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ARTICLE INFO ABSTRACT
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Chinese hamster ovary (CHO) cells are extensively used for the production of glycoprotein therapeutics proteins,
for which N-linked glycans are a critical quality attribute due to their influence on activity and immunogenicity.
Manipulation of protein glycosylation is commonly achieved through cell or process engineering, which are often
guided by mathematical models. However, each study considers a unique glycosylation reaction network that is
tailored around the cell line and product at hand. Herein, we use 200 glycan datasets for both recombinantly
produced and native proteins from different CHO cell lines to reconstruct a comprehensive reaction network,
CHOGlycoNET, based on the individual minimal reaction networks describing each dataset. CHOGlycoNET is
used to investigate the distribution of mannosidase and glycosyltransferase enzymes in the Golgi apparatus and
identify key network reactions using machine learning and dimensionality reduction techniques. CHOGlycoNET
can be used for accelerating glycomodel development and predicting the effect of glycoengineering strategies.
Finally, CHOGlycoNET is wrapped in a SBML file to be used as a standalone model or in combination with CHO

cell genome scale models.

1. Introduction

Most biotherapeutics are produced in Chinese Hamster Ovary (CHO)
cells, which are the workhorse of recombinant protein production in
both industrial and academic environments (Walsh, 2018). The design
of cell- or process-level glycoengineering strategies to improve the
quality profile of glycoprotein-based biotherapeutics is inextricably
linked to the underlying glycosylation reaction network (RN) of the host
cell line. Depending on the complexity of the protein glycoprofile, a
range of significantly diverse RNs has been proposed in different studies,
accounting from just 25 up to 40,000 reactions for recombinant
immunoglobulin G (IgG) products and host cell proteins (HCPs),
respectively (Spahn et al., 2016; Kremkow and LeeGlyco-Mapper, 2018;

* Corresponding authors.

Krambeck et al., 2017; Jimenez del Val et al., 2011; Hutter et al., 2017).
The reconstruction of a RN that is specific to the desired glycoprotein
and representative of the machinery of the host cell line is an intricate
and time-consuming task. Thus, several algorithms have been developed
for the automated RN design or reconstruction, based on experimentally
observed glycomic data (Liu and Neelamegham, 2014; Krambeck et al.,
2009). Due to competition of glycosyltransferases (GTs) for the same
oligosaccharide substrates attached to the glycoprotein, especially
among the GTs that reside in the later compartments of the Golgi
apparatus, the number of reactions included in the RN disproportionally
increases with the complexity of the glycoprofile. However, thousands
of possible reactions can be generated, the vast majority of which may
not actually occur due to low enzyme levels and steric hindrance
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imposed by the structural conformation of the glycoproteins.

Large RNs carrying hundreds of muted reactions can decelerate
model refinement and gene engineering optimization. Conversely,
reduced networks based on wild-type cell lines are likely to omit un-
derlying latent or inactive reactions and may therefore prove inadequate
for describing the effect of GT knockout or overexpression studies. For
example, the knockout of Mgat2, Mgat4A/B and Mgat5 genes (GnTII,
GnTIV and GnTV enzymes, respectively), which are responsible for N-
glycan antenna formation via the addition of beta-N-acetylglucosamine
(GIcNAc) residues to a tri-mannosyl core, might lead to poly-N-
acetyllactosamine (poly-LacNAc) extensions of the monoantennary
glycan through the downstream activity of iGnT and b4GalT glycosyl-
transferases (b3GnT2 and b4GalT1-7 encoding genes, respectively).
However, the reaction that would lead to the production of mono-
antennary poly-LacNAc extension (Fig. 1A) is not directly observed in
wild-type CHO cells that express recombinant erythropoietin (EPO)
(Yang et al., 2015) and would therefore be omitted when constructing a
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RN solely based on wild-type cell data. This problem would equally
affect any statistical or stochastic glycosylation models that do not
encompass alien glycans missing from the training dataset. Previously,
unknown reactions in the IgG glycosylation pathway have been mapped
in silico, through the utilization of Gaussian graphic models on glycomics
data, in an effort to shed light on the hidden reactions of protein
glycosylation (Benedetti et al., 2017).

