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ABSTRACT OF THE DISSERTATION

Testing in Network Models with Community Structure

by

Linfan Zhang

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Arash Ali Amini, Chair

We consider the problem of testing in network models with community structures. In the

first part, we propose a goodness-of-fit test for degree-corrected stochastic block models

(DCSBM). The test is based on an adjusted chi-square statistic for measuring equality

of means among groups of n multinomial distributions with d1, . . . , dn observations. In

the context of network models, the number of multinomials, n, grows much faster than

the number of observations, di, corresponding to the degree of node i, hence the setting

deviates from classical asymptotics. We show that a simple adjustment allows the statistic

to converge in distribution, under null, as long as the harmonic mean of {di} grows to

infinity. When applied sequentially, the test can also be used to determine the number of

communities. Since the test statistic does not rely on a specific alternative, its utility goes

beyond sequential testing and can be used to simultaneously test against a wide range of

alternatives outside the DCSBM family. We show the effectiveness of the approach by

extensive numerical experiments with simulated and real data. In the second part, we

provide theoretical guarantees for label consistency in generalized k-means problems, with

an emphasis on the overfitted case where the number of clusters used by the algorithm is

more than the ground truth. We provide conditions under which the estimated labels are

close to a refinement of the true cluster labels. We consider both exact and approximate
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recovery of the labels. Our results hold for any constant-factor approximation to the

k-means problem. The results are also model-free and only based on bounds on the

maximum or average distance of the data points to the true cluster centers. These centers

themselves are loosely defined and can be taken to be any set of points for which the

aforementioned distances can be controlled. We show the usefulness of the results with

applications to some manifold clustering problems.

iii



The dissertation of Linfan Zhang is approved.

Chad J. Hazlett

Ying Nian Wu

Hongquan Xu

Arash Ali Amini, Committee Chair

University of California, Los Angeles

2022

iv



To my mother, father and

my advisor Professor Arash Ali Amini

v



Contents

1 Introduction 1

1.1 Degree-Corrected Stochastic Block Model . . . . . . . . . . . . . . . . . . 2

1.1.1 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Goodness-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Adjusted Chi-square Test for Degree-corrected Blockmodels 12

2.1 Adjusted Chi-square test . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Single-group Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Multi-group extension . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Network Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 NAC Family of Tests . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Full Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Subsampled Version . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Bootstrap Debiasing . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Analysis of Subsampled NAC . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Null Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Comparison with the Existing Literature . . . . . . . . . . . . . . 36

2.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



2.4.2 Goodness-of-fit Testing . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.3 Exploring Community Structure . . . . . . . . . . . . . . . . . . . 47

2.5 Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.1 Additional Proofs of Theorem 1 . . . . . . . . . . . . . . . . . . . 52

2.5.2 Proofs of Theorems 2 and 3 . . . . . . . . . . . . . . . . . . . . . 62

2.5.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Label consistency in overfitted generalized k-means 83

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Distance to True Centers . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.2 Connection to Distribution Stability . . . . . . . . . . . . . . . . 92

3.2.3 Distance to Fake Centers . . . . . . . . . . . . . . . . . . . . . . . 94

3.3 Overfitting Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.1 Mixture of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.2 Mixture of Higher-order Submanifolds . . . . . . . . . . . . . . . 96

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.1 Line-circle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.2 Circle-torus Model . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.3 Line-Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Extra Simulations in Chapter 2 105

A.1 Bootstrap Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.3 ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.4 Extra Real Network Examples . . . . . . . . . . . . . . . . . . . . . . . . 109

B Remaining Proofs in Chapter 2 112

B.1 Lemmas in the Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . 112

vii



B.1.1 Lemmas in the Proof of Propostion 1 . . . . . . . . . . . . . . . . 112

B.1.2 Lemmas in the Proof of Proposition 2 . . . . . . . . . . . . . . . . 116

B.2 Lemmas in the Proofs of Theorems 2 and 3 . . . . . . . . . . . . . . . . . 120

B.2.1 Lemmas in the Proof of Theorem 2 . . . . . . . . . . . . . . . . . 122

B.2.2 Lemmas in the Proof of Theorem 3 . . . . . . . . . . . . . . . . . 123

B.3 Lemmas in the Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . 125

B.4 Other Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C Remaining Proofs in Chapter 3 138

C.1 Proofs of Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.1.1 Proof of Propostion 3 . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.1.2 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . 140

C.1.3 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . 141

C.2 Proof of Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

viii



List of Figures

2.1 Heatmaps of multinomial probability matrix . . . . . . . . . . . . . . . . 32

2.2 Model selection accuracy versus network degree . . . . . . . . . . . . . . 40

2.3 ROC plots for testing 4 versus 5 community models . . . . . . . . . . . . 43

2.4 Goodness-of-fit of DCSBM to FB-100 . . . . . . . . . . . . . . . . . . . . 46

2.5 Goodness-of-fit of DCSBM to FB-100 with node degree below the 75-percentile 47

2.6 FB-100 normalized statistics vs. the number of communities . . . . . . . 48

2.7 FB-100 Community profile plots . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 FB-100 network plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Mixture-of-curve models: cluster number vs misclassification rate . . . . 98

3.2 Line-circle model scatter plot and missclassification rate . . . . . . . . . . 99

3.3 Circle-torus model scatter plot and missclassification rate . . . . . . . . . 99

3.4 Scatter plots for the circle-torus model . . . . . . . . . . . . . . . . . . . 100

3.5 Line-Gaussian model missclassification rate . . . . . . . . . . . . . . . . . 101

A.1 Comparing different bootstrap approaches in model selection . . . . . . . 105

A.2 More model selection accuracy performance examples . . . . . . . . . . . 107

A.3 ROC plots for testing 4- versus 3-community models . . . . . . . . . . . 108

A.4 ROC plots for testing 4-block DCSBM and 4-block DCLVM . . . . . . . 109

A.5 FB-100 community profile plots w/ a single elbow/dip . . . . . . . . . . . 109

A.6 FB-100 community profile plots w/ multiple elbows/dips . . . . . . . . . 110

A.7 Political blog network: profile plot and community structure . . . . . . . 111

C.1 The geometry of the dataset in Proposition 3 . . . . . . . . . . . . . . . . 139

ix



List of Tables

2.1 Statistics on the FB-100 dataset . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Statistics on the reduced FB-100 dataset. . . . . . . . . . . . . . . . . . . 46

x



ACKNOWLEDGMENTS

I would like to extend my deepest gratitude towards my advisor Professor Arash

Amini for supporting my PhD journey along the way. His wisdom keeps enlightening me

about statistical field and beyond. His encouragement helps me go through the ebbs and

flows of research projects. Thanks for prompt feedback and insightful discussion, without

which this dissertation would never be possible.

I would like to thank Professor Chad Hazlett for providing me the opportunity to

work on the kernel scaling computation project. I gained much valuable knowledge outside

my main research areas through his guidance and wisdom. I also like to thank Professor

Ying Nian Wu for teaching some of the most valuable machine learning courses, deeply

enriching my understanding. Last but not least, thanks Professor Hongquan Xu for being

the best department chair I can hope for, always standing for students, faculty and staff

in our department. I am grateful for all their endeavor serving as my committee.

I would like to thank Professor Linda Zanontian for making my TA experience so

much fun. I like to also thank our department staff for their efforts in keeping the

department running. Thanks Enrique and Verghese for helping me with all the IT stuff.

Thanks Laurie for being a reliable source for everything despite her huge amount of work.

I would like to thank my fellow friends in the department for the companionship:

Jiayu Wu, Kexin Li, Kun Zhou, Xiaofeng Gao, Yifei Xu and Jireh Huang. Special thanks

to Yizhou Zhao for the love and support. Without them, life at UCLA would be black

and white.

Finally, I would like to thank my mother and father for everything. You make me

everything I am today.

xi



VITA

Education

B.S., Statistics 2013 - 2017
Zhejiang University

Publications

Zhang, L. & Amini, A.A. (2021). Label consistency in overfitted generalized k-means.
Neural Information Processing Systems (NeurIPS) , 34 (2021): 7965-7977

Zhang, L. & Amini, A.A. (2020). Adjusted chi-square test for degree-corrected block
models. arXiv. https://arxiv.org/abs/2012.15047

xii



Chapter 1

Introduction

Network analysis has become an increasingly prominent part of data analysis as the

developments in the age of the internet and in various sciences, especially life and social

sciences, have produced a substantial collection of network data. Given a network, it

is of interest to understand its structure, which is often done by finding communities

or clusters. Probabilistic network models such as the Stochastic Block Model (SBM)

[HLL83] and its variant the Degree-Corrected Stochastic Block Model (DCSBM) [KN11]

are commonly used to recover the community structure from network data. Both models

use a latent variable, the node label, to categorize nodes in a network into different

communities. In the SBM, the probability of an edge formation between two nodes

depends on the communities they belong to. The DCSBM incorporates an additional

propensity parameter to determine the edge probability, allowing heterogeneous node

degrees within a community. Fitting network data to probabilistic models is a heated

topic in the literature [RCY11a]. On the other hand, how well these network models fit

the data, the so-called goodness-of-fit question, is studied comparatively much less. In this

section, we give a brief review on the Degree-Corrected Stochastic Block Model (DCSBM)

and the spectral clustering as the most popular community detection algorithm to fit

network data. Then we introduce some existing goodness-of-fit methods in the literature

and the relevant model selection problems in the network.
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1.1 Degree-Corrected Stochastic Block Model

The fundamental characteristic of a network block model is that each node i has a

latent variable zi ∈ [K] indicating which block it belongs to. The zi can be regarded

as independent draws from class prior π ∈ {x ∈ RK
+ :

∑K
k=1 xk = 1} such that P(zi =

k) = πk. Given a node label vector z = (zi) ∈ [K]n, a DCSBM with connectivity matrix

B ∈ [0, 1]K×K and connection propensity vector θ = (θi) ∈ Rn
+, assumes the following

structure for the mean of adjacency matrix A,

E[Aij | z] = θiθjBzizj , ∀ i ̸= j. (1.1)

One further assumes that A is symmetric and the entries Aij, i < j are drawn independently,

while Aii = 0 for all i. Common choices for the distribution of each element, Aij, are

Bernoulli and Poisson. In this dissertation, unless otherwise stated, we assume the

Poisson distribution for derivations, following the original DCSBM paper [KN11]. The

Poisson assumption simplifies the arguments and provides computational advantages. The

Stochastic Block Model (SBM) is a special case of (1.1) with θi = 1 for all i. Throughout

this dissertation, we define Ck = {i : zi = k} to be the k-th cluster and nk = |Ck| to be its

size. Let B = (νn/n)B0, where νn is a scaling factor and B0 has its maximum entry at

most 1. Let θmax = maxi θ = 1. Such setup has convenience that the expected average

degree of a DCSBM is of order νn.

The SBM and its degree-corrected variant have been the subject of intense study

in recent years and numerous methods have been developed for fitting them. Mostly

people are interested in finding clusters in networks generated from SBM or DCSBM. A

very incomplete list includes modularity maximization [NG04; BC09], likelihood-based

approaches such as the profile likelihood [BC09; ZLZ12], the pseudo-likelihood [Ami+13]

and the variational likelihood [DPR08; Bic+13; ZZ20], spectral methods based on the

adjacency matrix [RCY11b; CCT12; QR13; Fis+13; YP14; LR15a; CRV15; JY16; ABH16;

ZA19], the non-backtracking matrix [Krz+13] and the Bethe-Hessian matrix [SKZ14],

semidefinite relaxations [ABH16; AL18; LCX18; FC19], local refinements [MNS16b;

2



Gao+17; Gao+18; LZ17; ZA20b], message-passing algorithms [Dec+11; ZM14; AS15;

MNS16a] and Bayesian approaches [SN97; HW08; MS12; Suw+16; PV18; PAL19]. Many

of these methods are based on the assumption that the number of communities K is

given and most come with consistency guarantees, when the data is generated from

the corresponding model with K communities. We refer to [Abb18] for a review of the

theoretical limits of community detection in SBMs.

1.1.1 Spectral Clustering

We briefly recall the spectral clustering, one of the most prevalent community detection

algorithm for SBM and DCSBM. There are many variants of the spectral clustering in

networks, and we use the regularized spectral clustering whenever community detection is

performed in this dissertation. Let di =
∑n

j=1Aij be the degree of node i and D = diag(di)

is n× n diagonal matrix with di on the diagonal. Algorithm 1 gives a brief outline the

method. The regularization greatly improve clustering performance in sparse networks

with degree heterogeneity [Ami+13]. With column normalization on eigenvectors, it

also works well under DCSBM [QR13]. Let di =
∑n

j=1Aij be the degree of node i and

D = diag(di) is n× n diagonal matrix with di on the diagonal.

Algorithm 1: Spectral clustering with regularization
Input :Adjacency matrix A, number of clusters K, regularization parameter for

the Laplacian τ
Output :A label vector ẑ ∈ [K]n

1 Compute the regularized graph Laplacian Lτ = D
−1/2
τ AD

−1/2
τ , where

Dτ = D + τI.
2 Find the eigenvectors X1, . . . , XK ∈ Rn corresponding to the K largest eigenvalues

of Lτ . Putting them together column-wise to get X = [X1, . . . , XK ] ∈ Rn×K .
3 Treat each row of X as a point in RK , and run k-means with K clusters. Output

the cluster label.

The spectral clustering, like many other community detection algorithms, requires

a input of the cluster number K, which one can not know the true number unless the

underlying generating model is revealed. There are two kinds of solutions to the unknown

cluster number in the literature. One is to regard it as a goodness-of-fit problem and test

whether a K-block model is a good fit. The other one is to make it a model selection

3



problem and design an evaluation criteria to select the optimal K from a candidate pool.

In the following section, we review some of the methods in both ways.

1.2 Goodness-of-Fit Test

Despite the efforts in finding clusters, how well these network models fit the data, the

so-called goodness-of-fit question, is studied comparatively much less. Prominent work in

this area include the graphical approach of [HGH08] for general network models, and the

recent work of Bickel and Sarkar [BS16] and its extension by Lei [Lei16], on a spectral

goodness-of-fit test for the SBM. Developing goodness-of-fit tests specifically for the

DCSBM is more challenging and to the best of our knowledge has not been considered

so far, except for the work of Karwa et al. [Kar+16] on the related β-SBM. We give a

brief overview of each method below and a more extensive comparison with our proposed

method is deferred to later Section 2.3.3.

Graph Statistics Comparison Hunter, Goodreau, and Handcock [HGH08] discussed

the goodness-of-fit in general graphs, in which nodes could have additional information as

covariates aside from edge relationship. Their idea is to compare a set of observed graph

statistics with the range of the same statistics obtained by simulating many graphs from

the fitted models. If the observed graph statistic is far from the range, then the model

fits poorly and vice versa. The challenges are to choose appropriate network statistic for

comparison and determine specific rules about the goodness-of-fit.

Likelihood Ratio and BIC The likelihood ratio test assess the goodness-of-fit for two

network models by the ratio of their likelihoods [Yan+14a; WB17; YFS18; MSZ18]. For

a DCSBM with K clusters, the complete likelihood is

P (A, z |B, π, θ) =
∏
i

πzi
∏
i<j

(θiθjBzizj)
Aij

Aij!
e−θiθjBzizj . (1.2)
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As z is unobservable, the likelihood for A with parameter space ΘK = {B, π, θ} is the

sum of the complete likelihood w.r.t. the label z:

P (A |B, π, θ) =
∑
z∈[K]n

P (A, z |B, θ, π) (1.3)

Consider a hypothesis testing with the null hypothesis H0: K-block model and the

alternative hypothesis Ha: K ′-model, the log likelihood ratio is

LK,K′ = log
sup{B,π,θ}∈ΘK′ P (A |B, π, θ)
sup{B,π,θ}∈ΘK

P (A |B, π, θ)
. (1.4)

Wang and Bickel [WB17] showed that if the true model has K blocks and the degree

grows in a polylog rate νn/ log → ∞, then when K ′ < K, for constants C and σ,

ν−1
n n−1/2LK,K′ ⇝ N(C

√
n, σ2) and when K ′ > K, ν−1

n n−1/2LK,K′ = OP (1). Note that

the result holds for both SBM and DCSBM. The limitation for this likelihood ratio test

is that it requires a specific alternative with a different cluster number to compare the

likelihoods. It can be turned into a Bayesian Information Criterion (BIC) type of model

selection method to find the optimal cluster number among a bunch of candidates. By

adding a penalized term, we get

β(K ′) = sup
{B,π,θ}∈ΘK′

ℓ(B, π, θ |A)− K ′(K ′ + 1)

2
n log n, (1.5)

and the optimal K maximizes β(K ′). It leads to a consistent estimate on the true cluster

number.

In practice, computing P (A |B, π, θ) is prohibitive due to an exponential number of

summands. Therefore, they proposed either using the EM algorithm or plugging in an

estimated ẑ to the complete likelihood (1.2) to approximate it. The plug-in technique is

also used by other likelihood-based test in network [Yan+14a; MSZ18] for its computation

simplicity. To compute it, we first get the complete log-likelihood from (1.2):

ℓ(B, θ, π | A, z) =
∑
i

log πzi +
∑
i<j

ϕ(Aij; θiθjBzizj), (1.6)

5



where ϕ(x;λ) = x log λ− λ for Poisson likelihood. Then given an estimated label vector

ẑ ∈ [K]n and assuming the identification constraint on θ that
∑

i:ẑi=k
θi = |{i : ẑi = k}|,

maximizing (1.6) yields estimators for parameters

B̂kℓ(ẑ) =
Nkℓ(ẑ)

mkℓ(ẑ)
, θ̂i(ẑ) =

nẑi(ẑ)di∑
j:ẑj=ẑi

di
, π̂k(ẑ) =

nk(ẑ)

n
(1.7)

where Nkℓ(ẑ) is the sum of the elements of A in block (k, ℓ) specified by labels ẑ, nk(ẑ) is

the number of nodes in community k according to ẑ and mkℓ(ẑ) = nk(ẑ)(nℓ(ẑ)−1{k = ℓ}).

Spectral Test The spectral test has the largest singular value of a residual matrix

as its test statistic [BS16; Lei16]. It is obtained by removing the estimated block mean

effect from the observed adjacency matrix. Essentially, if A is generated by a SBM and

the block mean effect is estimated appropriately, the residual matrix will approximate a

generalized Wigner matrix. Given an estimated label vector ẑ, B̂ = B̂(ẑ) is estimated

from (1.7). Then under SBM, we have the centered and re-scaled adjacency matrix Ã:

Ãij =
Aij − P̂ij√

(n− 1)P̂ij(1− P̂ij)
· 1{i ̸= j}, where P̂ij = B̂ẑiẑj . (1.8)

Then compute the largest singular value of Ã as σ1(Ã) to get the test statistic n2/3[σ1(Ã)−2],

which is shown to asymptotically converge to the Tracy-Widom distribution under the null

Erdős-Rényi model, i.e. an SBM with K = 1 [BS16], and also K-SBM. Furthermore, Lei

[Lei16] shows that the growth rate of n2/3σ1(Ã) is of the order νnn1/6 with a underfitted

cluster number, compared to the order n2/3 with the true cluster number. Note that this

require the degree νn grows at least in the order of n1/2, i.e. the dense network regime.

The natural extension of the test to DCSBM is to modify the re-scaled adjacency

matrix Ã as

Ãij =
Aij − P̂ij√

nP̂ij

· 1{i ̸= j}, where P̂ij = θ̂iθ̂jB̂ẑiẑj . (1.9)

However, whether the same properties of σ1(Ã) can be extended from SBM to DCSBM is

6



still unknown. The major challenge is that the estimator θ̂ required for DCSBM from

(1.7) has large variance compared to B̂ in SBM. To see the reason intuitively, θ̂i only

contains information from a single row of A with n nodes, whereas B̂kℓ from a block of A

with size of order n2 if cluster sizes are balanced.

Exact Chi-square Test Karwa et al. [Kar+16] proposed a finite-sample test based

on chi-square statistic and Monte Carlo method to evaluate the goodness-of-fit of SBM

and its variants. Assuming the true cluster label z is known, and let Ck = {i : zi = k}

be the k-th cluster and nk = |Ck| be its size. Let Xiℓ =
∑

j∈Cℓ Aij, Nkℓ =
∑

i∈Ck Xiℓ,

mkℓ = nk(nℓ − 1{k = ℓ}), B̃kℓ = Nkℓ/mkℓ, then the chi-square test statistic is

K∑
k=1

K∑
ℓ=1

∑
i∈Ck

(
Xiℓ − nkB̃kℓ

)2
nkB̃kℓ

. (1.10)

Repeatedly construct Markov moves using Monte Carlo simulation to get new networks

and compute their chi-square statistics to compare with its original counterpart (1.10)

and then get the exact p-value for goodness-of-fit. In the case where z is unknown, first

estimating ẑ, then sampling new networks based on the label ẑ and finally applying the

known-community test on each. Due to the heavy sampling, the exact test works better

for small networks with only hundreds of nodes.

1.3 Model Selection

A related problem to the goodness-of-fit is model selection, that is, determining the number

of communities assuming that the network is generated from some SBM (or DCSBM).

It has been studied more extensively as most of the community detection algorithms

require the cluster number as an input. Bayesian approaches, though computationally

intensive, can estimate the structure and the number of communities simultaneously. Ideas

include the use of Dirichlet process prior [PAL19] and mixture of mixture priors [NR16;

Rio+17; GBP19]. Another use of model selection methods is to serve as the stopping

rule in hierarchical clustering procedures [Li+20a]. Below we briefly describe some model
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selection methods that later to be compared with our method.

Pseudo Likelihood Ratio Ma, Su, and Zhang [MSZ18] proposed a model selection

method that combines the spectral clustering and binary segmentation to determine the

number of communities in DCSBM. Let ẑ ∈ [K]n be the label vector estimated by the

spectral clustering with K clusters and ẑb ∈ [K + 1]n be the label vector obtained using

binary segmentation technique. Then compute parameter estimators (1.6) based on ẑ

and ẑb, and furthermore get the estimated probability P̂ij(ẑ) = θ̂i(ẑ)θ̂j(ẑ)B̂ẑiẑj(ẑ) and

substituting ẑb for ẑ, we get P̂ij(ẑb). The pseudo likelihood is formed as

PL(ẑb, ẑ) =
1

2

∑
i ̸=j

(
P̂ij(ẑ

b)

P̂ij(ẑ)
− 1

)2

. (1.11)

They showed that when the true cluster number K0 ≥ 2 and νn ≳ log n, then PL(ẑb, ẑ) ≍

n2 when K < K0 and PL(ẑb, ẑ) ≲ n/νn when K = K0. Therefore the ratio of PL(ẑb, ẑ)

between K and K + 1 can be used sequentially to determine the cluster number, i.e. the

K that gives the smallest ratio would be the selected cluster number. A tuning threshold

is needed to help determine if the true cluster number is 1. Note that they can only

guarantee that the ratio between the pseudo likelihood is large when the cluster number

is underfitted and small with the true cluster number, and it is not clear how it grows

when the cluster number is overfitted.

Bethe-Hessian spectral method The Bethe-Hessian matrix is defined as

H(r) =
(
r2 − 1

)
I − rA+D (1.12)

where r ∈ R is a parameter. H(r) is often used in community detection, and its spectral

structure makes it capable of selecting the cluster number [LL22]. When r = ( 1
n

∑n
i=1 di)

1/2

or r =
(∑n

i=1 d
2
i∑n

i=1 di
− 1
)1/2

, they show that the number of negative eigenvalues of H(r) equal

to the community number consistently when νn ≳ log n. One of the limitations for this

method, as we show in Section 2.4.1, is that it requires E[A] to have all eigenvalues
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positive, which could be violated when B has random pattern.

Cross Validation Cross validation gains huge prevalence as a model selection method,

for it is applicable to a wide range of settings. To apply this technique in network data,

one needs to be extra careful in splitting nodes into groups as it deletes edges, causing

information loss. In [CL18], they proposed the so-called block wise splitting. First split

the whole node set into two distinct groups S1 and S2, then do model fitting on the matrix

AS1· = (Aij : i ∈ S1, j ∈ [n]), and testing on the matrix AS2S2 = (Aij : i ∈ S2, j ∈ S2).

They show that it can be used to select the number of clusters in both SBM and DCSBM,

and can further determine which model is a better fit for the data.

Li, Levina, and Zhu [LLZ20] proposed to split on all edges instead of nodes. Their

method is more general and can be applied to select from any latent low rank network

models. Firstly, randomly choose a subset from edge set, then given rank K, use a

low-rank matrix completion algorithm on the subset to obtain Â with rank K. Then fit

the candidate model on Â and evaluate the loss on the rest of the edges. The consistency

of this method depends on how well Â reflects structural properties of the underlying true

mode. They showed that the error between Â and the expectation of model is small when

νn ≳ log n. Both of the methods are computationally costly since they require estimating

communities on many random network splits.

1.4 Motivation and Contributions

Per our discussion above, the current goodness-of-fit methods are scarce and have limita-

tions in only working with: a) specific types of alternative hypothesis; b) SBM not DCSBM;

c) dense regime with degree growth at least polylog rate. Model selection methods are

applicable to wider range of network models, but they can be computationally instense and

have complicated procedures, and can not tell how good a model fits to the data, limited

to select cluster number only. To address these, we proposed a simple goodness-of-fit

test based on adjustment of the well-known chi-square statistics in Chapter 2. It works

with a community detection algorithm that achieves weak recovery of true labels, i.e. the
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probability of having o(1) misclassification rate diminishes to 0 under the true community

number. We show the exact distance of the statistic to the standard normal distribution

under the null. We also show its consistency in selecting the correct community number

by deriving the growth rate when the community number is underfitted. The results are

applicable to the sparse regime where degrees grow at least as fast as log n. The test

statistic works with both DCSBM and SBM, is easy to compute and has low computation

complexity. In chapter 2, we describe and analyze the test in detail. Section 2.1 is a

introduction on the test in a general hypothesis tests, including proofs on the asymptotic

null distribution. We extend the test to the network setting in Section 2.2, followed by

numerical experiments in Section 2.4. The chapter concludes with proofs of the main

result in Section 2.5.

We also notice that for some model selection methods above [WB17; MSZ18; CL18],

it is much more difficult to tell an overfitting cluster number from the true cluster number

than it is for an underfitting cluster name. Intuitively, this is because a K-block model is

embedded in an K ′-block model, where K ′ > K, as there are exponential ways of splitting

labels to form more clusters. This inspires us to investigate the overfitting in a general

clustering setting. We focus on the generalized k-means algorithm, which is the foundation

of many clustering algorithms. The question is when fit it with a cluster number greater

than the true cluster number, will the estimated clusters be (close to) a refinement of

the true clusters? We explore such overfitting consistency of k-means in Chapter 3. We

formalized the theory that as long as the “true” centers between different clusters are

large enough, the estimated clusters are (close to) a refinement of the true clusters in

the overfitting case. Here the “true” centers are not necessarily the centers generating

the data points and they can be constructed mannually. This allows us to confirm the

intuition that clustering achieves higher accuracy by recovering subsets of true clusters

as cluster number increases. The outline of Chapter 3 is as follows. Section 3.1 gives

the background of the problem. Then section 3.2 contains the main results: the center

distance conditions that lead to the approximate and exact recovery of refinement of true

clusters. In section 3.3, we provide numerical examples and experiments to illustrate the

10



application of the results. Finally, Section 3.5 has the proof of the main results.
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Chapter 2

Adjusted Chi-square Test for Degree-corrected

Blockmodels

In this chapter, we propose the adjusted chi-square test for measuring the goodness-of-fit

of a DCSBM. The idea is as follows: Given a set of column labels, we compress the

adjacency matrix by summing each row over the communities specified by the labels.

Under a DCSBM, the rows of the compressed matrix will have a multinomial distribution,

conditional on the node degrees di (i.e., the row sums). Rows in the same (row) community

will have the same multinomial parameter. Thus, the problem reduces to that of testing

whether groups of multinomials have equal means. The challenge is that the number of

multinomials in each group is proportional to n, the total number of nodes, which grows to

infinity fast, while the number of observations in each multinomial, di, grows much slower.

We study this general multi-group testing problem in Section 2.1 and show that under

mild conditions, as long as the harmonic mean h(d1, . . . , dn) goes to infinity, a modified

version of the classical chi-square statistic, which we refer to as Adjusted Chi-square (AC),

has standard normal distribution under the null hypothesis.

We then extend these ideas to the analysis of networks, leading to the network

Adjusted Chi-square tests. It has many variants depending on the subset of the adjacency

matrix it applies to and how the columns of the adjacency matrix are aggregated. We

show that given a consistent set of labels, by using a subsampling scheme, the same

conclusion about the null distribution holds. Using (K + 1)-community column labels

for compression, and K-community row labels when testing equality of multinomials, we
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obtain a powerful test in sequential applications. We refer to this variant as SNAC+

and discuss why it is more powerful than SNAC where K-community labels are used for

both rows and columns. We also develop bootstrapped versions of the tests which are

more robust in practice and can be applied even when the null distribution of the test

statistic is difficult to compute. Moreover, we introduce a smoothing idea that can further

increase the robustness of sequential model selection.

Our theoretical results are non-asymptotic, controlling the Kolomogrov distance of

the distribution of the test statistic to the target, with explicit constants. The results

are valid in the regime where the expected average degree of the network, λ, scales as

≳ log n, hence applicable in the same sparsity regime where weak consistency is possible

for DCSBMs. From a computational standpoint, evaluating the statistic is highly scalable,

with an expected computational overhead of O(n(λ+K)) over the cost of applying the

community detection algorithm. To test a sequence of DCSBMs with K = K1, . . . , K2,

the test requires an application of a community detection algorithm at most K2 −K1 + 2

times.

We show the effectiveness of these ideas with extensive experiments on simulated and

real networks. The code for these experiments is available at [ZA20a]. In particular, we

apply the test to the Facebook-100 dataset [Tra+11; TMP12], a collection of one hundred

social networks, and find that a DCSBM (or SBM) with a small number of communities

(say < 25) is far from a good fit in almost all cases. Despite the lack of fit, we show that

the statistic itself can be used as an effective tool for exploring communities, due to its

high sensitivity to block structure. Coupled with the smoothing idea, SNAC+ allows us

to construct a community profile for each network, regardless of whether DCSBM is a

good fit.

2.1 Adjusted Chi-square test

We start by developing a general test for the equality of the parameters among groups of

multinomial observations. To set the ideas, we first consider the case of a single group and

show how the classical chi-square test can be adjusted to accommodate a growing number
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of multinomials. We then discuss the multi-group extension and provide quantitative

bounds for the null distribution of the test statistic in this general setting.

2.1.1 Single-group Case

Let PL be the probability simplex in RL, and consider the following problem: We have

Xi ∼ Mult(di, p(i)), i = 1, . . . , n, (2.1)

independently, where Xi = (Xiℓ) ∈ NL and p(i) ∈ PL, and we would like to test the null

hypothesis

H0 : p
(1) = p(2) = · · · = p(n) = p. (2.2)

Let ψ(x, y) := (x− y)2/y. The chi-square statistic for testing this hypothesis is

Ỹ ∗
(n,d) :=

n∑
i=1

L∑
ℓ=1

ψ
(
Xiℓ, dip̃ℓ

)
, where p̃ℓ =

∑n
i=1Xiℓ∑n
i=1 di

, ℓ ∈ [L].

Here, p̃ = (p̃ℓ) ∈ PL is the pooled estimate of p under the null, and d = (d1, . . . , dn). We

are also using the shorthand notation [L] := {1, . . . , L}.

Standard asymptotic theory gives the following (cf. Chapter 17 in [Vaa98]): If n is

fixed and dmin := mini di → ∞, then,

Ỹ ∗
(n,d) ⇝ χ2

(n−1)(L−1), under H0. (2.3)

A heuristic for the degrees of freedom of the limiting χ2 distribution can be given

by counting parameters. In the unrestricted model, we have a total of n(L − 1) free

parameters among p(1), . . . , p(n), while under the restricted null model, we only have L− 1

free parameters. The difference gives the degrees of freedom of the limit.

The setting we are interested in, however, is the opposite of the classical setting. We

would like to use the statistic when n → ∞, while dmin is fixed or grows slowly with n.
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Assuming that n is large enough so that (n− 1)(L− 1) ≈ n(L− 1), (2.3) suggests that we

can approximate Ỹ ∗
(n,d) in distribution by the sum of n independent χ2

L−1 variables, that is,

Ỹ ∗
(n,d)

d
≈

n∑
i=1

ξi

for some i.i.d. random variables ξi ∼ χ2
L−1. (The approximate inequality above is only

in distribution and {ξi} are not necessarily related to Ỹ ∗
(n,d).) Moreover, the central limit

theorem suggests that the standardized version of
∑

i ξi has a distribution close to a

standard normal.

Based on the above heuristic argument, we propose the following adjusted test

statistic:

T̃ ∗
n =

1√
2

( Ỹ ∗
(n,d)

γn
− γn

)
, where γn =

√
n(L− 1). (2.4)

Note that γ2n is the expectation of
∑

i ξi and
√
2γn is its standard deviation. We refer

to (2.4) as the adjusted chi-square (AC) statistic.

Remark 1. The name adjusted chi-square has appeared in the literature in contexts

completely different from our work. For example, adjustments to the chi-square statistic

to account for the dependence of individuals have been proposed by Reed [Ree04] in ran-

domized cluster trials, and by Jung et al. [JAD01] and Ahn et al. [AJD02] in observational

studies.

2.1.2 Multi-group extension

Before proceeding, let us introduce an extension of the testing problem (2.2) to groups of

observations. This extension is needed for the network applications. Consider model (2.1)

and assume that each observation is assigned to one of the K known groups, denoted

as [K] = {1, . . . , K}. Let gi ∈ [K] be the group assignment of observation i and let

Gk = {i ∈ [n] : gi = k} be the kth group. We would like to test the null hypothesis that
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all the observations in the same group have the same parameter vector, that is,

H0 : p
(i) = pk∗, ∀i ∈ Gk, k ∈ [K], (2.5)

where for each k ∈ [K], pk∗ = (pkℓ)ℓ∈[L] ∈ PL.

