

that one first estimates the abundances to arrive at estimates  and then to use it as input for cell 

type-specific expression estimation.  

 

Simulation of expression profiles 

In the following simulations we assume that the mixed sample is composed of four cell 

populations denoted by P1, P2, P3, and P4. We simulate 50 mixed samples that contain different 

proportions of the 4 cell types. Each simulated gene is a marker gene in one of the 4 populations. 
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For each population there are 100 marker genes, i.e. we consider a total of 400 genes. 

Specifically, the expression profiles of a mixed sample are simulated in the following steps.  

First, each gene is assumed to be highly expressed in exactly 1 of the 4 pure populations where 

its expression value is drawn from a normal distribution with mean 1 and variance .04. In the 

remaining 3 populations, its expression value is drawn from a N (0, 0.22) distribution. This step 

results in a matrix of pure cell expression values X400×4 whose 400 rows correspond to the 

genes and whose 4 columns correspond to the 4 pure cell populations. 

Second, we simulate the counts of the pure cells in the mixed sample. The number of pure cells 

(of a given type) in a mixed sample is drawn from a Poisson distribution whose mean value is 

given by the lambda parameter. The lambda values for populations P1 and P3 are given by 16 

and 4, respectively. To simulate a dependence between the cell counts for populations 1 and 2, 

the lambda value for population P2 was set to be half that of population P1. Similarly, the 

lambda of P4 is half that of P3. To turn counts into proportions, each count was divided by the 

total count (sum). This step resulted in a matrix F4×50 of proportions whose 4 rows correspond 

to the 4 pure cell types and whose 50 columns correspond to the 50 mixed samples. On average, 

population P1, P2, P3, P4 had a prevalence of 54%, 29%, 12%, 5%, respectively. 

Third, we simulated the expression levels of the 400 genes in 50 mixed samples. Toward this 

end, we used the formula Y400×50 = X400×4 F4×50 + noise, where the entries of the noise 

matrix were sampled from a normal distribution N(0,0.12). Note that Y400×50 is matrix of 

expression levels whose 400 rows correspond to the 400 genes and whose 50 columns 

correspond to mixed samples. 
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Figure 2-1 
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Figure 2-1. Empirical comparison of abundance estimation methods using three different 

expression data sets 

Two abundance estimation methods (LRM and CM, corresponding to the columns) are 

compared in three independent data sets. Panels a + b report the findings for the transformed 

blood cell data, panels c + d for the kidney transplantation data, and e + f for the rat tissue data. 

Each dot is a mixed sample comprised of multiple cell types. 

Each scatterplot shows how the estimated abundance (y-axis) of the cell population is related to 

the true observed, measured abundance (x-axis). The figure heading reports the cell population, 

the correlation between estimated and true value, and the mean square error of the estimation. 

The dashed blue line shows the regression line resulting from regressing y on x. The solid red 

line corresponds to the line y = x. The plots in the first column (panels a, c, e) shows that the 

LRM abundance estimates are highly correlated with the true values (mean r = 0.85). The plots 

in the second column (panels b, d, f) show that the CM estimation method leads to a high 

correlation as well (mean r = 0.74) but it tends to have a larger mean square error than the LRM 

method. 
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Figure 2-2 
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Figure 2-2. Empirical comparison of cell type-specific expression (CTSE) values: gene 

based analysis 

To estimate the mean value of a gene in a given cell population one needs to input an estimate of 

the cell type abundance (LRM or CM corresponding to the 2 columns). The figure evaluates how 

the abundance estimate affects the accuracy of estimating the mean expression value of a gene in 

a specific cell population. Panels a + b report the findings for the transformed blood cell data, 

panels c + d for the kidney transplantation data, and e + f for the rat tissue data. Each dot 

corresponds to a gene.  

