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Abstract 

Battery electric vehicles (BEVs) have been proposed as a pathway for reducing the environmental 

impacts of transportation systems.  While BEVs are often referred to as zero-emission vehicles, 

production and operation consume resources and emit pollutants through the vehicle supply chain and 

generation of electricity for vehicle charging.  Life cycle assessment is a standardized methodology for 

assessing the environmental impacts of product systems from a system-wide perspective; considering the 

total supply chain and the product life cycle from cradle-to-grave.  However, conventional LCAs are 

often limited; based off static supply chain analysis, omitting system interactions or indirect effects, and 

insufficiently reflecting the underlying variability and uncertainty to support robust public policy 

decisions. 

The objective of this dissertation is to develop and refine methods of assessing the life cycle 

environmental impacts and economic costs of electric vehicle technologies and policies.  The chapters of 

this dissertation make contributions in advancing spatial and temporal dynamics in LCA modelling, 

integrating vehicle operations with evolutions in technology, background systems, and product 

development, and offers novel estimates of the costs and emissions abatement potential of light and heavy 

duty electric vehicles.  As shown herein, a systems perspective is required to estimate the environmental 

benefits and costs of vehicle electrification strategies.  Efforts to achieve pollution abatement through 

technology change must address risks of leakage, substitution, and unintended environmental 

consequences.   

  



3 

 

TABLE OF CONTENTS 
List of Figures .................................................................................................................... 7 

List of Tables ...................................................................................................................... 9 

Summary of Abbreviations ............................................................................................ 10 

1. Introduction ................................................................................................................. 11 

1.1 MOTIVATION ................................................................................................................................. 11 

1.2 GOALS .............................................................................................................................................. 12 

1.3 METHODOLOGICAL FOUNDATIONS ........................................................................................ 13 

1.4 CONTRIBUTIONS ........................................................................................................................... 14 

1.5 DISSERTATION STRUCTURE ...................................................................................................... 14 

2. Background .................................................................................................................. 15 

2.1 LIFE CYCLE MODELLING ............................................................................................................ 15 

2.3 POLLUTION ABATEMENT THROUGH TECHNOLOGY CHANGE ........................................ 17 

2.4 CALIFORNIA AND BEV POLICY ................................................................................................. 18 

3. Lithium Batteries and Demand for Critical Materials ............................................ 20 

3.1 PURPOSE AND SCOPE .................................................................................................................. 20 

3.2 CRITICAL ENERGY MATERIALS ............................................................................................... 20 

3.3 METHODS ........................................................................................................................................ 22 
3.3.1 Lithium Production and Demand ............................................................................................................... 23 
3.3.2 Characterization of Lithium Resource Deposits ......................................................................................... 24 
3.3.3 Unit Production Costs ................................................................................................................................. 25 
3.3.4  Resource Production Model ...................................................................................................................... 28 
3.3.5 Stock and Flow Model for Recycled Lithium ............................................................................................ 29 

3.4 RESULTS .......................................................................................................................................... 30 

3.5 DISCUSSION ................................................................................................................................... 31 

3.6 CONCLUSIONS ............................................................................................................................... 33 

3.7  REFERENCES ................................................................................................................................. 33 

4. Dynamic Life Cycle Assessment of Future Lithium Supply ................................... 37 

4.1 PURPOSE AND SCOPE .................................................................................................................. 37 

4.2 INTRODUCTION ............................................................................................................................. 37 

4.3 METHODS ........................................................................................................................................ 39 
4.3.1 Goal and Scope ........................................................................................................................................... 39 



4 

 

4.3.2 Life Cycle Inventory Model ....................................................................................................................... 40 
4.3.3  Life Cycle Impact Assessment .................................................................................................................. 42 

4.4 RESULTS .......................................................................................................................................... 42 
4.4.1 LCA Results by Production Pathway ......................................................................................................... 42 
4.4.2 Impacts over time ....................................................................................................................................... 43 

4.5 DISCUSSION ................................................................................................................................... 45 
4.5.1 Recycled Batteries, Recovered Lithium, and Unconventional Resources ................................................. 47 

4.6 CONCLUSIONS ............................................................................................................................... 48 

4.7 REFERENCES .................................................................................................................................. 48 

5. Life Cycle Assessment of Batteries for Light Duty Electric Vehicles ..................... 53 

5.1 PURPOSE AND SCOPE .................................................................................................................. 53 

5.2 INTRODUCTION ............................................................................................................................. 53 
5.2.1 Lithium Ion Traction Batteries ................................................................................................................... 54 
5.2.2 Lithium Chemistries for Electric Vehicle Batteries ................................................................................... 56 
5.2.3 PEV Battery Performance .......................................................................................................................... 58 

5.3 METHODS ........................................................................................................................................ 59 
5.3.1 Scope of analysis ........................................................................................................................................ 59 
5.3.2 Battery System Design and Production Emissions .................................................................................... 62 
5.3.3 Electricity Grid Emissions .......................................................................................................................... 63 
5.3.4 Summary of Parameter Distributions ......................................................................................................... 64 
5.3.5 Limitations .................................................................................................................................................. 65 

5.4 RESULTS .......................................................................................................................................... 65 

5.5 DISCUSSION ................................................................................................................................... 68 

5.6 CONCLUSION ................................................................................................................................. 70 

5.7 SELECTED REFERENCES ............................................................................................................. 71 

6. Life Cycle Assessment of Future Light Duty Electric Vehicles .............................. 76 

6.1 PURPOSE AND SCOPE .................................................................................................................. 76 

6.2 INTRODUCTION ............................................................................................................................. 76 

6.3 METHODOLOGY ............................................................................................................................ 80 
6.3.1 Goal and Scope ........................................................................................................................................... 81 
6.3.2 LCI Inventory Model .................................................................................................................................. 81 
6.3.3 Use-Phase Model ........................................................................................................................................ 83 

6.4 RESULTS .......................................................................................................................................... 87 
6.4.1 Battery Replacement and Service Lifetimes .............................................................................................. 89 
6.4.2 Electricity ................................................................................................................................................... 90 

6.5 DISCUSSION ................................................................................................................................... 91 

6.6 CONCLUSIONS ............................................................................................................................... 92 



5 

 

6.7 REFERENCES .................................................................................................................................. 93 

7. Life Cycle Costs and Barriers for Electrification of Transit Buses ........................ 96 

7.1 PURPOSE AND SCOPE .................................................................................................................. 96 

7.2 INTRODUCTION ............................................................................................................................. 96 
7.2.1 Objective of this Study ............................................................................................................................... 99 

7.3 FACTORS AFFECTING THE COSTS OF OWNERSHIP FOR TRANSIT BUSES ................... 101 
7.3.1 Purchase Costs .......................................................................................................................................... 101 
7.3.2 Fuel Costs ................................................................................................................................................. 104 
7.3.3 Repair and Maintenance Costs ................................................................................................................. 108 
7.3.4 Depot and Infrastructure Costs ................................................................................................................. 113 
7.3.5 Vehicle Life .............................................................................................................................................. 115 
7.3.6 Technology Performance .......................................................................................................................... 116 
7.3.7 Vehicle Fuel Efficiency ............................................................................................................................ 119 
7.3.8 Annual Mileage ........................................................................................................................................ 121 
7.3.9 Externalities and Damages ....................................................................................................................... 123 
7.3.10 Summary of factors affecting the costs of E-buses ................................................................................ 123 
7.3.11 Limitations of the Unit Cost Approach .................................................................................................. 124 

7.4 RESULTS ........................................................................................................................................ 125 
7.4.1 System-wide Replacement Costs ............................................................................................................. 131 
7.4.2 Drivers of Variance in Current Vehicle Costs .......................................................................................... 133 

7.5 DISCUSSION ................................................................................................................................. 135 
7.5.1 Battery Replacement ................................................................................................................................ 137 
7.5.2 Uncertainty in State-Wide Adoption Costs .............................................................................................. 138 
7.5.3 Emissions Benefits ................................................................................................................................... 139 

7.6 REFERENCES ................................................................................................................................ 140 

8. Life Cycle Modelling of Truck Electrification ........................................................ 142 

8.1 PURPOSE AND SCOPE ................................................................................................................ 142 

8.2 INTRODUCTION ........................................................................................................................... 142 

8.3 METHODS ...................................................................................................................................... 144 
8.3.1 Vehicle Classes and Specifications .......................................................................................................... 145 
8.3.2 Goods Movement Vocations .................................................................................................................... 147 
8.3.3 Vehicle Purchase and Operating Costs ..................................................................................................... 151 
8.3.4 Battery Costs and Performance ................................................................................................................ 152 
8.3.5 Charging Strategies and Battery Capacity ................................................................................................ 154 
8.3.6 Generation of Electricity .......................................................................................................................... 157 
8.3.7 Conventional Vehicles and Emissions from Operation ............................................................................ 158 
8.3.8 Conventional Fuel Production Emissions ................................................................................................ 159 
8.3.9 Conventional Fuel Prices .......................................................................................................................... 160 
8.3.10 Pollution Damages .................................................................................................................................. 161 

8.4 RESULTS ........................................................................................................................................ 161 



6 

 

8.4.1 Conventional Freight Vehicles ................................................................................................................. 162 
8.4.2 E-truck Life Cycle Costs and Emissions .................................................................................................. 165 
8.4.3 Per-mile Emissions Abatement ................................................................................................................ 169 
8.4.4 Statewide Results ...................................................................................................................................... 171 

8.5 DISCUSSION ................................................................................................................................. 176 
8.5.1 Battery Pack Size and Cost ....................................................................................................................... 176 
8.5.2 Resource Constraints ................................................................................................................................ 179 