In some problems, it is reasonable to assume that the groups Gk are known. However,

in our network applications, the groups themselves are not known. In such settings, we

first estimate the label vector g from data, to obtain ĝ, and then form the test statistic

based on the estimated groups Ĝk = {i : ĝi = k}. The resulting test is based on the

extended chi-square statistic

Ŷ(n,d) =
K∑
k=1

∑
i∈Ĝk

L∑
ℓ=1

ψ(Xiℓ, dip̂kℓ) where p̂kℓ =

∑
i∈Ĝk

Xiℓ∑
i∈Ĝk

di
, ℓ ∈ [L]. (2.6)

Alternatively, we have Ŷ(n,d) =
∑n

i=1

∑L
ℓ=1 ψ(Xiℓ, dip̂ĝiℓ). We also let Y(n,d) be the idealized

version of Ŷ(n,d) with p̂kℓ replaced with pkℓ and Ĝk replaced with Gk. Let T̂n and Tn be the

adjusted chi-square statistics based on Ŷ(n,d) and Y (n,d), respectively, that is,

T̂n =
1√
2

( Ŷ(n,d)
γn

− γn

)
, Tn =

1√
2

(Y(n,d)
γn

− γn

)
. (2.7)

We are interested in understanding under what conditions T̂n has an approximately normal

null distribution. This question is nontrivial, since we would like to allow {di} as well as

groups sizes |Gk|, k ∈ [K] to vary with n. Moreover, we would like to allow the groups to

be estimated based on the same data we use for testing, in which case, ĝ and T̂n are most

likely statistically dependent.

We give a precise answer to the above question by quantifying the Kolomogorv

distance between the distribution of T̂n and that of a standard normal variable Z, for any

choice of {di} and {|Gk|} that satisfy a mild set of conditions, and for consistent label

estimates of a certain quality. We measure the quality of label estimation in terms of

misclassification rate:

Definition 1. The misclassification rate between two label vectors g ∈ [K]n and ĝ ∈ [K]n
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is

Mis(g, ĝ) = min
ω

1

n

n∑
i=1

1{gi = ω(ĝi)}

where the minimization ranges over all bijective maps ω : [K] → [K].

Recall that for two random variables X and Y , the Kolomogrov distance between

their distributions is defined as

dK(X, Y ) := sup
t∈R

∣∣P(X ≤ t)− P(Y ≤ t)
∣∣. (2.8)

For a vector d = (d1, . . . , dn), we write h(d) =
(
n−1

∑n
i=1 d

−1
i

)−1 for the harmonic mean

of its elements, and dav = n−1
∑n

i=1 di for the arithmetic mean. Since d has positive

elements, dav ≥ h(d) ≥ dmin := mini di. Let πk = |Gk|/n and write d(k)av = 1
|Gk|
∑

i∈Gk
di for

the arithmatic average of {di} within group Gk, and define

ωn := min
k
πkd

(k)
av , dmax := max

i
di, τd := ωn/dmax. (2.9)

The following result formalizes the heuristic argument of Section 2.1.1, by providing a

quantitative finite-sample bound on the Kolomogrov distances of Tn and T̂n to a standard

normal variable:

Theorem 1. Let Xi ∼ Mult(di, pk∗), i ∈ Gk, k ∈ [K] be n independent L-dimensional

multinomial variables, with probability vectors pk∗ = (pkℓ) and group labels g = (gi) ∈ [K]n

so that Gk = {i : gi = k}. Let ĝ be some (estimated) group labels, potentially dependent on

{Xi} and consider T̂n, based on ĝ, and Tn as in (2.7). Let Z ∼ N(0, 1) and p = mink,ℓ pkℓ.

Assume that min{h(d), L} ≥ 2.

(a) Then, under the null hypothesis (2.5), for all n ≥ 1,

dK(Tn, Z) ≤
C1,p√
Ln

+
C2,p

h(d)
(2.10)

where C1,p = 55/p4 and C2,p = (πe)−1/2max{1, p−1 − L− 1}.
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(b) Let C3,p = 2(2p−1 + 1)/τd and pick a sequence {αn} such that

αn ≤ min
{ p

8C3,p

,
2

C2
3,pL

}
, for all n ≥ 1.

If dmax ≥ C3,pL/
√
2, ωn ≥ L and log(Kωn)/ωn ≤ (p/8)2n, then under the null

hypothesis (2.5), for all n ≥ 1,

dK(T̂n, Z) ≤ dK(Tn, Z) +

√
L

p

(√
72 log(Kωn)

ωn
+

12K log(Kωn)√
n

+
2 +K

L
C3,p dmax

√
nαn

)
+ 2P

(
Mis(ĝ, g) ≥ αn

)
. (2.11)

Proof. Theorem 1 is composed of two parts: the first part (2.10) bounds the distance

of the AC statistic with true clusters and probabilities to a standard normal, which is

a direct result of Proposition 1 below; the second part (2.11) shows the distance of the

AC statistic with estimated clusters and probabilities to a standard normal is close to

the distance of the AC statistic with true clusters and probabilities to a standard normal,

which is based on Proposition 2 below.

Proposition 1. Let Xi ∼ Mult(di, pk∗), i ∈ Gk, k ∈ [K] be independent L-dimensional

multinomial variables, with probability vectors pk∗ = (pkℓ), and let

Yi :=
L∑
ℓ=1

ψ(Xiℓ, dipgi,ℓ) and Sn =
1

vn

n∑
i=1

(Yi − E[Yi])

where v2n :=
∑n

i=1 var(Yi). Moreover, let Tn = 1√
2γn

(∑n
i=1 Yi−γ2n

)
where γn =

√
n(L− 1).

Let p = mink,ℓ pkℓ and assume that min{h(d), L} ≥ 2. Then, with Z ∼ N(0, 1), we have

dK
(
Sn, Z

)
≤ 55

p4
√
Ln

, (2.12)

dK(Tn, Z) ≤ dK(Sn, Z) +
max{1, p−1 − L− 1}

√
πe

h(d)−1. (2.13)

Proposition 2. Recall that ωn = mink πkd
(k)
av . Under the assumptions of Theorem 1, for
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any nonnegative u ≤ (p/8)2nωn, we have

dK(T̂n, Z) ≤ dK(Tn, Z) + 6KLe−u + 2P
(
Mis(ĝ, g) ≥ αn

)
+

√
L

p

[√8u

ωn
+ 12K

u√
n
+ (2 +K)C3,pL

−1dmax

√
nαn

]
,

(2.14)

where C3,p is as defined in Theorem 1.

To obtain (2.11) in Theorem 1, we take u = log(Kωn). To satisfy the condition of

Proposition 2, we need log(Kωn)/ωn ≤ (p/8)2n. Since ωn ≥ L ≥ 2 by assumption and

thus 2 log(Kωn) ≥ 1, we have

6KLe−u = 6L/ωn ≤ 2

p

√
8L log(Kωn)/ωn =

2

p

√
8Lu/ωn,

and the result follows.

Note that we always have p−1 ≥ L since the elements of pk∗ are nonnegative and sum

to one. In the proof of Theorem 1, we will show that E[Y(n,d)] = γ2n. But the standard

deviation vn(p) :=
√

var[Y(n,d)] has a more complicated form and is not equal to
√
2γn

in general. The proof gives an explicit expression for this variance, and we could have

alternatively defined T̂n by dividing by vn(p̂) instead of
√
2γn. Nevertheless, Theorem 1

shows that we do not lose much by using the simpler standardization by
√
2γn.

The condition h(d) ≥ 2 is very mild in network application as di will be the degree

of node i. Furthermore, the condition holds when di ≥ 2 for all i and as we will discuss

in later network application this can be achieved by manually filtering out those with

tiny di. In general, for Tn to converge in distribution to the standard normal, we need

n→ ∞ and h(d) → ∞. For T̂n to converge to the normal distribution, we further need

ωn → ∞, K log(Kωn) = o(
√
n), αn = o(d−1

maxn
−1/2) and P

(
Mis(ĝ, g) ≥ αn

)
= o(1). Note

that log(Kωn)/ωn ≤ (p/8)2n and αn ≤ min{p/(8C3,p), 2/(C
2
3,pL)} are satisfied for large

n, as long as p is bounded away from zero. dmax ≥ C3,pL/
√
2 also holds as dmax ≥ h(d)

and we require that h(d) → ∞. When there is only one single group, the requirements

are dav → ∞, which is implied by h(d) → ∞, and log(dav) = o(
√
n).
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As we will see, in network applications, typically K, L and p are of constant order,

ωn logωn ≲ n and the degrees {di} are of the same order, hence h(d) ≍ dmax ≍ ωn. In

such settings, we obtain the rate of convergence

dK(T̂n, Z) ≲
√
logωn/ωn + αndmax

√
n+ P

(
Mis(ĝ, g) ≥ αn

)
.

2.2 Network Extension

We are now ready to apply the AC test to DCSBMs. Let An×n be the adjacency matrix of

a random network on n nodes. A DCSBM with connectivity matrix B ∈ [0, 1]K×K , node

label vector z = (zi) ∈ [K]n and connection propensity vector θ = (θi) ∈ Rn
+, assumes the

following structure for the mean of A,

E[Aij | z] = θiθjBzizj , ∀ i ̸= j. (2.15)

One further assumes that A is symmetric and the entries Aij, i < j are drawn independently,

while Aii = 0 for all i. Common choices for the distribution of each element, Aij, are

Bernoulli and Poisson. In this dissertation, unless otherwise stated, we assume the Poisson

distribution for derivations, following the original DCSBM paper [KN11]. The Poisson

assumption simplifies the arguments and provides computational advantages. We show in

simulations that the tests so-derived work well in the Bernoulli case when the network is

sparse. The SBM is a special case of (1.1) with θi = 1 for all i.

2.2.1 NAC Family of Tests

The network AC test can be performed on a general submatrix AS2S1 = (Aij : i ∈ S2, j ∈

S1) of the adjacency matrix, for S1, S2 ⊆ [n]. We first present this general form, though

one can assume S1 = S2 = [n] on the first reading. Consider another label vector on S1,

say ŷ = (ŷj)j∈S1 ∈ [L]S1—for some L that can be different from K. Let R = (Rkℓ) ∈ RK×L
+
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be the weighted confusion matrix between zS1 and ŷ, given by

Rkℓ =
1

|S1|
∑
j∈S1

θj1{zj = k, ŷj = ℓ}. (2.16)

Now compress each row of AS2S1 by summing w.r.t. ŷ, defined as X = (Xiℓ) ∈ R|S2|×L
+ ,

with

Xiℓ(ŷ) =
∑
j∈S1

Aij1{ŷj = ℓ}. (2.17)

Assuming that ŷ is deterministic, we have

E[Xiℓ(ŷ)] =
∑
j∈S1

Bzizjθiθj1{ŷj = ℓ} = θi

K∑
k=1

Bzik

∑
j∈S1

θj1{zj = k, ŷj = ℓ}

= |S1| θi(BR)ziℓ.

Let di =
∑

j∈S1
Aij be the degree of node i in S2. Under the Poisson model, (Aij, j ∈ S1)

is a vector of independent Poisson cooridnates. It is well-known that such a vector has a

multinomial distribution conditional on the sum of its entries. That is,

Xi∗(ŷ) | di ∼ Mult(di, ρzi∗), (2.18)

where ρzi∗ denotes the zith row of ρ = (ρkℓ) ∈ [0, 1]K×L, defined as

ρkℓ =
(BR)kℓ∑
ℓ′(BR)kℓ′

. (2.19)

In other words, conditioned on the degree sequence d = (di, i ∈ S2), all the rows of X

corresponding to z-community k, have multinomial distributions with probability vector

ρk∗. This observation allows us to apply the AC test developed in Section 2.1.2, to test

whether all the rows with zi = k, have the same multinomial distribution.

Now, consider two estimated label vectors ẑ = (ẑi) ∈ [K]n and ŷ = (ŷi) ∈ [L]S1 . Let

Ĉk = {i ∈ [n] : ẑi = k}, Ĝk = Ĉk ∩ S2 and ñ = |S2|. Consider the multi-group version of
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the AC statistic based on ẑ and ŷ:

T̂n =
1√
2

( 1

γñ

K∑
k=1

∑
i∈Ĝk

L∑
ℓ=1

ψ
(
Xiℓ(ŷ), diρ̂kℓ

)
− γñ

)
(2.20)

where γñ =
√
ñ(L− 1) and

ρ̂kℓ =

∑
i∈Ĝk

Xiℓ(ŷ)∑
i∈Ĝk

di
, k ∈ [K], ℓ ∈ [L]. (2.21)

The above construction specifies a family of test statistics, depending on the choices

of label vectors ẑ and ŷ, and subsets S1 and S2. We refer to this family, as the NAC

family of tests. The acronym NAC stands for Network Adjusted Chi-square, since the test

is the natural extension of the adjusted chi-square test, introduced earlier, to networks.

2.2.2 Full Version

We now single out two specifc members of the NAC family. Let S1 = S2 = [n] and consider

the following choices for ẑ and ŷ:

1. FNAC: ŷ = ẑ and ẑ is an estimated label vector with K communities,

2. FNAC+: ẑ and ŷ are estimated label vectors with K and L = K + 1 communities.

The acronym FNAC stands for Full NAC, where “full” refers to the choice S1 = S2 = [n],

and we will use full NAC to mean FNAC and FNAC+ together. There are two main

reasons for introducing the FNAC+ version with L = K + 1 column communities. Firstly,

FNAC only works when K ≥ 2; when K = L = 1, (2.18) leads to a noninformative

statistic for FNAC, becasue, then, Xi∗ = di almost surely, conditioned on di. FNAC+ on

the other hand still produces an informative statistic when K = 1. Secondly, the choice

L = K + 1 makes FNAC+ especially powerful in determining the number of communities

by sequential testing from below, as we discuss extensively in Section 2.3.2.

Remark 2. The NAC family of tests are easily applicable to non-square and nonsymmetric

adjacency matrices, with potentially unequal number of communities or clusters for the
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rows and columns. In particular, they can be used to test directed or bipartite DCSBMs or

SBMs. In addition, they can be easily applied if the cluster structure of one side is known

but not the other. For example, they can be used for model selection and goodness-of-fit

testing in problems involving clustering and biclustering of (Poisson) count arrays, a

common task in contemporary bioinformatics [AH10]. More specifically, the biclustering

problem on a Poisson count array corresponds to having an array An×m = (Aij), where

Aij ∼ Poi(Bziyj),

independently across i ∈ [n] and j ∈ [m]. Here z = (zi) ∈ [K]n and y = (yj) ∈ [L]m

are the unknown clusters of rows and columns, respestively. The goal of biclustering

is to recover estimates of z and y, hence simultaneously clustering rows and columns

of A = (Aij), given only an instance of A. It is clear from Section 2.2.1, that an NAC

test with K and L matching the number of row and column communities, resepectively,

is immediately applicable in this case. In this dissertation, we focus on the symmetric

DCSBM for simplicity. All the results hold in the general nonsymmetric case as well, with

suitable modifications.

2.2.3 Subsampled Version

To determine the exact asymptotic null distribution of full NAC statistics, we can extend

from Theorem 1, but there are three obstacles to overcome. The first two are related to the

dependence among Xi∗(ŷ), whereas Theorem 1 requires them being independent. Firstly,

ŷ depends on the entire adjacency matrix A when estimated using all nodes (unless it

equals to the true label z), leading to Xiℓ(ŷ), the sum of entries in A based on ŷ, delicately

dependent among each other. Specifically, the aggregation of i-th row of A is related to

j-th row through ŷ. The other difficulty is the symmetry of A which makes Xi∗(ŷ) and

Xj∗(ŷ) (mildly) dependent through the shared element Aij = Aji, even when ŷ = z, the

true label vector. The last obstacle is due to the sparsity of network data. Networks can

contain many singletons violating the h(d) → ∞ condition in Theorem 1.

We now introduce a particular subsampling scheme to circumvent the above obstacles.
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It involves a sampling step so that: a) ŷ no longer depends on entries of A needed to be

summed; b) the symmetry is broken. It also has a filtering step to leave out nodes with

small degree, so that h(d) is large. The detailed procedures are as follows:

1. Fit K communities to the whole network (i.e., entire A) to get labels ẑ ∈ [K]n and

clusters Ĉk = {i : ẑi = k}.

2. (Sampling) Choose a subset S1 ⊂ [n] by including each index i ∈ [n], independently,

with probability 1/2. Let S2 = [n] \ S1 be the complement of S1.

3. Fit L communities to AS1S1 = (Aij : i, j ∈ S1), to learn the label vector ŷ on S1.

4. Form the (partial) degrees di :=
∑

j∈S1
Aij for all i ∈ S2.

5. (Quantile filtering) Within each Ĝk = Ĉk ∩ S2, keep nodes with di at least the σ-th

quantile of all di in Ĝk to form Ĝ ′
k. Let S ′

2 =
⋃K
k=1 Ĝ ′

k.

6. Perform the test on AS′
2S1

using row labels ẑS′
2

and column labels ŷ from Step 3.

We refer to the above as the subsampled version of FNAC as SNAC, and similarly for

FNAC+. Also, we use subsampled NAC to represent SNAC and SNAC+ together. Note

that step 4, the quantile filtering step, can be skipped when degrees are mostly large or

we do not care about the null distribution being standard normal, e.g. using bootstrap

debiasing in Section 2.2.4 to determine the critical region. In such case, we will have

S ′
2 = S2 and perform the test on AS2S1 . In Section 2.3, we show that, under the null model,

the distributions of the test statistics of the subsampled NAC are close to a standard

normal. Furthermore, they are large when the model is underfitted, i.e., the presumed

number of communities is smaller than that of the true model. Particularly, SNAC+ is

more powerful and versatile than SNAC. Such properties allow us to use SNAC+ for

assessing the goodness-of-fit of DCSBM or SBM to an observed network and to determine

the number of clusters in community detection.
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2.2.4 Bootstrap Debiasing

Per our discussion above, without subsampling, the full version statistics do not have a

standard normal null distribution. However, they are expected to have more power in the

test as they utilize all the nodes in the network, so they are still great options to use in

practice. The remedy is to use bootstrap simulation to determine their critical regions

holistically. In addition, bootstrap helps remove the shift of SNAC and SNAC+ from a

standard normal null distribution with a Bernoulli network, since the null distribution

result is based on Poisson generation. Therefore, with bootstrap, both the full and

subsampled version would gain more power in the test.

Now we discuss the details of bootstrap. Given adjacency matrix A, the null hypothesis

that the number of communities is K, and the test statistic T̂ = T̂ (A), the bootstrap

debiasing is performed as follows:

1. Fit a K-community SBM to A and get label estimates ẑ and connectivity matrix B̂.

2. For j = 1, . . . , J , sample A(j) ∼ SBM(ẑ, B̂) and evaluate the test statistic T̂ (j) based

on A(j).

3. Construct the debiased statistic T̂ (boot) = (T̂ − µ̂)/σ̂ where µ̂ and σ̂ are the sample

mean and the standard deviation of {T̂ (j)}Jj=1.

Note that we sample from SBM instead of DCSBM, since the estimator of θ could have a

large variance. The test rejects for large values of T̂ (boot) (or |T̂ (boot)|), with the threshold

set, assuming that T̂ (boot) has (approximately) a standard normal distribution under null.

An alternative to debiasing is to use the empirical quantiles of {T (j} to set the critical

threshold. We, however, found that the debiasing approach performs better in practice.

A similar idea is used in [Lei16] for the spectral test as well. See Appendix A.1 for a

comparison of all the bootstrap methods in simulations.

2.2.5 Model Selection

A goodness-of-fit test can also be used as a model selection method, through a process of

sequential testing. In particular, we can use the full (with bootstrap debiasing) and the
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subsampled NAC statistics to determine the number of communities when fitting DCSBM

models.

The idea is to test the null hypothesis of K communities, starting with K = Kmin,

which is usually taken to be 1, and increasing K to K + 1 if the null is rejected. The

process is repeated until we can no longer reject the null or a preset maximum number

of communities, Kmax, is reached. The value of K on which we stop is selected as the

optimal number of communities. We refer to this procedure as sequential testing from

below. There is also the possibility of starting at K = Kmax and working backwards.

Testing from below is, however, more advantageous, especially if one expects a small

number of communities a priori.

The rejection thresholds for the subsampled NAC can be determined based on the

standard normal distribution. For the full NAC, we need to apply the bootstrap debiasing

of Section 2.2.4 before comparing the statistic with the threshold. Theorem 3 provides a

theoretical guarantee for the consistency of the sequential testing from below, when the

subsampled NAC is used. An empirical comparison of the model selection performance of

this approach, with existing methods, is provided in Section 2.4.1.

2.3 Analysis of Subsampled NAC

We now provide a theoretical analysis of the subsampled NAC. We consider a DCSBM

with K0 true community, and the edge probability matrix B = (νn/n)B
0 where νn is a

scaling factor and B0 satisfies

min
k,ℓ

B0
kℓ ≥ τB ·max

k,ℓ
B0
kℓ. (2.22)

Let Ck = {i ∈ [n] : zi = k} be the true community k. We assume that

nk := |Ck| ≥ τC n, θi ≥ τθ ·max
i
θi (2.23)

26



for all k ∈ [K0] and i ∈ [n]. Here, τB, τC and τθ are in (0, 1] and measure the deviation of

the corresponding parameters from being balanced. To make νn identifiable, we further

assume without loss of generality that ∥B0∥∞ := maxk,ℓB
0
kℓ = 1 and ∥θ∥∞ := maxi θi = 1.

We also require the community detection algorithm to have weak recovery of the true

communities well and does not produce extremely small communities when the presumed

number of clusters is close to K0.

Assumption 1. The community detection algorithm applied with K communities to the

DCSBM described above, producing labels {ẑi}, satisfies:

(a) Weak consistency: when K = K0, P
(
Mis(ẑ, z) ≥ αn

)
= o(1) for a sequence {αn}.

(b) Stability: |{i : ẑi = k}| ≥ τ0n for all k ∈ [K], when K ∈ {1, . . . , K0 − 1, K0 + 1}.

The weak consistency of the algorithm allows us to focus on the event where ẑ is

close to z under the null model, and the stability allows us to lower-bound ρ, defined

in (2.19). Condition (a) in Assumption 1 is known as the almost exact recovery, and it

is well-known that if νn ≳ log n, there are algorithms that can achieve it [Abb18]. Note

that the growth rate of νn is roughly that of the expected average degree (EAD) of the

network, assuming that B0, {nk/n}k and the distribution of {θi} are roughly constant.

Hence, assuming νn ≳ log n imposes a mild restriction on the network, requiring the EAD

to grow at least as log n. The stability condition (b) is even milder and can be guaranteed

by explicitly enforcing it in the algorithm. If the size of a recovered community is too

small relative to n, we merge it with another community. Whether a specific community

detection algorithm satisfies this condition automatically without explicit enforcement is

an interesting research question.

2.3.1 Null Distribution

To state further assumptions, we define the following constants:

c1 := (1− σ)
τC
5K0

, C1 := τ 2θ τC min
h

∥B0
h∗∥1, (2.24)

τa := τθτBτC, τρ := τθτBτ0. (2.25)
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We make the following assumptions:

νn
log n

≥ 1000

C1

,
n

log n
≥ 400

3C1

∨ 300

τC
, σ ≤ 2τC/3, αn ≤ τC(1− σ)

5(1 + σ)
. (2.26)

Theorem 2 (Null distribution). Consider an n× n adjacency matrix A that is generated

from a Poisson DCSBM with K0 blocks, satisfying (2.22) and (2.23). Let ẑ ∈ [K0]
n be an

estimated label vector of A satisfying assumption in 1 and ŷ ∈ [L]|S1| be an estimated label

vector of AS1S1 satisfying the stability assumption in 1. Let T̂n be the test statistic of the

subsampled NAC.

Let βn = log[(3/4)K2
0νn] and assume in addition that L ≥ 2, βn/νn ≤ C6n, νn ≥

max{12L/(5c1C1K0), 2
√
2C2L/C1}, and αn ≤ min{ τρ

8C2
, 2
LC2

2
}, where C1 is as defined

in (2.25), C2 = 54/(5c1C1τρ) and C6 = ( τρ
8
)2 5

12
c1C1K0. Then,

dK(T̂n, Z) ≤
C3√
Ln

+
C4

C1νn
+

19
√
L

τρ

(√
βn

c1C1K0νn
+

K0βn√
(1− σ)n

)
+ (2.27)

C5νn
√
nαn + 3P(Mis(ẑ, z) ≥ αn) (2.28)

where C3 = 87/[(1− σ)1/2τ 4ρ ] + 7, C4 = 4(πe)−1/2max{1, τ−1
ρ −L− 1} and C5 = 15K0(1 +

K0/2)C2/[4(1− σ)τρ
√
L].

Note that the above bound applies to both SNAC and SNAC+ as only the stability

assumption on ŷ is required in the proof. Assuming the common scaling log n ≲ νn ≲
√
n,

we obtain

dK(T̂n, Z) ≲

√
log νn
νn

+ αnνn
√
n+ P(Mis(ẑ, z) ≥ αn).

In order to have the null distribution close to a standard normal, we need to require

αn = o((νn
√
n)−1), and there are many community detection algorithms that can achieve

this [QR13; Gao+17].
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2.3.2 Consistency

Power against Underfitting

Next, we consider the consistency of the subsampled NAC when applied in sequential

testing from below, to determine the number of communities. In particular, we analyze its

power in distinguishing the null hypothesis H0 : K = K0 from the alternative H1 : K < K0.

Theorem 3 provides a lower bound on the growth rate of the test statistic T̂ under the

alternative.

Recall that ŷ are labels derived for nodes S1 based on AS1S1 . Let parameters ρkℓ be

defined as in (2.19), and let

ω2 =
1

18
τ 2θ τ

2
a c

2
1 min
k,h∈[K0]: k ̸=h

1

L
∥ρk∗ − ρh∗∥22. (2.29)

Note that ω2 is a random quantity due to the randomness in ŷ.

Theorem 3 (Power). Let A be an n × n adjacency matrix generated from a Poisson

DCSBM with K0 ≥ 2 blocks that satisfies (2.22) and (2.23). Let T̂n be the the subsampled

NAC test statistic (2.20) formed as detailed in Section 2.2.3, with K < K0 and L = K +1

communities, estimated from a community detection algorithm satisfying stability in

Assumption 1. Moreover, let C7 := c1C1/10 and assume that (log n)/νn ≤ C1τ
2
ρ/64 and

consider the event

Ωn =

{
max

(
1

C7νn
,
768

τ 3ρ

√
log n

C1νn

)
≤ ω2

}
. (2.30)

Then, with probability at least 1− 9Ln−1 − P(Ωc
n)− P(Mis(ẑ, z) ≥ αn),

T̂n ≥ C7 ω2 νn
√
Ln.

Quantity ω2 that appears in Theorem 3 is random (via {ρkℓ}) and depends on the

specific community detection algorithm used to form the test statistic. As discussed below,

for any reasonable algorithm, under mild conditions on the connectivity matrix, we expect
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ω2 to be of constant order as n → ∞, i.e., ω2 ≍ 1. In particular, we expect to have

P(ω2 ≥ c2) → 1 for some constant c2 > 0, as n→ ∞. Then, we have P(Ωc
n) → 0, as long

as (log n)/νn ≤ c2.

Under these assumptions, Theorem 2 shows that for a given significance level α > 0,

the subsampled NAC statistic T̂n ≍ 1 with probability 1 − α when K = K0, while

Theorem 3 guarantees that T̂n ≳ νn
√
n, w.h.p., when K < K0. This shows that the

subsampled NAC with a constant threshold or one that grows slower than νn
√
n, leads to

consistent model selection when applied sequentially from below (i.e., with K < K0). In

short, model selection consistency of the subsampled NAC only requires (log n)/νn = O(1),

that is, the expected degree should grow no slower than log n.

Comparison between SNAC+ and SNAC

SNAC+ is expected to be more powerful than SNAC in sequential testing from below,

as its column compression ŷ is estimated with L = K + 1 communities. Let us consider

the hardest case in Theorem 3, that is, testing the null hypothesis K = K0 − 1 against

the alternative K = K0. When L = K + 1 = K0, the estimated column labels ŷ

is close to the true labels z, under the weak recovery Assumption 1. Recalling the

definition of the confusion matrix from (2.16), we roughly obtain R = diag(π̃k), where

π̃k =
1

|S1|
∑

j∈S1
θj1{zj = k} for all k ∈ [K0]. Then, ρkℓ = B0

kℓπ̃ℓ/(
∑

ℓ′ B
0
kℓ′π̃ℓ′). Note that

both B0 and {π̃k} are stable as n→ ∞. In particular, although the entries of B vanish

under the scaling νn/n→ 0, the entries of (ρkℓ) do not. To guarantee that ω2 > 0, it is

enough that the K0 ×K0 matrix (B0
kℓπ̃ℓ) has no two colinear rows, a mild identifiability

condition. On the other hand when L = K0 − 1, the multinomial parameter matrix

ρ ∈ RK0×(K0−1) have row entries as weighted average of its counterpart when L = K0. We

refer to [WB17] for an example of how the weighted mixture of the rows of the connectivity

matrix B emerges in the underfitted case and thus ρ is mixed in the similar way. Due to

this averaging, the row distance of matrix ρ would be smaller compared to when L = K0

and thus ω2 smaller. Moreover, consider the extreme case, SBM with planted partition B

and equal community sizes. If the community detection algorithm can recover a superset of
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the true communities when underfiting, as shown, for example, for the spectral clustering

in [MSZ18], ρ would have identical rows and thus ω2 is close 0, making SNAC powerless.

Now let us look at an simple example which supports our argument above. Consider

an SBM with K0 = 3, equal-sized communities and a planted-partition B with p on the

diagonal and q on the off-diagonal

B =


p q q

q p q

q q p

 .

Now we test the null hypothesis K = 2. When L = 2, consider a column label ŷ that has

cluster 2 and 3 combined into one, then the confusion matrix R defined in (2.16) and BR

are

R =


1/3 0

0 1/3

0 1/3

 , BR =


p/3 2q/3

q/3 (p+ q)/3

q/3 (p+ q)/3


Recall that the multinomial probability ρ (2.19) is determined by standardizing rows in

BR. Therefore ρ2∗ = ρ3∗, and if the row label equals to ŷ, then the test fails. On the

other hand, when L = 3 and ŷ = z, we have

R =


1/3 0 0

0 1/3 0

0 0 1/3

 , BR =


p/3 q/3 q/3

q/3 p/3 q/3

q/3 q/3 p/3


Therefore, the multinomial probability ρ is proportional to B. Then the ω2 in (2.29) is

positive and by Theorem 3, we have the consistency of SNAC+.

We can observe the same phenomenon in practice. Consider an SBM with K = 3

equal-sized clusters, planted partitioned B with out-in-ratio β = 0.1, average degree as

10 and node number n = 300. The null hypothesis is K = 2. For simplicity, we focus

on the full version FNAC and FNAC+ and compare the expectation of (Xi∗), i.e. ρzi∗,
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which is determined by the column label ŷ. In FNAC, ŷ is obtained by performing the

spectral clustering on the entire adjacency matrix with L = 2 clusters and it has true

cluster 2 and 3 merged as a single cluster. Similarly, ŷ in FNAC+ has L = 3 clusters

from the spectral clustering, and it is very close to the true cluster label with only one

node mis-classified. Figure 2.1 shows the heatmap of (ρzi∗), i = 1, . . . , n for the above

FNAC (left side) and FNAC+ (right side). Because of the merging in ŷ with L = 2, the

left heatmap shows that cluster 2 and 3 has the same multinomial probabilities. Whereas

ŷ with L = 3 is close to the true label vector, so the right heatmap shows the 3 clusters

have distinct multinomial probabilities. This corroborates the discussion above. Lastly,

when computing the statistics, both FNAC and FNAC+ have row labels from the spectral

clustering with K = 2, which has cluster 2 and 3 merged. Since these two clusters have

the same multinomial probabilities when L = 2, FNAC would be small and thus fail to

reject the null. However, they have different probabilities when L = 3, hence FNAC+

would be large as we compute the chi-square statistic on a mixed cluster and it would

reject the null.
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(a)FNAC with L = 2 (b) FNAC+ with L = 3

Figure 2.1: Heatmaps of multinomial probability matrix, where the i-th row equal to ρzi∗. The
left side shows the case for FNAC with L = 2 and the right for FNAC+ with L = 3. The column
labels are both obtained through spectral clustering with L = 2 and L = 3 respectively. The row
labels are true cluster labels and are indicated using the color bar on the left.

The above argument also shows the advantage of using labels estimated from com-

munity detection algorithm to serve as ŷ rather than using some random labels. When

32



ŷ contains randomly assigned K0 labels, the confusion matrix R has non-zero weights

as entries and thus ρ is weighted average of B0 based on R. Whereas when ŷ is close to

true labels, R is diagonal. Therefore, the row distances of ρ with random ŷ are smaller

compared to with esimtated ŷ.

Power against DCLVM

In this section we show that subsampled NAC is consistent for distinguishing DCSBM

from a general class of degree-corrected latent variable models (DCLVM). We consider

a K-community DCLVM, with degree parameter θ, label vector z∗ ∈ [K∗]n, mixture

components {Q∗
k}Kk=1 and latent variables {xi}ni=1 ⊂ X , a network model specified as

follows: Given {xi}, each (i, j) is drawn independently (of other edges) from a Poisson

distribution with mean

pij := E[Aij |xi, xj] =
νn
n
θiθjg(xi, xj)

and xi ∼ Q∗
z∗i

independently across i. The mixture components {Q∗
k} are distributions on

the space X , and when they are different they impose some latent community structure.

An example, with specific forms for g(·, ·) and {Qk} is given in Section 2.4.1. Here, we

consider the general case, with minimal assumptions on g(·, ·) and {Qk}. We use similar

assumptions on θ as in the DCSBM, namely,

max
i
θi = 1, θi ≥ τθ, ∀i ∈ [n]

Without loss of generality, we assume that g has range [0, 1], by rescaling νn if need be.

Without strong assumptions on {Qk}, the distribution of xi is a nonparametric

mixture model which, in general, is not identifiable. One can shift mass from one of {Q∗
k}

to the other ones or create a new component, and redefine the label vector to get the

same distribution. For example, suppose that we start with a two-community model with

components Q∗
1 and Q∗

2. We relabel each xi by assigning it the new label zi ∈ [K] (rather

than z∗i ). The same model for xi can be stated as xi ∼ Qzi for new mixture components
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Qk = πk1Q∗
1 + πk2Q∗

2 which are convex combinations of the original ones. We refer to

{Qk} as the mixture components induced by z. The result that we present here applies

to any of these parameterizations.