Here, we present CHOGlycoNET, a comprehensive network of
glycosylation reactions that accounts for all experimentally observed
glycans on recombinant proteins and both intracellular/membrane and
secreted HCPs in two major CHO cell lineages, CHO-S and CHO-K1. We
collected the largest compendium of CHO cell glycoprofiles, consisting
of 200 datasets from seven labs (Fig. 1B) to extract possible latent re-
actions that could be activated across diverse genetic glycoengineering
and metabolic (process) perturbation scenarios for several recombinant
glycoproteins and CHO cell HCPs (Fig. 1B). In all studies considered for
RN construction, the glycans were identified using mass spectrometry
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Fig. 1. (A) Latent or inactive reactions only observed in knockout cell lines. In the presented pathway, the knockout of GnTII (Mgat2), GnTIV (Mgat4A & Mgat4B)
and GnTV (Mgat5) results in the formation of poly-LacNAc mono-antennary glycans. While the reactions for the poly-LacNAc mono-antennary glycan formation can
occur in the wild-type cells as well, the flux is directed towards the synthesis of bi-antennary and consequently tri-antennary glycans in the wild-type cells. (B)
Datasets utilized for the construction of CHOGlycoNET: Kontoravdi/Haslam Lab (in-house), Lewis Lab (in-house), Haslam Lab (North et al., 2010), Betenbaugh Lab
(Yin et al., 2015), Borth Lab (Bydlinski et al., 2018), Kildegaard Lab (Amann et al., 2018, 2019) and Clausen Lab (Yang et al., 2015). DAO: D-amino acid oxidase, Fc:
fragment crystallizable region. (C) Enzymes involved in N-linked glycosylation occurring in the Golgi apparatus and considered for the reconstruction of the dRN. The
genes known to express the respective enzymes in CHO cells are also reported. (D) Major glycosyltransferase activity in glycosylation (not CHO specific). (E)
Designation of unique reactions in the scenario of Mgat4 knockout that demonstrate the activity of the iGnT enzyme. The comparison between wild-type (WT) and
genetically modified cell lines, as illustrated, enables the identification of reactions that are uniquely active in genetically modified cell lines. (F) Preference rules for
the processing of iGnT (B3gnt2) products by a3SiaT (St3gal3, St3gal4 & St3gal6) and b4GalT (B4galtl-B4galt7). To effectively reduce the number of reactions
considered in CHOGlycoNET, iGnT was assumed to act on a single branch of the substrate and further processing catalysed by a3SiaT and b4GalT was assumed to

occur on the branch elongated by the iGnT enzyme.
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(MS), ensuring the homogeneity of the dataset. The resulting glycosyl-
ation RN balances the effects of network size and simultaneously ensures
the inclusion of latent reactions and reactions potentially inactive in
wild-type cells. Differences between CHO-S and CHO-K1 cells on the
reaction network complexity were also identified. In addition, CHO-
GlycoNET was utilized for the estimation of enzyme distribution solely
based on the topology of the reactions involved in the RN and for the
identification of critical reactions affecting the extent of glycosylation
complexity through dimensionality reduction and machine learning
techniques. We envision that CHOGlycoNET will facilitate future de-
signs of glycoengineering strategies for a diverse range of therapeutic
proteins and accelerate the design and simulation of glycosylation
models.

2. Materials & methods
2.1. Data curation

Mass spectrometric datasets from 200 glycomics and glyco-
proteomics samples from CHO cells were considered in this analysis
(Fig. 1B). The Kontoravdi/Haslam Lab dataset includes the glycoprofile
of intracellular HCPs from CHO-K1 IgG-producing cells, under different
feeding experiments that incorporate galactose and uridine addition
(Supplementary Material 5). The Lewis Lab dataset describes the glyco-
profile of the secretome from non-producing CHO-S cells, including
distinct clones with knockouts on Mgat4 (GnTIV), Mgat2 (GnTIIL),
B3gnt2 (iGnT), B4galtl-3 (b4GalT) and St3gal3,4,6 (a3SiaT) genes
(Supplementary Material 5). The Haslam Lab dataset includes intracel-
lular HCP data from wild type and mutated CHO Lec cells (North et al.,
2010). The Borth Lab dataset characterises the effect of b4GalT isoform
knockouts on the glycoprofile of recombinantly produced fusion glyco-
proteins (EPO and D-amino acid oxidase; DAO) (Bydlinski et al., 2018).
The dataset from the Betenbaugh Lab investigates the effect of
Mgat4/Mgat5 overexpression, alongside the expression of the human
ST6GAL1 gene expressing the alpha-2,6-sialyltransferase enzyme (Yin
et al., 2015). The Clausen Lab dataset includes the effect of the knockout
of numerous glycosyltransferases on EPO and IgG glycosylation (Yang
et al., 2015). Finally, the Kildegaard Lab dataset describes the effect of
glycoengineering on multiple recombinant glycoproteins and the
secretome (Amann et al., 2018, 2019).

In the case of non-exhaustively annotated mass chromatograms, the
m/z peaks in question were identified through the GlycoWorkbench
software (Ceroni et al., 2008). In total, 265 unique glycan structures,
including potential isomers, were identified. Hybrid glycans were not
considered in this study. Whilst no minimum distribution threshold was
set for qualifying the inclusion of a reported glycan in CHOGlycoNET,
oligosaccharides carrying more than eight GlcNAc molecules were
excluded from the analysis as they were identified only in trace amounts.
Whilst glycoproteomic analysis has shown that glycan structures with
>8 GlcNAc molecules can be traced in cellular proteins of CHO cells
(Yang et al., 2015), they are not commonly encountered in recombinant
therapeutic glycoproteins. The mannosidases and GTs found to be active
in CHO cells in CHOGlycoNET are shown in Fig. 1C and D.