8.6 CONCLUSIONS AND NEXT STEPS ........................................................................................... 179 

8.7 REFERENCES ................................................................................................................................ 180 

9. Conclusions ................................................................................................................ 186 

9.1 NEXT STEPS .................................................................................................................................. 186 
9.1.1  End of life management of electric vehicle batteries .............................................................................. 186 
9.1.3  Global strategies for low-carbon, Urban mobility ................................................................................... 187 
9.1.4  Life cycle based regulatory reform .......................................................................................................... 188 

ADDITIONAL REFERENCES: ........................................................................................................... 190 

Appendices ..................................................................................................................... 196 

A: DATA AND INFORMATION ON LITHIUM DEPOSITS ............................................................ 196 

B.  INVENTORY AND IMPACT ASSESSMENT DATA FOR LITHIUM ....................................... 211 

C. SUPPORTING INFORMATION FOR CHAPTER 5 ...................................................................... 229 

D. SUPPORTING INFORMATION ON EV LCA .............................................................................. 240 
 

  



7 

 

LIST OF FIGURES 
Figure 3.1 (a.) Lithium Reserves and Prices (US dollars), and (b.) Lithium End Uses 2007 - 2017 (Jaskula 
2008-2018). ................................................................................................................................................. 21 
Figure 3.2 Modeling Framework ................................................................................................................ 23 
Figure 3.3 Historical Lithium Production 1950 – 2017, and Forecast Global Lithium Production 2018 – 
2100 (British Geological Survey 2018, Jaskula 2008-2018) ...................................................................... 24 
Figure 3.4 Lithium Average Production Cost by Deposit Country, Type, and Grade ................................ 26 
Figure 3.5 Lithium Production by Deposit Type and Country for Optimistic (a and c) and Conservative (b 
and d) Scenarios .......................................................................................................................................... 31 
Figure 3.6 Stocks and Flows of Recycled Batteries, Recoverable Resources, and Global Production of 
Lithium ........................................................................................................................................................ 32 
Figure 4.1 Flows and Processes included in the Life Cycle Assessment Model ........................................ 40 
Figure 4.2 Impact Assessment of Lithium Production Pathways ............................................................... 43 
Figure 4.3 Impact Assessment of Production Weighted Lithium Production Over Time .......................... 44 
Figure 4.4 Comparison of Findings with Existing Impact Estimates Pathways ......................................... 46 
Figure 5.1 Comparing Lithium chemistries for automotive traction batteries ............................................ 58 
Figure 5.2 Composition of lithium batteries and material GHG emissions by chemistry: (a) mean 
composition of traction batteries by components (% of total mass) (b) mean GHG emissions from 
materials by chemistry (% of total battery production emissions) .............................................................. 66 
Figure 5.3 Mean battery production emissions estimates for LIB chemistries ........................................... 66 
Figure 5.4 Battery production emissions by PEV vehicle type and all-electric range ................................ 67 
Figure 5.5 Battery and fuel cycle emissions rates ....................................................................................... 68 
Figure 5.6 Sensitivity to key parameters ..................................................................................................... 68 
Figure 5.7 GHG emissions comparison for to other studies for PEV LIB Battery Production and PEV 
Operation ..................................................................................................................................................... 69 
Figure 6.1 BEV sales and battery capacities in the U.S. ............................................................................. 80 
Figure 6.3 (A) Total Electricity Generation by Fuel Source in California and the US and (B) Average 
GHG Emissions per kWh for Residential and Commercial End-Uses for BAU and $25 carbon tax ($25 C-
tax) scenarios in California and the US (2017 – 2050) ............................................................................... 87 
Figure 6.4 LCGHG Emissions by vehicle, grid, and utilization scenario ................................................... 88 
Figure 6.6 Battery Cycles by VMT Scenario .............................................................................................. 90 
Figure 6.7 EV LCGHG Emissions per Mile with Sensitivity to Grid Emissions and Vehicle Efficiency . 91 
Figure 7.1 California Transit Fleets and Service Areas .............................................................................. 98 
Figure 7.2 Bus Purchase Cost Assumptions .............................................................................................. 103 
Figure 7.3 Bus Purchase Subsidy Assumption .......................................................................................... 104 
Figure 7.4 Average per-mile fuel costs for transit buses ........................................................................... 105 
Figure 7.5 California and U.S. Retail Diesel Prices (DGE = Diesel Gallon Equivalent)  ........................ 106 
Figure 7.6 Fuel Cost Assumptions (DGE=Diesel Gallon Equivalents) .................................................... 108 
Figure 7.7  LCFS Credit Value for E-buses .............................................................................................. 108 
Figure 7.8 Financial Service and Maintenance Statistics for the 20 Largest Agencies by Bus Fleet ....... 110 
Figure 7.9 Distribution of Expenses per Mile and Failure Type per Mile in 2014 NTD .......................... 111 
Figure 7.10 Maintenance Costs per Mile .................................................................................................. 112 
Figure 7.11 Midlife Overhaul Cost Assumptions ..................................................................................... 113 



8 

 

Figure 7.12 Depot Capital Amortization ................................................................................................... 115 
Figure 7.13 Age Distribution for Active Transit Buses in 2014 ............................................................... 116 
Figure 7.14 Electric Bus Replacement Rate Assumption for Large Agencies ......................................... 118 
Figure 7.15 Replacement Rates by Agency and Period ............................................................................ 119 
Figure 7.16 Vehicle Fuel Economy Example ........................................................................................... 120 
Figure 7.17 Average Fuel Economy by Agency, Fuel, and Length .......................................................... 121 
Figure 7.18 Annual Mileage Distribution of Active 40ft Buses ............................................................... 122 
Figure 7.19 Annual Revenue and Non-Revenue Mileage Assumptions ................................................... 122 
Figure 7.20 Lifetime Costs of Ownership per Bus .................................................................................... 127 
Figure 7.21 Lifetime Costs of Ownership per Mile .................................................................................. 130 
Figure 7.22 Per Mile Costs by Agency and Length .................................................................................. 130 
Figure 7.23 Statewide Bus Transition Costs ............................................................................................. 132 
Figure 7.24 Screening Sensitivity Analysis of Parameters Affecting TCO of Transit Buses by 2030 ..... 134 
Figure 7.25  Screening Analysis of Statewide Fleet Replacement with 100% Electric Buses ................. 134 
Figure 7.26 Change in Annual Expenditures for Large Agency with 100% Electric by 2040 ................. 139 
Figure 8.3 Estimated Electric Truck Energy Demands per Mile .............................................................. 151 
Figure 8.4 Estimated Vehicle Battery Pack Costs 2015 to 2050 .............................................................. 153 
Figure 8.5 Potential Improvements in Li-ion Cell Energy Density .......................................................... 154 
Figure 8.6 Average Dwell Time at Stops in Minutes ................................................................................ 156 
Figure 8.7 Energy Required by Duty Cycle and Daily Travel Distance ................................................... 157 
Figure 8.9 Retail Price of Gasoline and Diesel in California, 2018 – 2050 .............................................. 161 
Figure 8.10 Life Cycle Cost of Conventional (Gasoline and Diesel) Class 3 to 8 Vehicles ..................... 163 
Figure 8.11 Emissions per Mile for Conventional Class 3-8 Vehicles (DSL = Diesel, GAS = Gasoline) 164 
Figure 8.12 Life Cycle Costs of Electric Class 3-8 Vehicles .................................................................... 166 
Figure 8.13 Battery Pack Cost by Year and Vehicle Class ....................................................................... 167 
Figure 8.14 Emissions per Mile for Electric Trucks, 2018 - 2040 ............................................................ 168 
Figure 8.15 Emissions Abatement (grams/mile) from Electrification of Diesel (DSL) and Gasoline (GAS) 
Trucks by Vehicle Class. ........................................................................................................................... 170 
Figure 8.16 BAU Statewide Emissions from Conventional Class 3-8 Trucks ......................................... 171 
Figure 8.17 Assumed Electric Truck eVMT (Bars) and Vehicle Population (Lines) ............................... 172 
Figure 8.18 Abatement Costs for 100% Electrification by 2040 ($/tonne) .............................................. 173 
Figure 8.19 Statewide Emissions Abatement from Electrification of Class 3-8 Trucks ........................... 174 
Figure 8.20 Avoided Pollution Damages per year in California from Class 3-8 Truck Electrification .... 175 
Figure 8.21 Electric Class 3-8 Vehicle Battery Cost and Mass 2018 vs 2030 .......................................... 178 
 

  



9 

 