Assume that we perform the subsampled NAC with K row communities and L column

communities. Let ẑ ∈ [K]n be the estimated label vector based on the entire adjacency

matrix A and ŷ ∈ [L]|S1| that based on AS1S1 . We assume that there are deterministic

vectors z ∈ [K]n and y ∈ [L]n, and sequences {αn} and {κn} such that the following event

Mn := {Mis(ẑ, z) ≤ αn and Mis(ŷ, yS1) ≤ κn}, (2.31)

has probability converging to 1, as n → ∞. Note that we do not require z (or y) to be

the original z∗. Letting nk = |{i : zi = k}|, we assume

nk ≥ τCn, ∀k ∈ [K]. (2.32)

Let {Qk, k ∈ [K]} be the mixture components induced by label vector z that appears

in (2.31). Define

hk(x) := E[g(x, ξ)], ξ ∼ Qk, k ∈ [K].

We assume that there is an almost sure event Γ with the following property: There exists

a constant τh > 0 and r1, r2 . . . , rK ∈ [K] such that on Γ, we have

∀k ∈ [K], ∀i ∈ Ck, hrk(xi) ≥ τh. (2.33)

Note that (2.33) can be equivalently stated as hrzi (xi) ≥ τh for all i. Condition (2.33)

is mild and is satisfied for example if for any k ∈ [K], one of hr(·), r ∈ [K] is uniformly

bounded below over the support of Qk. We also define

Hℓ(x) :=

∑
k hk(x)Rkℓ∑

ℓ′
∑

k hk(x)Rkℓ′
, Rkℓ :=

1

2

n∑
j=1

θj1{zj = k, yj = ℓ}. (2.34)
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There exists a sequence {ℓk}Kk=1 such that

Rkℓk ≥ 1

L

L∑
ℓ=1

Rkℓ, ∀k ∈ [K]. (2.35)

Fix one such sequence and consider the following quantities

ϑkℓ := var(Hℓ(x)), where x ∼ Qk

ϑ := min
k
ϑkℓk .

(2.36)

Let c2 = τCτhτ
2
θ /100, τρ = τCτhτθ/(2L) and ζn = max{1, L

√
νn/n, L/

√
νn log n}. We

need the following assumptions:

√
log n

n
≤ 2

9

τ 2ρ
K

n ≥ 2, (2.37)

αn ≤
√

log n

νn
≤ 21τ 2C τhc

2
2

L2
,

nκn
νn

≤ 4c2τρ, (2.38)

ϑ ≥ L3

c32τ
3
ρ

max

{
2ζn
τρτC

√
log n

νn
,

1

5c2

nκn
νn

}
. (2.39)

Theorem 4. Let A be an n×n adjacency matrix generated from a Poisson DCLVM with K

blocks that satisfies (2.22) and (2.23). Let T̂n be the subsampled NAC test statistic (2.20)

formed as detailed in Section 2.2.3, with K and L communities, with estimated label

vector ẑ. Moreover, assume (2.33) and (2.37)–(2.39). Then, with probability at least

1− 12KLn−1 −Kn−c − P(Mc
n),

T̂n ≥ 49c32√
L
ϑ
√
nνn.

The theorem roughly states the following: As long as the community detection

algorithm produces row and columns labels that converge to some deterministic labels

z and y and the rates αn ∼
√

(log n)/νn and κn ∼ νn/n respectively, and the resulting

induced mixture components {Qk} lead to a positive minimum variance ϑ, as defined

in 2.36, then SNAC(+) are consistent in rejecting the underlying DCLBM model, with

T̂n ≳
√
nνn → ∞. Note that ϑ > 0, unless there exists a sequence of constants a1, . . . , aK
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such that
∑

r arhr(x) = 0 for Qk-almost all x. That is, unless {hr}Kr=1 satisfy a non-trivial

linear constraint under Qk, the condition ϑ > 0 is guaranteed. An example where the

condition ϑ > 0 is violated is when all hr(·) are constant functions, as is the case for a

DCSBM, consistent with the fact that we should not be able to reject a DCSBM.

Remark 3. The constant 1
2

in the defintion of Rkℓ in (2.34) is for the convenience in the

proof. It can be changed to any other prefactor (including 1
n
) since Hℓ(x) is invariant to a

rescaling of Rkℓ.

2.3.3 Comparison with the Existing Literature

The closest work in the literature to ours is the spectral goodness-of-fit test for SBMs [BS16;

Lei16]. Roughly speaking, Lei [Lei16] shows that, under a K-SBM, n2/3(σ1(Ã)− 2) has a

type-1 Tracy-Widom distribution asymptotically, where σ1(·) denotes the largest singular

value, and Ã is a standardized version of the adjacency matrix, calculated based on fitting

a K-SBM (see Section 1.2). This result requires the entries of the connectivity matrix B

to be bounded away from zero which excludes the sparse regime νn/n→ 0 we consider

here. Moreover, Lei’s Theorem 3.3 provides an asymptotic power guarantee. Translating

the results to our notation, assuming that the true model has more communities that

the fitted model, the result shows that n2/3σ1(Ã) ≳ νnn
1/6 w.h.p. Since under the true

model n2/3σ1(Ã) ≈ 2n2/3, one obtains a consistent test as long as νnn1/6 ≫ n2/3, that

is, νn ≫ n1/2. This required scaling is in fact better than what is stated in [Lei16].

Nevertheless, νn ≫ n1/2 is far from the sparse regime νn ≍ log n that our results allow.

More importantly, it is not clear how to extend the spectral test to the degree-corrected

setting. In Section 1.2, we discuss the natural extension of the spectral test to the DCSBM

and study its performance empirically. Due to the difficulty of estimating the θ parameter

of DCSBM, theoretical guarantees for this (naive) extension are not easy to obtain. Our

SNAC+ test avoids explicitly estimating θ, by conditioning on the degrees which leads to

the cancellation of individual θi in the resulting multinomial distributions. In practice,

convergence to the Tracy-Widom distributions is known to be slow, whereas convergence

to the normal distribution for SNAC+ happens quite fast (at a rate at most ≈ ν
−1/2
n as
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we showed).

Another work with connections to ours is that of Karwa et al. [Kar+16] where

chi-square statistics for the goodness-of-fit testing of SBM and β-SBM are proposed.

They introduce a block-corrected chi-square statistic for the SBM that uses the idea

of block compression and has resemblance to our FNAC statistics. The similarity is,

however, superficial, since we work conditional on the degrees, hence the parameters we

consider are not the connectivity parameters B but their normalized versions ρ (compare

equation (5) in [Kar+16] with our equation (2.20)). The ρ parameters have many desirable

features; for example, they do not vanish in the sparse regime (νn/n → 0) while the

connectivity parameters B do, making the corresponding chi-square statistic numerically

very unstable (due to the division by these vanishing parameters). The cancellation of the

degree-propensity parameters θi in ρ is another key advantage, allowing us to use the same

statistic in the degree-corrected case. In contrast, Karwa et al. [Kar+16] devise another

test (with no compression) for the β-SBM (a close cousin of DCSBM, in the sparse regime)

which requires O(n2) operations to compute. Another novelty of our approach relative

to [Kar+16] is the idea of block compression with K + 1 communities instead of K which

leads to a dramatic increase in the power of the test.

Another major difference with [Kar+16] is their interest in computing exact p-values

which requires enumerating all graphs with a given sufficient statistic as the observed

one. (For example, for an SBM with known community structure, this translates to

enumerating all graphs that have the exact same number of edges between communities as

that of the observed network). Although, Karwa et al. develop clever sampling schemes

to traverse this space, to get an accurate p-value, one has to sample a prohibitively large

number of graphs in general, rendering the approach infeasible beyond small networks. In

addition, their main arguments are for block models with a given community structure,

and to get around the unknown nature of the communities in practice, they propose

sampling the community labels and applying the known-community test on each. The

space of all labels is again exponentially large (of size Kn), and one requires a a very

large sample to get any reasonable estimate, making the approach infeasible for large
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networks. The authors acknowledge this difficulty and suggest using labels obtained by

spectral clustering in practice. One then has to worry about the dependence of these

labels on the same data the test is computed from, a point where we carefully address in

this dissertation. The asymptotic distributions we obtain for the adjusted statistics are

very good approximations for large networks and allow us to apply the tests with minimal

computational overhead to even networks of millions of nodes.

Compared with likelihood ratio (LR) tests [Yan+14b; WB17], our approach is more

general since LR tests require a specific alternative model to compare with (often another

SBM or DCSBM), while in goodness-of-fit testing, only the null has to be specified. In

addition, rigorous results on LR tests, such as [WB17], often work with a computationally

intractable version of the test where the label parameter z is marginalized by summing

over Kn possibilities. In practice, these tests are often implemented by approximating

the sum via variational inference or plug-in MLE estimators for which the theoretical

results of goodness-of-fit do not extend, though the consistency of selecting the correct

community number is retained.

A pseudo-LR approach with rigorous guarantees is developed in [MSZ18]. As

in [WB17], the focus there, too, is on model selection and comparing DCSBM mod-

els, specifying both the null and alternative models, in contrast to FNAC tests. Our

approach is comparable to that of [MSZ18] when applied sequentially for model selection,

but FNAC family of tests are computationally more efficient: (1) Computing the test

statistic of [MSZ18] has O(n2) computational complexity, whereas due to the column

compression, we require only O(M) where M is the number of edges. (2) [MSZ18] creates

new labels by binary segmentation, but we save time by reusing the labels estimated by

the community detection algorithm. In addition, their consistency results are based on

the assumption that the community detection algorithm merges the true communities

when it underfits and splits them when it overfits. However, our test only imposes the

mild assumption that connectivity parameters are distinguishable among communities,

allowing it to be compatible with many community detection algorithms.

As for the degree requirement, our method only requires νn ≳ log n, similar to model
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selection approaches in [MSZ18; LL22; CL18], and slightly better than those of [LLZ20;

WB17] that require νn/ log n→ ∞. In contrast, the spectral goodness-of-fit test [BS16;

Lei16] has a much more severe requirement (νn ≫ n1/2) as discussed earlier.

In addition, our work is also related to post-selection inference in clustering [Kim+17;

GBW20]. In general clustering setting, it is of interest to test if the estimated clusters are

statistically significant. It is commonly done by testing the difference in mean between

clusters, but it could suffer inflated type I error if just using its usual null distribution

[GBW20]. So more often bootstrap sampling is used [Kim+17]. Here we provide a different

solution to use the adjusted chi-square statistic to have a valid null distribution.

2.4 Numerical Experiments

We now illustrate the performance of FNAC+ and SNAC+ on simulated and real networks.

We use regularized spectral clustering [Ami+13] as the community detection algorithm,

since it is widely used, computationally efficient and conjectured to satisfy Assumption 1

[Abb+20]. Given the number of communities K, the spectral clustering estimates the

community labels by applying k-means clustering to the rows of the matrix formed by the

K leading eigenvectors of the normalized Laplacian. Regularization is attained by adding

τdav/n (where dav is the network average degree) to every entry of the adjacency matrix

before forming the Laplacian. This regularization is known to improve the performance in

the sparse regime (dav ≪ n) [LLV17; ZR18].

Along with the FNAC tests, we consider the following approaches for comparison:

Likelihood ratio test (LR) [WB17], Bayesian information criteria (BIC) [WB17], adjusted

spectral test (AS) [Lei16], Bethe-Hessian spectral approach (BH) [LL22], network cross-

validation (NCV) [CL18] and edge cross-validation (ECV) [LLZ20]. Details for each

method can be found in Section 1.2 and 1.3. Note that for LR, we use the plug-in

estimators based on labels obtained from the regularized spectral clustering.

For AS, we use the Poisson version of the re-scaled adjacency matrix defined in

(1.9). As mentioned previously, though this version has not been proved to have the

Tracy-Widom null distribution yet, it is the most natural extension to DCSBM. Moreover,
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Figure 2.2: Expected accuracy of selecting the true number of communities versus expected average
degree of the network. The data follows a DCSBM with n = 5000, K = 4, θi ∼ Pareto(3/4, 4)
and balanced community sizes. The connectivity matrices are B1 (left) and B2 (right), as defined
in the text.

this significantly improves the computational performance for sparse matrices, since then

Ã can be written as the sum of a sparse matrix and a term involving the product of

diagonal and low-rank matrices. This allows fast computation of Ãx for any vector x,

hence allows the singular value computation to scale to very large networks. In some

simulations, we also consider AS-SBM, where we use the SBM estimate for P̂ij, which is

obtained by setting θ̂i = 1 in (1.9).

2.4.1 Simulations

As discussed earlier, a goodness-of-fit test can be used in a sequential manner to perform

model selection. We now provide simulations showing that, when applied sequentially, the

family of FNAC+ are consistent, and competitive with other model selection approaches.

Here, we report results for samples from Bernoulli DCSBMs. Since we work with sparse

networks, the Bernoulli model will be very close to its Poisson version. This was empirically

confirmed, as we did not see a significant drop in performance for the FNAC+ tests in

our simulations, under a Bernoulli model relative to the Poisson.
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Model Selection Performance

Let Pareto(x0, α) denote a Pareto distribution with scale parameter x0 and shape parameter

α, so that its mean is αx0/(α − 1). We simulate data from a K-block DCSBM with

connection propensity θi ∼ Pareto(3/4, 4), and a connectivity matrix which is one of the

following:

1. B1 ∝ (1− β)IK + β11T , that is, a simple planted partition model with out-in-ratio

β,

2. B2 ∝ γR+(1−γ)Q, where γ ∈ (0, 1), R is a random symmetric permutation matrix,

and Q a symmetric matrix with i.i.d. Unif(0, 1) entries on and above diagonal.

Here, 1 is the all-ones vector. In both cases, the matrices are normalized to have a given

expected average degree λ. The simple planted partition model B1 generates a very

homogeneous assortative network. Model B2 creates a more general model by employing

the permutation, allowing a mix of assortative and dissortative communities. Model B2 is

in general harder to fit.

Figure 2.2 illustrates the model selection accuracy of various methods for the following

setup: n = 5000, true K = 4 with balanced community sizes, β = 0.2 and γ = 0.3. For the

goodness-of-fit tests FNAC+, SNAC+ and AS, we use sequential testing from below to

estimate K. In each case, the rejection threshold is set to have a significance level of 10−6

(under null). For tests with bootstrap debiasing, the number of bootstrap simulations is

10. Figure 2.2 shows the expected model selection accuracy versus the expected average

degree λ for each method. The accuracy is obtained by averaging over 200 replications. As

λ increases, the problem gets easier and we expect the performance of consistent methods

to improve.

For both models B1 and B2, the performance of FNAC+ and BIC are close and they

outperform other approaches, except for the BH in the case of the B1 model. Note, however,

that BH performs extremely poorly under B2, showing that associativity is necessary

for its consistency. In fact, as pointed out in [LL22], BH requires all the eigenvalues of

E[A] to be positive, which is violated with positive probability under the B2 model. The
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two versions of SNAC+ perform very close to each other and ranked after the FNAC+

and BIC pair. That the performance of the bootstrap SNAC+ is very close to that of

SNAC+ with the theoretical threshold, corroborates the accuracy of the null distribution

in Theorem 2. The spectral test (AS) performs reasonably well for model B1, albeit ranked

after SNAC+, but relatively poorly under B2. The cross-validation approaches generally

underperform other approaches for model selection, with ECV significantly outperforming

NCV.

We include more variants of out-in-ratio and class prior settings in Appendix A.2,

which also has examples where FNAC+ significantly outperforms BIC.

ROC Curves

Another way to measure the performance of a test statistic is by means of its Receiver

Operating Characteristic (ROC) curve, that is, the power of the test as a function of Type

I error; equivalently, the true positive rate (TPR) as a function of the false positive rate

(FPR). The ROC curve reveals the best possible performance of a statistic for a given

testing problem (one achieved by setting the optimal threshold). Here, we compare the

ROC curves of the FNAC+ tests to the likelihood ratio (LR) and spectral (AS) test, for

the problem of testing the null hypothesis of K = 4 versus the alternative of K + 1 = 5

communities. This is an example of “testing from below” which is encountered in sequential

model selection.

For the null hypothesis, we consider a simple DCSBM with K = 4 communities,

having a connectivity matrix of type B1, introduced in Section 2.4.1, with β = 0.1. For

the alternative, we consider two cases: (a) a DCSBM with K + 1 = 5 and otherwise

similar parameters to the null DCSBM, and (b) a degree-corrected latent variable model

(DCLVM) with K + 1 = 5 communities generated as follows: Given a set of latent node

variables {xi}ni=1 ⊂ Rd with d = K + 1, the adjacency matrix A = (Aij) is generated as a

symmetric matrix, with independent Bernoulli entries above the diagonal, with

E[Aij | x, θ ] ∝ θiθje
−∥xi−xj∥2 and xi = 2ezi + wi (2.40)
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Figure 2.3: ROC plots for testing 4 versus 5 community models. Top and bottom rows correspond
to n = 2000 and n = 10000, respectively. Left and right columns correspond to the DCSBM and
DCLVM alternatives, respectively.

where ek is the kth basis vector of Rd, wi ∼ N(0, Id) and {zi} ⊂ [K + 1]n are multinomial

labels (similar to the DCSBM labels). In other words, the latent positions {xi} are

drawn from a Gaussian mixture model with K + 1 = 5 components, living in RK+1. The

proportionality constant in (2.40) is chosen such that the overall network has expected

average degree λ. For all the models, including the null and the two alternatives, the

underlying prior on the labels is taken to be proportional to an arithmetic progression:

P(zi = k) ∝ k to produce unequal community sizes, and we let θi ∼ Pareto(3/4, 4). For

DCSBM, we use average degree λ = 15 and DCLVM λ = 8.

Figure 2.3 illustrates the resulting ROC curves. As expected, increasing n generally

improves the performance (except for AS). Both FNAC+ and LR are almost perfect tests

for differentiating the two DCSBMs at n = 104. In all cases, the FNAC+ is more powerful
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Table 2.1: Statistics on the FB-100 dataset. Qu. is a short-hand for quartile.

Min. 1st Qu. Median Mean 3rd Qu. Max.
n 769 4444 9950 12083 17033 41554

Mean deg. 39 65 77 77 88 116
3rd Qu. deg. 54 91 110 108 124 166

Max. deg. 248 673 1202 1787 2123 8246

than the sub-sampled version, SNAC+. This is expected since SNAC+ relies on half the

data. Note that as n increases, SNAC+ greatly improves which can be attributed to the

label estimation procedure achieving almost exact recovery, even at half the size of the

original network. Note that AS generally is much less competitive compared to LR or

FNAC+. This is expected since the spectral test relies on a general statistic that is not

tailored to the blocked nature of the adjacency matrix of a DCSBM.

FNAC+ is almost perfect test for DCLVM even at n = 2000, whereas LR test

underperfroms under the DCLVM. This is also expected, since the LR test incorporates

the likelihood of a DCSBM for the alternative, which is mismatched to the actual

alternative model. This experiment shows the power of FNAC+ family in rejecting against

models outside the family of DCSBM. It highlights the advantage of goodness-of-fit over

likelihood-ratio testing where one does not have to specify explicitly alternatives, hence

can test against many alternatives simultaneously. Companion results for the problem

of testing 4 versus 3 communities are reported in Figure A.3 and testing DCSBM and

DCLVM with 4 communities are in Figure A.4 of Appendix A.3.

2.4.2 Goodness-of-fit Testing

The main utility of a goodness-of-fit test is to assess how well real data fits the model.

Let us investigate how well a DCSBM fits the real networks from the Facebook-100

dataset [Tra+11; TMP12], hereafter referred to as FB-100. This dataset is a collection of

100 social networks, each the entire Facebook network within one university from a date

in 2005. The networks vary considerably in size and degree characteristics; some statistics

are provided in Table 2.1.

Figure 2.4 shows the violin plots of the SNAC+ statistic with filtering σ = 0.2 versus
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the number of communities for the entire FB-100 data. The variation at each K is due

to the variability of SNAC+ over the 100 networks in the dataset. Each FB network

has a corresponding synthesized 3-cluster DCSBM network that resembles its degree

distribution. Violin plots are also shown for those synthesized DCSBM networks for

comparison. For model parameters, each synthesized DCSBM has its own θ parameter

proportional to the corresponding FB network degree vector, but they all share the same

connectivity matrix B, which is the corresponding MLE based on all the FB networks. To

get the shared B, we first apply spectral clustering with K = 3 to each FB network A(s),

s = 1, . . . , 100 and get estimated label z. Then get the block sum matrix N (s) and block

size matrix M (s) respectively with elements Nkℓ(ẑ) and mkℓ(ẑ) defined below the equation

(1.7). Finally get B =
∑

sN
(s)/
∑

sM
(s), where the summation and division matrix

operations are element wise. The community sizes are balanced. Kolmogorov–Smirnov

test was performed between each FB and synthesized DCSBM network’s degrees, and 84

out of such 100 pairs have p-value greater than 0.05, indicating the their closeness. The

plots show a marked deviation of FB-100 networks from a DCSBM model as measured by

SNAC+ goodness-of-fit test. If the networks were generated from a DCSBM, one would

expect the distribution of SNAC+ to drop to within a narrow band around zero once K

surpasses the true number of communities. Only at K = 25 a small fraction of FB-100

networks have SNAC+ values within, say, the interval [−5, 5], showing that a DCSBM

with K < 25 is not a good model for any of these networks. Even at K = 25, the majority

of FB-100 networks are still ill-fitted.

On the other hand, we observe that SNAC+ with filtering at σ = 0.2 is nearly normal

distributed for K = 3, while remaining large for K = 1 and K = 2. This corroborates

the results of both Theorem 2 and Theorem 3 that predict exactly this behavior. Note

that this conclusion holds despite the variation in the sizes and average degrees of the

simulated networks, showing the insensitivity of the null distribution of SNAC+ to those

parameters, as predicted by the theory.

Examining the FB-100 data further, one observes that most networks show some

very high degree nodes that seem to skew the result of community detection as well as
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Figure 2.4: Comparing the goodness-of-fit of DCSBM to the FB-100 dataset versus a dataset
simulated from a DCSBM with K = 3 communities, with the same sizes and average degree
characteristics as those of FB-100. The left plot is the zoomed-in version of the right plot.

graph drawing algorithms. This can also be inferred from the significant divide between

the third quartile and the maximum degree in Table 2.1. Le et al. [LLV17] have also

shown that abnormally high degrees can obstruct community detection. Treating these

high-degree nodes as outliers, one could ask what happens if we remove them and refit the

model? Figure 2.5 shows the result of performing the same experiment, but applied to the

reduced FB-100 networks, obtained by restricting to the (induced) subnetwork formed by

nodes having degrees below the 3rd quartile (i.e., the 75 percentile). Table 2.2 shows the

statistics on these reduced networks, revealing less skewed degree distributions compared

to the original data. Figure 2.5 shows that the reduction leads to an overall improvement

in the fit: More networks have SNAC+ values that drop to near zero and this happens for

lower values of K. This shows the effectiveness of goodness-of-fit testing, in the sense that

it allows us to test the hypothesis that removing the high-degree nodes causes a better

DCSBM fit. Nevertheless, Figure 2.5 shows that the majority of the reduced networks are

still far from a DCSBM with few number of communities.

Table 2.2: Statistics on the reduced FB-100 dataset.

Min. 1st Qu. Median Mean 3rd Qu. Max.
n 544 3293 7356 8930 12601 30590

Mean deg. 11 20 24 24 28 36
3rd Qu. deg. 16 29 34 34 40 52

Max. deg. 38 74 89 87 101 149
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Figure 2.5: Similar to Figure 2.4 but with Facebook networks reduced by restricting to nodes
with degrees below the 75 percentile.

2.4.3 Exploring Community Structure

As demonstrated in Section 2.4.2, a DCSBM (with small K) is not a good fit for most

of the networks in FB-100. Even in such cases, SNAC+ has utility beyond testing and

can be used to reveal community structure in networks. We demonstrate this by using

the reduced FB-100 networks constructed in Section 2.4.2. Recall that SNAC+ quantifies

the similarity within each estimated community, and a smaller value means that the rows

in an estimated community share a similar connection pattern to other communities.

Therefore, sharp drops in the value of SNAC+, as K varies can signal the existence of

community structure. For a sequence of SNAC+ statistics with increasing K, there could

be an elbow where continuing to increase K does not bring a significant decrease in the

statistic, or a dip where SNAC+ starts to increase. These two types of points signal that

it is not worthwhile to continue increasing K. Furthermore, these transitions are often

much more dramatic for FNAC+ family of tests than the competing methods and can be

easily identified by eyeballing the plots.

Figure 2.6 shows the normalized statistic plots for two networks from FB-100. The

plots show the normalized value of SNAC+, FNAC+, AS, AS-SBM and negative BIC

statistics for K = 1, . . . , 13. The statistics are normalized to fall in the range [−1, 1] by

dividing by their largest absolute value, for each test, respectively. This allows us to

compare the trend of each statistic as K increases among different methods.
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Figure 2.6: Normalized statistics versus the candidate number of communities (K).

For many of the FB-100 networks, SNAC+ and FNAC+ share a similar pattern,

with rapid drops followed by the flattening or increase of the statistic, signaling strong

community structures. In contrast, AS and AS-SBM generally do not show strong trends,

while negative BIC barely fluctuates at all when K increases. For example, for the

Bucknell network (Figure 2.6), there is one sharp elbow at K = 2 for the FNAC+ tests.

The Stanford network shows an elbow/dip at K = 3 and a similar elbow/dip at K = 6 in

FNAC+ tests. This suggests that the network has two levels of community structure (cf.

Figure 2.8), an interesting phenomenon not captured by other statistics. Note that AS-

SBM captures the community structure at K = 3 for the Stanford network (with a dip at

K = 3) while missing the K = 6 possibility. The AS version (employing degree-correction)

behaves contrary to expectation in this case and misses both structures.

Community Profiles

We now consider a more quantitative approach to constructing a community profile

based on the value of SNAC+. We take advantage of the randomness in SNAC+ due to

subsampling, as a natural measure of the uncertainty of the community structure. For

each K, we calculate SNAC+ several times (each time using a random split of the nodes)

and and then fit a smooth function to the resulting points, treating the problem as a

nonparametric regression. Here, we consider smoothing splines but other approaches such

as Gaussian kernel ridge regression can be equally useful. The estimated smooth function
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provides what we refer to as a community profile for the network. This profile can be used

for comparing and classifying networks as well as determining possible good choices of the

number of communities. The subsampling and smoothing provide a degree of robustness

to these profiles as illustrated below.

Instead of eyeballing a plot for its elbows and dips, we can rely on the derivatives of

the community profile to guide us. We quantify the elbow as the point where the second

derivative has the largest value and the dip as where the first derivative turns positive

for the first time. Alternatively, one can use the point with the largest curvature as the

elbow point [HO93]. However, we have found, empirically, that the second derivative, as a

proxy for the curvature, is much more accurate in capturing the elbow as determined by

a human observer.

Figure 2.7 provides instances of three most common patterns of community profiles

for the FB-100 networks. For each plot, we show community profiles using two smoothness

levels: (1) the dashed red line corresponding to smoothness level set by generalized cross-

validation (GCV) [GHW79], and (2) the solid line providing a smoother fit, corresponding

to spar = 0.3, where spar is the smoothness parameter in base R’s implementation of

smoothing splines. The GCV version is usually rougher and captures subtle changes,

whereas the solid black fit is smoother and more robust. For each of the two fitted curves,

the values of K corresponding to the elbow and dip, as estimated by the derivatives,

are given on each plot (with the elbow point recorded first). For example, the Harvard

network shows an elbow at K = 6 and a dip at K ≈ 3.2 according to the smoother profile.

Compared with normalized plots (Figure 2.6), community profiles show less randomness

and the quantified elbows and dips are consistent with those identified by a human

observer. It is worth noting that our maximum second derivative criterion for identifying

the elbows, surprisingly, almost always returned an integer in these experiments (i.e., no

rounding is performed in reporting the elbow points).

The first row in Figure 2.7 shows a single-elbow pattern, and the second row a single

first dip (possibly followed by minor smaller dips later on). The third row illustrates

a pattern with more than one significant drop, corresponding to multiple elbow/dips.
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Figure 2.7: Community profile plots. The solid and dashed lines show the smoothed SNAC+
statistic versus the candidate number of communities (K). The dots each represent the SNAC+
value for a random split of the network. The difference between the solid and dashed lines is the
smoothness level of the fitted smoothing spline.

This interesting multi-stage behavior is exhibited by a few of the FB-100 networks, and

suggests the possibility of breaking the networks into communities in multiple (potentially

hierarchical) ways. As mentioned earlier, these multi-stage structures are only captured by

SNAC+ among the competing methods. This case illustrates the subtlety of community

detection in real networks, showing that insisting on fitting the networks with a single

K could lead to missing interesting substructures. We also point out that having an

elbow/dip at K = 2 is very common for the FB-100 networks; we refer to the additional

profile plots provided in Appendix A.4.

Note that in addition to revealing community structure, the absolute value of the

profile curves in Figure 2.7 is also informative and measures the distance of the network
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form a DCSBM. Since SNAC+ is guaranteed to be centered around zero under a DCSBM,

the networks with a larger absolute value of SNAC+ are further away from a DCSBM.

For example, Figure 2.7 shows that Wellesley with K = 4 communities, having an

average SNAC+ value ≈ 60 is a much better fit to DCSBM than Maryland with K = 2

communities, showing an average SNAC+ value ≈ 200.

Maryland58 Northeastern19 Stanford3 (K = 3)

Stanford3 (K = 6) Harvard1 (K = 3) Harvard1 (K = 6)

Figure 2.8: FB-100 network plots. The colors specify the estimated communities.

Figure 2.8 shows community structure of some of the FB-100 networks with nodes

colored according to their estimated community label. The Stanford and Harvard networks

are shown both with K = 3 and K = 6 estimated communities, as suggested by the two

stages of their community profiles. We note that for both of these networks either of these

two divisions into communities is visually sensible, with K = 6 apparently capturing more

refined substructures within the K = 3 division. (It is interesting to note that the K = 6

partition in each case is not a strict refinement of the K = 3 partition, but rather close to

being a refinement.) The community structures shown for Maryland and Northeastern are

based on the optimal K predicted by their profile plots, and they too make sense visually.
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In the Appendix A.4, we also provide normalized and profile plots (Figure A.7) for

the political blog network [AG05] which is widely used as a benchmark for community

detection. The profile plot shows an elbow at K = 2, as identified by the second derivative,

matching the expected ground truth of two communities corresponding to the Democratic

and Republican parties.

2.5 Proofs of Main Results

2.5.1 Additional Proofs of Theorem 1

We prove Propositions 1 and 2, which are used in the proof of Theorem 1.

Proof of Proposition 1

We first introduce two lemmas used in the proof of Proposition 1. Lemma 1 is on the mean

and variance of the chi-square statistic. Lemma 2 is a general result on the growth rate

of the third central moment of the empirical variance of a sum of independent variables.

Applying this result to a chi-square statistic, we can bound its third central moment by

some constant. Plugging them in to Essen’s bound, we show the sum of such chi-square

statistics normalized by its mean and standard deviation, is close to the standard normal

distribution. Next we show that replacing the exact standard deviation in the normalized

sum with a simpler form (to get Tn) pays a small price in the distance to the standard

normal distribution (Lemma 24).

Recall that ψ(x, y) := (x− y)2/y.

Lemma 1 (Variance of the chi-square statistic). Let X = (X1, . . . , XL) ∼ Mult(d, p),

where p = (p1, . . . , pL) is a probability vector and let Y :=
∑L

ℓ=1 ψ(Xℓ, dpℓ). Then, for

L ≥ 2,

E[Y ] = L− 1,

var(Y ) =
(
1− 1

d

)
2(L− 1) +

1

d

( L

h(p)
− L2

)
.
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In particular, var(Y ) ≥ (1− 1/d)2(L− 1)

Note that we always have L/h(p) ≥ L2 since
∑

ℓ pℓ = 1. Hence, the variance of Y is

a convex combination of two nonnegative terms. Furthermore, if d ≥ 2, var(Y ) ≥ L− 1.

Lemma 2 (Central moment growth). Let {W1, . . . ,Wn} be a sequence of i.i.d. zero mean

random variables with finite moments of order 6, and let Xn =
∑n

i=1Wi. Then, the third

central moment of X2
n is O(n3):

E
∣∣X2

n − EX2
n

∣∣3 ≤ CW1n
3,

where CW1 is a constant that only depends on the first 6 moments of W1. For the case

where W1 = α(Z − p) with Z ∼ Ber(p) and α ∈ R, one can take CW1 = 34.5α6p(1− p).

Proof Proposition 1. By Esseen’s bound for non-identically distributed summands [She10],

dK(Sn, Z) ≤
C0

(v2n)
3/2

n∑
i=1

E|Yi − E[Yi]|3 (2.41)

for some constant C0 ∈ [0.41, 0.56]. By Lemma 1, var(Yi) ≥ (1 − d−1
i )2(L − 1). Then,

using assumption h(d) ≥ 2,

v2n =
n∑
i=1

var(Yi) ≥ n
(
1− h(d)−1

)
2(L− 1) ≥ n(L− 1). (2.42)

Next, we bound the third central moment of Yi. Let Ziℓ = (Xiℓ − dipgiℓ)/pgiℓ. We

have Yi =
∑

ℓ pgiℓZ
2
iℓ/di. We can write Ziℓ =

∑di
j=1(Wj−pgiℓ)/pgiℓ, where Wj

i.i.d.∼ Ber(pgiℓ).

By Lemma 2, E|Z2
iℓ − EZ2

iℓ|3 ≤ Cpgiℓd
3
i , for some constant Cpgiℓ that only depends on pgiℓ.

Then,

E|Yi − E[Yi]|3 = E
∣∣∣ L∑
ℓ=1

pgiℓ(Z
2
iℓ − EZ2

iℓ)/di

∣∣∣3
≤

L∑
ℓ=1

pgiℓ
d3i

E
∣∣Z2

iℓ − EZ2
iℓ

∣∣3 ≤ L∑
ℓ=1

pgiℓ

(34.5
p6giℓ

pgiℓ(1− pgiℓ)
) (2.43)

where the first inequality is the discrete Jensen’s inequality applied to convex function
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x 7→ |x|3, that is, |
∑

ℓ qℓxℓ|3 ≤
∑

ℓ qℓ|xℓ|3 for any {xℓ} and probability vector q = (qℓ).