2.2. Isomer inclusion

The oligosaccharides considered account for all isomers of each
experimentally observed bi-, tri- and tetra-antennary glycan that have
not been further elongated by iGnT, as the steric hindrance imposed on
the GTs is strongly dependent on the isomer structure and can determine
the kinetics of the reaction and ultimately the final isomer distribution.
To identify reactions that are only activated in glycoengineered cell
lines, we assumed that no bi-, tri-, and tetra-antennary glycans of the
wild-type cell lines were products of the iGnT enzyme. To elaborate, it
was assumed that iGnT could act on a galactosylated substrate only
when GnTI, GnTIIL, GnTIV and GnTV could not further process the glycan
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or when the enzymes were genetically silenced. This enabled the
comparative analysis between the wild type and the glycoengineered
cell lines and the designation of the latent reactions (Fig. 1E). It is
important to note that previous research on the analysis of the N-glycan
pool carrying 6-LacNAc molecules in wild type CHO (Pro ~5) cells grown
in suspension and using MALDI-TOF/TOF MS/MS has identified a bi-
antennary oligosaccharide with five LacNAc molecules on one arm
and one on the other arm as a major isomeric structure (North et al.,
2010). Whilst the iGnT elongation of bi- and tri-antennary glycans can
occur in wild type CHO cells, the actual abundance of such structures
requires additional experiments to more accurately quantify the detailed
distribution, which could be heavily dependent on the examined protein
and cell line; thus, it was excluded from the reaction network analysis of
the wild type cells. Moreover, this assumption is not expected to have a
major effect on the identification of the global network, as the iGnT
elongation reactions not considered in the wild type cells were inevi-
tably included in the analysis of the knockout cell lines. Finally, b4GalT
and a3SiaT show no known preference on the extension of tri- and
tetra-antennary glycans that carry LacNAc molecules, and therefore only
one isomer was included for these reactions. The galactosylation and
sialylation of the poly-LacNAc branch was prioritized in the isomer se-
lection over the non-LacNAc-elongated branches (Fig. 1F).

2.3. Computational tools

2.3.1. Network construction

Briefly, GLYMMER (ReacTech) enables the estimation of glycosyla-
tion enzyme concentrations based on the experimentally observed gly-
coprofile, also supporting the direct fitting of mass spectra (Krambeck
et al, 2009). The generation of the reaction network based on
pre-defined rules of enzymatic promiscuity is also part of GLYMMER. To
that end, the GLYMMER functionality was utilized to identify minimum
reaction networks based on the experimentally observed glycoprofile,
through the newly introduced Lumping function. The Lumping function
identifies reactions essential for synthesizing the experimentally
observed glycan structures, choosing the dominant reaction pathways
based on their respective reaction rates. This process adds to the
experimentally observed essential oligosaccharides whichever inter-
mediate oligosaccharides are required to produce a connected network
of reactions, thus forming minimum-RNs (mRNs). However, the result-
ing network is somewhat deficient in that there are more reactions
known to be taking place between certain pairs of oligosaccharides in
the minimum network than just the minimum reactions needed to
connect the network. These additional reactions are added to the defi-
cient network to result in a complete network. In practice, this addition
does not add many more reactions to the network but more accurately
represents the dependencies of model solutions on individual enzyme
activities. Cytoscape v3.8 was used for network visualization and hier-
archical representation (Shannon et al., 2003). Finally, the network was
exported to an SBML file using the COBRApy package in Python 3.7.3
(Supplementary Material 7).

2.3.2. Dimensionality reduction and machine learning

All analyses were performed in Python 3.7.3 using various packages,
most notably pandas, umap-learn and sklearn. Dimensionality reduction
was performed with both Principal Component Analysis (PCA) and
Uniform Manifold Approximation and Projection (UMAP). The UMAP
configuration included a number-of-neighbours equal to 15, minimum
distance set to zero and the use of the Euclidean metric. Following
UMAP reduction, k-means was used for clustering the data in the
reduced dimensionality. For the interpretation of UMAP embeddings
and feature importance towards dimensionality reduction (McInnes and
Healy, 2018), four models, namely least absolute shrinkage and selec-
tion operator (LASSO), Ridge, Elastic Nets and Random Forests were
used, as these models are well-established for feature selection (Cai
et al., 2018). The relevant code can be found in Supplementary Material
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6. 3. Results
All Supplementary Material can be found in CHOGlycoNET, Men-
deley Data, DOI:10.17632/pph9ksfvjd.1 3.1. RN reconstruction and curation

The construction of CHOGlycoNET includes three major steps as
detailed below:

A . Fig. 2. (A) Steps for the construction of the CHO-
dRN reconstruction GlycoNET. Only 1000 reactions of the dRN are shown
—— —— e for illustration purposes. Step 1: The process starts
= = with the reconstruction of the dRN, a detailed

glycosylation reaction network that describes the ac-
tivity of 11 enzymes and 22 genes for the generation
of ~83,000 plausible reactions and ~29,500 oligo-