LIST OF TABLES 
Table 3.1 Lithium Deposits and Reserves by Production Pathway ............................................................ 25 
Table 3.2 Estimated Lithium Production Costs (2018 USD) ...................................................................... 26 
Table 5.1 Lithium chemistries for PEV traction batteries (Burke & Miller, 2009; Gu et al., 2014b; Omar 
et al., 2014) .................................................................................................................................................. 57 
Table 5.2 Traction battery design scenarios and simulated PEVs (energy requirement is calculated, all 
other data are from the US Department of Energy’s Advanced Fuels Data Center (U.S. Department of 
Energy, 2015)) ............................................................................................................................................. 61 
Table 5.3 Summary of parameter distributions ........................................................................................... 64 
Table 6.1 Review of Selected Vehicle and Performance Characteristics from Life Cycle Studies of BEVs 
and Gasoline Vehicles (ICEV and HEV) .................................................................................................... 79 
Table 6.2: Overview of Scenarios Included in this Study ........................................................................... 82 
Table 6.3: Vehicle mass and key parameters by scenario ........................................................................... 84 
Table 7.1 Average Bus Prices for 2010 to 2015 Model Year Vehicles Reported to APTA ..................... 102 
Table 7.2 Average Active Buses per Depot for California Agencies ....................................................... 115 
Table 7.3 Total Costs by Fuel-pathway and Length (Current Prices, No Incentives) .............................. 125 
Table 7.4 Total Costs by Fuel-pathway and Length by 2030 (No Incentives) ......................................... 126 
Table 7.5  Per Mile Costs by Pathway and Length (Current Prices, No Incentives) ................................ 128 
Table 7.6 Per Mile Costs by Period and Bus Length by 2030 (No Incentives) ........................................ 129 
Table 7.7 Summary of Average TCO by Pathway and Period ................................................................. 131 
Table 7.8 Total System Replacement Costs (Billion USD$) .................................................................... 132 
Table 7.8 Per Mile Emissions Comparison for E-buses and CNG (grams/mile) ...................................... 140 
Table 8.1 Description of Vehicle Weight and Capacity by Vehicle Class ............................................... 146 
Table 8.2 FleetDNA Vehicle Drive Cycle Data by Vocation and Vehicle Type ...................................... 148 
Table 8.3 Purchase and Maintenance Cost Assumptions .......................................................................... 152 
Table 8.4 Electric Truck Charger System Costs (Burnham, 2016) ........................................................... 155 
Table 8.5 Sources of Operations and Combustion Emissions for Freight Vehicles (Branch, 2017) ........ 158 
Table 8.7 Average GHG Emissions Rate (g/ton-mile) for Conventional Vehicles by Year (DSL = Diesel, 
GAS = Gasoline) ....................................................................................................................................... 165 
Table 8.8 Emissions per Ton-mile for Electric Class 3-8 Vehicles (g/ton-mile) ...................................... 169 

 

  



10 

 

SUMMARY OF ABBREVIATIONS 
EV: Electric Vehicle 

BEV: Battery Electric Vehicle 

PEV: Plug-in Electric Vehicle 

HEV: Hybrid Electric Vehicle 

BAU: Business as Usual 

CO2e: Carbon-Dioxide Equivalent 

EPA: Environmental Protection Agency 

kWh: Kilowatt Hour 

LCA: Life Cycle Assessment 

LCI: Life Cycle Inventory 

LIB: Lithium-ion Battery 

mmBTU: Million British Thermal Units 

NREL: National Renewable Energy Laboratory 

  



11 

 

1. INTRODUCTION 
1.1 MOTIVATION 
The transportation sector is the largest source of greenhouse gas emissions (GHGs) in the U.S., 
constitutes 80% of domestic petroleum consumption, and by some measures is the largest contributor to 
health costs from air pollution (Goodkind, Tessum, Coggins, Hill, & Marshall, 2019; Heo, Adams, & 
Gao, 2016; U.S. Energy Information Administration, 2019).  While a multipronged approach is needed to 
achieve deep reductions in transportation emissions, rapid and extensive deployment of battery electric 
vehicles (BEVs) is viewed as a crucial part of nearly all strategies (Alexander, 2015; Meszler, Lutsey, & 
Delgado, 2015; Sperling, 2018).  Over the last decade, several national and regional governments have 
enacted policies to promote the deployment of light and heavy duty electric vehicles, often with the goal 
of reducing greenhouse gas emissions, and in some cases to reduce local air pollutants as well.  

Early life-cycle analyses (LCAs) of conventional vehicles showed that the operation of vehicles 
overwhelmingly dominated environmental impacts; 75−95% of life cycle GHG emissions for an internal 
combustion gasoline passenger vehicle is attributable to fuel consumption and combustion (Bauer, Hofer, 
Althaus, Del Duce, & Simons, In Press; Castro, Remmerswaal, & Reuter, 2003; Geyer, 2008; Kim, 
Keoleian, Grande, & Bean, 2003). The historic regulatory focus on vehicle fuel economy and tailpipe 
emissions has reflected this reality. BEVs are typically referred to as zero emissions vehicles because they 
eliminate tailpipe pollution. However, as with other de-carbonization policies for the transport sector, a 
life cycle perspective is required to understand the actual mitigation achieved by BEVs.  Shifting 
emissions between life cycle stages may occur when a change to a process or input causes new impacts to 
emerge at different stages in a product’s life cycle.  For BEVs, emissions are shifted upstream in the fuel 
cycle (to the power plant) and potentially to the vehicle production supply chain. In fact, on a percent 
basis, light-duty or passenger BEVs may have double the emissions from the production phase, and 
previous studies have shown that battery manufacture alone can be responsible for 35-41% of those 
production emissions for a 120-160 km range light-duty BEV (~24 kWh battery) (Hawkins, Singh, 
Majeau‐Bettez, & Strømman, 2013). 

BEVs have been proposed for both light and heavy-duty applications, but heavy-duty applications have 
been much less studied with LCA.  Heavy-duty vehicles (HDVs) service a variety of diverse and critical 
vocations, including school and urban mass transit, refuse collection, distribution, and short and long-haul 
freight goods movements.  HDVs are of particular concern as they emit high levels of particulate matter 
and a complex mixture of pollutants including ozone precursors (Adar & Kaufman, 2007; Heinrich & 
Wichmann, 2004; Seagrave et al., 2006). While HDVs are less than 5% of the total US vehicle fleet, they 
account for 18% of transportation energy and well over half of particulate aerosol and nitrogen oxides 
(NOX) emissions from highway vehicles (Davis, Williams, & Boundy, 2016).  Liquid fuel use from 
medium and heavy duty vehicles has increased more rapidly in both relative and absolute terms than 
consumption by other sectors (National Research Council, 2010), and is expected to continue into the 
near future (Grenzeback et al., 2013). While new developments in renewable transportation fuels and 
zero emissions vehicle technologies create pathways for mitigating the environmental impacts of 
HDVs, reduction potentials and costs remain highly uncertain (Durbin, Collins, Norbeck, & Smith, 
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2000; Lowell, Seamonds, Park, & Turner, 2015; Meszler et al., 2015; Meyer, Green, Corbett, Mas, & 
Winebrake, 2011; Shi et al., 2006). 

This dissertation undertakes a variety of studies, all which apply a systems perspective to estimate the life 
cycle environmental benefits and costs of vehicle electrification strategies. For BEVs, the interactions 
between systems of vehicle design, battery production (including the extractive industries on which they 
rely), driving patterns, charging infrastructure, and electricity generation need to be considered.  For 
example, BEVs can have considerable variability in life cycle operation emissions given the heterogeneity 
of electricity grids over space and time (Cerdas, Egede, & Herrmann, 2018; Tamayao, Michalek, 
Hendrickson, & Azevedo, 2015; Yuksel & Michalek, 2015).  The significant factors that affect 
emissions from HDVs include: vehicle class and weight, driving cycle, vehicle vocation, fuel type, 
engine exhaust aftertreatment, vehicle age, and terrain (Clark, Kern, Atkinson, & Nine, 2002).  
Studies have established the close links between duty cycle, fuel type, and vehicle energy demands 
(Simpson, 2005; Sovran & Blaser, 2003), and duty cycle can be the most significant driver of 
uncertainty in operational emissions estimates from HDVs (Yanowitz, McCormick, & Graboski, 
2000). Thus how, where, and when BEVs are produced, operated, and charged could influence the true 
mitigation potential of vehicle electrification strategies. 

1.2 GOALS 
At the highest level, the central research question answered in this dissertation is simply: does vehicle 
electrification make transportation more sustainable? Given the multifaceted, complex, and 
interconnected nature of industrial systems and the natural environment, the emerging nature of many 
electric vehicle technologies, the uncertainty in technical performance and cost of batteries, and barriers 
to adoption for HDV applications, the answer is not obvious.  To build towards this systems perspective 
on vehicle electrification, this dissertation explores five different areas where the intersection of temporal 
and spatial dynamics of these systems are poorly understood.   

The goal of this research is to develop and refine methods of assessing the life cycle environmental 
impacts of BEVs, with the ultimate goal of supporting policy decision making and better aligning 
technological development with more effective movement of goods and people in a low-carbon economy.  
Therefore, some chapters of the dissertation focus on methodological questions while others seek to 
directly inform policy.  Specific research questions explored include: 

1. What are the constraints and environmental impacts of critical materials for future lithium ion 
batteries? 

2. What factors drive the life cycle environmental impacts and costs of lithium batteries for vehicle 
applications? 

3. How will improving battery technology, shifts in vehicle design, and a changing electrical grid 
impact emissions reductions of light duty electric vehicles? 

4. What are the costs and barriers to adoption of battery electric transit buses? 
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5. What are the life cycle costs, environmental impacts, and avoided health damages from reduced 
air pollution of electrifying trucks for goods movement applications? 

1.3 METHODOLOGICAL FOUNDATIONS 
LCA emerges from the field of industrial ecology.  As noted by Frosch (1992), natural ecosystems are 
both an analogy and framework for understanding the interconnected nature of systems of extraction, 
production, consumption, and waste.  Industrial ecology as a field has traditionally focused on the 
“influences of economic, political, regulatory, and social, factors on the flow, use, and transformation of 
resources,” (White, 1994), with goals of efficiency, pollution prevention, and waste reduction (Jelinski, 
Graedel, Laudise, McCall, & Patel, 1992).  The ‘cradle to grave’ framing of product environmental 
impact also arises from the field of industrial ecology (Patel, 1992).  Life cycle assessment studies are 
often undertaken in support of these core industrial ecology goals: reducing waste, maximizing efficiency, 
and enhancing the circularity of waste flows (Kendall & Spang, 2019).  In this dissertation, LCA is used 
to quantify emissions, identify key processes (i.e. hotspots), and assess the abatement potential of BEV 
technologies.   