Combining (2.41), (2.42) and (2.43) gives

√
n dK(Sn, Z) ≤

34.5C0

(L− 1)3/2
1

n

n∑
i=1

L∑
ℓ=1

1

p4giℓ
≤ 34.5C02

3/2 1

L1/2p4
≤ 55

L1/2p4

using pgiℓ ≥ p for all i and ℓ, L− 1 ≥ L/2 and C0 ≤ 0.56.

To prove (2.13), let βn = vn/(
√
2γn), so that Tn = βnSn. By Lemma 24,

dK
(
Tn, Z

)
≤ dK

(
Sn, Z

)
+

ζn√
2πe

, ζn :=
|βn − 1|

min{βn, 1}
.

It remains to bound ζn. Let dGk
= (di, i ∈ Gk) and nk = |Gk|. By Lemma 1,

v2n =
n∑
i=1

(
1− d−1

i

)
2(L− 1) + d−1

i

(
Lh(pgi∗)

−1 − L2
)

=
∑
k

nk

[(
1− h(dGk

)−1
)
2(L− 1) + h(dGk

)−1
(
Lh(pk∗)− L2

)]

where the second line follows by breaking the sum as
∑n

i=1(· · · ) =
∑K

k=1

∑
i∈Gk

(· · · ) and

using nkh(dGk
)−1 =

∑
i∈Gk

d−1
i . To simplify, let αk = h(dGk

)−1. Then,

βn =
vn√
2γn

=
(∑

k

πk(1 + αkbk)
)1/2

, bk :=
Lh(pk∗)

−1 − L2

2(L− 1)
− 1.

where πk = nk/n. Since L ≤ h(pk∗)
−1 ≤ p−1 and L/2 ≤ L− 1, we have

0 ≤ bk + 1 ≤
L(p−1 − L)

2(L− 1)
≤ p−1 − L. (2.44)

Let u =
∑

k πkαkbk and note that βn =
√
1 + u. We have 0 <

∑
k πkαk = h(d)−1 ≤ 1/2,

by assumption. Moreover bk ≥ −1 for all k from (2.44). It follows that u ≥ −1/2.

If u ≥ 0, then βn ≥ 1 and ζn = βn − 1 ≤ 1
2
u, using the inequality

√
1 + x ≤ 1 + x/2

which holds for all x ≥ −1. If u < 0, then βn ∈ (0, 1), and

ζn =
1

βn
− 1 =

1√
1− |u|

− 1 ≤
√
2|u|,
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using |u| ≤ 1/2 and the inequality (1− x)−1/2 ≤ 1 +
√
2x which holds for 0 ≤ x ≤ 0.77.

We have |bk| ≤ max{1, p−1 − L − 1}, hence ζn ≤
√
2max{1, p−1 − L − 1}h(d)−1. The

proof is complete.

Proof of Proposition 2

Our strategy for proving Proposition 2 is to show that T̂n is close to Tn via a chain of

intermediate counterparts—namely T̃n and T̃ ∗
n—defined by replacing estimated clusters

and probabilities with their true versions; see (2.45) and the subsequent paragraph. The

fact that the chi-square statistic does not change very much when the probabilities are

slightly perturbed (Lemma 3) helps us show that T̃n is close to T̃ ∗
n and T̃ ∗

n is close to Tn.

It remains to show that T̂n is close to T̃n. Here, the probabilities defining the

underlying chi-square statistics are the same (both estimated), but the clusters are

different (estimated versus true). For this step, we use a uniform bound to avoid the

dependence of the estimated clusters on the same data used to form the statistic. This is

where we need dmaxαn
√
n = o(1).

Once we show that T̂n is close to Tn with high probability, we use the fact that for

two random variables close to each other, their Kolmogorv distances to the standard

normal distribution are also close (Lemma 4).

Throughout the proof, there will be a parameter u and a derived parameter δ based

on u. We set u in the end to balance all the terms; see the discussion after the statement

of Proposition 2. But in reading the proof, it could help to consider the case where all di

are of the same order say di ≍ d. Then u will scale like log d and hence δ defined in (2.48)

sclaes as δ = O(
√

log d/(nd)).

We are now ready to give the detailed proof. First, we state the auxiliary lemmas.

Lemma 3. Let x = (x1, . . . , xn) ∈ Rd and y, y + v ∈ R \ {0}, and consider the function

G(v) =
∑n

i=1 diψ(xi, y + v) where {di} are nonnegative and ψ(s, t) = (s − t)2/t. Let

R =
∑

i dixi − d+y where d+ =
∑n

i=1 di, and assume further that |v| ≤ |y|/2. Then,

|G(v)−G(0)| ≤ 2|v|
|y|
[
G(0) + 2|R|+ |v|d+

]
.
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Lemma 4. Let δ ∈ [0, 1/2] and ε > 0. Then, for any two random variables T̂n and Tn,

and Z ∼ N(0, 1)

dK(T̂n, Z) ≤ dK(Tn, Z) +
1

2
(δ + ε) + P

(
|T̂n − Tn| ≥ δTn + ε

)
.

Next, we introduce the intermediaries between T̂n and Tn. Consider

Y ({Gk}, {pkℓ}) :=
K∑
k=1

∑
i∈Gk

L∑
ℓ=1

ψ(Xiℓ, dipkℓ)

and let

Ŷ = Y ({Ĝk}, {p̂kℓ}),

Ỹ = Y ({Gk}, {p̂kℓ}),

Ỹ ∗ = Y ({Gk}, {p̃kℓ}),

Y = Y ({Gk}, {pkℓ})

(2.45)

where, for k ∈ [K] and ℓ ∈ [L],

p̂kℓ =

∑
i∈Ĝk

Xiℓ∑
i∈Ĝk

di
, p̃kℓ =

∑
i∈Gk

Xiℓ∑
i∈Gk

di
. (2.46)

We define the corresponding T -statistics based on Y -statistics, via the relation Y =
√
2γnT + γ2n. For example,

Ŷ =
√
2γnT̂n + γ2n

and similarly for T̃n, T̃ ∗
n and Tn. The rest of proof is devoted to showing that T̃ ∗

n is close

to Tn, T̃n is close to T̃ ∗
n and T̂n is close to T̃n.

Controlling probability estimates We first show that the probabilities in (2.46) are

close to their true counterparts, pkℓ. Let

X
(k)
+ℓ =

∑
i∈Gk

Xiℓ, d
(k)
+ =

∑
i∈Gk

di,
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and

ωn,1/2 =
(∑

k

(πkd
(k)
av )

1/2
)2
, ωn,1 =

∑
k

πkd
(k)
av , (2.47)

and ∆̂kℓ = p̂kℓ − p̃kℓ and ∆̃kℓ = p̃kℓ − pkℓ.

First, we control ∆̃kℓ. Let

δk := 2(u/d
(k)
+ )1/2, δ := max

k
δk, (2.48)

for u ≥ 0 in the statement of the proposition, and consider the event

B :=
{
max
ℓ

|∆̃kℓ| ≤ δk, ∀k ∈ [K]
}
. (2.49)

Lemma 5. P(Bc) ≤ 2KLe−u whenever u ≤ mink d
(k)
+ .

Recalling the defintion of ωn in (2.9), we note that mink d
(k)
+ = nωn. Then, u ≤

(p/8)2nωn ≤ mink d
(k)
+ where the first inequality is by assumption. Hence, the condition of

Lemma 16 holds and B is a high probability event. For the rest of the proof, we work on

B. Moreoever, u ≤ (p/8)2nωn ≤ (p/8)2d
(k)
+ for all k, from which it follows that δ ≤ p/4.

Since on B, we have maxk,ℓ |∆̃kℓ| ≤ δ, then for all k, ℓ,

p̃kℓ ≥ pkℓ − δ ≥ p/2. (2.50)

Next, we control ∆̂kℓ. Recall that τd = ωn/dmax as defined in (2.9). Let

Mn := {Mis(ẑ, z) ≤ αn}.

Lemma 6. Assume that αn ≤ τd p/2 and δ ≤ p/2 and let

δ̂ :=
6

p τd
αn. (2.51)

Then, on B ∩Mn, we have |∆̂kℓ| ≤ δ̂ · p̃kℓ for all k and ℓ.
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Since by assumption in Theorem 1, αn ≤ p/(8C3,p), we have δ̂ ≤ p/8, hence applying

Lemma 6, we obtain

p̂kℓ ≥ p̃kℓ − δ̂ ≥ p/2− p/8 ≥ p/4.

Controlling T̃ ∗
n in terms of Tn Apply Lemma 3 with xi = Xiℓ/di, y = pkℓ and

v = p̃kℓ − pkℓ = ∆̃kℓ. The condition |v| ≤ |y|/2 of the lemma is satisfied on B, as long as

δ ≤ p/2, which is the case as established earlier. Let

Gkℓ(∆̃kℓ) =
∑
i∈Gk

diψ(Xiℓ/di, pkℓ + ∆̃kℓ).

We have Ỹ ∗ =
∑

k,ℓGkℓ(∆̃kℓ) and Y =
∑

k,ℓGkℓ(0), hence

|Ỹ ∗ − Y | ≤
∑
k,ℓ

|Gkℓ(∆̃kℓ)−Gkℓ(0)|

≤ 2
∑
k,ℓ

|∆̃kℓ|
pkℓ

[
Gkℓ(0) + 2|X(k)

+ℓ − d
(k)
+ pkℓ|+ |∆̃kℓ|d(k)+

]
= 2

∑
k,ℓ

|∆̃kℓ|
pkℓ

[
Gkℓ(0) + 3|∆̃kℓ|d(k)+

]

where we have used X(k)
+ℓ − d

(k)
+ pkℓ = d

(k)
+ ∆̃kℓ since p̃kℓ = X

(k)
+ℓ /d

(k)
+ . By assumption pkℓ ≥ p

for all k and ℓ. Hence,

√
2γn|T̃ ∗

n − Tn| = |Ỹ ∗ − Y | ≤ 2

p

[
δ
∑
k,ℓ

Gkℓ(0) + 3L
∑
k

δ2kd
(k)
+

]
=

2

p

[
δ(
√
2γnTn + γ2n) + 12LKu

]
.

Then, on B, we have

|T̃ ∗
n − Tn| ≤

2

p

[
δ(Tn +

√
nL/2) + 12Ku

√
L/n

]
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using
√
nL/2 ≤ γn ≤

√
nL which holds for L ≥ 2. Since 2δ/p ≤ 1/2, we can apply

Lemma 4 to get

dK(T̃
∗
n , Z) ≤ dK(Tn, Z) +

1

p

[
δ(1 +

√
nL/2) + 12Ku

√
L/n

]
+ P(Bc). (2.52)

Controlling T̃n in terms of T̃ ∗
n We consider the event B ∩

Mcn from now on. We apply Lemma 3 with xi = Xiℓ/di, y = p̃kℓ and v = p̂kℓ− p̃kℓ = ∆̂kℓ.

Condition |v| ≤ |y|/2 of the lemma is satisfied, as long as δ̂ ≤ p/2, which is the case as

established earlier. Letting

Fkℓ(∆) :=
∑
i∈Gk

diψ(Xiℓ/di, p̃kℓ +∆),

Lemma 3 implies

|Fkℓ(∆̂kℓ)− Fkℓ(0)| ≤
2|∆̂kℓ|
p̃kℓ

(
Fkℓ(0) + 2|X(k)

+ℓ − d
(k)
+ p̃kℓ|+ |∆̂kℓ|d(k)+

)
≤ 4

p
|∆̂kℓ|

(
Fkℓ(0) +

[
2|∆̃kℓ|+ |∆̂kℓ|

]
d
(k)
+

)
,

where we have used d
(k)
+ ∆̃kℓ = X

(k)
+ℓ − d

(k)
+ p̃kℓ and p̃kℓ ≥ p/2 on event B; see (2.50). We

have Ỹ =
∑

k,ℓ Fkℓ(∆̂kℓ) and Ỹ∗ =
∑

k,ℓ Fkℓ(0). It follows that

√
2γn|T̃n − T̃ ∗

n | = |Ỹ − Ỹ ∗| ≤
∑
k,ℓ

|Fkℓ(∆̂kℓ)− Fkℓ(0)|

≤ 4

p
δ̂
(∑
k,ℓ

Fkℓ(0) + L
∑
k

[
2δk + δ̂

]
d
(k)
+

)
=

4

p
δ̂
(
Ỹ∗ + 2L

∑
k

δkd
(k)
+ + Lδ̂d+

)
.

Using d(k)+ = d
(k)
av πkn, and the defintions (2.47) and (2.48), we obtain

∑
k

δkd
(k)
+ = 2

∑
k

(ud
(k)
+ )1/2 = 2

√
nuωn,1/2.
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Noting that d+ = nωn,1, we have

√
2γn|T̃n − T̃ ∗

n | ≤
4

p
δ̂
(√

2γnT̃
∗
n + γ2n + 4L

√
nuωn,1/2 + Lωn,1δ̂n

)
.

Using
√
nL/2 ≤ γn ≤

√
Ln, we obtain, on B ∩Mn,

|T̃n − T̃ ∗
n | ≤

4δ̂

p

(
T̃ ∗
n +

√
nL/2 + 4

√
Luωn,1/2 + ωn,1δ̂

√
Ln
)
.

Recalling that δ̂/p ≤ 1/8, Lemma 4 gives

dK(T̃n, Z) ≤ dK(T̃
∗
n , Z) + P(Bc ∪Mc

n)

2δ̂

p

(
1 +

√
nL/2 + 4

√
Luωn,1/2 + ωn,1δ̂

√
Ln
)
.

(2.53)

Controlling T̂n in terms of T̃n Working B ∩Mn and recalling p̂kℓ ≥ p/4,

∑
ℓ

ψ(Xiℓ, dip̂kℓ) =
di
p̂kℓ

∑
ℓ

(Xiℓ/di − p̂kℓ)
2 ≤ 8di/p,

where we have used the following result:

Lemma 7. maxx,y∈PL
∥x− y∥2 = 2, where PL is the probability simplex in RL.

Letting Hk = Gk∆Ĝk := (Gk \ Ĝk) ∪ (Ĝk \ Gk),

|Ŷ − Ỹ | ≤
∑
k,ℓ

∑
i∈Hk

ψ(Xiℓ, dip̂kℓ) ≤
8

p

∑
k

∑
i∈Hk

di ≤
8dmax

p
αnn

using
∑

k |Hk| ≤ αnn. Hence, on B ∩Mn, we have

|T̂n − T̃ | ≤ 1√
2γn

|Ŷ − Ỹ | ≤ 8dmaxαn
√
n

p
√
L

using
√
2γn ≥

√
nL. Applying Lemma 4,

dK(T̂n, Z) ≤ dK(T̃n, Z) +
4dmaxαn

√
n

p
√
L

+ P(Bc ∪Mc
n). (2.54)
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Putting the pieces together Combining (2.52), (2.53) and (2.54), we have

dK(T̂n, Z) ≤ dK(Tn, Z) +

1

p

[
δ(1 +

√
nL/2) + 12Ku

√
L/n

]
+ P(Bc) +

2δ̂

p

(
1 +

√
nL/2 + 4

√
Luωn,1/2 + ωn,1δ̂

√
Ln
)
+ P(Bc ∪Mc

n) +

4dmaxαn
√
n

p
√
L

+ P(Bc ∪Mc
n).

Using 1 +
√
nL/2 ≤ 2

√
nL/2 and the union bound,

dK(T̂n, Z)− dK(Tn, Z) ≤
√
L

p
·
[
2δ̂
(√

2n+ 4
√
uωn,1/2 + ωn,1δ̂

√
n
)
+

4

L
dmaxαn

√
n+

δ
√
2n+ 12K

u√
n

]
+ 3P(Bc) + 2P(Mc

n).

Substituting δ̂ = C3,pαn, where C3,p := 6/(pτd), and δ
√
n = 2

√
u/ωn, and the upper

bound on P(Bc) from Lemma 16, we obtain after some rearranging,

dK(T̂n, Z)− dK(Tn, Z) ≤
√
L

p
·
[√8u

ωn
+ 12K

u√
n
+ 2αnζn

]
+ 6KLe−u + 2P

(
Mis(ĝ, g) ≥ αn

)
where

ζn =
(√

2C3,p + 2L−1dmax + ωn,1C
2
3,pαn

)√
n+ 4C3,p

√
uωn,1/2. (2.55)

As dmax ≥ C3,pL/
√
2, αn ≤ 2/(C2

3,pL) and u ≤ (p/8)2nωn by assumption, and since

ωn,1/2 ≤ K2dmax and ωn ≤ dmax, we obtain

ζn ≤ 6dmax

√
n/L+ pKC3,pdmax

√
n/2

≤ (1 +K/2)C3,pL
−1dmax

√
n
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where the last inequality is due to C3,p ≥ 6 and p ≤ L−1. The result follows.

2.5.2 Proofs of Theorems 2 and 3

We start by setting up notation and deriving some preliminary results that are common to

both proofs. Throughout, K0 denotes the true number of communities. Recall that S1 ⊂ [n]

is determined by including any element of [n] with probability 1/2, and S2 = [n]\S1. Then

define di :=
∑

j∈S1
Aij =

∑n
j=1AijUj where Uj = 1{j ∈ S1}, j ∈ [n] is an independent

Ber(1/2) sequence. We often work conditioned on S1, AS1S1 and (di, i ∈ S2). Let F be

the σ-field generated by these variables:

F = σ
(
S1, AS1,S1 , (di, i ∈ S2)

)
, (2.56)

and let EF and PF denote the expectation and probability operators, conditioned on

F . We assume without loss of generality that the community detection algorithm is

nonrandomized, so that conditioned on F , ŷ is fixed. (Otherwise, we add the independent

source of randomness used by the algorithm to F .) The idea in both proofs is to first

condition on F and derive bounds assuming parameters are all fixed. Then we can leave

out F thanks to the fact that parameters are all bounded with high probability as we

show below.

Controlling ρkℓ, di and |Gk| Recall the definition of Xiℓ(ŷ) in (2.17), then conditioned

on F , for i ∈ S2, Xi∗(ŷ) ∼ Mult(di, ρzi∗) independently and thus EF [Xiℓ(ŷ)] = diρziℓ,

zi ∈ [K0] where

ρkℓ =

∑K0

h=1B
0
khRhℓ∑L

ℓ′=1

∑K0

h=1B
0
khRhℓ′

≥ τBτθ

∑
j∈S1

1{ŷj = ℓ}
|S1|

≥ τBτθτ0 := τρ, (2.57)

where the last inequality is due to the stability assumption 1. It follows that ρ :=

mink,ℓ ρkℓ ≥ τρ.
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Letting d∗i = E[di], we have

d∗i =
1

2

n∑
j=1

E[Aij] =
1

2
θiazi , where ah :=

K0∑
k=1

Bhk

∑
j∈Ck

θj (2.58)

for all h ∈ [K0]. Let us derive some bounds on d∗i . Recalling that θmax = 1,

ah ≥ τθθmaxnk
∑
k

Bhk = τθnk
νn
n
∥B0

h∗∥1 ≥ τθνnτC min
h′

∥B0
h′∗∥1. (2.59)

Using the definition of C1 in (2.25), we obtain

d∗i ≥
1

2
C1νn, ∀i. (2.60)

Let amax = maxh ah. Since |Ck| ≤ n, we have amax ≤ νn ·maxh ∥B0
h∗∥1. Combining with

assumption (2.59), we obtain

ah ≥ τaamax, τa := τθτBτC. (2.61)

Since ∥B0∥∞ = 1 by assumption, we have

d∗i ≤
1

2
K0 νn, ∀i. (2.62)

Recall that Ck = {i ∈ [n] : zi = k} is the true community k, and we let nk = |Ck|.

We also let Gk := {i ∈ S2 : zi = k} = Ck ∩ S2. We often work on the following event:

A =
{
|Gk| ∈ [0.4nk, 0.6nk], ∀k ∈ [K0]

}
∩
{
di ∈

[d∗i
2
,
3d∗i
2

]
, ∀i ∈ [n]

}
. (2.63)

Note that A is deterministic conditioned on F . The next lemma guarantees that this

event holds with high probability:

Lemma 8. Under the scaling assumption (2.26), P(Ac) ≤ 7n−1.
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From S2 to S ′
2 Recall that in the subsampled NAC, we first use random sampling

to get S2 and then use quantile filtering with threshold σ-th quantile in each estimated

cluster to get S ′
2. We spend most part of proofs below to work with S2 for simplicity and

their close connections. Recall that in each Ĝk = {i ∈ S2 : ẑi = k} we keep nodes with

degrees at least its σ-th quantile to get Ĝ ′
k = {i ∈ Ĝk : di ≥ dk(⌊σ|Gk|⌋)}. It follows that

|Ĝ ′
k| ≥ (1− σ)|Ĝk| and |S ′

2| ≥ (1− σ)|S2|, where S ′
2 = ∪Kk=1Ĝ ′

k.

Now let us get a lower bound for the size of G ′
k := Gk ∩ S ′

2, which is used in the proof

of Theorem 2 and 3. Given an estimated label vector ẑ and a true label vector z, recall

the definition of event

Mn := {Mis(ẑ, z) ≤ αn}.

Then on Mn, |Gk| − αnn ≤ |Ĝk| ≤ |Gk| − αnn. Recall that |Gk| ≥ 0.4τCn on A. Therefore,

on Mn ∩ A,

|G ′
k| ≥ |Gk ∩ Ĝ ′

k|

≥ |Gk ∩ Ĝk| − |Ĝk \ Ĝ ′
k|

≥ |Gk| − αnn− σ|Ĝk|

≥ |Gk| − αnn− σ(|Gk|+ αnn)

≥ (1− σ)0.4τCn− (1 + σ)αnn

≥ 0.2(1− σ)τCn := c1K0n

where the last inequality is by assumption that αn ≤ τC(1−σ)
5(1+σ)

.

Proof of Theorem 2

The proof has two parts. The first part is to get an upper bound of the Kolmogorov

distance conditioned on subsampling random field, resulting from combining Lemma 9

and Theorem 1. The second part is to show that on event A∩Mn, the random quantities

are bounded by constants.
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For a random variable Y , let L(Y | F) be the law of Y conditioned on F and let

dK
(
L(Y | F), Z

)
= sup

t∈R
|P(Y ≤ t | F)− P(Z ≤ t)|. (2.64)

Lemma 9. For any random variables, Y and Z, any event B and any σ-field F , we have

dK(Y, Z) ≤ E
[
dK
(
L(Y | F), Z

)]
,

|dK(Y, Z)− dK(Y 1B, Z)| ≤ P(Bc).

Applying Lemma 9 and since the Kolmogorov distance is bounded above by 1, we

obtain

dK(T̂n, Z) ≤ EF[dK
(
L(T̂n | F), Z

)]
≤ EF [dK

(
L(T̂n | F), Z

)
· 1A∩Mn ] + P(Ac) + P(Mc

n).

(2.65)

Recall that with subsampling, we first get subset S2. For each estimated cluster Ĉk, we

have Ĝk = Ĉk ∩ S2. With quantile filtering in each Ĝk, we are left with Ĝ ′
k. And the

test is performed on AS′
2S1

, where S ′
2 = ∪Kk=1Ĝk. Conditioned on F , Xiℓ(ŷ) for i ∈ S2 is

distributed as Mult(di, ρzi∗) as discussed in (2.18). Let G ′
k = Gk ∩ S ′

2. Then we can apply

Theorem 1 (assuming its conditions hold) with ĝ = ẑ ∩S ′
2, g = z ∩S ′

2, Mis(ĝ, g) ≥ αn

0.4(1−σ) ,

h(d) as the harmonic mean of (di, i ∈ S ′
2), d

(k)
av as the arithmetic average of (di, i ∈ G ′

k),

πk = |G ′
k|/|S ′

2|, ωn = mink πkd
(k)
av , dmax = maxi∈S′

2
di, and τd = ωn/dmax to the conditional

law of T̂n given F to obtain

dK
(
L(T̂n | F), Z

)
≤ C1,ρ√

L|S ′
2|
+
C2,ρ

h(d)

+

√
L

ρ

√72 log(K0ωn)

ωn
+

12K0 log(K0ωn)√
|S ′

2|


+

(2 +K0)C3,ρdmax

√
nαn

0.4(1− σ)ρ
√
L

+ 2P
(
Mis(ĝ, g) ≥ αn

0.4(1− σ)
| F
)

(2.66)

The constants C1,ρ, C2,ρ and C3,ρ depend on the ρ matrix defined in (2.19). Note that
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h(d) and ωn, although in general random, are deterministic conditioned on F .

Now we bound (2.66) on A, and without further specification the following results

are all based on A. Recall that |G ′
k| ≥ c1K0n on event Mn ∩ A. Then, we obtain

1 ≥ πk =
|G ′
k|

|S ′
2|

≥ c1K0n

0.6n
=

5c1K0

3
.

Since 1
4
C1νn ≤ d

(k)
av ≤ 3

4
K0 νn, for all k ∈ [K0] then

5

12
c1C1K0νn ≤ ωn ≤ 3

4
K0 νn, τd ≥

5

9
c1C1

Recall that ρ ≥ τρ from (2.57), then

C3,ρ =
6

ρ τd
≤ 54

5c1C1τρ
:= C2.

Furthermore,

1

h(d)
=

1

|S ′
2|
∑
i∈|S′

2|

d−1
i ≤ 2

|S ′
2|
∑
i∈|S′

2|

(d∗i )
−1 ≤ 4

C1νn
.

To bound the probability of the missclassification rate, we first note that

Mis(ĝ, g) ≤
∑

i∈S′
2
1{gi ̸= ĝi}
|S ′

2|
≤
∑n

i=1 1{zi ̸= ẑi}
|S ′

2|
= (n/|S ′

2|)Mis(ẑ, z).

Furthermore, |S ′
2|/n ≥ 0.4(1− σ) on the event A. Then

P
(
Mis(ĝ, g) ≥ αn

0.4(1− σ)
| F
)
1A∩Mn ≤ P

( n

|S ′
2|
Mis(ẑ, z) ≥ αn

0.4(1− σ)
| F
)
1A

= P
({ n

|S ′
2|
Mis(ẑ, z) ≥ αn

0.4(1− σ)

}
∩ A |F

)
≤ P(Mis(ẑ, z) ≥ αn | F).
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Note that log(K0ωn) ≤ log
(
(3/4)K2

0νn
)
:= βn. Therefore,

EF
[
dK
(
L(T̂n | F), Z

)
· 1A∩Mn

]
≤ C3 − 21√

Ln
+

C4

C1νn
+

19
√
L

τρ

(√
βn

c1C1K0νn
+

K0βn√
(1− σ)n

)
+

C5νn
√
nαn + 2P(Mis(ẑ, z) ≥ αn)

where C3 = 87/[(1− σ)1/2τ 4ρ ] + 7, C4 = 4(πe)−1/2max{1, τ−1
ρ −L− 1} and C5 = 15K0(1 +

K0/2)C2/[4(1− σ)τρ
√
L] are as defined in the statement of the theorem. The conditions

of Theorem 1 hold on A, if L ≥ 2, C1νn/4 ≥ 2, 5
12
c1C1K0νn ≥ L, C1νn/4 ≥ C2L/

√
2,

βn ≤ ( τρ
8
)2 5

12
c1C1K0νnn := C6νnn, and αn ≤ τρ

8C2
∧ 2

LC2
2
. Then the result follows by

using (2.65) and (C3 − 7)/
√
nL+ 7n−1 ≤ C3/

√
nL as

√
nL ≤ n.

Proof of Theorem 3

The proof has two main components. The first part is to show that when K < K0, there

exists a mixed cluster that contains two large pieces of true communities. Note that this

holds for any underfitted labels and is not a assumption bounded by a specific community

detection algorithm. The second part is to show the chi-square statistic is large in that

mixed cluster. This is done by first showing statistics are close to its parameters with high

probability as in Lemma 10. Then we further show that chi-square statistic is close to its

counterpart when substitute the observed statics with their corresponding parameters in

Lemma 11. Finally, by calculation, the chi-square statistic over two chunks with different

probabilities is large. For simplicity, the following proof is based on S2 (only sampling is

performed). At the end we will show the case for S ′
2 (both sampling and quantile filtering

are performed).

Recall that Ĉk = {i : ẑi = k} and n̂k = |Ĉk|. For r ∈ [K0], a true community Cr is

partitioned into Ĉk,r = {i : ẑi = k, zi = r}, k ∈ [K]. With such partition, we have for

each r ∈ [K0], there exists kr ∈ [K] such that |Ĉkr,r ∩ S2| ≥ |Cr ∩ S2|/K. Since K < K0,

there are r1, r2 ∈ [K0] such that r1 ̸= r2 and kr1 = kr2 =: k̂. Note that k̂ is random and

potentially dependent on A. Without loss of generosity, let r1 = 1 and r2 = 2. Therefore,
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Ĉk̂ contains “large” pieces Ĉk̂,1 and Ĉk̂,2 of two different true communities 1 and 2, and we

will show below that this furthermore makes Ĝk̂ = Ĉk̂ ∩ S2 having substantial size. First

recalling that Gr = Cr ∩ S2, on event A, we have

|Ĉk̂,1 ∩ S2| ≥ |C1 ∩ S2|/K ≥ |G1|/K0 ≥ (0.4τC/K0)n ≥ c1n, (2.67)

where c1 = (1 − σ) τC
5K0

as in (2.24) and the same goes for |Ĉk̂,2 ∩ S2|. Therefore, we

have |Ĝk̂| ≥ |Ĉk̂,1 ∩ S2| + |Ĉk̂,2 ∩ S2| ≥ 2c1n. Then we will focus on Ĝk̂ in the following

argument. Let
⋃K0

r=1 T̂r be a disjoint partition of Ĝk̂ into the true communities, where

T̂r = {i ∈ S2 : ẑi = k, zi = r} = Ĉk,r ∩ S2. Some T̂r might be empty, but we can safely

ignore those empty sets and focus on the two big chunk T̂1 and T̂2 as we discussed above.

Since T̂r ∈ Cr ∩ S2, then for any i ∈ T̂r, we have EF [ξiℓ] = ρrℓ, where ρrℓ is defined based

on (2.18) and (2.19). Let us define

α̂r =
∑
i∈T̂r

di, β̂r :=
α̂r
α̂+

, ρ̄ℓ :=

K0∑
r=1

β̂rρrℓ,

where α̂+ =
∑

r α̂r =
∑

i∈Ĝk̂
di. Consider the event

E :=
{
max
r,ℓ

max
i∈T̂r

|ξiℓ − ρrℓ| ≤ εn := 4

√
log n

C1νn
.
}

(2.68)

The following lemma shows that E holds with high probability and we work on E for the

rest of the proof. Note that its assumption is satisfied since we have a stronger assumption
logn
νn

≤ C1τ2ρ
64

.

Lemma 10. Assume logn
νn

≤ C1

4
, we have P(Ec ∩ A) ≤ 2Ln−1.

We next show that ρ̂k̂ℓ is close to ρ̄ℓ for all ℓ ∈ [L]. We have

∣∣∣∑
i∈Ĝk̂

Xiℓ(ŷ)−
∑
r

α̂rρrℓ

∣∣∣ = ∣∣∣∑
r

∑
i∈T̂r

diξiℓ −
∑
r

∑
i∈T̂r

diρrℓ

∣∣∣
≤
∑
r

∑
i∈T̂r

di
∣∣ξiℓ − ρrℓ

∣∣ ≤ εn
∑
r

α̂r = εnα̂+.
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Dividing by α̂+ and recalling the definition of ρ̂kℓ in (2.21), we get

∣∣ρ̂k̂ℓ − ρ̄ℓ
∣∣ = ∣∣∣∑i∈Ĝk̂

Xiℓ(ŷ)∑
i∈Ĝk̂

di
−
∑

r α̂rρrℓ
α̂+

∣∣∣ ≤ εn, ∀ℓ ∈ [L]. (2.69)

We now apply the following lemma:

Lemma 11. Let ψ(x, y) = (x − y)2/y. Consider (x, y) and (x′, y′) in [0, 1] × [1/c1, 1],

where c1 > 1, such that max{|x− x′|, |y − y′|} ≤ ε ≤ 1. Then,

∣∣ψ(x′, y′)− ψ(x, y)
∣∣ ≤ 12c31 ε. (2.70)

Note that ρ̄ℓ is a weighted sum of (ρrℓ), hence ρ̄ℓ ≥ ρ ≥ τρ using (2.57). Furthermore,

by assumption εn ≤ τρ/2, then combined with (2.69), we have min{ρ̂k̂ℓ, ρ̄ℓ} ≥ τρ/2 for all

ℓ ∈ [L]. Therefore, we can apply Lemma 11 with c1 = 2/τρ to obtain

∣∣ψ(ξiℓ, ρ̂k̂ℓ)− ψ(qrℓ, q̄ℓ)
∣∣ ≤ 96τ−3

ρ εn, ∀i ∈ T̂r, ∀ℓ ∈ [L].

For two vectors x, y ∈ RL, let us write Ψ(x, y) =
∑

ℓ ψ(xℓ, yℓ). Let ξi = (ξiℓ), and

ρ̂u∗ = (ρ̂uℓ), and set Ŷ (u)
+ =

∑
i∈Ĝu

diΨ(ξi, ρ̂u∗) for any u ∈ [K]. By the triangle inequality,

Ŷ
(k̂)
+ ≥

∑
r

∑
i∈T̂r

di
(
Ψ(ρr∗, ρ̄∗)− 96τ−3

ρ εnL
)
=
∑
r

α̂r
(
Ψ(ρr∗, ρ̄∗)− 96τ−3

ρ εnL
)

where ρr∗ = (ρ̄rℓ) and ρ̄∗ = (ρ̄ℓ). Dividing by α̂+, we have

1

α̂+

Ŷ
(k̂)
+ ≥

∑
r

β̂rΨ(ρr∗, ρ̄∗)− 96τ−3
ρ εnL. (2.71)

Let us define ω1 :=
∑

r β̂r(ρr∗, ρ̄∗).
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Controlling ω1 Recall |T̂1|, |T̂2| ≥ c1n and the definition of ah in (2.58). On the event

A, for u = 1, 2, we have

β̂u :=

∑
i∈T̂u di∑

r

∑
i∈T̂r di

≥ 1

3

∑
i∈T̂u d

∗
i∑

r

∑
i∈T̂r d

∗
i

=
1

3

∑
i∈T̂u θiau∑

r

∑
i∈T̂r θiar

≥ 1

3

τθθmaxau|T̂u|
θmaxamax|Ĝk̂|

≥ 1

3
τθτac1

using ah ≥ τaamax from (2.61), θi ≥ τθθmax and |Ĝk̂| ≤ n. We have

ω1 =
∑
r

β̂r
∑
ℓ

(ρrℓ − ρ̄ℓ)
2

ρ̄ℓ
=
∑
ℓ

1

ρ̄ℓ

∑
r

β̂r(ρrℓ − ρ̄ℓ)
2.