::g

'Q‘gﬁtl saccharides. The dRN is used as a standard template
X \\4; for the generation of the individual mRNs for every

o7

7

examined dataset. Step 2: A unique mRN is generated
for all the experimentally measured sets of glycans
using the Lumping algorithm. The mRNs describe the
minimum set of reactions essential for the synthesis of
the experimentally observed glycans. Step 3: The in-
dividual mRNs are finally concatenated to produce
the CHOGlycoNET. The concatenation step includes
the one-by-one comparison of the mRN networks and

s
S

é @ @gﬁ@\ : ensures that the formed CHOGlycoNET is a superset

: of all the mRNs. (B) The resulting CHOGlycoNET for

i : A both CHO-K1 and CHO-S cells as identified from all
%’% the datasets included in this study. The network
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[ '/.5{'/'; ﬁ that are generated from the activity of 11 enzymes.
IS i i The different colours of the reactions indicate the
activity of a different enzyme, as shown in the

‘ respective legend. (C) RNs with the minimum number

5 of reactions to describe the CHO-K1 and the CHO-S
CHOGIVCONET construction Step 3 networks separately. Missing edges between nodes in

host-cell specific networks indicate the absence of
corresponding reactions compared to the full-scale
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e Step 1: Initially, a detailed reaction network (dRN) with 29,443 ol-
igosaccharides and 82,929 reactions was generated, accounting for
all possible reactions and glycans and based on the 11 considered
glycosyltransferases/mannosidases (corresponding to 22 genes)
shown in Fig. 1C and their specificity rules. A generic structure of the
dRN is shown in Fig. 2A, Step 1.

Step 2: Using the Lumping algorithm developed in GLYMMER
(Krambeck et al., 2009), a minimum reaction network (mRN) was
constructed for each experiment considered in this analysis (Fig. 2A,
Step 2), using the dRN as a template. The mRN for each experiment is
a sub-network of the generic dRN and describes the minimum
number of reactions necessary for the synthesis of the experimentally
observed set of glycans. The length of each mRN is dependent on the
complexity of the oligosaccharides included in each experimental
dataset. The set of enzymes considered, alongside their specificity
rules, were common across the mRNs. The enzymate specificity rules
were adapted from Krambeck et al. (2009) and can be found in the
Supplementary Material. A total of 200 mRNs were generated and
were further combined for the reconstruction of the CHOGlycoNET
as described in Step 3.

Step 3: Lastly, all mRNs constructed with the Lumping algorithm
were concatenated to form CHOGlycoNET. The reactions that were
unique in each examined network were included in CHOGlycoNET
(Fig. 2A, Step 3). As an example, the mRN of an EPO-producing
CHO-K1 cell line, a product of Lumping of the dRN based on the
experimentally observed glycoprofile, was reduced to 88 oligosac-
charides and 141 reactions. It is important to note that GnTIII (Mgat3
gene), which is responsible for the addition of bisecting N-acetyl-
glucosamine and is inactive in unmodified parental CHO cells (Yang
et al., 2015), was excluded from this analysis.

CHOGlycoNET is exported in an SMBL file (Supplementary Material
7: “choglyconet.xml”) and can therefore be further easily utilized by
other researchers as a standalone model or in combination with CHO
genome scale models through, i.e., COBRApy or the COBRA Toolbox.

3.2. CHOGLlycoNET describes the diverse glycan biosynthetic steps in CHO
cells

The resulting CHOGlycoNET includes 597 reactions and 326 oligo-
saccharides (see Supplementary Material 1 for full set of reactions). The
majority of reactions are catalysed by b4GalT and a3SiaT (Fig. 2B). The
small number of reactions assigned to earlier processing enzymes in-
dicates the consistency of reactions in the first steps of glycosylation for
different proteins and across CHO-S and CHO-K1 host cells.

CHOGlycoNET includes all reactions necessary for the generation of
the 326 oligosaccharide structures identified among the 200 considered
samples. Importantly, it only adds 61 intermediate structures to the
experimentally identified structures to enable the generation of the
observed glycoprofiles. The small number of additional glycans that are
necessary for CHOGlycoNET construction is mostly attributed to the
almost exhaustive examination of the various knockout scenarios that,
as previously mentioned, give prominence to latent reactions. The
network can serve for evaluating both the qualitative and quantitative
effects of gene engineering on glycoprofile microheterogeneity. More-
over, CHOGlycoNET can inform mathematical model development for
describing protein glycosylation in silico. The inclusion of data from
experimental glycoengineering studies as well as wild-type CHO cell
HCP glycans ensures that CHOGlycoNET can account for alien glycans
that are absent from the unmodified parental cell line data but occur
after glycoengineering. This means that models formulated based on
CHOGlycoNET and adequately trained using relevant experimental
data, such as transcriptomic and/or proteomic analysis of wild-type and
glycoengineered cells, could, in theory, account for off-target glyco-
engineering effects.
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3.3. CHOGlLycoNET highlights cell line-specific protein glycosylation
reactions