Each scatterplot shows how the estimated expression value (y-axis) of the gene in the given cell 

population is related to the true observed, measured mean value (x-axis). The figure heading 

reports the cell population, the correlation between estimated and true value, and the mean 

square error of the estimation. The solid red line corresponds to the line y = x. Each figure shows 

the density of dots (red indicates high density while green indicates low density). Overall, the 

cell type-specific analyses lead to fairly high correlations between true and estimated mean 

expression values but the LRM based estimates are slightly better than those of the CM based 

method (mean r = 0.89 for the LRM based method versus mean r = 0.83 for the CM based 

methods). 
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Figure 2-3 
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Figure 2-3. Empirical comparison of set based cell type-specific expression (SB-CTSE) 

values: set based analysis 

This figure is analogous to Figure 2-2 except that dots represent sets of genes as opposed to 

individual genes. Thus, each dot corresponds to a gene set defined using the gene co-expression 

module. Panels a + b correspond to the transformed blood cell, panels c + d correspond to the 

kidney transplantation data, and e + f correspond to the rat tissue data. The two columns report 

the findings for different ways of estimating the cell population abundances (LRM versus CM 

based method). The dot here corresponds to one gene co-expression module. Overall, the results 

for the set based analysis are superior to those of the individual gene based analysis (reported in 

Figure 2). Further, the LRM based analysis leads to a similar estimation accuracy (mean r = 

0.96) as the CM based analysis (mean r = 0.94). 
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Figure 2-4 
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Figure 2-4. Expression of sufficiently distinct hippocampal cell types can be estimated from 

macro-dissected tissue  

a) Anatomical delineations of 10 hippocampal sub-regions in adult (48 months) macaque brain. 

mRNA from these sub-regions was collected using laser micro-dissection (LMD) and run on 

custom Affymetrix microarrays across four developmental time points (0, 3, 12, 48 months). b) 

mRNA from macro-dissected hippocampal samples was also collected. c) Expression levels of 

genes in the macaque CA1-so estimated from macro-dissected samples (x-axis) recapitulate true 

expression levels measured by LMD (y-axis) to a moderate degree. Each of the 52865 points 

represents a probe set on the microarray. d) Correlations between true and predicted expression 

levels (y-axis) are comparable across the other hippocampal sub-regions. e) Multidimensional 

scaling (MDS) using all genes groups samples based on the predominant cell types of the brain 

region (T = 48 months). X and y axes correspond to first two principal components (arbitrary 

units). Samples are plotted using text corresponding to their region of origin and are color coded 

for clarity. f) Grouping samples based on cell type leads to much more accurate estimations of 

gene expression profiles from heterogeneous tissue. Labeling as in c. Plots for GABA/glia (left), 

granular (center), and pyramidal (right) cells are show at the same scale. 
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Figure 2-5 
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Figure 2-5. Simulation study to evaluate how the LRM abundance estimation method is 

affected if a cell population is erroneously omitted 

The 4 columns correspond to 4 simulated cell populations of decreasing average abundances 

(population 1 is most abundant, population 4 is least abundant). Each scatter plot reports the 

predicted abundance (y-axis) and the true abundance (x-axis), the correlation, and the mean 

square error. The dashed blue line shows the regression line resulting from regressing y on x. 

The solid red line corresponds to the line y = x. Overall, we observe high correlations and low 

MSEs when all 4 populations are used. Panel b shows the performance of the LRM abundance 

estimation method when population 4 is erroneously ignored. Note that ignoring the least 

abundant cell type P4 has only a negligible effect in this case. Panel c-e show the results when 

other cell types are ignored. Overall, we find that the LRM abundance estimation method is 

highly robust with respect to ignoring cell types even in case of ignoring the most abundant cell 

type (see panel e). 
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Figure 2-6 
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Figure 2-6. Simulation study to evaluate how the performance of the CTSE estimation 

method is affected if a cell population is erroneously omitted 

This figure is analogous to Figure 5 but each point corresponds to a gene and we evaluate the 

performance of the CTSE based on the LRM abundance input. The 4 columns correspond to 4 