LCA studies of BEVs have consistently shown an increase in vehicle production emissions, and 
sometimes vehicle disposal emissions as well, and frequently, though not always, shown a reduction in 
operation emissions relative to conventional, internal combustion vehicles (ICEVs). For example, 
Hawkins et al. (2013) found that production emissions comprise approximately 40% of an average 
European BEV’s life cycle greenhouse gas emissions. Samaras and Meisterling (2008) found that 
production emissions increased modestly for hybrid electric vehicles compared to ICEVs, while Notter et 
al. (2010) found that the proportion of life cycle emissions attributable to production doubled to more 
than 30% of life cycle emission for BEVs compared to ICEVs.   

LCA is intended characterize the full environmental and resource implications of a particular system, 
which means examining a suite of environmental impact categories and including analysis of some of the 
uncertainties inherent in such modeling (e.g. standards require the inclusion of sensitivity and scenario 
analysis).  A limitation of many LCA studies of BEVs is a focus solely on carbon footprint.  Carbon 
footprints, or carbon intensity calculations, apply LCA methods only to GHG emissions, reporting the 
outcome of the study in carbon dioxide equivalents (CO2e).  Given the significant air pollution impacts 
attributable to medium and heavy duty vehicle operations, this dissertation also examines the air pollutant 
impacts of heavy duty vehicle electrification. 

While LCA is widely used for decision making (Ciroth, Fleischer, & Steinbach, 2004), LCA has 
historically suffered from several criticisms and methodological limitations (Richard J Plevin, Delucchi, 
& Creutzig, 2014). Most notably, there is a growing awareness of the need for robust characterization of 
uncertainty in LCA (Lloyd & Ries, 2007). The uncertainties inherent to an LCA are well characterized 
and methods for addressing uncertainty have been reviewed in the literature (Ciroth et al., 2004; Heijungs 
& Huijbregts, 2004).  For example, uncertainty in the results of an LCA can arise from a number of 
sources: variability in assumed values, lack of knowledge, measurement errors, choices related to the 
model design, value, and specification (Gregory, Noshadravan, Olivetti, & Kirchain, 2016). Where 
statistical uncertainties can be characterized, they are commonly propagated through Monte Carlo 
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simulation and explored with scenario analysis. This dissertation utilizes a range of scenario and 
numerical analysis methods. 

The scope of LCA is typically limited to environmental impacts, but the life-cycle framework is also used 
to assess costs and other metrics for sustainability (Finkbeiner, Schau, Lehmann, & Traverso, 2010; 
Zamagni, 2012).  For example, life cycle costing applies life cycle principles to evaluate the economic 
impacts of decision making (Fuller & Petersen, 1996; Woodward, 1997). Total cost of ownership, which 
arises from supply chain management and strategic decision making, uses economic discounting to assess 
the real costs of owning a product over the entire product’s life (Ellram, 1995; Ellram & Siferd, 1998).  
Taken together, these methods provide a robust framework for assessing costs and benefits of decision-
making over time, and the potential to capturing spatio-temporal tradeoffs in impacts. In addition to 
environmental impacts, this dissertation explores the costs of heavy duty electric vehicles systems and the 
potential public value of pollution abatement from heavy duty vehicle electrification.   

1.4 CONTRIBUTIONS 
This dissertation tackles issues and uncertainties associated with life cycle assessment of light and heavy 
duty electric vehicles, with a focus on the design, performance, and materials of electric vehicle batteries. 
Over several chapters, it develops and refines methods of assessing the life cycle environmental impacts 
of electric vehicles by exploring key inputs, background systems, and applications.  It also assess the 
adoption costs for electric vehicle systems, before finally turning to an examination of the potential 
private and public costs of key heavy duty vehicle applications.  

This dissertation offers contributions in four areas:  

1. Advancing spatial and temporal dynamics in LCA modeling, with respect to: 
a. natural resource modelling (e.g. materials demands and production impacts), and 
b. background systems (e.g. electricity grids) and evolutions in technology and product 

development (e.g. changing technology performance and vehicle design choices). 
2. Developing methods for integrated emissions and cost modelling of electric vehicle systems, 

including vehicle operations (e.g. travel patterns, tractive power), and vehicle and infrastructure 
design (e.g. battery and charging systems). 

3. Providing an estimate of the life cycle costs and benefits of heavy duty vehicle electrification, 
including public benefit (e.g. avoided marginal pollution health damages). 

4. Informing relevant transportation policy (e.g. California’s bus and truck electrification programs). 

1.5 DISSERTATION STRUCTURE 
The format of this dissertation is as follows: 

Chapter 1 provides the background and motivation for this research.  Chapter 2 discusses the concepts of 
Life Cycle Assessment, life cycle modelling, as well as issues related to electric vehicle systems and 
policy analysis. 

Chapters 3 and 4 examine issues related to materials for electric vehicle batteries. Chapter 3 discusses the 
concept of critical materials and examines future demand and production of lithium for batteries.  Chapter 
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4 links this resource model with a LCA model of global lithium production to estimate the global burdens 
and intensity of global lithium production for batteries between 2020 and 2100.   

Chapters 5 and 6 focus on light duty battery electric vehicles. Chapter 5 examines the LCA of batteries 
for passenger vehicles, and provides a rank ordering of the most important factors for determining BEV 
GHG emissions.  Chapter 6 considers how changing vehicle design, battery performance, and electricity 
generation will impact near to mid-term GHG mitigation from light duty electrification. 

Chapters 7 and 8 focus on heavy duty vehicle applications.  Chapter 7 explores the costs and barriers of 
electrification for transit bus fleets; it examines the form and impact of a mandate in California to 
transition all public transit fleets to electric buses. Chapter 8 looks at on-road goods movement 
applications, and estimates the life cycle emissions, costs, and avoided pollution damages of truck 
electrification in California.   

Chapter 9 summarizes and synthesizes the research findings from the previous chapters and proposes 
potential next steps for advancing this research program.   

2. BACKGROUND 
While this dissertation undertakes a range of studies, their coherence lies in: one, the application of LCA 
methods to model the costs and benefits of vehicle electrification; and two, the goal of informing 
transportation and environmental policy. LCA and cost studies typically rely on some form of life cycle 
modelling, during which a parametric representation of the product system is developed and 
characterized.  Setting the goals, objectives, and scope of an LCA are critical to informing the proper 
development of life cycle models, therefore the motivation for the assessment and measures of system 
performance (i.e. functional unit) must be well defined.  This section provides relevant background on 
LCA standards and modelling methods.  It then discusses environmental policy generally, and then 
provides background on specific policies in California this research seeks to inform. 

2.1 LIFE CYCLE MODELLING 
LCA is a standardized methodology for assessing the environmental impacts of a product system (ISO, 
2006). The name and an initiative to develop guidelines were first formalized in 1989 by the Society for 
Environmental Toxicology and Chemistry (SETAC), and its methods first codified in international 
standards in the mid-1990s (International Organization for Standardization, 1997).  LCA standards have 
continued to advance (Guinee et al., 2010; International Organization for Standardization, 2006a).  In the 
context of on-road vehicles, LCA has been used to identify significant drivers of emissions for vehicle 
and fuel technologies (i.e. hotspots), as well as compare tradeoffs through physical and economic metrics 
(i.e. allocation), and to assess potential systems and substitution effects (i.e. attributional or consequential) 
(Ambrose & Kendall, 2016; James Archsmith, 2015; Kendall & Price, 2012; Wardenaar et al., 2012).   

A life cycle encompasses the relevant stages of the life of a product, i.e. “all activities, or processes, 
in a product’s life result in environmental impacts due to consumption of resources, emissions of 
substances into the natural environment, and other environmental exchanges” (Rebitzer et al., 2004). 
A LCA can be roughly divided into three key stages: goal and scope setting, collecting and/or 



16 

 

calculating life cycle inventories (LCIs), and assessing life cycle impacts. The goal and scope of the 
LCA are critical to describing the product performance requirements and making smart comparisons.  
To set the scope of an LCA, it is necessary to quantify the performance requirements of the product; 
the functional unit measures the performance of the product system.  It “provides a reference to 
which the inputs and outputs are related [and] to ensure comparability of LCA results,” (International 
Organization for Standardization, 2006b). “Thus, selecting a functional unit is of prime importance 
because different functional units could lead to different results for the same product systems” (Reap, 
Roman, Duncan, & Bras, 2008a). 

The life cycle inventory represents a list of environmental flows resulting from an input or output to 
the product system. The inventory collection and analysis process involves gathering data on and 
modelling the elemental flows of materials and emissions at each stage of the product’s life cycle.  
Once elemental flows have been inventoried, life cycle impact assessment involves classifying and 
characterizing the impacts of these flows.  Classification involves sorting pollutants and inputs into 
categories of potential environmental stressors, or impacts.  Once emissions have been classified, 
their impacts are typically quantified using a standardized impact characterization method. Impacts 
are measured in relation to a standard reference species for each category, such as CO2-eq for 
greenhouse gasses, or N-eq equivalents for eutrophication potential. Characterization factors are 
applied to convert elemental flows into both category indicators (e.g. CO2-eq for global warming 
potential), or end-point indicators (e.g. disability adjusted life years - DALYs). 

Impact assessment is applied at varying degrees of comprehensiveness in this dissertation, with some 
chapters focusing only on GWP (or carbon footprinting – a very narrow form of LCA), as well as 
others that characterize complete LCIs and impact assessment methods such as the analysis of 
lithium production impacts over time (Chapters 3 and 4).  Chapter 8 takes on a hybrid approach, 
using LCA methods to characterize GWP impacts of truck systems, while relying on marginal health 
damages to characterize (i.e. valuation), the impacts of key air pollutants on human health (e.g. 
particulates, NOx, SOx, and reactive and volatile organic gasses). 