CHO-K1 cells generally presented RNs with higher complexity than
CHO-S cells, with 594 reactions of CHOGlycoNET active in the former
compared to only 192 active reactions in the latter (Fig. 2C). Differences
in the maturation levels of IgG glycans between the two cell lines have
been previously reported (Reinhart et al.Bioprocessing of Recombinant
CHO-K1CHO-DG44CHO, 2019). In-house glycomic data from the intra-
cellular HCPs of both cell lines indicate a higher degree of micro-
heterogeneity and further processed glycans in the CHO-K1 cells (data
not shown). Apart from the plausible differences in the complexity of the
RNs due to the glycosylation machinery of the two cell lines, e.g.,
enzyme levels, these differences could be originating from the diversity
of the datasets. While the CHO-S dataset examines a range of recom-
binant proteins and HCPs (Fig. 1B), the CHO-K1 data includes a thor-
ough screening of GT knockouts (Clausen Lab — CL — dataset), presented
in Yang et al. (2015). This inclusion contributes to the designation of
latent reactions and alternative reaction pathways and therefore the
enrichment of the CHO-K1 RN. GT knockout experiments are included
in the CHO-S dataset as well, albeit at a smaller scale. Additionally, the
CHO-S data, while highly diverse, accounts for ~13% of the total
samples. This is another factor that could contribute to the resulting
simplicity of the CHO-S reaction network. Regardless of the differences
between the individual networks, CHOGlycoNET is proposed for both
parental cell lines and covers a plausible higher complexity of the
CHO-K1 network.

Interestingly, while the number of reactions catalysed by each
enzyme exhibits considerable differences between the two cell-lines
(Fig. 3A and B), the relative percentage is more equally distributed
(Fig. 3C and D). This observation is more prominent in the case of a3SiaT
and b4GalT, where the number of reactions for CHO-S cells is 103 and
53 for a3SiaT and b4GalT respectively, and 297 and 216 for the CHO-K1
cell-line. However, the a3SiaT-catalysed reactions are ~50% of the total
RN for both cell-lines, while the respective percentages for b4GalT are
28% and 36% for CHO-S and CHO-K1, respectively. The high combined
number of reactions catalysed by a3SiaT and b4GalT showcase the
dependence of glycan complexity on the two enzymes. The b4GalT4
isomer has been found to regulate glycans’ branching in the N-linked
glycosylation of a recombinantly produced human chorionic gonado-
tropin (hCG) protein (McDonald et al., 2014a). It is also important to
note that most reactions present in the CHO-K1 and not in the CHO-S
cell-line are catalysed by the a3SiaT and b4GalT enzymes. The overlap
between the three datasets is shown in Fig. 3E. The three sialylation
reactions that are only active in the CHO-S RN are shown in Fig. 3F.

3.4. Data type effects on the CHOGlycoNET

CHO HCP glycomic datasets were obtained using various mass
spectrometry-based techniques, therefore potential differences in the
datasets could be attributed to variations in the experimental method-
ology. A liquid chromatography (LC) step prior to MS analysis can
enable the differential elution of individual glycans, thus improving the
identification of isomeric structures (Veillon et al., 2017). Alternatively,
isomeric structures can also be differentiated in MALDI-based analysis
by MS/MS fragmentation (North et al., 2010). LC-MS was used to
analyse the Lewis & Kildegaard Lab data (abbreviated as LL and KL,
respectively), electrospray ionization-MS (ESI-MS) for the Borth Lab (BL)
data and the remaining datasets were obtained with matrix assisted laser
desorption ionization-time of flight-MS (MALDI-TOF-MS). In addition,
some analyses include sample derivatisation methods which can in-
crease glycan integrity during ionization (e.g., permethylation) and
therefore improve sensitivity. Therefore, owing to the discrepancies in
the sensitivity of the different instruments used for the generation of the
data included in this study, we did not set a minimum detection limit for
a glycan to be considered in CHOGlycoNET. Thus, all glycan structures
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Fig. 3. Evaluation of the contribution of each enzyme in the network of CHO-S and CHO-K1 cells through the absolute number of reactions catalysed by each
enzyme (A & B) and the percentage of reactions against the total number present in each cell-line specific network (C & D). a3SiaT and b4GalT are examined
separately due to the considerably higher number of reactions compared to the rest of the enzymes. (E): Overlaps between the CHOGlycoNET, CHO-S and CHO-K1
networks. (F): The only 3 reactions missing from the CHO-K1 RN and present in the CHO-S.

reported in the original studies were included in the analysis.

Each dataset contributes a different number of reactions towards
CHOGlycoNET construction (Fig. 4A). The sub-RNs, i.e., the reaction
networks specific to each individual dataset, were also reconstructed in
order to evaluate the contribution of each dataset. Overlaps between the
reactions present in each dataset were identified (Fig. 4B). Reasonably,
the elaborate analysis (MALDI-TOF-MS) of the effect of GT knockouts on
EPO glycosylation from the CL dataset, and the site-specific glycomics
(LC-ESI-QTOF-MS/MS) of the EPO & DAO Fc fusion glycoproteins from
the BL dataset, result in the largest sub-RNs. Interestingly, the afore-
mentioned two sub-RNs share 321 reactions (~85% of the total number
of reactions of the BL dataset), while a total of 333 reactions are common
amongst the three largest datasets (Fig. 4C). However, the number of
unique reactions that each of the three largest sub-RNs contribute to-
wards the CHOGlycoNET reconstruction is considerably lower (Fig. 4D).
In fact, the CL-specific sub-RN contributed 68 reactions, while the BL-
specific sub-RN contributed another 37. Importantly, a subset of 407
reactions (~70%) of the CHOGlycoNET is common across more than one
dataset. CHOGlycoNET therefore exhibits minor dependencies on the
individual datasets. Moreover, the LL dataset was found to not
contribute any unique reactions towards the global network, despite the
incorporation of several gene knockout experiments that are important
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for identifying latent reactions. Both the LL and KL analyses that were
conducted on CHO-S cells contributed the least number of unique re-
actions to CHOGIycoNET, further supporting the observation that
CHO-S cell lines exhibit less complex and divergent reaction network.
The inclusion of the LL dataset in the analysis is important for demon-
strating the completeness of CHOGlycoNET and its applicability towards
describing complex glycosylation profiles such as the one extracted from
the secretome.