simulated cell populations of decreasing average abundances (population 1 is most abundant, 

population 4 is least abundant). Each scatter plot reports the predicted mean expression value (y-

axis) in the cell population and the true mean value (x-axis), the correlation, and the mean square 

error. The dashed blue line shows the regression line resulting from regressing y on x. The solid 

red line corresponds to the line y = x. Panel a shows a high predictive accuracy when all 4 

populations are used. Note that the CTSE of the mean levels are most accurate for the most 

abundant cell population (P1). Panel b shows the performance of the CTSE estimation method 

when population 4 is erroneously ignored. Note that ignoring the least abundant cell type P4 has 

only a minor effect in this case. Panel c-e show the results when other cell types are ignored. 

Note that ignoring the most abundant cell type markedly degrades the prediction accuracy (see 

panel c). 
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Table 2-1. Overview of expression deconvolution methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name Purpose
Unit of 
observation

R function Input Output

LRM 
abundance

Abundance 
estimation

Sample proportionsInAdmixture
Mean express ion va lues  in pure 
population; Express ion profi les  from 
mixed samples

estimate of 
proportion

CM 
abundance

Abundance 
estimation

Sample collapseRows
Identi fiers  of cel l  markers ;                  
Express ion profi les  from mixed 
samples

measure that i s  
correlated with the 
proportion

LRM CTSE
CTSE 
estimation

Gene populationMeansInAdmixture
LRM based predicted abundances ;  
Express ion profi les  from mixed 
samples  

mean express ion of 
genes  in the cel l  
type

CM CTSE
CTSE 
estimation

Gene populationMeansInAdmixture
CM based predicted abundances ;    
Express ion profi les  from mixed 
samples  

mean express ion of 
genes  in the cel l  
type

Measured 
abundance 
CTSE

CTSE 
estimation

Gene populationMeansInAdmixture
Measured abundances ;                          
Express ion profi les  from mixed 
samples  

mean express ion of 
genes  in the cel l  
type

SB-CTSE
SB-CTSE 
estimation

Set of genes populationMeansInAdmixture
Population abundances ;                       
Express ion profi les  from mixed 
samples ;     Gene sets  information 

mean express ion of 
gene sets  in the cel l  
type

Table 1. Overview of expression deconvolution methods
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Table 2-2. Correlations between true and estimated values for different types of expression 

deconvolution methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data  set
Cel l  

populatio
n

Abun. 
LRM

Abun. 
CM

CTSE 
LRM

CTSE 
CM

CTSE 
measured 

abun.

SB CTSE 
LRM 

(WGCNA)

SB CTSE 
CM 

(WGCNA)

SB CTSE 
measured 

abun. 
(WGCNA)

SB CTSE 
LRM 

(GSEA)

SB CTSE 
CM 

(GSEA)

SB CTSE 
measured 

abun. 
(GSEA)