The inner summation is the variance of a random variable taking values {ρrℓ} with

probabilities {β̂r}. Applying Lemma 29 in the Supplement (Section B.4) and recalling

the definition of ω2 from (2.29), we have

ω1 ≥
1

maxℓ ρ̄ℓ

1

2
β̂1β̂2

∑
ℓ

(ρ1ℓ − ρ2ℓ)
2 ≥ 1

18
τ 2θ τ

2
a c

2
1∥ρ1∗ − ρ2∗∥2 ≥ Lω2 (2.72)

since maxℓ ρ̄ℓ ≤ maxk,ℓ ρkℓ ≤ 1.

Putting the pieces together On Ωn, we have 96τ−3
ρ εn ≤ 1

2
ω2, which combined

with (2.72) and (2.71), gives 1
α̂+
Ŷ

(k̂)
+ ≥ 1

2
Lω2. Recall that, on A, |Ĝk̂| ≥ 2c1n and

di ≥ C1νn/4. Then, on Ωn ∩ E ∩ A,

Ŷ
(k̂)
+ ≥ 1

4
c1C1Lω2nνn.

Furthermore, ñ = |S2| ≤ 0.6n on A, hence γñ =
√
ñ(L− 1) ≤

√
0.6nL and we have

T̂n =
1√
2

( 1

γñ

K∑
u=1

Ŷ
(u)
+ − γñ

)
≥ 1√

2

( 1

γñ
Ŷ

(k̂)
+ − γñ

)
≥
√
n

2

(
c1C1Lω2νn/4√

0.6L
−
√
0.6L

)
.
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On Ωn, we have 1
2
(c1C1Lω2νn/4) ≥ 0.6L, hence on Ωn ∩ E ∩ A, we obtain

T̂n ≥
√
n

2

(
c1C1Lω2νn/8√

0.6L

)
≥ c1C1

10
ω2νn

√
Ln. (2.73)

Furthermore, we note that

P((Ωn ∩ E ∩ A)c) ≤ P(Ωc
n) + 2Ln−1 + 2(7n−1) ≤ P(Ωc

n) + 9Ln−1

using Lemmas 8 and 10 and L ≥ 2.

Lastly, we extend the proof to subsampling with quantile filtering when the test is

performed on AS′
2S1

. The inequality (2.67) needs to be updated with respect to S ′
2:

|Ĉk̂,1 ∩ S
′
2| ≥ |C1 ∩ S ′

2|/K ≥ |G1 ∩ S ′
2|/K0

≥ c1n

on event A ∩Mn. Then (2.73) is true under event Ωn ∩ E ∩ A ∩Mn with probability at

least 1− P(Ωc
n)− P(Mc

n)− 9Ln−1. The proof of Theorem 3 is complete.

2.5.3 Proof of Theorem 4

Let Ck = {i ∈ [n] : zi = k} be the community k defined by label vector z, and nk = |Ck|.

We also let Gk := {i ∈ S2 : zi = k} = Ck ∩ S2. Consider event

A1 =
{
|Gk| ∈ [0.4nk, 0.6nk], ∀k ∈ [K]

}
. (2.74)

Since |Ck ∩ S1| = nk − |Gk|, on A1, we also have

|Ck ∩ S1| ∈ [0.4nk, 0.6nk], ∀k ∈ [K]. (2.75)

Under the assumption 0.4τCn ≥ 2, we have,

|Gk| ≥ 2, ∀k ∈ [K], on A1. (2.76)
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From the proof of Lemma 8, we obtain:

Lemma 12. P(Ac
1) ≤ n−1 if logn

n
≤ τc/300.

For two σ-fields F and H, we write F ∨H = σ(F ∪H) for the σ-field generated by

their union. Recall that with subsampling, the set S1 ⊂ [n] is determined by including any

element of [n], indepenently with probability 1/2, and S2 = [n] \ S1. Let di =
∑

j∈S1
Aij

and consider the following σ-fields

F0 = σ
(
S1

)
,

F1 = F0 ∨ σ(xS2),

F2 = F1 ∨ σ(xS1) = F0 ∨ σ(x[n]),

F = F2 ∨ σ
(
(di, i ∈ S2)

)
,

(2.77)

where xS2 = (xi, i ∈ S2), and similarly for xS1 , and x[n] = (x1, . . . , xn). Note that

conditioned on F0, ŷ is fixed, and conditioned on F2, (pij) is fixed.

We first consider the case where ŷS1 = yS1 . In this case, we drop the dependence of

Xiℓ(ŷ) (defined in (2.17)) on ŷ, and write

Xiℓ :=
∑
j∈S1

Aij1{yj = ℓ}. (2.78)

Since conditioned on F2, x[n] are fixed, it follows that

Xiℓ | F2 ∼ Poi(qiℓ), where qiℓ :=
∑
j∈S1

pij1{yj = ℓ}, (2.79)

independently across ℓ. Since for i ∈ S2, the sum of Xiℓ over ℓ is di, and when we condition

on F , we are also conditioning on di, i ∈ S2, we obtain

(Xiℓ)
L
ℓ=1 | F ∼ Mult

(
di, (ρiℓ)

L
ℓ=1

)
where ρiℓ :=

qiℓ∑
ℓ′ qiℓ′

. (2.80)

independently across i ∈ S2.
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Controlling conditional probabilities Let us set

τρ :=
C8

2Lτθ
=
τCτhτθ
2L

. (2.81)

As the first step in the proof, we show that ρiℓ is close to Hℓ(xi). More specifically, the

following event

R :=
{
|ρiℓ −Hℓ(xi)| ≤

4K

τρ

√
log n

n
, ∀i ∈ S2, ∀ℓ ∈ [L]

}
(2.82)

holds with high probability:

Lemma 13. There is an event W such that

R ⊇ Γ ∩W , and P(Wc) ≤ 4LKn−1

whenever logn
n

< ( τρ
4K

)2.

Controlling the degrees Consider the event

A2 :=
{
di ∈ [0.16C8νn, 0.96νn], ∀i ∈ S2

}
(2.83)

The next lemma guarantees that A2 holds with high probability:

Lemma 14. There is an event D such that

A2 ⊇ A1 ∩ Γ ∩ D and P(Dc ∩ A1) ≤ 2.2n−1

wherever logn
n

≤ 0.04C2
8 and logn

νn
≤ 0.001C8.

From now on, let A := A1 ∩ A2. Let dk+ =
∑

i∈Gk
di and ωn = mink d

k
+/|S2|. On A,
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we have

min
k
dk+ ≥ (0.16C8νn)(0.4nk) ≥ 0.064τCC8 nνn, (2.84)

ωn ≥ (8/75)τCC8νn (2.85)

using 0.4n ≤ |S2| ≤ 0.6n.

Controlling probability estimates Recall Ĝk = {i ∈ S2 : ẑi = k}, and let

ρ̂kℓ =

∑
i∈Ĝk

Xiℓ∑
i∈Ĝk

di
, ρ̃kℓ =

1

dk+

∑
i∈Gk

Xiℓ, ρ̄kℓ =
1

dk+

∑
i∈Gk

diρiℓ, (2.86)

∆̂kℓ = ρ̂kℓ − ρ̃kℓ and ∆̃kℓ = ρ̃kℓ − ρ̄kℓ. To control these deviations, we first show that ρ̄kℓk

is lower-bounded, where ℓk is as in (2.33):

Lemma 15. Assume logn
n

≤ (
τ2ρ
4K

)2. Then, with {ℓk}Kk=1 as defined in (2.35), on Γ ∩R,

we have

ρiℓzi ≥ τρ ∀i ∈ S2.

Combined with definition of ρ̄kℓ in (2.86), Lemma 15 immediately implies that under

the same condition, on Γ ∩R,

ρ̄kℓk ≥ τρ, ∀k ∈ [K]. (2.87)

Note that 2τρ = τCτhτθ/L hence 2τρ ≤ 1.

Next, we show that ∆̃kℓ is small by considering the following event

B :=
{
max
ℓ

|∆̃kℓ| ≤
8√
τCC8

√
log n

nνn
=: δ, ∀k ∈ [K]

}
. (2.88)

Lemma 16. P(Bc ∩ A) ≤ 2Ln−1 whenever logn
nνn

≤ 0.064τCC8.
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To simplify the notation, let us define

Nn := A ∩ B ∩Mn ∩R ∩ Γ. (2.89)

The next step is to control ∆̂kℓk :

Lemma 17. Assume that αn ≤ τCτρC8/18. Then, on Nn,

|∆̂kℓk | ≤
54

τρτCC8

αn ρ̃kℓk , ∀k ∈ [K]. (2.90)

Combining (2.88) and (2.90), on Nn, we have

|ρ̂kℓk − ρ̄kℓk | ≤
54

τρτCC8

αn +
8√
τCC8

√
log n

nνn

≤ 58

τρτCC8

√
log n

νn
. (2.91)

The second inequality uses τCC8 ≤ 1 and 2τρ ≤ 1 to replace the prefactor of the second

term with 4/(τρτCC8) and then uses the assumption αn ≤
√
(log n)/νn to combine the

two terms. We note that the fast rate
√

(log n)/(nνn) of the second term is not helpful

since it will be dominated later in the argument by the slow rate
√

(log n)/νn needed to

control (2.92).

Let ξiℓ = Xiℓ/di for i ∈ [S2]. Then EF [ξiℓ] = ρiℓ. Consider the event

E :=
{

max
i∈S2, ℓ∈[L]

|ξiℓ − ρiℓ| ≤ 5

√
log n

C8νn

}
. (2.92)

Then, we have:

Lemma 18. P(Ec ∩ A) ≤ 2Ln−1 whenever logn
νn

≤ 0.16C8.

Controlling chi-square statistics Now, let us define

εn :=
58

τρτCC8

√
log n

νn
. (2.93)
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Then, on Nn ∩ E , we have

|ρ̂kℓk − ρ̄kℓk | ≤ εn, |ξiℓ − ρiℓ| ≤ εn (2.94)

for all k, ℓ and i ∈ S2. This follows by recalling that τC, τρ, C8 ≤ 1. Combining (2.87), (2.94)

and the assumption εn ≤ τρ/2, we obtain

min{ρ̂kℓk , ρ̄kℓk} ≥ τρ/2, on Nn. (2.95)

Hence, we can apply Lemma 11 with c1 = 2/τρ, using (2.94) to obtain that, on Nn ∩ E ,

∣∣ψ(ξiℓk , ρ̂kℓk)− ψ(ρiℓk , ρ̄kℓk)
∣∣ ≤ 96τ−3

ρ εn, ∀i ∈ Gk, ∀k ∈ [K0].

Define Ỹ :=
∑K

k=1

∑
i∈Gk

diψ(ξiℓk , ρ̂kℓk). Then, on Nn ∩ E ,

Ỹ ≥
K∑
k=1

∑
i∈Gk

di
[
(ρiℓk − ρ̄kℓk)

2 − 96τ−3
ρ εn

]
=

K∑
k=1

dk+

[∑
i∈Gk

di
dk+

(ρiℓk − ρ̄kℓk)
2 − 96τ−3

ρ εn

]

where the first inequality also uses ψ(x, y) ≥ (x− y)2 for x, y ∈ [0, 1]. Let

ϖk =
∑
i∈Gk

di
dk+

(ρiℓk − ρ̄kℓk)
2, k ∈ [K]. (2.96)

Note that ϖk is the variance of a random variable taking value ρiℓk with probability

di/d
k
+ for i ∈ Gk. Recalling that ϑkℓ := var(Hℓ(x)) when x ∼ Qk, we have the following:

Lemma 19. Assume logn
n

≤ min{ τ
2
ρ

4
, τC}. Then, there is an event H on which

ϖk ≥
C2

8

144
ϑkℓk −

C8

8
τθL

√
log n

n
, k ∈ [K] (2.97)

and we have P(Hc ∩ A ∩R) ≤ Kn−c.
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Let µn := max{1, L
√
νn/n} and

ε̃n =
58

τρτCC8

µn

√
log n

νn
. (2.98)

so that εn ≤ ε̃n. We have

C8

8
τθL

√
log n

n
≤ µn

√
log n

νn
≤ ε̃n.

It follows that on Nn ∩ E ∩ H, we have

Ỹ ≥
K∑
k=1

dk+(ϖk − 96τ−3
ρ εn) ≥

K∑
k=1

dk+

( C2
8

144
ϑkℓk − 97τ−3

ρ ε̃n

)

Recalling ϑ := mink ϑkℓk and by assumption C2
8

144
ϑ ≥ 2 · 97τ−3

ρ ε̃n, we get

Ỹ ≥ C2
8

288
ϑ

K∑
k=1

dk+ ≥ C3
8

1800
ϑnνn (2.99)

using di ≥ 0.16C8νn on A2; see (2.83).

Let Ŷ =
∑K

k=1

∑
i∈Ĝk

diψ(ξiℓk , ρ̂kℓk) and Hk = Gk∆Ĝk := (Gk \ Ĝk) ∪ (Ĝk \ Gk). Note

that
∑

k |Hk| ≤ αnn on event Mn. Therefore, on Nn ∩ E

|Ŷ − Ỹ | =
K∑
k=1

∑
i∈Hk

diψ(ξiℓ, ρ̂kℓk)

≤ 2

τρ

K∑
k=1

∑
i∈Hk

di ≤
1.92

τρ
αnnνn. (2.100)

The second inequality follows from (2.95) and noting that (ξiℓ − ρ̂kℓk)
2 ≤ 1. The third

inequality is by (2.83).

The assumption C3
8

1800
ϑ ≥ 2 · 1.92

τρ
αn combined with (2.99) and (2.100) gives

Ŷ ≥ C3
8

3600
ϑnνn. (2.101)
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Estimated column labels Finally, we consider the case where the column labels ŷ are

estimated using the community detection algorithm. Let X ′
iℓ =

∑
j∈S1

Aij1{ŷj = ℓ} and

ξ′iℓ = X ′
iℓ/di,

Ŷ ′ =
K∑
k=1

∑
i∈Ĝk

diψ(ξ
′
iℓ, ρ̂

′
kℓk

), where ρ̂′kℓ =

∑
i∈Ĝk

X ′
iℓ∑

i∈Ĝk
di
.

On Mn, we have |Xiℓ −X ′
iℓ| ≤ nκn. Letting

ε′n :=
nκn

0.16C8νn
,

it follows that on A ∩Mn,

|ξiℓ − ξ′iℓ| ≤ nκn/di ≤ ε′n.

Assuming αn ≤ 0.2τC, we have |Ĝk| ≥ (0.4τC − αn)n ≥ 0.2τCn on A. Then, on A ∩Mn,

|ρ̂kℓk − ρ̂′kℓk | ≤
nκn

0.16C8νn · 0.2τCn
=

ε′n
0.2τCn

≤ ε′n

where we have used the assumption n ≥ 5/τC.

Recall that ρ̂kℓk ≥ τρ/2 on event Nn. Then, by the assumption that ε′n ≤ τρ/4, we

have min{ρ̂kℓk , ρ̂′kℓk} ≥ τρ/4. We can, then, apply Lemma 11 with c1 = 4/τρ to obtain

∣∣ψ(ξiℓk , ρ̂kℓk)− ψ(ξ′iℓk , ρ̂
′
kℓk

)
∣∣ ≤ 768τ−3

ρ ε′n, ∀i ∈ Gk, ∀k ∈ [K].

Furthermore, on Nn ∩ A,

|Ŷ ′ − Ŷ | ≤ 768τ−3
ρ ε′n · (0.96νn) · (0.6n) ≤

2765

C8τ 3ρ
κnn

2 (2.102)

Combining (2.101) and (2.102), on event Nn ∩ E ∩ H

Ŷ ′ ≥
( C3

8

3600
ϑ− 2765

C8τ 3ρ
κnn/νn

)
nνn ≥ C3

8

7200
ϑnνn,
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assuming ϑC3
8/7200 ≥ 2765

C8τ3ρ
κnn/νn.

Furthermore, ñ = |S2| ≤ n, hence γñ =
√
ñ(L− 1) ≤

√
nL and we have

T̂n ≥ 1√
2

( Ŷ ′

γñ
− γñ

)
≥
√
Ln

2

(
C3

8

7200L
ϑ νn − 1

)
≥ C3

8

14400
√
2L
ϑ
√
nνn.

where the last inequality is by assumption ϑ ≥ 14400L/(C3
8νn).

Finally, we put together the probabilities. From Lemma 12 and 14,

P(A) ≥ P(A1 ∩ D) = P(A1)− P(A1 ∩ Dc) ≥ 1− 3.2n−1.

Furthermore, with Lemma 13, 16, 18 and 19,

P(Nn ∩ E ∩ H) = P
(
A ∩ B ∩Mn ∩R ∩ E ∩H

)
= P(A ∩R ∩Mn)− P

(
A ∩R ∩Mn ∩ (B ∩ E ∩ H)c

)
≥ P(A ∩R ∩Mn)− P(A ∩ Bc)− P(A ∩ Ec)− P(A ∩R ∩Hc)

≥ 1− 3.2n−1 − 4LKn−1 − P(Mc
n)− 2Ln−1 − 2Ln−1 −Kn−c

≥ 1− 12KLn−1 −Kn−c − P(Mc
n).
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Simplifying the assumptions The following is a list of all the assumptions we used

in the proof:

n ≥ 5/τC
logn
n

≤ τc/300
logn
n

< ( τρ
4K

)2

logn
n

≤ 0.04C2
8

logn
νn

≤ 0.001C8
logn
n

≤ (
τ2ρ
4K

)2

logn
νn

≤ 0.064τCC8n αn ≤ τCτρC8/18 αn ≤
√

(log n)/νn

logn
νn

≤ 0.16C8 εn = 58
τρτCC8

√
logn
νn

≤ τρ/2
logn
n

≤ min{ τ
2
ρ

4
, τC}

C2
8

144
ϑ ≥ 2 · 97τ−3

ρ µnεn
C3

8

1800
ϑ ≥ 2 · 1.92

τρ
αn ε′n = nκn/(0.16C8νn) ≤ τρ/4

C3
8

7200
ϑ ≥ 2765

C8τ3ρ
κnn/νn ϑ ≥ 14400L/(C3

8νn) αn ≤ 0.2τC

We recall that

c2 =
C8

100
=
τCτhτ

2
θ

100
, τρ =

C8

2τθL
=

50c2
τθL

=
τCτhτθ
2L

.

The conditions on logn
n

can summarized as follows:

√
log n

n
≤ min

{√
τC
300

,
τρ
2
, 20c2,

τ 2ρ
4K

}
. (2.103)

We also note that if n ≥ 2, then logn
n

≤ τC/300 implies n ≥ 5/τC. Since τ 2ρ ≤ τρ, we can

drop τρ
2

from (2.103). Similarly,

τ 2ρ
4K

/(20c2) =
τ 2ρ
4K

50

20Lτρτθ
=

5

8

τρ
KLτθ

=
5

16

τCτh
KL2

≤ 1,

hence we can also drop 20c2 from (2.103). Since τ 2ρ/(4K) ≥ τ 2C τ
2
hτ

2
θ /(18KL

2) = 2
9

τ2ρ
K

and√
τC/300 ≥ τ 2C/18, condition (2.103) holds under assumption (2.37).

The condition εn ≤ τρ/2 is

0.58

τCc2

√
log n

νn
≤
τ 2ρ
2

=
1250c22
τ 2θL

2
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which is equivalent to

√
log n

νn
≤ 1250

0.58

τCc
3
2

τ 2θL
2
=

1250

0.58

τ 2C τhc
3
2

τCτhτ 2θL
2
=

1250

58

τ 2C τhc
3
2

c2L2
.

The condition is satisfied if

√
log n

νn
≤ 21

τ 2C τhc
2
2

L2
(2.104)

which is what is assumed in (2.38).

The three upper bounds on logn
νn

can be combined into

log n

νn
≤ c2min{0.1, 6.4τCn}

Since n ≥ 5/τC, we have 6.4τCn ≥ 0.1, hence it is enough that logn
νn

≤ 0.1c2. Next, since

c2 ≤ 0.01, we have

21
τ 2C τhc

2
2

L2
≤ 21τ 2C τhc

2
2 ≤ 21c22 ≤ 0.21c2 ≤

√
0.1c2

showing that (2.104) is already enough to guarantee this condition.

The three assumptions on αn can be combined into

αn ≤ min
{100

36
τ 2C τhτθc2,

√
log n

νn

}

Since c2 ≤ 0.01τθ, we have

21τ 2C τhc
2
2 ≤ 0.21τ 2C τhτθc2

showing that αn ≤
√

logn
νn

together with (2.104) is enough to guarantee both upper bounds

on αn.
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The conditions involving ϑ are implied by

ϑ ≥ max

{
3L3µnεn
c22τ

3
ρ

,
0.007L

τρc32
αn,

L3

5τ 3ρ c
4
2

κnn

νn
,
0.0144L

c32νn

}
(2.105)

where we recall

µn := max{1, L
√
νn/n}, εn =

0.58

τρτCc2

√
log n

νn
.

We have
3L3µnεn
c22τ

3
ρ

≤ 2L3

τ 4ρ τCc
3
2

ζn

√
log n

νn

Similarly, using τρ, τC ≤ 1,

0.0144L

c32νn
≤ 0.0144

c32
ζn

√
log n

νn
≤ 2L3

τ 4ρ τCc
3
2

ζn

√
log n

νn

and using assumption αn ≤
√

logn
νn

0.007

τρc32
αn ≤ 0.007

τρc32

√
log n

νn
≤ 2L3

τ 4ρ τCc
3
2

ζn

√
log n

νn
.

It follows that the assumption (2.39) in the statement of theorem is enough to guaran-

tee (2.105).

Finally, condition nκn/(16c2νn) ≤ τρ/4 is equivalent to what is stated in (2.38). The

proof is complete.
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Chapter 3

Label consistency in overfitted generalized

k-means

3.1 Introduction

Consider the problem of clustering data points sampled according to some probability

measure µ from a normed space X with norm ∥ · ∥X . In the ideal setting, the generalized

k-means clustering minimizes the population cost function

Q(ξ;µ) :=
(∫

min
1≤ℓ≤L

∥x− ξℓ∥pXdµ(x)
)1/p

(3.1)

where ξ = (ξ1, . . . , ξL) ∈ X L is a set of L vectors in X , for some fixed integer L. In

practical data analysis, we are given a sample {x1, . . . , xn} drawn from µ and solve an

empirical version of (3.1), namely,

Q̂(ξ) = Q(ξ;Pn) :=
( 1
n

n∑
i=1

min
1≤ℓ≤L

∥xi − ξℓ∥pX
)1/p

. (3.2)

Here, Pn := 1
n

∑n
i=1 δxi is the empirical measure associated with the sample and δx is the

point mass measure at x. The minimizer of Q̂(·) over X L is denoted as ξ̂ = (ξ̂1, . . . , ξ̂L)

and each point xi is assigned a cluster label ẑi := argminℓ ∥xi − ξ̂ℓ∥X .

Meanwhile, we assume that each data point xi also has a true cluster label zi ∈

[K] := {1, . . . , K} which is determined solely by an unknown data-generating process.
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These true labels are not necessarily related to the optimal solutions of (3.1) or (3.2). To

distinguish the two, we refer to the clustering induced by (zi) as the true clustering,

while a clustering that minimizes the generalized k-means cost function (3.2), i.e., the

clustering induced by (ẑi), is referred to as an optimal k-means clustering. In this

chapter, we consider the label consistency problem, that is, how close the labels (ẑi)

estimated by k-means clustering are to the true labels (zi). Note that we allow the number

of k-means clusters L to be different from the true number of clusters K.

In the above formulation, the case where p = 2, X = Rd and ∥ · ∥X is the Euclidean

norm leads to the classical and widely used k-means problem. Much of the theoretical

analysis of k-means has been performed in this case. Early work has focused on how close

the optimization problems based on the empirical and ideal cost functions (3.2) and (3.1)

are to each other, where the closeness is measured in terms of the recovered centers (i.e.,

ξ̂ and ξ) or the optimal value of the objective function.

Such consistency results are proved, for the global minimizers of (3.2), in the early

work of [Mac67; Pol81] and also in [Pol82; Lin02] from the vector quantization perspective.

These classical results do not directly apply to the performance of the k-means in practice,

mainly because solving (3.2) is NP-hard and approximation methods are usually applied

to deal with it. Also, considerations of the label consistency problem are absent from this

line of work since no true clustering, external to the k-means problem, is assumed to exist.

More recently, there has been more interest in the consistency of practical k-means

algorithms [Kło20; LZ16] as well as the label consistency problem. Lu and Zhou [LZ16]

obtain sharp bounds on the label consistency of the Lloyd’s algorithm [Llo82] under a sub-

Gaussian mixture model. Semidefinite programming (SDP) relaxation is another popular

technique for deriving polynomial-time approximations to the k-means problem [PW07].

Its label consistency has been studied when data is generated from the stochastic ball

model [Awa+15; Igu+17], sub-Gaussian mixtures [MVW16; FC18; GV19], the Stochastic

Block Model (SBM) [GV19] and general models [Li+20b]. Convex clustering is another

relaxation method whose label consistency has been discussed in [Zhu+14; Pan+17; JVZ20;

STY21]. The literature on community detection in SBM, a network clustering problem, is
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also mainly focused on label consistency and inspires our work here; see [Abb17; ZA19]

for a review of those results. For label consistency in kernel spectral clustering, see [AR21].

In this chapter, we study the label consistency of approximate solutions of the

generalized k-means problem (3.2) when L ≥ K. Our focus will be on the overfitted case

where L > K. This is often relevant in practice since the data-generating process may have

a natural number of clusters K that is unknown a priori. An example is the sub-Gaussian

mixture with K components. More interesting examples are given in Section 3.3. All

the aforementioned works on label consistency exclusively consider the correctly-fitted

case L = K. We show that when the data-generating process admits a set of centers that

satisfy certain separation conditions, estimated labels with L ≥ K clusters, are close to a

refinement of the true labels. These bounds reduce to the label consistency criteria for

L = K, but have no counterpart in the literature for L > K.

Overfitting in k-means is considered in [Wei16; MRS20] where it is shown to improve

the approximation factor (see Assumption 2(b)) of certain polynomial-time k-means

algorithms. Analysis of the approximation factor is concerned with how close one can

get to the optimal value of the k-means objective function. In contrast, we are concerned

with the label recovering problem and not directly concerned with how well the objective

function is approximated. Our work is also aligned with the recent trend of beyond worst

case analysis of the NP-hard problems [CAS17], where the performance of the algorithms

are considered assuming that there are some meaningful structures in the data (e.g., true

clusters). We refer to Section 3.2.2 for a more detailed comparison with this literature.

Our results are algorithm-free in the sense that they apply to any algorithm that

achieves a constant-factor approximation to the optimal objective. They are also model-

free in the sense that we do not make any explicit assumption on the data-generating

process. This is important in practice, since many common data models, such as sub-

Gaussian mixtures, are often too simplified to capture real clustering problems. We

provide examples of more complicated data models in Section 3.3 and show how our

general results can provide new insights for these models. Since k-means clustering often

appears as a building block in many sophisticated clustering algorithms, we believe our
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results will be of broad interest in understanding the performance of clustering algorithms

in overfitted settings.

Notation. Q(ξ;µ) is only dependent on the set of values among the coordinates of ξ.

Although we view ξ as a vector (for which the order of elements matter), with some abuse

of notation, we view Q(·;µ) as a set function (mapping 2X to R) that is only sensitive

to the set of values represented by ξ. This justifies using the the same symbol for the

function irrespective of the number of coordinates of ξ, i.e., the number of clusters. The

reason to keep ξ as an (ordered) vector is to make the cluster labels well-defined. For

simplicity, let ∥ · ∥ = ∥ · ∥X . For the case where X ⊂ Rd, one often takes ∥ · ∥ to be the

Euclidean norm, but our results are valid for any norm on Rd, and more broadly any

normed space X .

3.2 Main Results

We first state assumptions about the k-means clustering algorithm.

Assumption 2. Consider an algorithm for the generalized k-means problem (3.2), referred

to as ALG(p) hereafter, and let ξ̂(L) ∈ X L and ξ̂(K) ∈ XK be its estimated centers when

applied with L and K clusters, respectively. Let L ≥ K. Assume that ALG(p) has the

following properties, for all input sequences (xi):

(a) Efficiency: The Voronoi cell of every estimated center ξ̂(L)ℓ contains at least one of

(xi).

(b) κ-approximation: Q̂(ξ̂(K)) ≤ κ ·minξ∈XK Q̂(ξ), and similarly with K replaced by L.

Efficiency can be achieved by substituting centers whose Voronoi cells have an empty

intersection with {xi}, by those having the opposite property. For κ-approximation,

the factor κ can depend on the number of clusters K (or L). For example, the k-

means++ algorithm has κ = O(logK), with high probability over the initialization [AV06].

However, there are also constant-factor approximation algorithms for k-means where

κ = O(1) independent of K (or L) [Mat00; Kan+04; KSS04]. For example, with local

search, k-means++ can achieve a constant-factor approximation [LS19]. In addition,
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κ-approximation is not required for all inputs. That is, we are not concerned with the

worst-case approximation factor. The κ in Assumption 2(b) is the approximation factor

of the algorithm on the specific data under consideration. It is enough for an algorithm to

achieve good approximation only on the data of interest.

For some of the results, Assumption 2(b) can be replaced with the following modi-

fied version: (b′) κ-approximation only for K clusters plus a mononoticity assumption:

Q̂(ξ̂(L)) ≤ Q̂(ξ̂(K)). Mononoticity is also a reasonable requirement and obviously true for

the exact k-means solutions.

Next, we extend the definition of the misclassification rate to the overfitted case.

Definition 2. The (generalized) misclassification rate between two label vectors z ∈ [K]n

and ẑ ∈ [L]n, with K ≤ L, is

Mis(z, ẑ) = min
ω

1

n

n∑
i=1

1{zi ̸= ω(ẑi)},

where the minimization ranges over all surjective maps ω : [L] → [K].

When L = K, a surjective map ω is necessarily a bijection and the above becomes the

usual definition of misclassification rate when the number of clusters is correctly identified.

In this case, Mis(z, ẑ) = 0 means that there is a one-to-one correspondence between the

estimated and true clusters. The generalized definition above allows us to extend this

notion of exact recovery to the case L > K. In particular, Mis(z, ẑ) = 0 when L > K,

if and only if ẑ is a refinement of z. To see this, note that Mis(z, ẑ) = 0 implies the

existence of a map ω : [L] → [K] such that ω(ẑi) = zi for all i. This in turn is equivalent

to: ẑi = ẑi′ =⇒ zi = zi′ , which is the refinement relation for the associated clusters. In

general, Mis(z, ẑ) is small if ẑ is close to a refinement of z.

We also use the (optimal) matching distances between elements of two vectors viewed

as sets.

Definition 3. For ξ ∈ X L and ξ∗ ∈ XK , define the ℓ∞ and ℓp optimal matching distances
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as

d∞(ξ, ξ∗) = min
σ

max
1≤k≤K

∥ξσ(k) − ξ∗k∥, dp(ξ, ξ
∗) = min

σ

( K∑
k=1

∥ξσ(k) − ξ∗k∥p
)1/p

,

where σ : [K] → [L] ranges over all injective maps.

For K = L, d∞ is an upper bound on the Hausdorff distance between the two sets.

Obviously, we have d∞ ≤ dp for any p ≥ 1.

3.2.1 Distance to True Centers

Let z = (zi)
n
i=1 ∈ [K]n be a given set of true labels for the data points (xi)ni=1. In addition,

our results are stated in terms of a set of vectors ξ∗ = (ξ∗k)
K
k=1 which we refer to as the

“true centers”. Throughout, ξ∗ will be only vaguely specified. The only requirement on ξ∗

is that together with the observed data points (xi) and the true labels (zi), they satisfy

the deviation bounds in each theorem, e.g., max1≤i≤n ∥xi − ξ∗zi∥ ≤ η in Theorem 5, etc.

Let πk =
∑n

i=1 1{zi = k}/n be the proportion of observed data points in true cluster k

and let πmin = mink πk.

We let ξ̂ be a solution of the k-means algorithm with L ≥ K centers and let

ẑi ∈ argminℓ ∥xi − ξ̂ℓ∥ be the corresponding estimated labels. Our first result provides

guarantees for exact label recovery, in the extended sense of recovering a refinement of

the true partition when L > K and the exact partition when L = K.

Theorem 5 (Exact recovery). Consider a vector of (true) centers ξ∗ ∈ XK and labels

(zi)
n
i=1 ∈ [K]n. Pick η, δ > 0 such that max1≤i≤n ∥xi − ξ∗zi∥ ≤ η, and

min
(k,k′): k ̸=k′

∥ξ∗k − ξ∗k′∥ ≥ δ. (3.3)

Consider an algorithm ALG(p) for problem (3.2), satisfying Assumption 2, and let (ẑi)ni=1 ∈

[L]n and ξ̂ ∈ X L be the estimated labels and centers of ALG(p) applied with the L ≥ K.
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Then,

δ

η
> 2

(1 + κ)

π
1/p
min

+ 4 =⇒ Mis(z, ẑ) = 0, dp(ξ̂, ξ
∗) ≤ (1 + κ)η

π
1/p
min

. (3.4)

When L = K, the assertion Mis = 0 means that there is a permutation σ on [K] such

that σ(ẑi) = zi for all i, that is, we have the exact recovery of labels (zi) in the classical

sense. When L > K, Theorem 5 guarantees the exact recovery of a refinement of the true

labels (zi).

Example 1 (Stochastic Ball Model). Assume that data are generated from the stochastic

ball model considered in [NW15], where xi = ξ∗zi +ri with ri sampled independently from a

distribution supported on the unit ball in Rd. Here, {ξ∗k}Kk=1 ⊂ Rd are a fixed set of centers.

Clearly, we can take η = 1 in Theorem 5. Then, any κ-approximate k-means algorithm

achieves exact recovery when δ > 2 + 2(1 + κ)/
√
πmin for L = K. In the overfitted case,

when δ > 4 + 2(1 + κ)/
√
πmin, the estimated label vector is an exact refinement of the

true labels (zi).