3.5. Mannosidase and glycosyltransferase distribution based on network
structure

The network representation depicted in Fig. 2B is based on
increasing glycan complexity. Twenty-three levels of complexity can be
identified based on the CHOGlycoNET structure (Fig. 2B). As glycosyl-
ation is a sequential process, increasing glycan complexity is related to
the distance that the protein molecule has covered within the Golgi
apparatus. Thus, the number of reactions catalysed by each enzyme and
for each individual level can be used to investigate the likely sequence of
mannosidases and glycosyltransferases and their distribution along the
Golgi length. The distribution in each level was calculated as the ratio of
reactions occurring in the specific level over the total number of
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Fig. 4. (A) Number of the total reactions present sub-RNs built for each individual dataset. (B) The overlap of the contribution of each sub-RN towards the
reconstruction of the CHOGlycoNET. (C) Overlap of the contribution between the three datasets that result in the largest sub-RNs. (D): Unique reactions contributed

by each dataset towards the CHOGlycoNET construction.

reactions catalysed by each enzyme, while the Golgi length (distance
from level 1 to level 23) was normalized between 0 and 1. It is important
to note that the enzyme sequence presented herein does not account for
activity, assumes that glycoproteins spend an equal amount of time in
each Golgi compartment and is therefore not meant to indicate enzyme
localisation.

As shown in Fig. 5, enzymes catalysing early steps of the glycosyla-
tion reaction network (Manl, ManlIl and GnTII) demonstrate normal
distributions (a distribution of GnTI does not exist as the enzyme ca-
talyses a single reaction in CHOGlycoNET). The aforementioned en-
zymes are less promiscuous and relate to a part of the RN that is

Manl

Manll

iGnT
GnTV

GnTIV
GnTIl

GnTI

Enzyme distribution

b4GalT

a6FucT

a3SiaT

a3FucT

0.3 0.6 0.9

Normalized Golgi Length

Fig. 5. Distribution of each enzyme along the length of the Golgi apparatus (x-
axis shows normalized organelle length). Note that GnTI has no distribution
because the enzyme catalyses only a single reaction in the identified network.
An arrow is used to indicate GnTI localisation within the normalized
Golgi apparatus.

conserved and convergent. Therefore, as expected, the number of re-
actions that the enzymes participate in is relatively small, ranging be-
tween four and eight. Similarly, a3FucT presents a normal distribution
in the latter part of the Golgi, following a reasonable pattern, as the main
function of the a3FucT includes the addition of fucose molecules on
highly branched glycans that are encountered along several locations of
the Golgi apparatus. Interestingly, GnTIV and GnTV present overlapping
distributions with high levels of similarity, potentially owing to their
similar function in glycan branching. In addition, b4GalT and a3SiaT
show high degrees of overlap and a wide normal distribution, being
present in >50% of the Golgi apparatus length. iGnT is co-localized with
b4GalT and a3SiaT and presents a multimodal distribution, unlike most
glycosyltransferases, probably due to its ability to act on any substrate
that is terminally galactosylated. Lastly, a6FucT presents a mostly
bimodal distribution between 0.2 and 0.4 of the normalized Golgi
length, followed by the highest peak at approximately 0.45 and the
complete depletion of enzyme levels thereafter. Overall, the results
broadly indicate a normal distribution of the enzymes, except for abFucT
and iGnT enzymes, partially supporting the mathematical formulations
using the Golgi maturation models (Hossler et al., 2007). The proposed
sequence is in agreement with experimental findings of glycosidase and
glycosyltransferase localisation experiments in CHO (Velasco et al.,
1993) and HeLa cells (Rabouille et al., 1995; Hassinen et al., 2010). They
are also in line with computational predictions of enzyme activity along
the Golgi length generated using a kinetic glycosylation model for CHO
cells (Arigoni-Affolter et al., 2019). A recent experimental investigation
of glycosyltransferases localisation in the Golgi organelle of human cells
revealed that GnTII is localized downstream of GnTI and b4GalT7, while
GnTIV was found to reside in earlier parts of the Golgi apparatus
compared to the aforementioned enzymes (Tie et al., 2018). However, as
also mentioned in the original study, these observations relate to cells in
which the respective genes had been overexpressed, which may have
perturbed the natural localisation of the enzymes (Cosson et al., 2005).