This research also addresses both practical and methodological issues of quantifying uncertainty in 
LCA.  Uncertainty can arise from several sources: measurement error, parameter variability, data 
quality, or model structure (Huijbregts et al., 2001). Historically, LC studies have lacked robust 
characterization of uncertainty, despite use of LCA and LCC for decision making (Ciroth et al., 
2004).  The preferred method for estimating uncertainty in modern LCA modelling is numerical 
analysis and sampling methods (Suh & Heijungs, 2007; Suh & Huppes, 2005).  Numerical analysis is 
concerned with the design and analysis of algorithms that approximate physical and societal systems 
(Stoer & Bulirsch, 2013).  Numerical techniques are widely used to optimize underdetermined 
stochastic systems and estimate statistical models, often relying on Bayesian processes commonly 
referred to as machine learning.  

The most prevalent numerical analysis performed in LCA is correlated random sampling, also called 
Monte Carlo Simulation (MCS). In the context of LCA, MCS involves estimating a set of probability 
density functions for parameter values and exploring the posterior probability of an output function.  
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The process model yields the estimated output function, and describes the necessary relationships 
between the inputs. Using MCS results, the variance of input parameters is correlated with the 
variance of response or output, a well-established technique for linear filtering or other prediction 
problems (Kalman, 1960). Despite the widespread use of numerical analysis to optimize linear and 
non-linear systems (Kahraman, Cebeci, & Ulukan, 2003; Petrik, Taylor, Parr, & Zilberstein, 2010), 
its application to LCA has been limited primarily to global sensitivity analysis.  Continued 
developments in computational methods provide new methods for characterization and optimization 
of scenario uncertainty and parameter estimates (Van den Meersche, Soetaert, & Van Oevelen, 
2009). 

Uncertainty analysis and probabilistic modeling methods are applied to varying degrees throughout 
the chapters of this dissertation.  MCS is used to provide a rank ordering of correlated variable 
importance (Chapter 5), and sampling is used to quantify the probable range of outcomes and 
conduct significance testing (Chapter 7 and 8).  Scenario analysis is also used to incorporate 
parameter variability and discrete design choices for vehicles (Chapter 6 and 8).  

Modelling optimal decision making and policy for complex systems is central to engineering, 
science, and business.  The initial step is the formulation of the system as a function of decisions and 
constraints (i.e. systems dynamics).  The formulation of the problem is also key to ensuring the 
model is amenable to computational techniques for optimization (Stuart 1956).  Farias et al. (2003) 
describes archetypal complex systems familiar to LCA as problems of three: short run allocation, 
zero-sum competition, and recurring dynamic decision making. In this dissertation, these concepts 
are applied in the context of expanding production capacity (Chapter 4), and adopting and deploying 
electric vehicle infrastructure (Chapter 7 and 8).   

2.3 POLLUTION ABATEMENT THROUGH TECHNOLOGY CHANGE 
For several decades, theories relating the drivers of environmental impact have focused on 
technology (Boserup, 1981). The general theory of environmental impact as a function of 
technology1 has in turn led to a number of implicit policy models for pollution control through 
technology change (Bartlett & Kurian, 1999; Boserup, 1981; Jaffe, Newell, & Stavins, 2002).  
Increasingly, environmental policy interventions affect the process of technology change by directly 
setting incentives and constraints on technology markets (Jaffe, Newell, & Stavins, 2003).  Yet, the 
efficacy of pollution control through technology change is often poorly understood. 

The effects of environmental policies on technology change may, over the long run, be among the 
most important determinants of success or failure of environmental protection efforts (Schultze, 

                                                   

1The concept of the economic transformation function describes the relationship between an available 
technology and the ability to produce a set of outputs from a given input of capital, labor and materials.  
The IPAT model and related theories also describes how environmental impact is related to the per capita 
use of technology and the diffusion of that technology into populations (i.e. affluence).  
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1975).  A key point of comparison for policy actions is the extent to which they encourage the 
efficient rate and direction of technology change (Jaffe et al., 2002).  But there are many 
methodological and practical challenges to estimating the long-run impacts of policy action on 
technology change. Challenges include characterizing the innovation or diffusion of new 
technologies (Carlsson, Jacobsson, Holmén, & Rickne, 2002; Scherer, Harhoff, & Kukies, 2001), 
quantifying the impacts of research or demonstration project funding (Reinganum, 1989), or 
addressing the market structure of specific industries (Sutton, 2001).  These are challenges for any 
technology policy, and regardless of the uncertain relationship between policy action and systems of 
innovation, policy makers are likely to continue to rely on technology change to achieve regulatory 
objectives.    

Efforts to achieve pollution abatement through technology change must also contend with uncertain 
technologies and methodological issues of estimating impacts.  Moreover, in the context on 
transportation systems, consideration of the entire lifecycle of both vehicle systems and 
transportation fuel pathways is critical to achieving emissions reductions from technology change.  
Three primary issues for policies focused on the heavy-duty sector are selecting performance metrics, 
setting the scope of analysis, and addressing uncertainty (Munn, 1979; Reap et al., 2008a; Reap, 
Roman, Duncan, & Bras, 2008b).  Substitution and other market-mediated effects also complicate 
prediction of impacts on pollution from technology change.  In total, these issues come down to 
capturing uncertainty and tradeoffs in the effects of technology change or the appropriate direction to 
incentivize change (O’Hare et al., 2011; Richard Jay Plevin, 2010; Richard J Plevin et al., 2014). 

In general, this dissertation does not consider the potential for market substitution effects including 
model or modal substitution (e.g. switching between technologies), or other economic impacts (e.g. 
vehicle travel, price and income effects).  These are two of the key limitations of the body of studies 
presented in this dissertation and opportunities for future research, and discussed further in Chapter 
9. Given the political and regulatory focus on technology change, this dissertation aims to inform the 
design and selection of specific, proposed policies.  Chapters 7 and 8 of this dissertation focus on 
characterizing the drivers of electric vehicle costs and emissions, and the value of incentive programs 
and emissions reductions.   

2.4 CALIFORNIA AND BEV POLICY 
The chapters of this dissertation frequently focus on California policy, particularly in contrast with the US 
on average.  California is recognized as a global leader in policies to support BEV development and 
deployment.  California has a history of critical air quality issues, including persistent non-attainment 
areas for federal ozone and air borne particulate matter standards.  The South Coast Basin, which includes 
Los Angeles County, represents approximately 10% of the US population, but 34% of the population-
weighted national exposure to ozone above the 8-hour limit. Reactive oxides of nitrogen (NOX) are a key 
ozone precursor and a combustion by-product from both diesel and natural gas engines. According to 
California’s Mobile Sources Emissions Inventory and Model (EMFAC), trucks and buses are expected to 
remain the largest share of daily NOX emissions, in both the South Coast and neighboring San Joaquin 
Valley for the near future.  California also has 74% of the national population-weighted exposure above 
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limits for ultrafine particulates (PM2.5), more than half of which is concentrated in the South Coast and 
San Joaquin Basins.  

The state’s primary strategy for reducing emissions from HDVs relies on deploying new vehicle and fuel 
technologies.  California has outlined its plan to reduce NOX, PM, and toxics from heavy-duty mobile 
sources over the next decade in the state implementation strategy (SIP).  This includes a call to reduce 
emissions of NOX in the South Coast and San Joaquin air districts 80% by 2032.  California has also set a 
target to reduce GHG emissions 40 percent by 2030 under the Global Warming Solutions Act SB32.  To 
achieve these regulatory objectives, California facilitates the deployment of zero-emission and near 
zero-emission vehicles and equipment. This includes battery electric medium/heavy-duty vehicles 
(BEV), fuel cell electric vehicles (FCEV), low NOX engines, and engines and vehicles with greater 
efficiencies. California initiated several programs designed to spur increased private investment, 
accelerate heavy-duty vehicle technology advancement, and move technologies through various 
stages of commercialization. It is expected that these investments and demonstrations of early market 
successes can launch additional applications, grow the supply chain for similar powertrain and 
components, and make these technologies more affordable. Policymakers expect that developing 
capacity in the private sector will achieve the longer-term goals of providing cleaner air for 
Californians, meeting the State’s climate policy commitments, creating green jobs, and building more 
sustainable communities.  

This dissertation primarily informs the state’s mitigation strategy by filling needed research gaps in LCA 
modelling of heavy duty vehicles, and refining methods of forecasting the performance of heavy duty 
electric vehicle systems.  This includes quantifying and comparing the distribution of cost and emissions 
at the state level, across a range of vehicle classes and technology configurations.  To provide an effective 
counterfactual for comparison, several chapters also undertake parallel LCA or cost modelling of 
conventional gas and diesel heavy duty vehicle technologies.  A probabilistic approach of characterizing 
uncertainty in large scale fleet operations and transition costs is developed and demonstrated to support 
transit agencies’ assessment of strategic investments in new vehicle technologies (Chapter 7).  This 
approach is then expanded upon by integrating technological development (e.g. learning on battery costs, 
improving battery energy density), and the economic benefits of pollution reductions (e.g. marginal health 
damage cost estimation), in Chapter 8.  
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3. LITHIUM BATTERIES AND DEMAND FOR CRITICAL 
MATERIALS 
3.1 PURPOSE AND SCOPE 
This chapter further examines the key constituent materials used to manufacturer lithium-ion batteries for 
electric vehicles.  This chapter focuses on lithium, a relatively well characterized element that is both the 
basis and namesake for electric vehicle batteries.  Together, this and chapter 4 develop and demonstrate a 
method for dynamic life cycle assessment of a resource.  Key contributions include the paring of a novel 
model of resource production with a spatially and temporally dynamic life cycle model of lithium 
production.  