In the above example, although it is intuitively clear that for a sufficiently large δ,

the solution of the k-means problem should achieve exact label recovery (in the extended

sense), Theorem 5 allows us to provide a provable guarantee for any constant-factor

approximation, with an explicit bound on the separation parameter δ.

We now turn to approximate recovery where the misclassification rate is small.

Theorem 6 (Approximate Recovery). Consider a vector of (true) centers ξ∗ ∈ XK

and labels (zi)
n
i=1 ∈ [K]n. Pick ε, δ > 0 such that ( 1

n

∑n
i=1 ∥xi − ξ∗zi∥

p)1/p ≤ ε, and (3.3)

holds. Consider an algorithm ALG(p) for problem (3.2), satisfying Assumption 2, and

let (ẑi)ni=1 ∈ [L]n and ξ̂ ∈ X L be the estimated labels and centers of ALG applied with the

L ≥ K. Then, for any c > 2,

δ

ε
>

(1 + κ)c

π
1/p
min

=⇒ Mis(z, ẑ) < K(1 + κ)pcp
(ε
δ

)p
, dp(ξ̂, ξ

∗) ≤ (1 + κ)ε

π
1/p
min

. (3.5)

The key difference between Theorems 5 and 6 is the bounds assumed on the deviations
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Di := ∥xi − ξ∗zi∥, i ∈ [n]. Theorem 5 assumes a bound on the maximum distance to true

centers, maxiDi, while Theorem 6 assumes a bound on an average distance, ( 1
n

∑
iD

p
i )

1/p,

leading to a more relaxed condition.

Example 2 (Sub-Gaussian mixtures). Let us assume that the data is generated from a K-

component sub-Gaussian mixture model xi = ξ∗zi+d
−1/2wi, where wi = (wi1, . . . , wid) ∈ Rd

is a zero mean sub-Gaussian noise vector with sub-Gaussian parameter σi, and zi ∈ [K]

is the latent label of the ith observation. Here we define the sub-gaussian vector as: A

random vector X = (X1, . . . , Xd) ∈ Rd is sub-gaussian if the one-dimensional marginals

uTX are sub-gaussian random variables for all u ∈ Rd [Ver18, Definition 3.4.1]. This is an

extension of the sub-Gaussian mixture model considered in [EK10]. Determining whether

(ξ∗k)
K
k=1 is actually the solution of the population problem (3.1) is, itself, challenging and

the answer may depend on the exact distribution of {wi}. Nevertheless, our results allow

us to treat (ξ∗k) as the true centers. Below we sketch how Theorem 6 applies in this case.

First we have the following lemma

Lemma 20. Let wi = (wi1, . . . , wid) ∈ Rd be a zero mean sub-Gaussian noise vector with

sub-Gaussian parameter σi for i ∈ [n]. Let σmax = maxi σi and set α2
i := E∥d−1/2wi∥22 and

ᾱ2
n := 1

n

∑n
i=1 α

2
i . Assume that there is a numerical constant C > 0 such that ᾱ2

n ≤ Cσ2
max.

Then, we have

P
( 1
n

n∑
i=1

∥wi∥2

d
> 2ᾱ2

n

)
≤ exp

(
−c1n

ᾱ2
n

σ4
max

)
.

for some numerical constant c1 > 0.

Let pn = e−c1nᾱ
4
n/σ

4
max . Note that ∥xi − ξ∗zi∥

2 = ∥wi∥2/d, then taking ε2 = 2ᾱ2
n and

p = 2 in Theorem 6, we have that with probability at least 1− pn,

δ2

2ᾱ2
n

>
(1 + κ)2c2

πmin

=⇒ Mis(z, ẑ) ≤ 2K(1 + κ)2c2
( ᾱn
δ

)2
,

where δ is as in (3.3) and c > 2. In a general problem, ᾱn, σmax and δ all can vary with n. In

order to have label consistency for an ALG(2) algorithm, it is enough to have ᾱn/δ = o(1)

and nᾱ4
n/σ

4
max → ∞. The consistency here is based on the extended Definition 2 and
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includes the overfitted case in which a refinement of the true labels is consistently recovered.

We note that the model in this example includes a very general Gaussian mixture model

as a special case, namely the case wi ∼ N(0,Σi) where the covariance matrices Σi ∈ Rd×d

are allowed to vary with each data point. In this case, one can take σmax = max1≤i≤n ∥Σi∥

where ∥ · ∥ denotes the operator norm, and ᾱ2
n := 1

n

∑n
i=1 tr(Σi)/d.

Remark 4. Theorem 6 provides an upper bound on the misclassification rate when a

certain separation condition is satisfied. To simplify, consider the case K = κ = p = 2

and take c = 2.1. Then, Theorem 6 implies the following: For every β > 0, there exists a

constant c1(β, πmin) > 0 such that if

δ/ε ≥ c1(β, πmin), (3.6)

then any 2-factor k-means algorithm will have Miss ≤ β to the target labels. The next

proposition shows that condition (3.6) is sharp up to constants.

Proposition 3. There exists a family of datasets {(xi, zi)}ni=1, with K = 2 balanced

true clusters (i.e., πmin = 1/2) and parameterized by true center separation δ and ε =

( 1
n

∑n
i=1 ∥xi − ξ∗zi∥

2)1/2 with the following property: Given any constant β ∈ (0, 1/2),

there exists a constant c2(β) > 0, such that if δ/ε < c2(β), then any 2-factor k-means

approximation algorithm with L = 2 clusters has misclassification rate satisfying 1
2
− β ≤

Miss ≤ 1
2
. Moreover, any 2-factor k-means approximation algorithm with L = 4 clusters

will recover a perfect refinement of the original clusters in the above setting.

This proposition shows that if the separation condition (3.6) is reversed, one can

force the performance of any k-means algorithm to be arbitrarily close to that of random

guessing. The true centers in Proposition 3 are the natural centers implied by the k-means

cost function for the true labels, that is, ξ∗k =
1
n

∑
i xi1{zi = k} for k = 1, 2. One can take

c1(β, πmin) = 6.3max(1/πmin, 2/β)
1/2 and c2(β) = sin(tan−1(

√
β/45)) for the constants

in (3.6) and Proposition 3.
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3.2.2 Connection to Distribution Stability

The separation condition (3.6) is related to the distribution stability introduced in [ABS10].

Roughly speaking distribution stability plus the following property implies our condition:

(D1) For every pair of distinct clusters Ck and Cℓ with centers ξ∗k and ξ∗ℓ , there is a point

x ∈ Cℓ such that ∥x− ξ∗k∥ ≤ ∥ξ∗ℓ − ξ∗k∥.

That is, every cluster Cℓ has points which are closer than ξ∗ℓ to the centers of other

clusters. This property is quite mild and one expects it to hold with high probability if the

distribution of the points have positive density w.r.t. to the (full-dimensional) Lebesgue

measure in a ball around the center. The above seems to suggest that distribution stability

is slightly weaker than our condition (3.6). However, in the presence of (D1), we can also

significantly relax distribution stability to arrive at our condition

First recall that the distribution stability for the K-means assumes the follow-

ing [ABS10]:

∥x− ξ∗k∥2 ≥ β · OPTK

nk
, for all x /∈ Ck,

where OPTK =
∑n

i=1 ∥xi − ξ∗zi∥
2 for the K-means optimal cluster labels {zi} ⊂ [K]n and

optimal centers {ξ∗k}. Here, Ck = {i : zi = k} and nk = |Ck|.

In our setting, we do not necessarily need to work with the optimalK-means clustering.

So let us generalize the notion as follows: The data {xi} is β-distributed with respect to

cluster labels {zi} and centers {ξ∗k} if

∥x− ξ∗k∥2 ≥ β ·
n∑
i=1

∥xi − ξ∗zi∥
2/nk, for all x /∈ Ck,

where Ck = {i : zi = k} and nk = |Ck|. Setting 1
n

∑n
i=1 ∥xi − ξ∗zi∥

2 = ε2 and recalling

πk = nk/n, the condition is equivalent to

∥x− ξ∗k∥ ≥
√
β · ε
√
πk

, for all x /∈ Ck. (3.7)
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Let us strengthen the condition slightly and consider the following notion instead

∥x− ξ∗k∥ ≥
√
β · ε

√
πmin

, for all x /∈ Ck, (3.8)

where πmin = mink πk. This is without loss of generality: We could have stated our results

with separate center separation parameters for each cluster, i.e., δk = minℓ̸=k ∥ξ∗k − ξ∗ℓ ∥, in

which case we could directly compare with the original version (3.7). We opted for the

simpler global center separation for simplicity.

Now assume that the data is β-distributed and in addition:

(D1) For all distinct pairs (k, ℓ), there is x ∈ Cℓ such that ∥x− ξ∗k∥ ≤ ∥ξ∗ℓ − ξ∗k∥.

That is, every cluster Cℓ has points which are closer than ξ∗ℓ to the centers of other clusters.

Then, it follows that

δ

ε
≥

√
β

√
πmin

(3.9)

which is our separation condition. (Recall that δ = mink ̸=ℓ ∥ξ∗k − ξ∗ℓ ∥). In fact, in the

presence of (D1), we can relax β-distribution stability as follows: Assume (D1) and for the

x in (D1) assume that the inequality in (3.8) holds. Then, our separation condition (3.9)

follows. Note that (D1) is quite mild and one expects it to hold almost always if there is

some full-dimensional randomness in the distribution of the points in a cluster.

Alternatively, our separation condition can be written equivalently as

∥x− ξ∗k∥ ≥
√
β · ε

√
πmin

, for all x ∈ {ξ∗ℓ }ℓ ̸=k (3.10)

Comparing (3.10) and (3.8), the conditions are somewhat close, but different. Neither

condition directly follow from the other one in general. Note also that although in the

discussion above, we refer to ξ∗k as the center of Ck, in our general setting ξ∗k need not be

the optimal center 1
nk

∑
i∈Ck

xi.
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3.2.3 Distance to Fake Centers

We now extend Theorem 6, to allow for “fake” centers {ξ̃ℓ}Lℓ=1 and the corresponding labels

{z̃i}. These can be constructed to reduce the required distance to the data points (xi).

Theorem 7 (Approximate Recovery, II). For a fixed L ≥ K, consider a vector of

constructed centers ξ̃ ∈ X L, constructed labels z̃ = (z̃i)
n
i=1 ∈ [L]n and true labels z =

(zi)
n
i=1 ∈ [K]n. Assume that z̃ is a refinement of z, i.e. there is ω̃ : [L] → [K] such that

ω̃(z̃i) = zi for all i ∈ [n]. Pick ε, δ > 0 such that

( 1
n

n∑
i=1

∥xi − ξ̃z̃i∥p
)1/p

≤ ε, min
ℓ1 ̸=ℓ2, ω̃(ℓ1) ̸= ω̃(ℓ2)

∥ξ̃ℓ1 − ξ̃ℓ2∥ ≥ δ (3.11)

Consider an algorithm ALG(p) for problem (3.2), satisfying Assumption 2, and let (ẑi)ni=1 ∈

[L]n be the estimated label vector of ALG(p) applied with L clusters. Then, for any c > 2,

δ

ε
>

(1 + κ)c

π
1/p
min

=⇒ Mis(z, ẑ) < K(1 + κ)pcp
(ε
δ

)p
. (3.12)

The advantage of Theorem 7 is that when the desired number of clusters L increases,

the bound on the misclassification rate can go down: In some applications, by carefully

constructing the fake centers ξ̃, we can make ε smaller as L increases, while roughly

maintaining the minimum separation among fake centers associated with the true clusters.

If successful, this implies that a refinement of the true clustering can be achieved even

when it is hard to recover the true clustering itself. In the following section, we show how

this strategy can be applied to some manifold clustering problems.

3.3 Overfitting Cases

We now illustrate applications of Theorem 7 in settings where it is hard to recover

true clusters, based on the ideal K, but it is possible to obtain accurate refinements by

overfitting. The idea is to consider clusters that look like submanifolds of Rd.
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3.3.1 Mixture of Curves

We say that a random variable x has a (ρ, σ) sub-Gaussian curve distribution if x = γ(t)

where t ∈ R has a sub-Gaussian distribution with parameter σ and γ : R → Rd is a locally

ρ-Lipschitz map. i.e., ∥γ(t)− γ(s)∥ ≤ ρ|t− s| for all t, s ∈ R such that |t− s| ≤ 1
ρ
.

Proposition 4. Assume that (xi)ni=1 are independent draws from a K-component mixture

of (ρ, σ) sub-Gaussian curve distributions. That is, xi = γzi(ti) where zi ∈ [K], ti ∼ Qzi

independently across i, each Qk is a sub-Gaussian distribution on R with parameter σ,

and each γk is locally ρ-Lipschitz. Let Ck be the support of the distribution of γk(t) where

t ∼ Qk. Assume that

min
x∈Ck, y∈Ck′

∥x− y∥ ≥ δ > 0, for all k ̸= k′.

Then, there exist a constant C = C(K, δ, ρ, σ, κ) such that any ALG(2) satisfying As-

sumption 2 applied with Ln ≤ C
√
n log n clusters recovers a perfect refinement of z with

probability ≥ 1− n−1.

The significance of this result is that one recovers a perfect refinement with the

number of partitions Ln = o(n). It is trivial to obtain a perfect refinement with Ln = n,

but not so with Ln/n→ 0. This is especially the case since one can achieve quite complex

cluster configurations with the model in Proposition 4, for some of which applying k-means

with K clusters will have a misclassification rate bounded away from zero. Section 3.4

provides some such examples where the true cluster centers coincide, causing any k-means

algorithm applied with the true K to incur a substantial error. See also Section 3.3.3 for

a discussion of whether Ln = O(
√
n log n) can be improved.

Various extensions of Proposition 4 are possible. We have the following extension to

the noisy setting.

Corollary 1. Assume that the data is given by yi = xi +
1√
d
wi for i ∈ [n] where (xi) are

as given in Proposition 4 and wi are sub-Gaussian noise vectors as in Example 2. Then,

under the same assumptions as in Proposition 4, ALG(2) applied with Ln ≤ C
√
n log n
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achieves a misclassification rate ≲ K(ᾱn/δ)
2 + 1

n
with probability ≥ 1− pn − n−1 where

ᾱn and pn are defined in Example 2.

Proof. We first construct fake centers (ξ̃ℓ) for (xi) as in the proof of Proposition 4 and

treat them as the fake centers for yi. By the triangle inequality,

( 1
n

n∑
i=1

∥yi − ξ̃z̃i∥2
)1/2

≤
( 1
n

n∑
i=1

∥xi − ξ̃z̃i∥2
)1/2

+
( 1
n

n∑
i=1

∥wi/
√
d∥2
)1/2

≤ ε+
√
2ᾱn

holds with probability at least 1−pn−n−1. The result follows by applying Theorem 7.

Corollary 1 shows that one can achieve consistent clustering (in the generalized

sense) with Ln = o(n) clusters assuming that the noise-to-signal ratio ᾱn/δ → 0 and

nᾱ4
n/σ

4
max → ∞; the same conditions needed in the sub-Gaussian mixture example. Again,

this result is significant since even in the noiseless case (ᾱn = 0), consistent recovery is

not possible with L = K for some mixtures of curve models.

3.3.2 Mixture of Higher-order Submanifolds

A version of Proposition 4 can be stated for a higher-dimensional version of the mixture-

of-curves model, if we consider generalized k-means problems with p > 2. We say that a

random variable x has a (ρ, σ, r) sub-Gaussian manifold distribution if x = γ(t) where

t ∈ Rr has a sub-Gaussian distribution with parameter σ and γ : Rr → Rd is a locally

ρ-Lipschitz map. i.e., ∥γ(t)− γ(s)∥ ≤ ρ∥t− s∥ for all t, s ∈ Rr such that ∥t− s∥ ≤ 1
ρ
.

Proposition 5. Assume that (xi)ni=1 are independent draws from a K-component mixture

of sub-Gaussian manifold distributions, with parameters (ρ, σ, rk) for k ∈ [K], and let

r = maxr∈[K] rk. Let Ck be the support of the distribution of the kth component. Assume

that

min
x∈Ck, y∈Ck′

∥x− y∥ ≥ δ > 0, for all k ̸= k′.

Then, there exist a constant C = C(K, δ, ρ, σ, r, κ) such that any ALG(p) satisfying

Assumption 2, applied with Ln ≤ C(n1/p
√
log n)r clusters recovers a perfect refinement of
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z with probability ≥ 1− n−1. In particular, for p > r, we have perfect refinement recovery

with Ln = o(n) clusters, with high probability.

3.3.3 Discussion

Proposition 4 and 5 show that perfect refinement for sub-gaussian mixture-of-curves model

can be achieved when the number of clusters grows as Ln = O(
√
n log n). To the best of

our knowledge, this is the first such result in the literature, that is, an upper bound on the

minimum number of clusters needed to achieve a perfect refinement of the true clusters.

What remains for future investigations to determine is how tight this bound is. Empirically,

we have found examples of the mixture-of-curves model for which Ln ≍ 1 seems to enough,

but also an example where Ln ≍
√
n log n seems to be the required scaling. Figure 3.1(a)

shows a noisy circle-torus model (cf. Section 3.4.2) with R = 10, r = 2 and σ = 1 that

demonstrates the scaling Ln ≍
√
n log n. Here, we plot the average misclassification rate

over 32 repetitions vs Ln/
√
n log n for various n. The fact that these plots coincide with

each other for different n suggests that there is sharp threshold τn = C1

√
n log n such

that with Ln > τn, perfect refinement recovery is possible and with Ln < τn, impossible.

Figure 3.1(b) shows an example that exhibits Ln ≍ 1 threshold: A line-circle model (cf.

Section 3.4.1) with parameters δ = 4, σ = 1 and line standard deviation = 7.

The fact that, empirically, there are examples for which Ln has to grow as fast as
√
n log n for a perfect refinement recovery, suggests that the result of Proposition 4 may

be sharp up to constants, over the class of mixture-of-curves distributions considered.

3.4 Numerical Experiments

3.4.1 Line-circle Model

We first consider the (noiseless) line-circle model in R3, an example of mixture-of-curves.

This model has two clusters: (1) The uniform distribution on the circumference of a circle

in the xz-plane, centred at the origin, and (2) the standard Gaussian distribution on the

y axis. The minimum separation δ between the two clusters is the radius of the circle.
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(a) circle-torus model (b) line-circle model

Figure 3.1: Examples of mixture-of-curve models that exhibit (a) Ln ≍
√
n log n and (b)

Ln = O(1) refinement recovery threshold.

We also consider the noisy version of this model where we add N(0, σ2I3). We sample

data points with equal probability from the two clusters. It is nearly impossible for the

k-means to correctly label these two clusters when L = 2, since the centers of the two

clusters coincide. Figure 3.2 shows the scatter plot of the data simulated from the noisy

line-circle model, with noise level σ = 0.1, n = 3000 and δ = 3. Here, the noise level is

set low for better illustration. Different colors are used to label data points based on

the output of k-means clustering with L = 4, and this demonstrates that each estimated

cluster is a subset of a true cluster.

The result aligns with Theorem 7. Although, the true centers coincide (with the

origin) when L = 2, by increasing L, we can create fake centers on the line and the

circle to have separation close to δ and thus get a small missclassification rate. The

other two panels in Figure 3.2 show the average missclassification rate over 32 repetitions

versus δ, for both the noiseless and noisy (σ = 1) line-circle model. Both show that the

misclassification rate is negatively associated with δ and L when L > 2.
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Figure 3.2: Line-circle model: (a) Scatter plot for the noisy version. The colors show the L = 4
estimated clusters by k-means. (b) and (c) show the (generalized) misclassification rate versus δ,
the radius of the circle, in the noisy and noiseless versions of the model.
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Figure 3.3: Circle-torus model: (a) Scatter plot for the noiseless version. Colors are used to
separate two true clusters. (b) and (c) show the (generalized) misclassification rate versus δ, the
radius of the circle, in the noisy and noiseless versions of the model.

3.4.2 Circle-torus Model

The circle-torus model is a mixture of two parts: (1) The uniform distribution on the

circumference of a circle in the xy-plane, at the origin, and (2) a torus built around this

circle. Parametrically, these two clusters can be defined via the following equations,

x1 = R cos(t)

y1 = R sin(t)

z1 = 0

and

x2 = (R + r cos(mt)) cos(t)

y2 = (R + r cos(mt)) sin(t)

z2 = r sin(mt).

(3.13)

Here R is the radius of the circle on the plane and also the distance from the center of

the tube to the center of the torus. r is the radius of the tube and it is also the minimal
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distance between two clusters. We also created a noisy version by adding N(0, σ2I3) to

the model. Figure 3.3 shows the geometry of the two clusters in the case R = 3, r = 1

and σ = 0. The other two panels in Figure 3.3 show the average missclassification rate

over 32 repetitions versus δ := r, for both the noiseless and noisy (σ = 1) circle-torus

model. In both cases, we let R = 3 and very r (i.e., δ), from 0.1 to 10. In Figure 3.4,

we include additional scatter plots of the circle-torus model for various settings of the

parameters (R, r, σ). Figure 3.4(a) is the noisy version of Figure 3.3(a) with noise level

σ = 0.1. Figure 3.4(b) shows that for sufficiently small r and high noise, the two clusters

are nearly indistinguishable. Figure 3.4(c) shows the scatter plot for R = 3 and r = 10; it

is an example of how the model looks like when R < r.

(a) R = 3, r = 1 and σ = 0.1. (b) R = 10, r = 1 and σ = 1. (c) R = 3, r = 10 and σ = 0.

Figure 3.4: Scatter plots for the circle-torus model. True clusters are distinguished by their color.

3.4.3 Line-Gaussian Model

Figure 3.5 shows the results for a line-Gaussian mixture model: xi = ξ∗zi +Σ
1/2
zi wi ∈ R2

where ξ∗1 = (0, δ) and ξ∗2 = (0, 0), wi ∼ N(0, I2), Σ1 = I2 and Σ2 = diag(σ2, 0). Here,

we have set σ = 5 and sampled n = 3000 data points with equal probability from the

two clusters. We also consider its noisy version by setting all the zero elements in Σ2 to

0.7, which makes the model a general Gaussian mixture. Figure 3.5 shows the average

missclassification rate over 32 repetitions for different L. The results are consistent with

Theorem 7 showing that as δ increases, the misclassification rate decreases.
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Figure 3.5: Line-Gaussian model: The (generalized) misclassification rate versus δ, the distance
of the Gaussian center to the line, in the (a) noisy and (b) noiseless versions of the model.

3.5 Proofs of Main Results

Let us first recall a fact from functional analysis. Consider the space of functions

f : [n] → X and let us equip [n] with the uniform probability measure νn. Then, from

the theory of Lebesgue-Bochner spaces, ∥f∥p := (
∫
∥f(ω)∥pX dνn(ω))1/p defines a proper

norm on this function space, turning it into a Banach space Lp(νn;X ). In particular, the

triangle inequality holds for this norm. Note that ∥f∥p = ( 1
n

∑n
i=1 ∥f(i)∥

p
X )

1/p. We will

frequently invoke the triangle inequality in Lp(νn,X ).

Let µ∗ :=
∑

k πkδξ∗k = 1
n

∑n
i=1 δξ∗zi be the empirical measure associated with {ξ∗zi}.

Recalling definition (3.1) of the population cost function, we have, for any ξ ∈ X L,

Q(ξ;µ∗)p =
K∑
k=1

πk min
1≤ℓ≤L

∥ξ∗k − ξℓ∥p =
1

n

n∑
i=1

min
1≤ℓ≤L

∥ξ∗zi − ξℓ∥p. (3.14)

We start with three lemmas that are proved in Appendix C.2:

Lemma 21. Let ALG(p) be a k-means algorithm satisfying Assumption 2(b’) and let

ξ̂ be its output for L clusters. Furthermore, assume ( 1
n

∑n
i=1 ∥xi − ξ∗zi∥

p)1/p ≤ ε. Then

Q(ξ̂;µ∗) ≤ (1 + κ)ε.

Lemma 22 (Curvature). For every ξ ⊂ X L and ξ∗ ∈ XK, with L ≥ K,

Q(ξ;µ∗) ≥ π
1/p
min

(
dp(ξ, ξ

∗) ∧ δ

2

)
.
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Lemma 23. Assume that max1≤i≤n ∥xi − ξ∗zi∥ ≤ η and d∞(ξ̂, ξ∗) ≤ γ. When L = K, if

δ > 2γ + 2η, there exists a bijective function ω : [K] → [K] satisfying ω(ẑi) = zi, ∀i ∈ [n].

When L > K, if δ > 2γ + 4η, there exists a surjective function ω : [L] → [K] satisfying

ω(ẑi) = zi, ∀i ∈ [n].

Proof of Theorem 5. As ( 1
n

∑n
i=1 ∥xi − ξ∗zi∥

p)1/p ≤ max1≤i≤n ∥xi − ξ∗zi∥ ≤ η, combining

Lemma 21 and 22, we have

(
dp(ξ̂, ξ

∗) ∧ δ

2

)
≤ Q(ξ̂, µ∗)

π
1/p
min

≤ (1 + κ)η

π
1/p
min

.

By the condition on δ in (3.4), we have δ/2 > (1+κ)η/π
1/p
min. Then, d∞(ξ̂, ξ∗) ≤ dp(ξ̂, ξ

∗) ≤

γ := (1+ κ)η/π
1/p
min, which also makes the assumption in Lemma 23 that δ > 2γ +4η valid.

Finally, the result follows from Lemma 23.

Proof of Theorem 6. The argument is similar to one that has appeared in recent litera-

ture [LR15b; Jin15; ZA19]. From the proof of Lemma 21 in Appendix C.2, we have

Q(ξ̂;µ∗) ≤
( 1
n

n∑
i=1

∥ξ∗zi − ξ̂ẑi∥p
)1/p

≤ (1 + κ)ε.

By Lemma 22

(
dp(ξ̂, ξ

∗) ∧ δ

2

)
≤ Q(ξ̂, µ∗)

π
1/p
min

≤ (1 + κ)ε

π
1/p
min

.

By the separation assumption in (3.5), δ/2 > (1+κ)ε/π
1/p
min. Hence dp(ξ̂, ξ∗) ≤ (1+κ)ε/π

1/p
min.

Let Ck = {i : zi = k}, |Ck| = nk, and set Tk := {i ∈ Ck : ∥ξ∗zi − ξ̂ẑi∥ ≤ δ/c}. Letting

Sk = Ck \ Tk, we obtain

|Sk|δp/cp <
∑
i∈Sk

∥ξ∗zi − ξ̂ẑi∥p ≤
n∑
i=1

∥ξ∗zi − ξ̂ẑi∥p ≤ n(1 + κ)pεp.

Therefore,
|Sk|
nk

<
n(1 + κ)pcpεp

nkδp
≤ 1.
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The last inequality is by assumption δ > (1 + κ)cε/π
1/p
min. Hence, Tk is not empty.

Furthermore, we argue that if i ∈ Tk and j ∈ Tℓ for k ̸= ℓ, i.e. zi ̸= zj, then ẑi ̸= ẑj.

Assume otherwise, that is, ẑi = ẑj. Then

∥ξ∗k − ξ∗ℓ ∥ ≤ ∥ξ∗k − ξ̂ẑi∥+ ∥ξ∗ℓ − ξ̂ẑj∥ ≤ 2δ/c < δ

causing a contradiction.

Let Lk := {ẑi : i ∈ Tk} and L =
⋃K
k=1 Lk. Define a function ω : L → [K] by setting

ω(ℓ) = k for all ℓ ∈ Lk and k ∈ [K]. By the property of {Tk} shown above, Lk, k ∈ [K]

are disjoint and nonempty sets. This implies that ω is well-defined and surjective. Extend

ω to a surjective ω : [L] → [K] by arbitrarily defining it for [L] \ L. Note that ẑi ∈ Lk

implies zi = k. It follows that ω(ẑi) = zi for all ẑi ∈ L, and

1

n

n∑
i=1

1{zi ̸= ω(ẑi)} ≤ n− |L|
n

=
K∑
k=1

|Sk|
n

<
K(1 + κ)pcpεp

δp
.

The result follows.

Proof of Theorem 7. By assumption, κ-approximation holds for both K and L clusters.

Then,

Q̂(ξ̂) ≤ κ Q̂
(L)
min, where Q̂

(L)
min := min

ξ∈XL
Q̂(ξ).

Since Q̂(L)
min ≤ ( 1

n

∑n
i=1 ∥xi − ξ̃z̃i∥p)1/p ≤ ε, by the triangle inequality in Lp(νn,X ),

( 1
n

n∑
i=1

∥ξ̃z̃i − ξ̂ẑi∥p
)1/p

≤
( 1
n

n∑
i=1

∥xi − ξ̃z̃i∥p
)1/p

+
( 1
n

n∑
i=1

∥xi − ξ̂ẑi∥p
)1/p

≤ (1 + κ)ε.

Let Tk := {i ∈ Ck : ∥ξ̃z̃i − ξ̂ẑi∥ ≤ δ/c} and Sk = Ck \ Tk. Then,

|Sk|δp/cp <
∑
i∈Sk

∥ξ̃z̃i − ξ̂ẑi∥p ≤
n∑
i=1

∥ξ̃z̃i − ξ̂ẑi∥p ≤ n(1 + κ)pεp.

Therefore,
|Sk|
nk

<
n(1 + κ)pcpεp

nkδp
≤ 1
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The last inequality is by assumption δ ≥ (1 + κ)cε/π
1/p
min. Hence Tk is not empty. Next we

argue that if i ∈ Tk, j ∈ Tℓ for k ≠ ℓ, i.e. zi ̸= zj, then ẑi ̸= ẑj. Assume otherwise, that is

ẑi = ẑj. Since z̃ is a refinement of z, zi ̸= zj implies z̃i ̸= z̃j and ω̃(z̃i) ̸= ω̃(z̃j). By the

triangle inequality,

∥ξ̃z̃i − ξ̃z̃j∥ ≤ ∥ξ̃z̃i − ξ̂ẑi∥+ ∥ξ̃z̃j − ξ̂ẑj∥ ≤ 2δ/c < δ

causing a contradiction. The rest of the proof follows that of Theorem 6.
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Chapter A

Extra Simulations in Chapter 2

A.1 Bootstrap Comparison
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(a) Variants of NAC+ (b) Variants of SNAC+.

Figure A.1: Comparing different bootstrap approaches using expected accuracy of selecting the
true number of communities versus expected average degree of the network. SNAC+ is shown in
both plots as a benchmark. Details of each method in the legend is explained in the text.

In Figure A.1, we compare different approaches for bootstrapping and rejecting in

SNAC+ and FNAC+. As we discussed in Section 2.2.4, for a significance level α, there

are four versions of bootstrapping and rejecting, and we use different suffixes below with

SNAC+ and FNAC+ to represent them in Figure A.1.

1. “boot de”: bootstrapping using SBM samples and obtaining their mean and standard

deviation to standardize the original statistic and rejecting the null hypothesis with

α critical threshold from the standard normal;
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2. “boot qu”: bootstrapping with SBM samples and using their α-quantile as the

rejection threshold;

3. “dc boot de”: same as “boot de” except bootstrapping with DCSBM instead;

4. “dc boot qu”: same as “boot qu” except bootstrapping with DCSBM instead.

All four versions are applied to FNAC+ (left plot) and SNAC+ (right plot). Both include

the plain SNAC+ as the comparison baseline. The simulation data follows a DCSBM with

n = 5000, K = 4, θi ∼ Pareto(3/4, 4), connectivity matrix as B1 defined in Section 2.4.1

and balanced community sizes. In both SNAC+ and FNAC+, the “boot de” approach

has the most stable performance and that is why we use it in simulations of Section 2.4.1.

A.2 Model Selection

Figure A.2 shows model selection accuracy with four variants of DCSBM parameters.

All plots has DCSBM with parameters n = 5000, θi ∼ Pareto(3/4, 4). The top row is

generated with a generalized version of B1 as the connectivity matrix, given by

B3 ∝ (1− β) diag(w) + β11T .

It is evident that B1 is a special case of B3 where w is the an all-ones vector. Here, we set

w = (1, 2, 3, 1) under K = 4 and the top left plot shows the case where the DCSBM has

unbalanced community sizes proportional to (1, 1, 2, 3) and the right plot shows balanced

community sizes. The bottom row is generated based on the planted partition model, but

with different community sizes and out-in-ratio than that in Figure 2.2. The bottom left

side has unbalanced community sizes proportional to (1, 2, 3, 4) and out-in-ratio β = 0.2

and the right side has balanced community sizes and out-in-ratio β = 0.3. All methods

have lower accuracy in the unbalanced setting except for the AS. BH is affected the most

while FNAC+ the least. The robustness of FNAC+ could be because its performance

mainly relies on the full version of ρ and unbalanced sizes retain its rows’ distinction.

However, the SNAC+ is still affected by the unbalanced community sizes because of the
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Figure A.2: Expected accuracy of selecting the true number of communities versus expected
average degree of the network. The data follows a DCSBM with n = 5000, θi ∼ Pareto(3/4, 4).
The first row is generated with β = 0.2, connectivity matrix B3. The top left plot has unbalanced
community sizes proportional to (1, 1, 2, 3) and the right plot has balanced community sizes.
The second row is generated with connectivity matrix B1. The bottom left plot has community
sizes proportional to (1, 2, 3, 4) and out-in-ratio β = 0.2. The bottom right plot has balanced
community sizes and out-in-ratio β = 0.3.

increased difficulty in recovering the correct labels and the increased variance in ρ due to

subsampling.

A.3 ROC Curves

We consider additional testing with H0 : K = 4 vs. Ha : K = 3. Other DCSBM simulating

parameters are the same as in Section 2.4.1. Figure A.3 shows ROC curves for the null

being DCSBM with K = 4 and two alternatives: a DCSBM with K = 3 (left) and a

DCLVM with K = 3 (right). In addition, we also have n = 2000 for the upper row and

107



n = 10000 for the lower. Similar to Figure 2.3, the performance of the tests get better

as n increases. FNAC and AS tests are nearly perfect (achieve 100% recovery for very

small type I error) when the alternative is DCLVM. The LR test is almost perfect in

distinguishing two DCSBMs but has very poor power when the alternative is DCLVM.