3.6. Addition of p4-GIcNAc and subsequent galactosylation regulate the
extension of the observed glycosylation network

In order to evaluate the importance of each of the 597 identified
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reactions in the shaping of the observed glycosylation network for each
of the considered samples, a dimensionality reduction technique,
namely UMAP, was employed for capturing data variance on CHOGly-
coNET. UMAP is a non-linear dimensionality reduction method,
competitive to the well-established t-SNE algorithm (van der Maaten
and Hinton, 2008), that ensures the preservation of the data global
structure in the reduced dimensionality (McInnes and Healy, 2018) and
with major applications in single cell data visualization (Becht et al.,
2019).

A matrix of AxB size, with A being the number of observations
(samples) and B the number of reactions in CHOGlycoNET was used for
dimensionality reduction. Each row of the matrix represents a sample
and each column a reaction of CHOGlycoNET. Therefore, the matrix
dimensions were 200x597. The matrix describes whether a reaction is
active in each sample; if a reaction is active then the value of the point
for the sample (row) and this reaction (column) would be 1 and if the
reaction is inactive the respective value would be 0. Next, the UMAP
algorithm was used to reduce the dimensionality of the dataset and
identify latent components that efficiently describe the variance of the
system. The matrix can be found in the supplementary material (Sup-
Mat2 Partition.csv). As shown in Fig. 6, CHOGlycoNET was successfully
reduced to two latent components that offered a distinct clustering of the
considered samples. The clustering of samples was not found to be
dependent on 1) cell lineage, 2) lab of origin or protein analysed, as
shown in Fig. S1.

However, unlike dimensionality reduction techniques such as prin-
cipal component analysis (PCA), UMAP does not provide loadings of the
features from the original dimensionality, therefore not revealing the
contribution of each initial feature towards the calculation of the latent
components. Notably, the use of PCA for dimensionality reduction
resulted in a relatively low capture of variance, with only 65% explained
by 5 PCA components. To overcome the limitation imposed by the lack
of UMAP-based feature importance, four machine learning models,
namely Lasso, Ridge, ElasticNet and Random Forests were employed to
capture the transition from the original to the reduced dimensionality.
The aforementioned algorithms are powerful tools for feature selection
(Cai et al., 2018), meaning the identification of the most important
features for calculating the value of the targeted label. Notably, apart
from Random Forests, the remaining estimators are linear models that
were expected to perform reasonably well due to the linear Euclidean
metric used for UMAP reduction. More specifically, the models were

UMAP reduction - KMEANS clustering
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Fig. 6. Reduced dimensionality of CHOGlycoNET using UMAP. Following
dimensionality reduction, k-means clustering (n = 7) was employed to group
the observed clusters of samples. Colouring of samples indicates
different clusters.
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trained on the original matrix AxB (inputs) and with the target variables
being the latent components as calculated from the UMAP reduction
(outputs). Consequently, the models were trained in order to mimic the
UMAP reduction of dimensionality between the original dataset and the
latent components and were subsequently used to extract important
features. As shown in Table 1, all models achieved high R? and low mean
squared errors (MSE), with Random Forests outperforming the rest of
the estimators during the cross-validation and hyper-parameter tuning.
The R? on the test set was calculated at ~0.96, indicating good gener-
alization capabilities from the tuned Random Forest. Whilst nested
cross-validation is usually employed for model selection, it can be un-
necessarily expensive for most applications and was therefore avoided in
the current study (Wainer and Cawley, 2021). A repeated k-fold
cross-validation with 10 splits and 5 repeats was used for model selec-
tion on 70% of the dataset, whilst 30% of the dataset was used for
testing. Finally, following the evaluation of models through CV, the best
model was trained on the entire dataset. The models were used to pre-
dict both UMAP embeddings simultaneously.

Following its identification of the best performing model, a Random
Forest was subsequently tuned on the entirety of the dataset. Tuning was
performed through a repeated k-fold cross validation (10 splits, 5 re-
peats) as well. As the Random Forest model was used for estimating the
latent UMAP components utilizing the original dataset, the resulting
feature importance values of the Random Forest were used to represent
the contribution of each reaction to the formation of the UMAP com-
ponents. Reactions R38 and R53 were found to contribute the most to-
wards the variance between different samples, demonstrating a key
node (reaction) of the RN identified for each sample. Based on feature
importance derived from the tuned Random Forest model, GnTIV ac-
tivity on A2GOF and the subsequent galactosylation of the product
through b4GalT showed the highest importance among the reactions in
CHOGlycoNET (Table 2). Interestingly, a6-fucosylation of the early
A1GO glycan was also designated as an important reaction character-
ising the complexity of the glycosylation network. R16 was almost
perfectly correlated with R23 (Pearson correlation coefficient ~0.97)
that includes the addition of GlcNAc to A1GOF (R16 product) for the
formation of GOF through GnTII activity. However, R16 shows no cor-
relation with R38 and R53 (Pearson correlation ~ —0.1). Therefore, the
pathway of sequential reactions connecting A1GO to A3G1F (product of
R53) was found to considerably contribute to network complexity.