IM9 0.99 0.87 0.94 0.91 0.93 0.99 0.98 0.99 0.98 0.98 0.97

Jurkat 0.98 0.88 0.93 0.94 0.83 0.99 0.99 0.96 0.97 0.98 0.93

Raji 0.9 0.83 0.92 0.83 0.96 0.98 0.97 0.99 0.98 0.95 0.98

THP1 0.75 0.96 0.95 0.96 0.9 0.99 1 0.99 0.99 0.99 0.97

CD14 0.78 0.24 0.78 0.67 0.86 0.88 0.86 0.94 0.93 0.87 0.96

CD19 0.74 0.74 0.81 0.61 0.83 0.93 0.83 0.93 0.94 0.89 0.93

CD4 0.76 0.57 0.77 0.78 0.83 0.86 0.89 0.93 0.95 0.96 0.97

CD8 0.65 0.55 0.87 0.78 0.77 0.95 0.96 0.91 0.96 0.93 0.92

Bra in 0.92 0.75 0.96 0.86 0.96 0.99 0.92 0.99 0.99 0.95 0.99

Liver 0.96 0.97 0.94 0.89 0.94 0.99 0.98 0.98 0.99 0.97 0.98

Lung 0.95 0.75 0.95 0.94 0.97 0.98 0.98 0.99 0.99 0.98 0.99

Mean r Al l 0.85 0.74 0.89 0.83 0.89 0.96 0.94 0.96 0.97 0.95 0.96

Transformed 
blood cell data

Kidney 
transplantation 

data 

Rat tissue data 

Table 2. Correlations between true and estimated values for different types of expression deconvolution methods
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Table 2-3. Mean squar errors for the different types of expression deconvolution methods 

 

 

 

 

 

 

 

 

Additional files: 

The corresponding addtional files for this section can be downloaded from the following linkage: 

http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/Bloodbrain/Additional/ 

 

 

 

 

 

 

Data  set
Cel l  

populatio
n

Abun. 
LRM

Abun. 
CM

CTSE 
LRM

CTSE CM
CTSE 

measured 
abun.

SB CTSE 
LRM 

(WGCNA)

SB CTSE 
CM 

(WGCNA
)

SB CTSE 
measured 

abun. 
(WGCNA)

SB CTSE 
LRM 

(GSEA)

SB CTSE 
CM 

(GSEA)

SB CTSE 
measured 

abun. 
(GSEA)

IM9 7.5E-03 3.4E-02 4.8E-01 7.9E-01 6.0E-01 3.5E-02 8.2E-02 5.7E-02 1.8E-01 1.9E-01 2.2E-01

Jurkat 1.5E-02 1.7E-02 5.6E-01 4.8E-01 1.9E+00 4.1E-02 3.8E-02 2.9E-01 2.4E-01 2.2E-01 7.0E-01

Raji 3.1E-02 2.7E-02 7.7E-01 1.9E+00 3.3E-01 6.8E-02 2.2E-01 3.7E-02 2.0E-01 4.3E-01 1.4E-01

THP1 3.1E-02 4.9E-02 4.1E-01 3.8E-01 9.8E-01 2.2E-02 1.9E-02 1.1E-01 9.9E-02 9.0E-02 2.6E-01

CD14 3.0E-02 6.0E-02 2.6E+00 5.3E+00 1.5E+00 5.3E-01 5.8E-01 3.2E-01 3.5E-01 5.8E-01 2.0E-01

CD19 6.7E-03 2.5E-02 2.6E+00 6.4E+00 2.3E+00 4.0E-01 8.7E-01 3.7E-01 3.5E-01 5.3E-01 3.8E-01

CD4 1.2E-02 1.6E-02 2.9E+00 3.1E-02 2.2E+00 5.9E-01 4.7E-01 3.1E-01 2.8E-01 2.2E-01 1.6E-01

CD8 3.0E-02 1.2E-02 1.8E+00 4.8E+00 3.1E+00 2.4E-01 3.3E-01 4.9E-01 2.6E-01 6.3E-01 3.8E-01

Bra in 2.4E-02 1.6E-02 3.1E-01 3.3E+00 2.9E-01 5.8E-02 2.9E-01 4.5E-02 1.4E-01 1.2E+00 1.3E-01

Liver 1.2E-02 1.7E-02 4.5E-01 1.5E+00 3.9E-01 1.3E-01 1.4E-01 1.6E-01 2.7E-01 5.1E-01 3.1E-01

Lung 7.3E-03 2.4E-02 4.5E-01 5.7E-01 2.5E-01 1.4E-01 1.8E-01 1.3E-01 3.2E-01 3.9E-01 3.0E-01

Mean MSE Al l 1.9E-02 2.7E-02 1.2E+00 2.3E+00 1.3E+00 2.0E-01 2.9E-01 2.1E-01 2.4E-01 4.5E-01 2.9E-01

Table 3. Mean squar errors for the different types of expression deconvolution methods

Transformed 
blood cell data

Kidney 
transplantation 

data 

Rat tissue data 
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