This chapter includes some text adapted from Ambrose, H. and Kendall, A. Understanding the Future of 
Lithium: Part 1 – Resource model., Journal of Industrial Ecology (In Press). 

3.2 CRITICAL ENERGY MATERIALS 
Many low carbon transportation technologies and enabling technologies for renewable energy generation, 
from energy storage devices to traction motors, depend on a short list of materials with unique properties 
and few substitutes (Bauer et al., 2010). Because the supply of these materials is crucial for their 
performance, but may also be constrained or put at risk due to natural, geopolitical, and economic forces, 
they are referred to as critical energy materials.  The concept of metal criticality arises from the potential 
mismatch of resource demand and supply.  The preferred methodology for evaluating the criticality of 
metals involves quantifying the supply constraints, risks, and environmental implications over both short 
and long time horizons (Graedel et al., 2012). In 2018, the U.S. Department of Interior released a report 
detailing the importance of critical materials to the economic and national security of the United States 
(Department of Interior, 2018), and, despite its relative abundance in the lithosphere, the report identifies 
lithium as a critical energy material due to its importance for electrochemical lithium ion batteries (LIBs).  

For more than four decades, researchers have considered whether lithium supplies will meet future 
demand, especially in the context of increasing demands from new technologies and the risks posed by 
geopolitical factors (Vine, 1976).  Lithium is the dominant electrochemical storage material for traction 
batteries in vehicles and consumer electronics (Goonan, 2012), and recent growth in demand is primarily 
from increased use in batteries, which became the largest end-use of high-grade lithium products in 2015.   
Use of lithium for LIBs increased 30% in 2017, exceeding 20 kiloton (kt) and comprising 46% of total 
lithium use (Figure 3.1.a). 

Over the same time, as illustrated in Figure 3.1.b, the price of battery grade lithium carbonate has also 
increased rapidly, from less than $3,600 per tonne in 2007, to nearly $14,000 in 2017 (Jaskula, 2018).  As 
the value of high-grade lithium products have increased, 12 million metric tons (Mt) have been added to 
economically recoverable reserves located primarily in China, South America, and Australia.   
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Figure 3.1 (a.) Lithium Reserves and Prices (US dollars), and (b.) Lithium End Uses 2007 - 2017 
(Jaskula 2008-2018). 

 

The rapidly increasing demand for large format LIBs in electric vehicles (EVs) and expected use in 
stationary electricity grid applications to support integration of intermittent renewables like wind and 
solar has brought renewed attention to issues of lithium supply.  At the same time, concerns over the 
environmental impacts of producing lithium and other resources used in technologies intended to mitigate 
environmental damages, such as EVs and renewable energy technologies, has also brought focus to the 
importance of life-cycle based environmental assessments.  This article is the first of a two-part article 
series that respond to the concerns of sustainable lithium supply and its environmental impact.  In this 
first article, a resource model is developed along with an estimate of future lithium demand to evaluate 
the supply of lithium and expected production from individual lithium deposits between 2018 and 2100. 
The result of this models provides the basis for part two of this article series, which develops and applies 
a dynamic life cycle assessment (LCA) model to predict the environmental impacts of lithium production 
over time, evaluating whether impacts change significantly as demand grows over time. 

Many previous research efforts have attempted to estimate the reserves (resources that are economically 
recoverable today) and the resources (the total amount of a mineral in the earth’s crust that may be 
recoverable at some point now or in the distant future) of lithium, as well as future demand in relation to 
these estimates.  Among relatively recent studies, a wide range of lithium resource estimates have been 
reported, from 19.2 to 64 Mt of lithium, (Yaksic & Tilton, 2009; Gruber et al, 2011; Wanger, 2011; 
Vikström, Davidsson, & Höök, 2013).   

Studies have also considered a range of vehicle electrification scenarios, and found potential demand for 
lithium from vehicle LIBs could exceed 4 Mt of lithium carbonate equivalents (LCE) per year. While the 
majority of studies have not identified a resource constraint related to lithium, some studies have pointed 
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to potential for near-term increases in demand for lithium that exceed available global reserves, thereby 
necessitating recovery of lithium from recycled sources (Peiró, Méndez, & Ayres, 2013; Wanger, 2011). 
In addition to considering resource constraints, studies have considered the disposition and quality of 
deposits.  For example, Kesler et al. (2012) evaluated global lithium resources, focusing on the 
disposition and quality of deposits, finding that even smaller deposits may likely be economically 
recoverable. 

In addition to characterizing reserves and resources, understanding demand for lithium over time is a 
crucial element for understanding supply risk.  Recent growth in demand for lithium is primarily from 
increased use in batteries, and LIBs are expected to dominate current and future lithium demand (Helbing 
et al., 2018). Mohr, Mudd, and Giurco et al. (2012) provided historic and literature forecasts of lithium 
supply and demand, and carefully discussed lithium resources and reserves, as well as the ultimately 
recoverable resources (URR). A key element of determining demand in Mohr et al. was estimation of 
lithium demand based on sales assumptions for EV LIBs, assuming each EV required 3 kg of lithium, 
which falls between estimates in some previous studies that also examined lithium used in EVs (Wanger, 
2011; Vikström et al. 2013). Mohr et al. found that the lithium market could expand for several decades 
with no supply constraints. Further, from 2030 forward, they predicted that growth in supply would be 
governed by growth in recycling as preferred deposits are exhausted.  Though currently not a supply of 
refined lithium, recycling of LIBs could be an important source of future lithium supply (Gruber et al., 
2011; Pehlken, Albach, & Vogt, 2015).  

More recent studies have also shown that identified lithium resources are adequate to meet even 
aggressive demand forecasts (Pehlken et al., 2015). Thus while some studies have identified the potential 
for near-term supply constraints, many others have concluded that resources are unlikely to be exhausted 
in the foreseeable future.  Lithium is also a relatively small cost component of LIBs and therefore 
growing demand for batteries may be somewhat unresponsive to even large increases in the price of 
lithium (Ciez & Whitacre 2016).   

This article adds to the growing body of research on lithium and critical materials by developing a novel 
model of primary lithium production, and providing a review and comparison with past studies.  The 
lithium resource model is used to predict the geographic and technical development of future lithium 
production capacity given a range of potential demand scenarios and production costs.  Another novel 
feature of this study is the inclusion of battery reuse and repurposing strategies in the assessment of 
lithium recycling, a gap in some previous studies that could affect the timing and availability of recycling 
potential.  The underlying data, the model approach, and results are transparently reported to provide a 
basis for part two of this article series, the LCA.   

3.3 METHODS 
An integrated model of lithium resources is developed to investigate the production and disposition of 
primary lithium, as well as potential stock of recycled materials. Demand for lithium is estimated from 
historic, current, and projected market data.  The resource production model solves for the optimal or cost 
minimizing arrangement of annual production and production capacity of each mineral deposit based on 
the physical and economic properties of the deposit.  A recycling model is also developed to understand 
whether and at what magnitude secondary resources might influence supply and the dispatch of new 
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primary product capacity in the future. Figure 3.2 illustrates the modeling framework undertaken in this 
research. 

 

 

Figure 3.2 Modeling Framework 

 

3.3.1 LITHIUM PRODUCTION AND DEMAND 

The economic and technical availability of lithium resources given a particular level of demand govern 
the production of lithium.  Previous studies have examined the production patterns of finite resources; 
most notably Hubbert (1959) found that the production of petroleum resources closely followed a bell 
shaped or logistic growth curve (Eq.1). In Equation 1, the cumulative production of a resource in year t is 
q(t), where URR is the total resource available, t0 is the year of peak production, and k is the growth 
factor. Several studies have subsequently shown that production of finite resources, such as petroleum, 
coal, copper, and phosphorus have experienced predictable logistic growth patterns in production (Bardi, 
2005; May et al., 2012; Mohr & Evans 2008).  Logistic growth curves have also been used to evaluate 
and forecast lithium production (Mohr et al., 2012; Vikström et al. 2013).  Application of these models 
are predicated on ex-ante knowledge of the URR.  While the URR cannot be precisely predicted, it is 
typically assumed to range somewhere between what is currently recoverable, and the limits of 
occurrence within the lithosphere. 

!(#) = &''
()*+,(-+-.)

     Eq.1 

In order to estimate URR, this study relies on identified deposits and prior published estimates of deposit 
resource base. These data suggest there is a wide range of potential URR, from 55 Mt to 99 Mt of lithium 
as Li metal, or 293 to 527 Mt of LCE. This span of resource estimates is used to estimate a low-demand, 
or conservative, scenario and a high-demand, or optimistic, scenario. This study also adopts a logistic 



24 

 

growth model of lithium production estimated using historical production data combined with an estimate 
of near-term lithium demand for LIB production from 2018 to 2030.  The near-term demand lithium 
demand estimate is based not on technology adoption predictions, but instead on three factors,  (1) 
planned and commissioned LIB manufacturing capacity (Curry 2017); (2) improving LIB energy 
densities (U. S. Department of Energy 2017), and (3) market shares of LIB cathode types (Olivetti et al. 
2017).  The near-term appraisal is assumed to reflect perceived growth in demand for batteries across 
multiple sectors, including traction (i.e. EV) and stationary (e.g., grid storage) applications.  The growth 
model was estimated using nonlinear least squares and implemented in R, a statistical computing 
environment (R Foundation for Statistical Computing 2012).   

Figure 3 shows half the last century of global lithium production and the production futures developed for 
the lithium resource model described above.  Global production of lithium was very limited until around 
1950, but production then increased by an order of magnitude over the last two decades (note log scale in 
Figure 3).  Under the conservative scenario (the lower bound of the projection shown in Figure 3.3), 
production increases from 237 thousand t lithium carbonate equivalent (LCE) in 2018, to 4.4 million t 
LCE/year by 2100.  Under the optimistic scenario, demand continues to increase steadily after 2050, to 
7.5 million t LCE per year in 2100.  