4. Discussion

N-linked glycosylation is a critical post translational modification of
recombinant glycoproteins, significantly affecting molecule activity,
structure and immunogenicity. Glycosylation is following a vast and
complex reaction network, with thousands plausible reaction pathways
leading to the same terminal glycan product. Elucidating the details of
the glycosylation RN in CHO, the most widely used mammalian platform
for recombinant proteins production in both industry and academia,
would enable the design of calibrated glycoengineering strategies for
further improving the quality of therapeutic proteins.

First, the general reaction network with 29,443 plausible oligosac-
charides and 82,929 reactions was reduced to a network of 326 struc-
tures and 597 reactions, achieving a reduction of 90x and ~140x for the
structures and reactions, respectively. A total of 200 different glycan

Table 1
Results of machine learning models used for capturing UMAP
reduction.
Model CV score (R?/MSE)
Lasso 0.818/7.037
Ridge 0.847/6.125
ElasticNet 0.805/7.731
Random Forest 0.902/3.759
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Table 2
Top reactions as identified by the Random Forest estimator.
Reaction Substrate Product Enzyme Importance
R38 :::>._._i E}_._i GnTIV 0.336
R53 E}_._t 0_9_._1 b4GalT 0.209
R16 : : : a6bFucT 0.103

datasets from 7 different labs and different glycoproteins, including both
intracellular and secreted HCPs, were utilized in order to construct the
CHOGlycoNET. The inclusion of several comprehensive glycoengineer-
ing experiments, enables the identification of several plausible glycan
structures that would not have been otherwise detected. Additionally,
CHOGlycoNET, carrying compressed information from 200 datasets, can
considerably accelerate the development and simulation of mechanistic
and stochastic glycosylation models, by alleviating the need for glyco-
sylation network construction and reduction of necessary times for
model optimization due to the reduced size. In addition, CHOGlycoNET
is built on data from both CHO-K1 and CHO-S cell lines, extending the
applicability of the network to both hosts.

The hierarchical reconstruction of the glycosylation network based
on the minimum number of reactions and intermediate structures
necessary to produce the experimentally observed glycans, enabled the
identification of 23 reaction levels for the synthesis of the most complex
glycan observed in the CHOGlycoNET. Furthermore, glycoenzymes
distribution was estimated based on the different reaction levels of the
network. Enzyme distribution was found to follow expected patterns for
all glycosyltransferases according to literature, improving confidence in
network structure. Whilst enzyme localisation can be cell line specific
(Colley, 1997), even between different CHO cell lines, the presented
distribution was constructed based on data from several different clonal
CHO cell lines. The co-distribution of b4GalT and a3SiaT in the medial
and late parts of the Golgi cisternae has been reported before for several
cell lines (Rabouille et al., 1995; Schaub et al., 2006), in addition to
observed sialyltransferase/galactosyltransferase heteromers identified
in mammalian cells (Khoder-Agha et al., 2019). Manll and GnTI were
found localized in the early parts of the cisternae, following a similar
profile with previous reports of the enzymes being present mostly on the
medial compartment (Rabouille et al., 1995). The development of
CHOGlycoNET consolidates the information content of 200 different
samples, providing a comprehensive reaction network that can be used
to develop mechanistic, kinetic (e.g. (Jimenez del Val et al., 2011),) or
stoichiometric (e.g. (Hutter et al., 2017),), glycosylation models. The
proposed enzyme distribution can further aid model parameterisation,
which is a challenging and computationally expensive task.

Following the reconstruction of CHOGlycoNET, the utilization of
machine learning-mediated dimensionality reduction (Random Forest
based interpretation of UMAP latent components) enabled the identifi-
cation of key reactions in the network. Interestingly, the most notable
reactions regulating RN complexity for each of the samples considered
were found to be R38, R53 and R16. b4GalT4, one of the b4GalT iso-
forms catalysing reaction R53, has been previously characterised as a
major enzyme for the regulation of glycans branching in CHO cells
(McDonald et al., 2014b). We envision that the identified reactions and
enzymes can be used to manipulate the complexity of the glycosylation
network towards the production of more uniform glycoprofiles in
recombinantly produced proteins.

5. Conclusion

Herein, we presented a glycosylation reaction network, namely
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Comprehensive Glycosylation Reaction Network for CHO cells, or
CHOGlycoNET, that incorporates all the possible reactions occurring in
CHO-K1 and CHO-S cells, as derived from a dataset of 200 glycomic and
glycoproteomic profiles from different CHO cell lines obtained by seven
research groups. This extensive glycoprofile dataset further covers
various recombinant and host cell proteins. Our results demonstrated
that CHOGIlycoNET can be used to describe the glycosylation of the
majority of glycoproteins in both CHO-S and CHO-K1 cells. The
increased complexity of glycoproteins considered in the datasets and
diversity of glycoengineering and cell culture conditions applied in the
experimental datasets has enabled the identification of the minimum set
of reactions that are necessary for describing the CHO cell glycosylation
system. We envisage that CHOGlycoNET will find applications in the
efficient design of glycoengineering strategies as well as the accelerated
development of predictive in silico glycosylation models.
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