We also include the test H0 : K = 4, DCSBM vs. Ha : K = 4, DCLVM with similar

parameters in Figure A.4. It shows that FNAC tests are still able to reject when the

true model is a DCLVM with the same number of communties as the DCSBM. Note that

we have excluded the LR test in this case, since it is the likelihood ratio of two fitted

DCSBMs with different number of communities, but here we have models with the same

number of communities.
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Figure A.3: ROC plots for testing 4- versus 3-community models. Top and bottom rows
correspond to n = 2000 and n = 10000, respectively. Left and right columns correspond to the
DCSBM and DCLVM alternatives, respectively.
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Figure A.4: ROC plots for testing H0 : K = 4 DCSBM vs. Ha : K = 4 DCLVM. Left has
n = 2000 and right n = 10000.

A.4 Extra Real Network Examples

Figure A.5: More examples on community profile plots from FB-100. They show a single
elbow/dip pattern.

Figures A.5 and A.6 provide more profile plots for the networks in the FB-100 dataset.

The former collection shows profile plots with one-elbow pattern and the latter shows

higher variability of SNAC+ statistics with multi-stage elbows/dips. We also point out

that the Caltech network in Figure A.6 is the only FB-100 network for which SNAC+

drops to nearly zero (at K = 10) within the range of candidate K. However, the statistic
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continues to decrease afterwards and does not show any dips/elbows like others. This

suggests that although we cannot reject the null hypothesis of a DCSBM (with K = 10)

in this case, a DCSBM still might not be a good model for the network. That we cannot

reject the null is most likely due to the small community sizes we get with K = 10, leading

to an insufficient signal.

Figure A.6: More examples on community profile plots from FB-100. They show a multiple
elbows/dips pattern.

Figure A.7 shows the profile plot for the political blog network and its community
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structure. In the profile plot, the elbow point identified by the largest second derivative

is at K = 2, matching the presumed ground truth number of communities in this case.

The colored community structure also shows that the fitted two-community model gives a

reasonable split of the nodes.

political blog
K ≈ 2 , 7.2
K ≈ 2 , 4.2

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure A.7: Political blog network: profile plot (left) and community structure (right)
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Chapter B

Remaining Proofs in Chapter 2

B.1 Lemmas in the Proof of Theorem 1

B.1.1 Lemmas in the Proof of Propostion 1

We first derive some useful relations between the moments and cumulants of a random

variable that are used in the proofs of Lemma 1 and 2. In particular, for Lemma 2, we

use the following observation: The central moments of sums of i.i.d. random variables

grow “slowly”. To develop an intuition for this observation, recall that

µ4(X) = κ4(X) + 3κ22(X) (B.1)

where X is any random variable, µr(X) is its rth order central moment, and κr(X) is

the corresponding rth order cumulant. Assume that X can be written as a sum of i.i.d.

variables {Y1, . . . , Yn}, that is, X =
∑n

i=1 Yi. Cumulants are additive over independent

sums, hence κr(X) =
∑n

i=1 κr(Yi) = nκr(Y1). It follows that

µ4(X) = nκ4(Y1) + 3n2κ22(Y1) = O(n2) (B.2)

assuming κr(Y1) = O(1). In other words, µ4(X) scales at half the rate of the worst-case

scaling of the 4th power of a sum of n deterministic terms (i.e., O(n2) instead of O(n4)).

By using κ4(Y1) = µ4(Y1)− 3κ22(Y1) and κ2(Y1) = µ2(Y1), we can express the constants
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in (B.2) in terms of the central moments of Y1,

µ4(X) = nµ4(Y1) + 3n(n− 1)µ2
2(Y1) ∼ 3µ2

2(Y1)n
2. (B.3)

A similar idea holds for higher-order central moments, an example of which is Lemma 2.

Proof of Lemma 1. For the expectation, we note that E(Xℓ − dpℓ)
2 = pℓ(1− pℓ), hence

Eψ(Xi, dpℓ) = 1 − pℓ and the result follows since
∑

ℓ(1 − pℓ) = L − 1. We now turn

to the variance. Let X̃ = X − dp =
∑d

i=1 Ũi, where Ũi = Ui − p and Ui ∼ Mult(1, p),

independently. We have

d2EY 2 =
L∑
ℓ=1

EX̃4
ℓ

p2ℓ
+

L∑
ℓ̸=ℓ′

EX̃2
ℓ X̃

2
ℓ′

pℓpℓ′
.

Noting that X̃ℓ =
∑

i Ũiℓ, we obtain

E(X̃2
ℓ X̃

2
ℓ′) = E

(∑
i1,i2

Ũi1ℓŨi2ℓ′
)2

=
∑

i1, i2, i3, i4

E[Ũi1ℓŨi2ℓŨi3ℓ′Ũi4ℓ′ ],

where all four indices running from 1 to d. We can categorize the general term E[Ũi1ℓŨi2ℓŨi3ℓ′Ũi4ℓ′ ]

based on how many different values i1, i2, i3 and i4 take. If i1, i2, i3 and i4 take 3 or 4 differ-

ent values, the term is zero by independence. The remaining three cases are summarized

below:

E[Ũi1ℓŨi2ℓŨi3ℓ′Ũi4ℓ′ ] =



E[Ũ2
1ℓ] · E[Ũ2

1ℓ′ ], i1 = i2 ̸= i3 = i4,(
E[Ũ1ℓŨ1ℓ′ ]

)2
, i1 = i3 ̸= i2 = i4

or i1 = i4 ̸= i2 = i3,

E[Ũ2
1ℓŨ

2
1ℓ′ ], i1 = i3 = i2 = i4,
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which simplifies to

E[Ũi1ℓŨi2ℓŨi3ℓ′Ũi4ℓ′ ] =



pℓ(1− pℓ)pℓ′(1− pℓ′), i1 = i2 ̸= i3 = i4,

p2ℓp
2
ℓ′ , i1 = i3 ̸= i2 = i4

or i1 = i4 ̸= i2 = i3,

pℓpℓ′(pℓ + pℓ′ − 3pℓpℓ′), i1 = i3 = i2 = i4.

The first two cases follow easily from independence. E[Ũ2
1ℓ] = var(U1ℓ) = pℓ(1− pℓ) and

E[Ũ1ℓŨ1ℓ′ ] = cov(U1ℓ, U1,ℓ′) = −pℓpℓ′ . The third case follows, after some algebra, from the

following observation:

(Ũ1ℓ, Ũ1ℓ′) =


(−pℓ,−pℓ′) w.p. 1− (pℓ + pℓ′)

(−pℓ, 1− pℓ′) w.p. pℓ′

(1− pℓ,−pℓ′) w.p. pℓ

.

To sum up, for ℓ ̸= ℓ′, we have

E[X̃2
ℓ X̃

2
ℓ′ ] = (d2 − d)pℓpℓ′ [(1− pℓ)(1− pℓ′) + 2pℓpℓ′ ] + dpℓpℓ′(pℓ + pℓ′ − 3pℓpℓ′)

= dpℓpℓ′
[
(d− 1) + (2− d)(pℓ + pℓ′) + (3d− 6)pℓpℓ′)

]
.

Let α :=
∑

ℓ p
2
ℓ . Using

∑
ℓ̸=ℓ′ pℓpℓ′ = 1− α and

∑
ℓ̸=ℓ′ pℓ =

∑
ℓ̸=ℓ′ pℓ′ = L− 1, we have

1

d

∑
ℓ̸=ℓ′

E[X̃2
ℓ X̃

2
ℓ′ ]

pℓpℓ′
= (d− 1)(L2 − L) + 2(2− d)(L− 1) + (3d− 6)(1− α),

for ℓ ̸= ℓ′. Next, we consider the case ℓ = ℓ′. Let κn and µn denote nth order cumulants
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and central moments of Ũ1ℓ. By (B.3),

E[X̃4
ℓ ] = dµ4 + 3d(d− 1)µ2

2

= d[pℓ(1− pℓ)
4 + p4ℓ(1− pℓ)] + 3d(d− 1)p2ℓ(1− pℓ)

2

= dp2ℓ [1/pℓ + (3d− 7) + (12− 6d)pℓ + (3d− 6)p2ℓ ].

We obtain

1

d

L∑
ℓ=1

EX̃4
ℓ

p2ℓ
=

L

h(p)
+ L(3d− 7) + (12− 6d) + (3d− 6)α.

Putting the pieces together, we have

dEY 2 = d(L2 − 1) +
L

h(p)
− L(L+ 2) + 2.

Combining with var(Y ) = EY 2 − (L− 1)2 and some algebra finishes the proof.

Proof of Lemma 2. Let {W ′
i} be an independent copy of {Wi}, and let X ′

n =
∑n

i=1W
′
i .

The function x 7→ |x|3 is convex on R. Applying Jensen’s inequality with respect to X ′

and the Cauchy-Schwartz inequality in probability,

E
∣∣X2

n − EX2
n

∣∣3 ≤ E
∣∣X2

n − (X ′
n)

2
∣∣3 ≤ [E∣∣Xn +X ′

n

∣∣6]1/2[E∣∣Xn −X ′
n

∣∣6]1/2.
For a random variable U , write κi(U) for its ith cumulant Then,

κi(Xn +X ′
n) = κi(Xn) + κi(X

′
n) = 2nκi(W1),

κi(Xn −X ′
n) = κi(Xn) + (−1)iκi(X

′
n) = 2nκi(W1) · 1{i is even}.

Recall that the 6th central moment µ6 of any random variable can be written in terms

of its cumulants {κi} as follows: µ6 = κ6 + 15κ4κ2 + 10κ23 + 15κ32. Writing κ̃i = κi(W1),
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and applying this relation to Xn +X ′
n and Xn −X ′

n, we have

E
∣∣Xn +X ′

n

∣∣6 = µ6(Xn +X ′
n

)
= 2nκ̃6 + 60n2κ̃4κ̃2 + 40n2κ̃23 + 120n3κ̃32,

E
∣∣Xn −X ′

n

∣∣6 = µ6(Xn −X ′
n) = 2nκ̃6 + 60n2κ̃4κ̃2 + 120n3κ̃32.

Let CW1 = 2|κ̃6|+ 60|κ̃4|κ̃2 + 40κ̃23 + 120κ̃32. Then, E
∣∣Xn ±X ′

n

∣∣6 ≤ CW1n
3 and the result

follows.

For the case of where W1 = α(Z − p) where Z ∼ Ber(p), let κi = κi(Z) and note

that κ̃i = αiκi. It follows that

CW1 = α6
(
2|κ6|+ 60|κ4|κ2 + 40κ23 + 120κ32

)
.

Next, we have κ2 = p(1−p), κ3 = κ2(1−2p), κ4 = κ2(1−6κ2), κ6 = κ2
(
1−30κ2(1−4κ2)

)
.

We have κ2 ∈ [0, 1/4], hence κ3/κ2 ∈ [−1, 1], κ4/κ2 ∈ [−1
2
, 1] and κ6/κ2 ∈ [−7

8
, 1]. It

follows that |κr| ≤ κ2 ≤ 1/4 for all r = 3, 4, 6. Then,

CW1/α
6 ≤ 2κ2 + 15κ2 + 10κ2 + 7.5κ2 = 34.5κ2

and the proof is complete.

B.1.2 Lemmas in the Proof of Proposition 2

Proof of Lemma 3. We have
∑

i di(xi − y − v)2 =
∑

i di(xi − y)2 − 2vR + d+v
2. Hence,

∑
i

diψ(xi, y + v) =

∑
i di(xi − y)2

y + v
− 2v

y + v
R +

v2

y + v
d+.

It follows, after some algebra, that

∑
i

di[ψ(xi, y + v)− ψ(xi, y)] = − v

y + v

[∑
i

diψ(xi, y) + 2R− vd+

]
.
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We obtain

|G(v)−G(0)| ≤ |v|
|y + v|

[
G(0) + 2|R|+ |v|d+

]
.

Applying the inequality |a|/|1 + a| ≤ 2|a| which holds for any |a| ≤ 1/2, with a = v/y

finishes the proof.

To prove Lemma 4, we first need an auxiliary lemma.

Lemma 24. Let T = βS + α where S is random variable and β, α ∈ R are constants,

and let Z ∼ N(0, 1). Then,

dK
(
T, Z

)
≤ dK

(
S,Z

)
+

|β − 1|√
2πemin{|β|, 1}

+
|α|√
2π
.

Proof of Lemma 24. We have

dK
(
T, Z)

)
= sup

t∈R
|P(βS + α ≤ t)− Φ(t)|

= sup
t∈R

|P(S ≤ t)− Φ(βt+ α)|

≤ sup
t∈R

(
|P(S ≤ t)− Φ(t)|+ |Φ(t)− Φ(βt+ α)|

)
= dK

(
S,Z

)
+ sup

t∈R
|Φ(t)− Φ(βt+ α)|.

Then,

∣∣Φ(t)− Φ(βt)
∣∣ = ∣∣∣ ∫ t

βt

1√
2π
e−x

2/2dx
∣∣∣

≤ |βt− t| 1√
2π
e−min(t,βt)2/2 =

1√
2π

|β − 1| · |t|e−at2/2,

where a = min(β2, 1). Note that t 7→ te−at
2/2 achieves its maximum of 1/

√
ae over [0,∞)

at t = 1/
√
a. We also have

∣∣Φ(s) − Φ(s + α)
∣∣ ≤ |α| sups̃Φ′(s̃) = 1√

2π
|α|. Putting the

pieces together finishes the proof.
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Proof of Lemma 4. Let A = {|T̂n−Tn| ≥ δTn+ ε} and q = P(A). For any t ∈ R, we have

P(T̂n ≤ t) ≤ P({T̂n ≤ t} ∩ Ac) + P(A)

≤ P((1− δ)Tn − ε ≤ t) + q.

Subtracting Φ(t) = P(Z ≤ t) from both sides, we get

P(T̂n ≤ t)− Φ(t) ≤ dK
(
(1− δ)Tn − ε, Z

)
+ q

≤ dK(Tn, Z) +
2δ√
2πe

+
ε√
2π

+ q

≤ dK(Tn, Z) +
1

2
(δ + ε) + q,

by Lemma 24 and noting that min{|1 − δ|, 1} ≥ 1/2 by assumption. Similarly, for any

s ∈ R,

P(Tn ≤ s) ≤ P({Tn ≤ s} ∩ Ac) + P(A)

≤ P(T̂n ≤ (1 + δ)s+ ε) + q.

Applying the change of variable t = (1 + δ)s+ ε, adding Φ and rearranging, we obtain

Φ(t)− P(T̂n ≤ t) ≤ Φ(t)− P((1 + δ)Tn + ε ≤ t) + q,

and the rest of the argument follows as in the previous case. Putting the pieces together

finishes the proof.

Proof of Lemma 16. Note that d(k)+ ∆̂kℓ is a centered Bin(d
(k)
+ , pkℓ) variable. Applying

Proposition 8 (Section B.4), we have

P
(
|∆̂kℓ| ≥

√
2u

d
(k)
+

+
u

3d
(k)
+

)
≤ 2e−u.

Then the result follows by using union bound when u ≤ mink d
(k)
+ .
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Proof of Lemma 6. Fix k and ℓ and consider i ∈ Gk. Define

a :=

∑
i∈Ĝk

Xiℓ∑
i∈Gk

Xiℓ

− 1 =

∑
i∈Ĝk\Gk

Xiℓ −
∑

i∈Gk\Ĝk
Xiℓ∑

i∈Gk
Xiℓ

.

On event Mn, we have

∣∣∣ ∑
i∈Ĝk\Gk

Xiℓ −
∑

i∈Gk\Ĝk

Xiℓ

∣∣∣ ≤ dmax(|Ĝk \ Gk|+ |Gk \ Ĝk|) ≤ dmax(αnn).

Recall that we have |X(k)
+ℓ − d

(k)
+ pkℓ| ≤ δd

(k)
+ on event B. Furthermore, by assumption

δ ≤ p/2, we obtain

X
(k)
+ℓ ≥ d

(k)
+

(
pkℓ − δ

)
≥ d

(k)
+ p/2.

It follows that

|a| ≤ 2(αnn)dmax

d
(k)
+ p

≤ 2dmax

ωnp
αn =

2αn
τd p

.

Similarly, letting b := (
∑

i∈Ĝk
di)/(

∑
i∈Gk

di)− 1, we have

|b| ≤ dmax(αnn)

d
(k)
+

≤ dmax

ωn
αn =

αn
τd
.

Then

p̂kℓ =

∑
i∈Ĝk

Xiℓ∑
i∈Ĝk

di
=

(1 + a)
∑

i∈Gk
Xiℓ

(1 + b)
∑

i∈Gk
di

=
1 + a

1 + b
· p̃kℓ.

By assumption αn ≤ τdp/2, we have |a| ≤ 1 and b ≤ 1/2. Hence,

|p̂kℓ − p̃kℓ| =
|a− b|
|1 + b|

· p̃kℓ ≤
|a|+ |b|
1− |b|

· p̃kℓ ≤ 2(|a|+ |b|) · p̃kℓ.

Note that |a|+ |b| = (2p−1 + 1)αn

τd
≤ (3αn)/(τdp). Then the result follows.

Proof of Lemma 7. Let E = {eℓ, ℓ ∈ [L]} be the standard basis of RL. Then, E is the set
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of extreme points of PL and PL is the (closed) convex hull of E. The function x 7→ ∥x−y∥

is a continuous convex function, hence achieves its maximum over PL at the set of extreme

points. Then,

max
y∈PL

max
x∈PL

∥x− y∥ = max
y∈PL

max
x∈E

∥x− y∥ = max
y∈E

max
x∈E

∥x− y∥

where the last equality applies the same idea to the function y 7→ ∥x − y∥. The result

follows since ∥eℓ − ek∥ =
√
2 for any k ̸= ℓ.

B.2 Lemmas in the Proofs of Theorems 2 and 3

The following proposition, controlling the tail probability of a randomly-selected Poisson

sum, is used in the proof of Lemma 8:

Proposition 6. Let Aj ∼ Poi(λj) and Uj ∼ Ber(1/2) for j = 1, . . . , n, and assume that

{Aj, Uj, j = 1, . . . , n} are independent. Let d =
∑n

j=1AjUj and d∗ = E[d]. Then,

P
(
|d− d∗| ≥ d∗/2

)
≤ 2e−0.008 d∗ + 4e−0.03 d∗/λmax

where λmax = maxj λj.

Proof of Propoisition 6. Let d̃ =
∑

j λjUj and d∗ = 1
2

∑
j λj, so that d∗ = E[d̃]. Condi-

tioned on U = (U1, . . . , Un), d is a Poisson variable with mean d̃. If X ∼ Poi(λ), then for

any t ∈ (0, 1], we have P(|X − λ| ≥ tλ) ≤ 2 exp(−λt2/4); see Lemma 30 (Section B.4).

Then,

P
(
|d− d̃| ≥ 0.2d̃ | U

)
≤ 2 exp(−0.01d̃).

Next, we apply Proposition 8 (Section B.4) to d̃− d∗ =
∑

j λj(Uj − 1/2). Since |λj(Uj −

1/2)| ≤ λmax and var(d̃− d∗) =
∑

j λ
2
j/4 ≤ λmax(d

∗/2), we have

P
(
|d̃− d∗| ≥

√
λmaxd∗u+ λmaxu/3

)
≤ 2e−u.
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Taking u = 0.03d∗/λmax, we obtain P(|d̃− d∗| ≥ 0.2d∗) ≤ 2 exp(−0.03d∗/λmax).

Let A = {|d − d̃| ≥ 0.2d̃} and B = {|d̃ − d∗| ≥ 0.2d∗}. Note that B is completely

determined by U . On Ac ∩ Bc, we have (0.8)2d∗ < d < (1.2)2d∗, implying |d− d∗| < d∗/2.

It follows that

P
(
|d− d∗| ≥ d∗/2

)
≤ P(A ∪ B) ≤ P(A) + P(B).

We have P(A) = E[P(A | U)1Bc + P(A | U)1B], hence

P(A) ≤ E[P(A | U)1Bc + 1B]

≤ 2E[e−0.01d̃1Bc ] + P(B)

≤ 2e−0.008d∗E[1Bc ] + P(B)

using d̃ ≥ 0.8d∗ on Bc. We further bound E[1Bc ] ≤ 1. Putting the pieces together finishes

the proof.

Proof of Lemma 8. Recall that di =
∑n

j=1AijUj where {Uj = 1{j ∈ S1}} is an indepen-

dent Ber(1/2) sequence, and d∗i = E[di]. We also recall from (2.60) that d∗i ≥ 1
2
C1νn for

all i ∈ [n]. Fix i ∈ [n]. We apply Proposition 6 to di with λj = E[Aij] = (νn/n)θiθjB
0
zizj

.

Since ∥B0∥∞ = 1 and θmax = 1, we have maxj λj ≤ νn/n, and thus

d∗i
maxj λj

≥ C1

2
n ≥ 200

3
log n,

where the first inequality is by (2.60) and the second by assumption (2.26). Proposition 6

gives

P
(
|di − d∗i | ≥ d∗i /2

)
≤ 2e−0.004C1νn/2 + 4e−2 logn ≤ 6n−2

since 0.004C1νn/2 ≥ 2 log n by assumption (2.26). By union bound,

P
(
di /∈ [1

2
d∗i ,

3
2
d∗i ] for some i ∈ [n]

)
≤ 6n−1. (B.4)
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Furthermore, ñk := |Gk| = nk − |Ck ∩ S1| = nk −
∑

i∈Ck Ui for all k. Applying

Proposition 8 (Section B.4) with u = 0.01nk, we obtain

∣∣∣ ñk
nk

− 1

2

∣∣∣ = ∣∣∣ 1
nk

∑
i∈Ck

Ui −
1

2

∣∣∣ ≥ √
0.01 +

0.01

3
≥ 0.1

with probability ≤ 2e−0.01nk . By union bound

P
(
ñk /∈ [0.4nk, 0.6nk] for some k ∈ [K0]

)
≤ 2

K0∑
k=1

e−0.01nk (B.5)

≤ 2K0e
−0.01τCn ≤ n−1. (B.6)

The last inequality is since assumption (2.26) implies 0.01τCn ≥ log(n3) ≥ log(2K0n).

The result follows by combining (B.4) and (B.6).

B.2.1 Lemmas in the Proof of Theorem 2

Proof of Lemma 9. Let Ut := P(Y ≤ t | F) and set U = (Ut, t ∈ R) and bt = P(Z ≤ t).

The function f(U) = supt∈R |Ut − bt| is convex, hence by Jensen’s inequality

dK(Y, Z) = f(EU) ≤ Ef(U) = E
[
dK
(
L(Y | F), Z

)]
.

Next, letting Y ′ := Y 1B, we have

P(Y ′ ≤ t) ≤ P({Y ′ ≤ t} ∩ B) + P(Bc)

= P({Y ≤ t} ∩ B) + P(Bc) ≤ P(Y ≤ t) + P(Bc)

and

P(Y ′ ≤ t) ≥ P({Y ′ ≤ t} ∩ B) = P({Y ≤ t} ∩ B) ≥ P(Y ≤ t)− P(Bc).

It follows that |P(Y ′ ≤ t)−P(Y ≤ t)| ≤ P(Bc) for all t ∈ R. An application of the triangle

inequality gives |dK(Y, Z)− dK(Y
′, Z)| ≤ P(Bc) finishing the proof.
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B.2.2 Lemmas in the Proof of Theorem 3

Proof of Lemma 10. Recall that T̂r ⊂ Cr ∩ S2 = Gr and for any i ∈ Gr, we have diξiℓ ∼

Bin(di, qrℓ), conditioned on F . Thus, we can write di(ξiℓ − qrℓ) =
∑di

j=1 Zj where Zj are

centered Bernoulli variables with parameter qrℓ. Applying Proposition 8 (Appendix B.4),

we have

PF
(
|
∑
j

Zj| ≥
√
2vu+

u

3

)
≤ 2e−u, u ≥ 0,

where v =
∑

j var(Zj). Since, v = diqrℓ(1− qrℓ) ≤ di/4, taking u = 2 log n, we have

PF
(
|ξiℓ − qrℓ| ≥

√
log n

di
+

2 log n

3di

)
≤ 2n−2.

On event A, we have di ≥ d∗i /2 ≥ C1νn/4 for all i, by (2.60). By assumption, 4 log n ≤

C1νn, hence on A,

√
log n

di
+

2 log n

3di
≤ 4

√
log n

C1νn
= εn.

We have

Ec =
{
max
r, ℓ

max
i∈T̂r

|ξiℓ − qrℓ| ≥ εn

}
⊂
{
max
r, ℓ

max
i∈Gr

|ξiℓ − qrℓ| ≥ εn

}
.

Using |
⋃
r Chr | = n and the union bound, we obtain PF(Ec ∩ A) ≤ 2(nL) · n−2 = 2Ln−1.

The lemma follows by taking the expectation of both sides and using the smoothing

property of conditional expectation.

Proof of Lemma 11. Lemma 11 follows from the following more refined result:

Lemma 25. Let ψ(x, y) = (x− y)2/y. For all (x, y) and (x′, y′) in [0, 1]× [1/c1, 1], where

c1 > 1, we have

∣∣ψ(x′, y′)− ψ(x, y)
∣∣ ≤ c2|x− y| · ∥δ∥+ c3∥δ∥2 (B.7)
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where δ = (x− x′, y − y′), c2 = c1
√

4 + (1 + c1)2 and c3 = 4c31.

Assuming that |x−x′| ≤ ε and |y−y′| ≤ ε, so that ∥δ∥ ≤
√
2ε, and using |x−y| ≤ 1,

∣∣ψ(x′, y′)− ψ(x, y)
∣∣ ≤ √

2c2ε+ 2c3ε
2 ≤ c4max(ε, ε2) (B.8)

where c4 =
√
2c2 + 2c3. Since c2 ≤

√
8c21, we have c4 ≤ 12c31 and Lemma 11 follows.

Proof of Lemma 25. The function ψ is continuously differentiable of all orders, on R×R++,

with the gradient and Hessian given by

∇ψ(x, y) =
(
x/y − 1

) 2

−(1 + x/y)

 , ∇2ψ(x, y) = (2/y)

 1 −x/y

−x/y x2/y2

 .
The Hessian has eigenvalues 0 and 2(x2 + y2)/y3. By Taylor expansion,

ψ(x′, y′)− ψ(x, y) = ⟨∇ψ(x, y), δ⟩+ 1

2
⟨δ,∇2ψ(x̃, ỹ), δ⟩

where (x̃, ỹ) is a point between (x, y) and (x′, y′). Since 0 ⪯ ∇2ψ(x̃, ỹ) ⪯ 2(x̃2 + ỹ2)/ỹ3I2

and ỹ ≥ min{y, y′} ≥ 1/c1, we obtain

∣∣⟨δ,∇2ψ(x̃, ỹ), δ⟩
∣∣ ≤ 2(x̃2 + ỹ2)

ỹ3
∥δ∥2 ≤ 4c31∥δ∥2.

We also have

∣∣⟨∇ψ(x, y), δ⟩∣∣ ≤ |x/y − 1|
√

4 + (1 + x/y)2∥δ∥ ≤ c2∥δ∥

using the assumption on the ranges of x and y. The result follows.
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B.3 Lemmas in the Proof of Theorem 4

Proof of Lemma 13 . For any x ∈ Rd, let

Wℓ(x) :=
∑
j∈S1

θjg(x, xj)1{yj = ℓ}.

From the definition of qiℓ in (2.79), we have

qiℓ =
νn
n
θiWℓ(xi).

To control qiℓ, it is enough to control Wℓ(xi). Recall that F1 = F0 ∨ σ(xS2) = σ(S1, xS2).

Note that on F1, both S1 and S2 are fixed. Then, for i ∈ S2 and j ∈ S1, we have

E[g(xi, xj) | F1] = E[g(xi, xj) |xS2 , S2]

= E[g(xi, xj) |xi]

= hzj(xi)

where we have used the independence of xi and xj. It follows that

E[Wℓ(xi) | F1] =
∑
j∈S1

θjhzj(xi)1{yj = ℓ}

=
K∑
k=1

hk(xi)R̃kℓ (B.9)

where R̃kℓ :=
∑

j∈S1
θj1{zj = k, yj = ℓ}. Furthermore, let m̃ℓ :=

∑K
k=1 R̃kℓ =

∑
j∈S1

θj1{yj =

ℓ}. The next lemma shows that Wℓ(xi) concentrates near its conditional mean.

Lemma 26. Assume that maxj∈S1 θj ≤ 1 and g(·, ·) is bounded above by 1. Then, for any

fixed x ∈ Rd, with F1-probability at least 1− 2e−t,

|Wℓ(x)− E[Wℓ(x) | F1]| ≤
√
m̃ℓt/2 (B.10)
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Proof of Lemma 26. Conditional on F1, S1 is fixed. We note that Wℓ(x) = F (xS1) where

F (·) is a function with the bounded difference property, that is, if xS1 and x′S1
differ

only in their jth coordinate, then |F (xS1) − F (x′S1
)| ≤ θj1{yj = ℓ} since the range of

g is in [0, 1]. By the McDiarmid’s inequality, with F1-probability at least 1− 2e−2u2/L2 ,

we have |Wℓ(x) − E[Wℓ(x) | F1]| ≤ u, where L2 :=
∑

j∈S1
θ2j1{yj = ℓ} ≤ m̃ℓ. Taking

u2 = tL2/2 ≤ tm̃ℓ/2 finishes the proof.

Applying the union bound over (i, ℓ) ∈ S2 × [L], we have with F1-conditional

probability at least 1− 2nLe−t,

∣∣∣Wℓ(xi)−
K∑
k=1

hk(xi)R̃kℓ

∣∣∣ ≤√m̃ℓt/2, ∀i ∈ S2, ℓ ∈ [L].

where we have used xS2 being fixed given F1. Taking t = 2 log n and noting that m̃ℓ ≤ n,

we can integrate out the conditional probability to get

P
(∣∣∣Wℓ(xi)−

K∑
k=1

hk(xi)R̃kℓ

∣∣∣ ≤√n log n, ∀i ∈ S2, ℓ ∈ [L]
)
≥ 1− 2Ln−1 (B.11)

We can write R̃kℓ =
∑n

j=1 θjUj1{zj = k, yj = ℓ}, for some i.i.d. Ber(1/2) sequence

{Uj}nj=1. Recalling the definition of Rkℓ from (2.34), we have

E[R̃kℓ] =
1

2

n∑
j=1

θi1{zj = k, yj = ℓ} = Rkℓ.

Applying Proposition 8 with v = n/4 ≥ var(R̃kℓ) and u = log n, we have

P
(
|R̃kℓ −Rkℓ| ≥

√
n log n

2
+

log n

3

)
≤ 2n−1.

By union bound, with probability at least 1− 2LKn−1,

|R̃kℓ −Rkℓ| ≤
√
n log n, ∀k ∈ [K], ∀ℓ ∈ [L]. (B.12)
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Let ∆iℓ = Wℓ(xi)−
∑K

k=1 hk(xi)Rkℓ, and consider the event,

W =
{
|∆iℓ| ≤ 2K

√
n log n, ∀i ∈ S2, ℓ ∈ [L]

}
.

Combining (B.11) and (B.12), using hk(x) ≤ 1, the triangle inequality, and K + 1 ≤ 2K,

we have P(Wc) ≤ 4KLn−1.

Next we note that

ρiℓ =
Wℓ(xi)∑′
ℓWℓ′(xi)

=

∑
k hk(xi)Rkℓ +∆iℓ∑

ℓ′

(∑
k hk(xi)Rkℓ′ +∆iℓ′

) .
Furthermore, on Γ,

∑
ℓ′

∑
k

hk(xi)Rkℓ′ =
1

2

∑
k

hk(xi)
∑
j∈S1

θj1{zj = k}

≥ 1

2
τθhrzi (xi)nrzi

≥ 1

2
τθτCτhn = τρLn

where we have used (2.33) and the definition of τρ in (2.81). By the assumption that

τρLn > 4KL
√
n log n, on event Γ ∩W , applying Lemma 27 below, we have for all i ∈ S2

and ℓ ∈ [L],

∣∣∣ρiℓ − ∑
k hk(xi)Rkℓ∑

ℓ′
∑

k hk(xi)Rkℓ′

∣∣∣ ≤ 4K
√
n log n

τρn
=

4K

τρ

√
log n

n

which is the event R. That is, we have shown R ⊇ Γ ∩W , and the claim follows.

Lemma 27. For a = (aℓ) ∈ RL
+ \ {0}, let a+ =

∑L
ℓ=1 aℓ and consider the function

U(a) = a1/a+. Let δ ∈ RL and ∥δ∥∞ = maxℓ |δℓ|. If a+ > L∥δ∥∞, then

|U(a+ δ)− U(a)| ≤ (L− 1)∥δ∥∞.
a+ − L∥δ∥∞

In particular, |U(a+ δ)− U(a)| ≤ (2L/a+)∥δ∥∞ if a+ > 2L∥δ∥∞.
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Proof of Lemma 27. The gradient of U at c ∈ RL
++ is given by

∇U(c) = 1

c2+
(c+ − c1,−c1, . . . ,−c1).

For a, a + δ ∈ RL
+, there exist c in the line-segment connecting a and a + δ such that

U(a+ δ)− U(a) = ⟨∇U(c), δ⟩. From Hölder’s inequality, we have

|U(a+ δ)− U(a)| ≤ ∥∇U(c)∥1∥δ∥∞

where

∥∇U(c)∥1 =
1

c2+

(
c+ − c1 + (L− 1)c1

)
≤ L− 1

c+
.

Noting that c+ ≥ a+ − L∥δ∥∞ finishes the proof.

Proof of Lemma 14. For x ∈ Rd, let V (x) :=
∑

j∈S1
θjg(x, xj). Recall that di =

∑
j∈S1

Aij

and for i ∈ S2, consider

d̃i := E
[
di | F2

]
=
∑
j∈S1

pij = θi
νn
n
V (xi).

We refer to (2.77) for the defintion of F1,F2, etc. Note that F1 ⊆ F2. Let m =
∑

j∈S1
θj.