  

Figure 3.3 Historical Lithium Production 1950 – 2017, and Forecast Global Lithium Production 
2018 – 2100 (British Geological Survey 2018, Jaskula 2008-2018) 

 

For comparison, Mohr et al. (2012) estimates lithium production in 2100 to range from 3.2 to 7.45 million 
t LCE based on a sustained demand of almost 4 million t LCE per year for batteries.  Other studies have 
generally found lower levels of demand for lithium (0.7 to 2 Mt LCE), due to the assumed URR, the 
estimate of lithium demand, or assumptions about recycling (Vikström et al., 2013; Pehlken et al., 2015). 

3.3.2 CHARACTERIZATION OF LITHIUM RESOURCE DEPOSITS  

Based on previous studies and publicly available information, 112 deposits of lithium-containing minerals 
with data on location, mineral type, and/or ore grade were identified. Of these, 32 deposits had available 
estimates of economically recoverable reserves and mineral samples (Appendix A-S1).  Bootstrapping 
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was used to impute ore grades and composition information where feasible, resulting in a final list of 95 
individual deposits that were sufficiently characterized for inclusion in the analysis. The study focuses on 
primary recoverable resources and does not consider unidentified or unconventional resources, although 
potential implications of these sources are addressed in the discussion section.  The upper bound for URR 
was estimated at 99.5 Mt, with 37.5 Mt Li in current reserves. The majority of current reserves are 
contained in a few high-grade brine deposits.  As evident in Table 3.1, 80% of lithium deposits and 60% 
of the estimated total maximum resource are contained in low-grade pegmatites and brines.  

Deposits were classified by the production pathway required to mine and refine the ore.  Six discrete 
production pathways were identified based on the grade of deposit, the deposit mineral type, the location 
of the deposit, and ratio of magnesium to lithium content for brines. Two binary variables were used to 
include location data, the first being the presence of developed reserves in the country (e.g. true or false), 
and the second established access to international markets (e.g., developing economy or no).  A 
hierarchical tree was used to identify the divisions in resource grade and mineral types. 

Table 3.1 Lithium Deposits and Reserves by Production Pathway 

Process Model Deposits Reserves 
(Mt) 

Resources 
(Mt) 

%  Li Content 
(Avg.) 

High-grade Pegmatite 15 0.72 3.75 1.605 

Low-grade Pegmatite 37 7.10 24.78 0.761 

Low-grade Lithium Minerals 20 0.35 3.69 0.301 

High-grade Brine 4 17.30 37.90 0.105 

Low-grade Brine 14 9.85 23.92 0.035 

Low-Grade Brine/Unfavorable  5 2.20 5.77 0.004 

 

3.3.3 UNIT PRODUCTION COSTS 

A descriptive model of production costs was derived through regression analysis of published lithium 
production cost estimates. Production cost data were gathered from a variety of sources, including 
technical analyses of LCE production facilities (Laferriere et al., 2012), lithium sales data (Shi, Facada, 
and Radford 2018), and industry and company reports (Johnston, 2016; Staiger, 2017; Roskill, 2017; 
Roskill, 2015).  Cost estimates were adjusted to the current year (2018 USD) from the estimate year using 
the Producer Price Index (non-seasonally adjusted metals and metal products). As no PPI for Lithium or 
equivalents is available, this was based on parts for electronics and cathode materials.  Specific 
information identifying the deposit was available for approximately half the cost estimates identified.  
There was also significant variation in the estimated LCE production cost (+/- 56%) for the same deposit 
in real dollars.  Estimates were disproportionately available for deposits that are currently developed, 
which is likely also true where the deposit name was not available. 
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The association of production costs with several explanatory variables were investigated, including,  
country of origin, grade of deposit, mineral type, lithium content, and years since initial development. 
Lithium produced from pegmatite sources was generally observed to cost more than brine (Figure 3.4).  
Lithium production costs vary by country of origin, with production in China being notably more 
expensive even when controlling for the large amounts of low level deposits. The grade and type of 
deposit explain the majority of variation between cost estimates and were used as the basis for the 
production cost model. 

 

 

Figure 3.4 Lithium Average Production Cost by Deposit Country, Type, and Grade 

 

A multilevel model was used to estimate the mean (average) production cost for each combination of 
grade and type, with an error term based on mineral type. The estimated coefficients for production costs 
for each production pathway are provided in Table 3.2. The summary of the model, coefficient estimates, 
standard error, and significance test values are also provided in section S2 of Appendix A. 

 

Table 3.2 Estimated Lithium Production Costs (2018 USD) 

  Deposit/Production Type $/t Std. Error 

High-grade Brine $2,869 $292 

Low-grade Brine $3,746 $292 

Low-grade Brine/Unfavorable Conditions $5,434 $923 

High-grade Pegmatite $4,283 $435 

Low-grade Pegmatite $5,080 $326 
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Low-grade Rock Minerals $6,517 $533 
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3.3.4  RESOURCE PRODUCTION MODEL 

A linear capacity expansion model was used to estimate future lithium production as a function of 
production capacity expansions.  The model solves for the production and capacity at each deposit for 
each year with a minimum total system cost, where system costs are estimated as the cumulative sum of,   

min
23-
4567,		23-

:;4
∑ ∑ =>?

@ABCD?C
EFAG + >?C

@ABC.@JED?C
@JEKC?   Eq. 2 

Where xprod is the production volume in tons at each deposit (i) in year (t), and xcap is the annual 
production capacity.  The total production cost for each deposit i in year t is the sum of production costs 
and capacity costs.  

The model is subject to the following constraints,  

∑ D?C
EFAG ≤ MNN?, ∀	PC    Eq. 3 

Total production from each deposit does not exceed the deposit URR (Eq.2). 

D?C
@JE − D?C

EFAG ≥ 0, ∀	P#   Eq. 4 

Production in each year is less than production capacity at that deposit (Eq.3). 

∑ D?C
EFAG ≥ TUVWXYC, ∀	#?   Eq. 5 

Production in each year exceeds demand based on the logistic growth model (Eq.4). 

D?C
@JE ≤ MNN?

Z[ , ∀	P#   Eq.6 

Production capacity at each deposit cannot exceed the recovery limit (Eq.5), which we define as the URR 

divided by the minimum design years for a lithium production facility (Z). The average minimum design 
years or service years of a mine is estimated from Mohr et al. (2012) to be 55 years. This constraint also 
serves to discourage large expansions in capacity that would potentially strand capital investments before 
the end of their useful life.   

Mine capacity costs and ramp rate limits are drawn from Mohr et al. (2012), and modelled after the Beta-
Version Peak Lithium Extraction Model used.  Capacity costs are estimated as a function of the current 
deposit reserve and total deposit URR with Eq.7,  

\?C = U
&''3]'*B*F^*3-

&''3[   Eq.7 

The capacity cost factor \ is multiplied by the production costs to estimate the capital costs for each 
deposit.  The capacity cost factor decreases to one as the reserve approaches the total URR for the deposit.  
Reserves are set in the initial year based on current reserve estimates, and relaxed in constant five year 
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increments towards the estimated URR for the deposit.  In this way, the resources gradually become 
reserves, which determines overall production capacity and system costs.   

The model estimates the most likely disposition of future lithium supplies (e.g. share of production across 
deposits) over the study horizon (2018 to 2100).  A minimum cost solution for the system was identified 
using the revised simplex method. 

3.3.5 STOCK AND FLOW MODEL FOR RECYCLED LITHIUM 

In addition to the production of primary, the potential for recycled lithium from batteries was investigated 
via a simplified stock and flow model of the lithium production system (Appendix A-S3). We track four 
stocks,  lithium in primary resources, lithium in batteries, lithium in secondary resources, and lithium in 
waste stocks awaiting recycling.  The flows between these stocks are mitigated by several factors, 
including,  

• Production rate – global production of LCE 
• Lithium for batteries– share of total lithium market for large-format LIBs 
• Battery material production efficiency – the inverse of material losses during production 
• Battery service lifetime – years in primary application 
• Battery end-of-life collection rate – the rate which batteries are collected for recycling or second-

life when retired 
• Battery second-life survival rate – the percentage of retired batteries that can be repurposed to 

serve economically in a secondary application 
• Battery secondary service lifetime – years in secondary application 
• Recycling material recovery efficiency – percentage of material recovered from recycled batteries 

Given these dynamics, we explored the potential stocks and flows of LCE in both primary recoverable 
resources and recycled batteries.  The projection assumes LCE for batteries increases linearly to 80% of 
end use by 2040 (Department of Interior, 2018). As a simplifying assumption, we assume batteries serve 
between 8 to 10 years in a primary application, after which 55% of batteries serve in a secondary 
application for up to 3-6 years (Jiao & Evans, 2016). As an optimistic projection, we assume collection 
rates for recycled batteries also increase linearly from 55% in 2018 to 85% in 2100, despite the fact that 
current collection rates are much lower (Swain, 2017).  