Applying the same idea as in Lemma 26, we have with F1-conditional probability at least

1− 2e−t,

∣∣V (x)− E[V (x) | F1]
∣∣ ≤√tm/2 ≤

√
tn/2

where the second inequality uses θi ≤ 1 and |S1| ≤ n. Since conditional on F1, xi, i ∈ S2

are fixed, it follows that F1-conditional probability at least 1− 2ne−t,

∣∣V (xi)− E
[
V (xi) | F1

]∣∣ ≤√tn/2, ∀i ∈ S2,
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from which we get, multiplying both sides by θiνn/n and using θi ≤ 1,

∣∣d̃i − E[d̃i | F1]
∣∣ ≤ νn

√
t/(2n), ∀i ∈ S2. (B.13)

Consider the event

D1 =
{∣∣d̃i − E

[
d̃i | F1

]∣∣ ≤ νn

√
log n

n
, ∀ i ∈ S2

}
. (B.14)

Taking t = 2 log n in (B.14), we obtain P(Dc
1 | F1) ≤ n−1, hence P(Dc

1) ≤ n−1 by taking

the expecation of both sides.

Now let us control E
[
d̃i | F1

]
. For i ∈ S2, we have

E[V (xi) | F1] = E[V (xi) |xi] =
∑
j∈S1

θjhzj(xi) =
∑
r

∑
j∈S1 ∩Cr

θjhr(xi)

On Γ, by (2.33), we have hrzi (xi) ≥ τh for all i ∈ [n]. This gives,

τθτh|S1 ∩ Crzi | ≤ E[V (xi) | F1] ≤ |S1|

where we have also used 0 ≤ hk(·) ≤ 1 and τθ ≤ θj ≤ 1. On A1, we have |S1 ∩ Crzi | ≥

0.4nrzi ≥ 0.4τCn and |S1| ≤ 0.6n. It follows that on Γ ∩ A1,

0.4τ 2θ τhτCνn ≤ E[d̃i | F1] ≤ 0.6νn

for all i ∈ S2. Recall that C8 = τ 2θ τhτC. Since by assumption
√

(log n)/n ≤ 0.2C8 ≤ 0.2,

it follows that on Γ ∩ A1 ∩ D1, we have

d̃i/νn ∈ [0.2C8, 0.8], ∀i ∈ S2. (B.15)

Next we show that di has the same growth rate as d̃i. We have di | F2 ∼ Poi(d̃i) for all
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i ∈ S2. Consider the event

D2 := {|di − d̃i| ≤ 0.2d̃i, ∀i ∈ S2}. (B.16)

Applying Lemma 30, we have P(Dc
2 | F2) ≤ 2

∑
i∈S2

exp(−0.01d̃i), hence

P(Dc
2 ∩ A1 ∩ D1) = E

[
P(Dc

2 ∩ A1 ∩ D1 | F2)
]

= E[P(Dc
2 | F2)1A1∩D1 ]

= E[P(Dc
2 | F2)1A1∩D1∩Γ]

≤ 2E
[∑
i∈S2

e−0.01d̃i1A1∩D1∩Γ

]
≤ 1.2ne−0.002C8νn .

where the second equality is since A1 ∩ D1 is deterministic given F2, the third equality is

by P(Γ) = 1, and the final inequality uses (B.15) and that |S1| ≤ 0.6n on A1; see (2.74).

The LHS above is also equal to P(Dc
2 ∩ A1 ∩ D1 ∩ Γ). Hence,

P(Dc
2 ∩ A1 ∩ D1 ∩ Γ) ≤ 1.2n−1

using the assumption (log n)/νn ≤ C8/1000. We note that on Γ ∩ A1 ∩ D1 ∩ D2, we

have (B.15) and di/d̃i ∈ [0.8, 1.2], which imply di/νn ∈ [0.16C8, 0.96], that is, A2 hold. Let

D = D1 ∩ D2. We have Dc = Dc
1 ⊎ (Dc

2 ∩ D1) where ⊎ denotes the disjoint union. Then,

P(Dc ∩ A1) = P(Dc
1 ∩ A1) + P(Dc

2 ∩ D1 ∩ A1)

≤ P(Dc
1) + P(Dc

2 ∩ A1 ∩ D1 ∩ Γ) ≤ 2.2n−1

and the result follows.

Proof of Lemma 15. We first develop a lower bound for Hℓzi
(xi). Using the ℓk defined

in (2.35),

Rkℓk ≥ 1

L

∑
ℓ

Rkℓ ≥
τθnk
2L

=
τθτC
2L

n
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Recall that on event Γ, hrzi (xi) ≥ τh. Then we can control the numerator of Hℓzi
(xi) by

∑
k

hk(xi)Rkℓzi
≥ hrzi (xi)Rrziℓzi

≥ τθτCτh
2L

n (B.17)

To control its denominator, using θj ≤ 1 and hk(xi) ≤ 1, we have

∑
ℓ′

∑
k

hk(xi)Rkℓ′ ≤
∑
ℓ′

∑
k

Rkℓ =
1

2

n∑
j=1

θj ≤
1

2
n. (B.18)

Combining (B.17) and (B.18) and the definition of Hℓ(xi), we obtain Hℓzi
(xi) ≥ 2τρ.

Finally, by definition (2.82), on R, we have

ρiℓzi ≥ Hℓzi
(xi)−

4K

τρ

√
log n

n
,

which together with the assumption on logn
n

gives the desired result.

Proof of Lemma 16. Conditioning on F , the quantities Gk, ρ̄kℓ, (di, i ∈ S2) and dk+ are

fixed. Moreover, by (2.80) we have Xiℓ | F ∼ Bin(di, ρiℓ). Then, by Proposition 4,

PF
(∣∣∣∑

i∈Gk

(Xiℓ − diρiℓ)
∣∣∣ ≥ √

2vu+
u

3

)
≤ 2e−u

for any v ≥ var(
∑

i∈Gk
Xiℓ) and PF denote the probability conditional on F . We have

var(
∑

i∈Gk
Xiℓ) =

∑
i∈Gk

diρiℓ(1− ρiℓ) ≤ dk+/4 . Taking v = dk+/4, u = 2 log n, we have

PF

(
|∆̃kℓ| ≥

√
log n

dk+
+

2 log n

3dk+

)
≤ 2n−2.

From (2.84), on event A, we have dk+ ≥ 0.064τCC8nνn ≥ log n for all k ∈ [K], where the

second inequality is by assumption. It follows that

√
log n

dk+
+

2 log n

3dk+
≤ 2

√
log n

dk+
≤ 8√

τCC8

√
log n

nνn
.

Therefore, PF(Bc ∩ A) = PF(Bc)1A ≤ 2KLn−2 ≤ 2Ln−1 by union bound and since on
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F , the event A is deterministic. The result follows by taking the expectation to both

sides.

Proof of Lemma 17. We use an idea similar to the one used in Lemma 6 in the proof of

Proposition 2. We note that δ plays a similar role in both proofs, and ρ̄kℓ and ρ̃kℓ here

play the role of pkℓ and p̃kℓ there. Let

τd :=
ωn

maxi∈S2 di
. (B.19)

Combining (2.83) and (2.85), on A, we have

τd ≥ τCC8/9. (B.20)

By Lemma 15, on Γ ∩R, we have ρ̄kℓk ≥ τρ for all k ∈ [K]. Hence, τρ plays the role of p

in Proposition 2.

Then, to apply Lemma 6, we need αn ≤ τdτρ/2 and δ ≤ τρ/2, with τρ. By (B.20),

the first condition is satisfied on A, if αn ≤ τCτρC8/18, which holds by assumption. Then,

the equivalent of Lemma 6 in this proof implies that on B ∩Mn ∩ (Γ ∩R ∩A), we have

|∆̂kℓk | ≤ δ̂ · ρ̃kℓk for all k ∈ [K], where

δ̂ :=
6

ρ τd
αn ≤ 54

τρτCC8

αn.

Proof of Lemma 18. The proof is similar to that of Lemma 16 to which we refer for more

details. We have Xiℓ | F ∼ Bin(di, ρiℓ). Hence, by Proposition 8,

PF
(
|ξiℓ − ρiℓ| ≥

√
log n

di
+

2 log n

3di

)
≤ 2n−2.

Recalling (2.83), on A, we have di ≥ 0.16C8νn for i ∈ S2 and by assumption log n ≤
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0.16C8νn. Hence, on A,

√
log n

di
+

2 log n

3di
≤ 5

√
log n

C8νn

By union bound over ℓ ∈ [L], we obtain PF(Ec ∩ A) ≤ 2Ln−1. The result then follows by

taking the expectation to both sides.

Proof of Lemma 19. Let V((ai), (pi)) be the variance of a random variable that takes

values ai with probability pi, that is,

V((ai), (pi)) =
∑
i

pi

(
ai −

∑
j

pjaj

)2
=

1

2

∑
i,j

pipj(ai − aj)
2.

Note that ϖk = V((ρiℓk), (di/dk+)). The next step is to show that in the definition of ϖk,

we can replace ρiℓk with Hℓk(xi) and di/dk+ with deterministic quantities.

Lemma 28. For ai, bi ∈ R, with maxi |ai − bi| ≤ ε, we have |ai − aj| ≥ |bi − bj| − 2ε.

Proof of Lemma 28. Assume |a1 − b1| ≤ ε and |a2 − b2| ≤ ε. Then,

|a1 − a2| = |(b1 − b2) + (a1 − b1)− (a2 − b2)|

≥ |b1 − b2| − |(a1 − b1)− (a2 − b2)|

≥ |b1 − b2| − |a1 − b1| − |a2 − b2|

≥ |b1 − b2| − 2ε.

Let us define

ζn :=
4τθL

C8

√
log n

n
=

4L

τCτhτθ

√
log n

n
. (B.21)

so that on R, we have (see (2.82))

|ρiℓ −Hℓ(xi)| ≤ ζn ∀i ∈ S2, ∀ℓ ∈ [L].

133



Then, by Lemma 28, for all k ∈ [K],

|ρiℓk − ρjℓk | ≥ |Hℓk(xi)−Hℓk(xj)| − 2ζn.

Using the fact that a ≥ b− c implies a2 ≥ 1
2
b2 − c2 for b ≥ 0, we have

(ρiℓk − ρjℓk)
2 ≥ 1

2
[Hℓk(xi)−Hℓk(xj)]

2 − 4ζ2n

Let sk := |Gk| Recall that dk+ =
∑

i∈Gk
di. Then, on A, we have

di
dk+

≥ 0.16C8νn
0.96νnsk

=
C8

6sk
.

It follows that on A ∩R, we have

ϖk =
1

2

∑
i,j∈Gk

di
dk+

dj
dk+

(ρiℓk − ρjℓk)
2

≥ 1

2

C2
8

36s2k

∑
i,j∈Gk

(1
2
[Hℓk(xi)−Hℓk(xj)]

2 − 4ζ2n1{i ̸= j}
)

≥ 1

4

C2
8

36

[ 1

4
(
sk
2

) ∑
i,j∈Gk

[Hℓk(xi)−Hℓk(xj)]
2 − 8ζ2n1{i ̸= j}

]
(B.22)

since by (2.76) sk ≥ 2 and hence 4
(
sk
2

)
≥ s2k. The first term above is proportinal to a

U -statistic providing an estimate of the variance of Hℓk(x), x ∼ Qk based on an i.i.d.

sample xi ∼ Qk, i ∈ Gk (assuming that S2 is fixed). An argument using the Hansen–

Wright inequality shows that such a quantity is concentrated around its mean, which is the

population variance. We use the following result from [Kaz+17], with slight modifications:

Proposition 7 (Corollary 3 in [Kaz+17]). Let w = (w1, . . . , wm) ∈ Rm be a random

vector with independent components wi which satisfy ∥wi − Ewi∥ψ2 ≤ K. Let

imp(w) :=
1(
m
2

) ∑
1≤i,j≤m

1

4
(wi − wj)

2
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be the empirical variance of w. Then, there is a universal constant c > 0 such that for

u ≥ 0,

P
(
imp(w)− E imp(w) < −K2u

)
≤ exp

{
−c (m− 1)min(u, u2)

}
. (B.23)

We note the alternative expression imp(w) =
(
m
2

)−1∑
1≤i<j≤m

1
2
(wi − wj)

2. In the

context of Proposition 7, if w1, . . . , wm are i.i.d., then

E imp(w) =
1

2
E(w1 − w2)

2 = var(w1).

Since Hℓk(·) is bounded in [0, 1], we have ∥Hℓk(xi) − EHℓk(xi)∥ψ2 ≤ 1. Recall that

ϑkℓ = var(Hℓ(x)) when x ∼ Qk. Then, conditional on F0 = σ(S1) so that Gk is fixed, we

have for i, j ∈ Gk and i ̸= j,

1

2
E[Hℓk(xi)−Hℓk(xj)]

2 = ϑkℓk

Applying the Proposition 7, we obtain, for u ∈ [0, 1],

PF0

( 1

4
(
sk
2

) ∑
i,j∈Gk

[Hℓk(xi)−Hℓk(xj)]
2 < ϑkℓk − u

)
≤ e−c(sk−1)u2

On A, sk − 1 ≥ sk/2 ≥ 0.2τCn. Take u = un :=
√

log n/(τCn). By the scaling assumption

log n/n ≤ τC, we have un ≤ 1, hence

PF0

( 1

4
(
sk
2

) ∑
i,j∈Gk

[Hℓk(xi)−Hℓk(xj)]
2 < ϑkℓk − un

)
1A∩R ≤ n−c1

where c1 = 0.2c. Combining with (B.22)

PF0
(144
C2

8

ϖk + 4ζ2n < ϑkℓk − un
)
1A∩R ≤ n−c1
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Taking the union bound and removing the conditioning, we get

P
({

∃k ∈ [K],
144

C2
8

ϖk + 4ζ2n < ϑkℓk − un
}
∩ A ∩R

)
≤ Kn−c1

Let us call the first event above Hc. Then, on H, we have

144

C2
8

ϖk ≥ ϑkℓk − (4ζ2n + un), ∀k ∈ [K]. (B.24)

We have, using assumption ζn ≤ 1,

4ζ2n + un ≤ 4ζn + un ≤ 16L

τCτhτθ

√
log n

n
+

√
log n

τCn
≤ 18L

τCτhτθ

√
log n

n
(B.25)

since τC ≤ 1.

B.4 Other Technical Results

Lemma 29. Assume that Z is a random variable taking values z1, . . . , zR with probabilities

β̂1, . . . , β̂R respectively. Then, var(Z) ≥ 1
2
β̂1β̂2(z1 − z2)

2.

Proof. Let Z ′ be an independent copy of Z. Then var(Z) = 1
2
E(Z − Z ′)2, and (Z,Z ′)

takes value (z1, z2) with probability β̂1β̂2. The result follows.

Lemma 30. Let X ∼ Poi(λ). Then, for any t ∈ (0, 1],

P(|X − λ| ≥ tλ) ≤ 2 exp(−λt2/4).

Proof of Lemma 30. Fix t ∈ (0, 1]. For θ ∈ (0, 1.79], by the Chernoff bound,

P(X − λ ≥ tλ) ≤ e−θtλE[e(X−λ)θ] = e−θtλ exp(λ(eθ − 1− θ)) ≤ eλθ
2−θtλ

using eθ − 1− θ ≤ θ2 when θ ≤ 1.79. Since λθ2 − θtλ attains its minimum at θ = t/2 ≤ 1,
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we obtain P(X − λ ≥ tλ) ≤ exp(−λt2/4). On the other hand,

P(λ−X ≥ tλ) ≤ e−θtλE[e(λ−X)θ] = e−θtλ exp(λ(e−θ − 1 + θ)) ≤ eλθ
2/2−θtλ

using e−θ−1+θ ≤ θ2/2 for θ ≥ 0. Since λθ2/2−θtλ attains its smallest value at θ = t ≤ 1,

we get P(λ−X ≥ tλ) ≤ exp(−λt2/2), finishing the proof.

Proposition 8 (Giné and Nickl [GN15] Theorem 3.1.7). Let S =
∑n

i=1Xi where {Xi}

are independent random variables with |Xi − EXi| ≤ c for all i. Let v ≥ var(S). Then,

for all u ≥ 0,

P
(
|S − ES| ≥

√
2vu+

cu

3

)
≤ 2e−u.

In particular, if S ∼ Bin(n, p), then we can take v = E[S] ≥ var(S). Letting p̂ = S/n,

the result gives P
(
|p̂− p| ≥

√
2pu
n

+ u
3n

)
≤ 2e−u.
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Chapter C

Remaining Proofs in Chapter 3

C.1 Proofs of Propositions

C.1.1 Proof of Propostion 3

For α ∈ [0, π/2), consider a constellation of points in R2 at locations a1 = (ε sinα −

δ, ε cosα), a2 = (−ε sinα−δ,−ε cosα), b1 = (−ε sinα, ε cosα) and b2 = (ε sinα,−ε cosα).

Assume that n/4 of the data points are on each of the points a1, a2, b1 and b2. Assume

that data points in {a1, a2} form cluster 1 and points in {b1, b2} form cluster 2. That is,

this is the true cluster labels as specified by an external source. The true cluster centers

are then at locations ξ∗1 = (−δ, 0) and ξ∗2 = (0, 0). We also have ( 1
n

∑
i ||xi − ξ∗zi ||

2)1/2 = ε

for true cluster labels {zi}. Now take δ = ε sinα. Figure C.1 shows the geometry of this

construction.

To show the result, it is enough to use Theorem 6 with properly chosen (fake) centers

on the above dataset. In particular, we are going to show that a 2-factor k-means algorithm

has a small misclassification rate with respect to a new clustering that puts points {a1, b1}

in one cluster and {a2, b2} in another cluster. Consider “fake” centers ξ∗∗1 = (a1+ b1)/2 and

ξ∗∗2 = (a2 + b2)/2. Then, the new separation is δ∗ = 2ε cosα and the new deviation can be

taken to be ε∗ = δ/2 + ε sinα = (3/2)ε sinα guaranteeing that ( 1
n

∑
i ∥xi − ξ∗∗yi ∥

2)1/2 ≤ ε∗

where {yi} are labels relative to the new clustering.

Applying Theorem 6 with κ = p = 2, c = 2.1 and πmin = 1/2, as long as δ∗/ε∗ ≥

9 > 3
√
2c, the misclassification rate to the new clustering is bounded above as Miss∗ ≤
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Figure C.1: The geometry of the dataset in Proposition 3

80(ε∗/δ∗)2. We have ε∗/δ∗ = (3/4) tanα. Thus, for α ≤ tan−1(4/27) we have Miss∗ ≤

45(tanα)2 w.r.t. to clustering {{a1, b1}, {a2, b2}}. Hence, w.r.t. the original clustering,

1
2
≥ Miss ≥ 1

2
− 45(tanα)2, which can be made arbitrarily close to 1

2
by choosing α small

enough.

To see the last step above, let q1, q2, q3, q4 be the fractions of misclassified nodes from

each of the four categories a1, a2, b1, b2, w.r.t. to the new clustering (i.e., {yi}). The above

argument shows that 1
4
(q1 + q2 + q3 + q4) ≤ 45(tanα)2. The misclassification rate to the

original clustering (i.e., {zi}) is then

Miss =
1

n

(n
4
(1− qi1) +

n

4
(1− qi2)

)
=

1

2
− 1

4
(qi1 + qi2) ≥

1

2
− 45(tanα)2

where {i1, i2} is a pair of distinct elements from {1, 2, 3, 4}. This proves the lower bound.

The upper bound Miss ≤ 1/2 always holds due to the minimization over permutations in

the definition of the misclassification rate.

Since for β ∈ (0, 1/2),
√
β/45 ≤ 4/27, we only need α ≤ tan−1(

√
β/45) to have

1
2
≥ Miss ≥ 1

2
− β. Recalling that δ/ε = sinα, this shows that one can take c2(β) =

sin(tan−1(
√
β/45)) in the statement of the lower bound.

For the claim regarding perfect recovery with L = 4 clusters, take ξ∗∗1 = a1, ξ∗∗2 = b1,
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ξ∗∗3 = a2 and ξ∗∗4 = b2 and apply Theorem 1, noting that δ∗ = mini ̸=j ∥ξ∗∗i − ξ∗∗j ∥ > 0 while

we can take ε∗ = 0.

C.1.2 Proof of Proposition 4

Let mk be the mean of Qk. Then, P(|ti −mzi | > t) ≤ 2e−t
2/2σ2 . Let M =

√
6σ2 log n. By

union bound, with probability ≥ 1 − 2n−2 we have |ti −mzi | ≤ M for all i ∈ [n]. We

can cover the set [−M,M ] ⊂ R, with L′ = M/ε 1-D balls of radius ε. (Without loss of

generality, we assume that L′ is an integer for simplicity.) Let T = {τ1, . . . , τL′} one such

cover and note that mk + T is an ε-cover of mk + [−M,M ]. Let πk : R → (mk + T ) be

the projection from R onto mk + T . Then, ∥γzi(ti)− γzi(πzi(ti))∥ ≤ ρ|ti − πzi(ti)| ≤ ρε,

assuming that ε ≤ 1/ρ.

Let z′i := argminℓ′∈[L′] |ti− (mzi + τℓ′)| so that πzi(ti) = mzi + τz′i . Then let Ln = KL′

and fix a bijection ϕ : [Ln] → [K] × [L′] and define the labels z̃i = ϕ−1(zi, z
′
i). Also

consider the map ω0 : [K]× [L′] → [K] given by ω0(k, ℓ
′) = k and set ω̃ := ω0 ◦ ϕ which is

a surjective map from [Ln] to [K] satisfying ω̃(z̃i) = zi. For ℓ ∈ [Ln] with ϕ(ℓ) = (k, ℓ′),

define ξ̃ℓ = γk(mk+ τℓ′). Then, we have ξ̃z̃i = γzi(mzi + τz′i) = γzi(πzi(ti)), hence the above

argument gives ∥γ(ti)− ξ̃z̃i∥ ≤ ρε. It is also clear that the the separation condition (3.11)

is satisfied since by construction if ω̃(ℓ1) ̸= ω̃(ℓ2) with ϕ(ℓ1) = (k1, ℓ
′
1) and ϕ(ℓ2) = (k2, ℓ

′
2),

then k1 ̸= k2 hence ξ̃ℓ1 and ξ̃ℓ2 lie on different manifolds (on Ck1 and Ck2). It follows

that conclusion (3.12) of Theorem 7 holds for p = 2 and, say, c = 3 but with ε replaced

with ρε. Take ε = (c1
√
n)−1 for constant c1 to be determined. Let c2 = 3ρ(1 + κ)/δ.

As long as nπmin > (c2/c1)
2, the separation condition in (3.12) is satisfied and we have

Mis(z, ẑ) ≤ K(c2/c1)
2/n. Hence, as long as c1 >

√
Kc2, we will have Mis(z, ẑ) < 1/n

which implies Mis(z, ẑ) = 0. We also need to satisfy ε < 1/ρ that is c1 ≥ ρ/
√
n. Taking

c1 =
√
Kc2+ ρ satisfies all the required constraints on c1. The required number of clusters

is

Ln = KL′ = KM/ε ≤ 3Kσc1
√
n log n,

which proves the result with C = 3Kσc1. Note that since c2/c1 < 1 and nπmin ≥ 1, the

condition nπmin > (c2/c1)
2 is automatically satisfied. The proof is complete.
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C.1.3 Proof of Proposition 5

The proof follows that of Proposition 4. We only highlight the differences. When zi = k,

by Lemma 31, ∥ti −mk∥ is sub-gaussian with parameter ≤ c0σ
√
rk for some universal

constant c0 > 0. Thus, we have P(∥ti−mk∥ ≥ t) ≤ 2e−c0t
2/(rkσ

2). Let M =
√

3c0rσ2 log n.

By union bound, with probability at least 1− 2n−2, we have ∥ti−mzi∥ ≤M for all i ∈ [n].

The ε-cover has to be constructed for {u : ∥u∥ ≤M} in the ℓ2 norm, which can be done

with a net of size at most L′ = (1+ 2M/ε)r. Take ε = (c1n
1/p)−1 and let c2 = 3ρ(1+ κ)/δ.

As long as nπmin > (c2/c1)
p, the separation condition in (3.12) is satisfied and we have

Mis(z, ẑ) ≤ K(c2/c1)
p/n. Hence, as long as c1 > K1/pc2, we will have Mis(z, ẑ) < 1/n

which implies Mis(z, ẑ) = 0. We also need to satisfy ε < 1/ρ that is c1 ≥ ρ/
√
n. Taking

c1 = K1/pc2+ρ satisfies all the required constraints on c1. The required number of clusters

is

Ln = KL′ = K(1 + 2M/ε)r = K(1 + 2c1
√

3c0rσ2n1/p
√

log n)r

≤ C(n1/p
√
log n)r

for C = K(2 + 2c1
√
3c0rσ2)r. Here, we have used 1 ≤ 2n1/p

√
log n for n ≥ 2. Note that

since c2/c1 < 1 and nπmin ≥ 1, the condition nπmin > (c2/c1)
p is automatically satisfied.

The proof is complete.

C.2 Proof of Lemmas

Proof of Lemma 20. The proof is based on the connection between the sub-gaussian and

sub-exponential norm. First recall the sub-gaussian norm of X is defined as ∥X∥ψ2 =

supu∈Sd−1 ∥uTX∥ψ2 , where ∥ · ∥ψ2 denotes the sub-gaussian norm of a random variable

and Sd−1 the unit sphere in Rd. Alternatively, we can define a sub-gaussian vector with

parameter σ, as a random vector satisfying P(|uTX| ≥ t) ≤ 2 exp(− t2

2σ2 ) for all u ∈ Sd−1

and t ≥ 0. We will have σ ≍ ∥X∥ψ2 . We also use ∥ · ∥ψ1 for the sub-exponential norm of a

random variable. For any random variable, we have ∥Y 2∥ψ1 = ∥Y ∥2ψ2
[Ver18, Lemma 2.7.6].
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Below we apply this fact with Y = ∥X∥ = (
∑d

i=1X
2
i )

1/2, leading to the following useful

lemma.

Lemma 31. Assume that X ∈ Rd is a sub-gaussian random vector with parameter σ.

Then, ∥X∥ is sub-gaussian with parameter ≲ σ
√
d. In fact, for some universal constant

C > 0,

∥∥X∥∥ψ2 ≤ Cσ
√
d, ∥∥X∥2∥ψ1 ≤ C2σ2d.

Proof. We have ∥∥X∥2∥ψ1 ≤
∑d

i=1 ∥X2
i ∥ψ1 =

∑d
i=1 ∥Xi∥2ψ2

≤ dC2σ2, for some universal

constant C2 > 0. The first inequality is the triangle inequality for ∥ · ∥ψ1 and the second

by the equivalence of the sub-gaussian norm and sub-gaussian parameter. Next, we note

that ∥∥X∥∥ψ2 =
√

∥∥X∥2∥ψ1 and the result follows.

Then, by Lemma 31, ∥wi∥2/d is sub-exponential with sub-exponential norm ≲ σ2
i .

By the Bernstein inequality for sub-exponential variables [Ver18, Corollary 2.8.3],

P
( 1
n

( n∑
i=1

∥wi∥2

d
− α2

i

)
> t
)
≤ exp

(
−cnmin

( t2

σ4
max

,
t

σ2
max

))
.

Let t = ᾱn, and recall that ᾱ2
n/σ

2
max ≤ C. Then the result follows.

Proof of Lemma 21. Recall that ξ̂ is the output of ALG for L clusters. Let ξ̂(K) be the

output of the ALG for K clusters. Then, since L ≥ K,

Q̂(ξ̂) ≤ Q̂(ξ̂(K)) ≤ κ Q̂
(K)
min, where Q̂

(K)
min := min

ξ∈XK
Q̂(ξ).

The first inequality is by the monotonicity of ALG and the second by its constant-factor

approximation property. Since by assumption ξ∗ ∈ XK , we have

Q̂
(K)
min ≤ Q̂(ξ∗) ≤

( 1
n

n∑
i=1

∥xi − ξ∗zi∥
p
)1/p

≤ ε.

It follows that Q̂(ξ̂) ≤ κε. Recalling (3.14) and noting that Q̂(ξ̂) =
(
1
n

∑n
i=1 ∥xi− ξ̂ẑi∥p

)1/p,
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we have

Q(ξ̂;µ∗) =
( 1
n

n∑
i=1

min
ℓ∈[L]

∥ξ∗zi − ξ̂ℓ∥p
)1/p

≤
( 1
n

n∑
i=1

∥ξ∗zi − ξ̂ẑi∥p
)1/p

≤
( 1
n

n∑
i=1

∥xi − ξ∗zi∥
p
)1/p

+
( 1
n

n∑
i=1

∥xi − ξ̂ẑi∥p
)1/p

≤ ε+ κε (C.1)

where the second line is the triangle inequality in the aforementioned Lp(νn,X ) space.

The proof is complete.

Proof of Lemma 22. Consider the partition of the space by the Voronoi cells of ξ = (ξℓ).

Assume first that there is a Voronoi cell that contains at least two distinct elements of

ξ∗, e.g., ξ∗k1 and ξ∗k2 , with k1 ̸= k2, both belonging to the Voronoi cell of ξℓ0 . That is,

minℓ ∥ξ∗k − ξℓ∥ = ∥ξ∗k − ξ∗ℓ0∥ for k = k1, k2. As ∥ξ∗k1 − ξ∗k2∥ ≤ ∥ξ∗k2 − ξ∗ℓ0∥ + ∥ξ∗k1 − ξ∗ℓ0∥, at

least one of the k = k1, k2 satisfy ∥ξ∗k − ξ∗ℓ0∥ ≥ ∥ξ∗k1 − ξ∗k2∥/2, and assume this is true for

k = k1, we have

Q(ξ;µ∗) ≥ π
1/p
min∥ξ∗k1 − ξℓ0∥ ≥ π

1/p
min

2
∥ξ∗k1 − ξ∗k2∥ ≥ π

1/p
min

2
δ.

Otherwise, each Voronoi cell of ξ contains at most one element of ξ∗. On the other

hand, each element of ξ∗ belongs to at least one Voronoi cell of ξ, since the union of

Voronoi cells is the whole space. It follows that there are K distinct Voronoi cells of ξ, each

of which contains exactly one element of ξ∗. Thus, there is an injective map σ : [K] → [L]

such that ξ∗k belongs to Voronoi cell of ξσ(k), that is, minℓ ∥ξ∗k − ξℓ∥ = ∥ξ∗k − ξσ(k)∥. Then,

Q(ξ;µ∗) ≥ π
1/p
min

( K∑
k=1

∥ξ∗k − ξσ(k)∥p
)1/p

≥ π
1/p
min dp(ξ, ξ

∗).

The proof is complete.

Proof of Lemma 23. By assumption, there exists an injective map σ : [K] → [L] such
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that

max
k∈K

∥ξ∗k − ξ̂σ(k)∥ ≤ γ.

Then, σ is invertible on Im(σ) := {σ(k) : k ∈ [K]}, with an inverse denoted as σ−1. We

obtain

∥ξ∗σ−1(ℓ) − ξ̂ℓ∥ ≤ γ, ∀ℓ ∈ Im(σ). (C.2)

First assume that ẑi ∈ Im(σ). We prove that σ(zi) = ẑi by contradiction. Suppose that

σ(zi) ̸= ẑi. Then, we show that ∥xi−ξ̂σ(zi)∥ < ∥xi−ξ̂ẑi∥ contradicting ẑi = argmin
ℓ

∥xi−ξ̂ℓ∥2.

By the triangle inequality

∥xi − ξ̂σ(zi)∥ ≤ ∥xi − ξ∗zi∥+ ∥ξ̂σ(zi) − ξ∗zi∥ ≤ η + γ. (C.3)

Since ẑi ∈ Im(σ) and σ(zi) ̸= ẑi, we have σ−1(ẑi) ̸= zi. By (C.2), ∥ξ̂ẑi − ξ∗σ−1(ẑi)
∥ ≤ γ.

Therefore,

∥xi − ξ̂ẑi∥ ≥ ∥ξ̂ẑi − ξ∗zi∥ − ∥xi − ξ∗zi∥

≥ ∥ξ∗zi − ξ∗σ−1(ẑi)
∥ − ∥ξ̂ẑi − ξ∗σ−1(ẑi)

∥ − η

≥ δ − γ − η. (C.4)

Since by assumption δ > 2γ + 2η, the claimed contradiction follows by combining (C.3)

and (C.4). Hence, we have σ(zi) = ẑi when ẑi ∈ Im(σ). Define ω(·) = σ−1(·) on

Im(σ) ⊂ [L]. Then, ω satisfies ω(ẑi) = zi whenever ẑi ∈ Im(σ). This finishes proof for the

case L = K.

Next, we define ω for ℓ0 /∈ Im(σ). Since ξ̂ is an efficient solution, there exists

at least one i ∈ [n] such that ẑi = ℓ0. When there is only one such i, we can just

let ω(ℓ0) = ω(ẑi) = zi. When there are at least two data points xi and xj such that

ẑi = ẑj = ℓ0, we are going to show, by contradiction, that their true cluster labels must be

the same, i.e., zi = zj . Suppose that zi ̸= zj , then we will show that ∥xi−ξ̂ℓ0∥ > ∥xi−ξ̂σ(zi)∥

which contradicts xi being in the Voronoi cell of ξ̂ℓ0 . Inequality (C.3) still holds in this
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case. Furthermore

∥xi − ξ̂ℓ0∥ ≥ ∥ξ̂ℓ0 − ξ∗zi∥ − ∥xi − ξ∗zi∥

≥ ∥xj − ξ∗zi∥ − ∥xj − ξ̂ℓ0∥ − η

≥ ∥ξ∗zi − ξ∗zj∥ − ∥xj − ξ∗zj∥ − ∥xj − ξ̂ℓ0∥ − η

≥ δ − 2η − ∥xj − ξ̂ℓ0∥. (C.5)

Since xj is in the Voronoi cell of ξ̂ℓ0 and ℓ0 /∈ Im(σ), we have ℓ0 ̸= σ(zj). Therefore,

∥xj − ξ̂ℓ0∥ ≤ ∥xj − ξ̂σ(zj)∥

≤ ∥xj − ξ∗zj∥+ ∥ξ̂σ(zj) − ξ∗zj∥

≤ η + γ. (C.6)

Combining inequalities (C.3), (C.5) and (C.6) and using the assumption δ > 2γ + 4η, we

get

∥xi − ξ̂ℓ0∥ ≥ δ − 3η − γ > η + γ ≥ ∥xi − ξ̂σ(zi)∥

which is the claimed contradiction. Therefore, we can define ω on [L] \ Im(σ) so that

ω(ẑi) = zi when ẑi /∈ Im(σ). Combining with the definition of ω on Im(σ), we have

successfully constructed a surjective map ω : [L] → [K] satisfying ω(ẑi) = zi for all i ∈ [n].

The proof is complete.
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