The material efficiency (e.g. rates of recovery) are likely to vary by both the type of process used, when in 
the future the battery is recycled, and chemistry of the cathode. A number of cathode chemistries have 
been considered for or used in large format lithium batteries. While the current market for cathode 
materials seems to be coalescing around the Nickel Manganese Cobalt formulation, the mixed chemistry 
waste stream of disused batteries is likely to confound the economics of recycling processes and makes 
predicting recovery rates difficult.  We draw an assumption for a hypothetical, three-stage recycling 
system from the critical review of recycling literature by Zheng, Li, and Singh (2014). The net recovery 
rate for lithium in cathode materials after secondary and deep recovery processes was estimated to be 
51%.  Further information on the recycling model is provided in the Appendix A. 
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Currently, lithium recycling is nascent and there are insufficient data on the costs of recycled 
lithium.  Based on available prior studies, the cost of leaching chemicals alone for lithium carbonate from 
recycled batteries could be more than the $8 per kg or $8000 per metric ton LCE (Gratz et al. 2014).  As 
capital and other operational costs would undoubtedly increase the cost of production, the price of 
recycled lithium carbonate would be significantly higher than the average cost of production of lithium 
from primary sources.  Thus, the model would not select to expand capacity from recycled stocks based 
on cost minimization until all other primary resources were exhausted.  Instead, impacts of lithium 
recycling on primary lithium production are examined through a displacement scenario, i.e. where 
recycled lithium displaces primary production, for the optimistic scenario.  The full results of the 
displacement scenario are available in the Appendix (A-S3. 

3.4 RESULTS 
Results are shown for optimistic and conservative scenarios. Under the optimistic scenario, production 
increases to 7.5 million t LCE by 2100 (Figure 3.5 a and c). Under the conservative scenario, peak 
production reaches 3.5 million t LCE in 2100. The results of the analysis show that for the near-term, the 
majority of demand for lithium is likely to be met by existing production from lithium brines. In fact, 
given recent expansion in lithium brine production capacity, expansion at new deposits is not required 
until after 2035. 

While the majority of current lithium is supplied from a single brine source (SQM Atacama – Chile), 
future increases in demand are likely to require the development of new and widely distributed resources 
(Figure 3.5 – green in c and d).  Brines continue to make up the majority of production (67%) through 
2100, owing to their lower production costs and significantly larger resources. However, production shifts 
to include undeveloped, low grade US and Chinese brines after 2050.  This shift in lithium sources 
translates to a significant increase in lithium supplied from low-grade or less favorable deposits.  By 
2100, pegmatite and mineral sources provide 33% of total production.  
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Figure 3.5 Lithium Production by Deposit Type and Country for Optimistic (a and c) and 
Conservative (b and d) Scenarios  

 

Under the conservative projection, only moderate production from pegmatite resources is required, while 
brine resources are even more dominant (Figure 3.5b).  This suggests that future production from existing 
high grade brines could be sufficient to sustain a large battery market for the next century.   

3.5 DISCUSSION  
Compared with previous efforts, this study did not identify a potential resource constraint related to 
lithium for LIBs. Identified lithium deposits have continued to expand, and this study finds both higher 
production levels of lithium, and larger potential lithium resources compared to previous studies. While 
lithium deposits are distributed widely, deposit types are clustered, with identified high-quality brines 
being far less common geographically. Conversely, a majority of identified pegmatite deposits are less 
well surveyed and poorly characterized. Deposits often require extensive sampling to reliably estimate the 
grade of the deposit and how the distribution of minerals might influence ultimate recoverability. One 
potential limitation of this work is the lack of consideration for short-term supply disruptions (Helbig et 
al. 2018), or potential knock-on effects from developing near-by or co-located deposits. 

We explored the potential stocks and flows of LCE in both primary recoverable resources and recycled 
batteries to understand the potential effects on resources.  If current rates of collection for recycled LIBs 
persist, stocks and flows of recovered lithium would be very small.  Therefore, we consider the potential 

a.

0

2

4

6

8

2020 2040 2060 2080 2100

b.

0

2

4

6

8

2020 2040 2060 2080 2100

Deposit Type
High−grade Brine

Low−grade Brine

Low−grade Brine/Unfavorable

High−grade Pegmatite

Low−grade Pegmatite

Low−grade Rock Minerals

c.

0

2

4

6

8

2020 2040 2060 2080 2100

d.

0

2

4

6

8

2020 2040 2060 2080 2100

Region
Argentina

Australia

Bolivia

Canada

Chile

China

Rest of World

United States

Year

Li
th

iu
m

 P
ro

du
ct

io
n 

(M
t L

C
E)



32 

 

for recovery of recycled materials given improved collection systems.  We assume an optimistic rate of 
battery collection, increasing linearly from 55% to 85% of batteries by 2100.     

Figure 3.6 shows the key lithium stocks and flows between now and 2100; shaded regions reflect flows in 
t LCE, while lines correspond with the stock of LCE in Mt from primary sources (solid) and recycled 
sources (dashed).  By 2060, batteries retired and collected for recycling each year could represent 320,000 
t of LCE; greater than current global production.  If current low rates of collection persist, the potential 
flow of recovered LCE in 2060 decreases by a factor of ten.  Assuming lithium recycling infrastructure 
remains undeveloped, disposed LIBs could accumulate in waste supplies and represent a potential stock 
of LCE to recover.  By 2100, the total stock of LCE in waste batteries awaiting recycling could approach 
25% of global primary reserves.  A continued lack of development in recycling systems for LIBs over the 
next century is unlikely given the presence of other high-value materials in battery cathodes, namely 
cobalt, nickel, and copper (Wang et al., 2014).  But in addition to the potential for LCE accumulation in 
waste stocks over the near to midterm, this analysis demonstrates how LCE might accumulate in in-use 
supplies through the cascading applications of second-life batteries.    

 

 

Figure 3.6 Stocks and Flows of Recycled Batteries, Recoverable Resources, and Global Production 
of Lithium 

 

As noted previously, the costs of recovering LCE from recycled batteries are currently prohibitive.  But 
given policy supports or further technical innovation, it is reasonable to assume that recovered lithium 
from recycled batteries could be used to displace primary production of LCE.  Should recycled lithium 
displace primary production, it could reduce annual demand for primary lithium by 11% by 2050 and 
28% by 2100.  Given the system lag in recycled stocks, the potential for recycled lithium would continue 
to increase after 2100, to over 50% of primary lithium demand by 2020.  This indicates the potential long 
term importance of recycled batteries and recovered lithium to global lithium supplies. 
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In addition to lithium recovered from spent batteries, the development of unconventional or unidentified 
resources could also serve to expand the URR available. The most notable and studied unconventional 
source of lithium is seawater.  Previous studies have noted the abundance of lithium in seawater, 
including the vast resource potential at 20,000 times identified terrestrial deposits (Fasel, 2005; Tahil, 
2007). While studies have suggested recovery from seawater is theoretically possible (Kushnir, 2012), the 
broader literature suggests that costs of extraction from seawater are prohibitive (10-30 times higher than 
conventional sources), require vast withdrawals of water, significantly increase production energy 
requirements (Grosjean, 2012; Bardi, 2010), and is therefore unlikely. Perhaps the best discussion of the 
infeasibility of extracting lithium from seawater is provided by Vikstrom et al. (2013) who note that 
despite the relatively large abundance of gold in seawater, it is not commercially viable to process the vast 
quantities of seawater required to produce even a few kilograms of gold.  As noted by both Vikstrom et 
al. (2013) and Tahil (2007), lithium recovery from seawater would require a processing flow of 
approximately 5,000,000 m3/t of lithium produced based on an average concentration of 0.17 ppm.   

3.6 CONCLUSIONS 
While some previous studies found resource shortages might occur due to significant increases in LIBs 
for vehicles, this study did not. Moreover, this study included a novel approach for lithium demand based 
on projected manufacturing capacity, which reflects more comprehensive demand for lithium for LIBs 
including other large format LIB users in the heavy duty and stationary power sectors.  The findings of 
this study also indicate that improvements to battery recycling and material recovery systems are critical 
for recycled batteries to become a significant portion of future lithium supplies.  While the effects of 
increasing lithium demand on global lithium production have been the focus of other studies, little work 
has considered how production dynamics will affect the average environmental intensity of commodities 
like lithium for batteries.  In part two of this study, a dynamic life cycle inventory model is developed to 
link with the resource model described in this paper. Taken together, this research describes and refines a 
method for dynamic life cycle assessment of critical materials. 
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4. DYNAMIC LIFE CYCLE ASSESSMENT OF FUTURE LITHIUM 
SUPPLY 
4.1 PURPOSE AND SCOPE 
This chapter considers the life cycle environmental impacts of producing and refining lithium for electric 
vehicle batteries.  This chapter builds directly on the previous chapter.  Chapter one developed a forecast 
of lithium demand and coupled it with a spatially-resolved resource model to predict, at the resolution of 
identified deposits, the primary lithium resource production over time from 2018 to 2100. This chapter 
uses the results presented in one to develop a temporally and spatially resolved life cycle assessment 
(LCA) of lithium that reflects the changing sources of lithium expected to be dispatched over time. The 
result is a normalized inventory for lithium production for batteries and an estimate of the global burdens 
of future lithium demand.   

This chapter includes some text adapted from Ambrose, H. and Kendall, A. Understanding the Future of 
Lithium: Part 2 – Dynamic Lifecycle Assessment., Journal of Industrial Ecology (In Press). 

4.2 INTRODUCTION 
An array of emerging technologies, from electric vehicles (EVs) to renewable energy systems, rely on 
large-format lithium ion batteries (LIBs). Improving performance, increased production, and decreasing 
prices of large format LIBs has enabled remarkable growth in these clean energy applications. In 
response, global production capacity for LIBs is expected to triple in the next five years, exceeding 300 
GWh by 2022 (Curry, 2017). This means that the constituent materials used in LIBs must be produced at 
increasing rates as well. By 2030, global demand for lithium in LIBs is expected to range from 300-600 
thousand tons of lithium per year, comprising more than three-quarters of total lithium demand.  

Two key issues for LIBs and emerging technologies that rely on lithium batteries are resource constraints 
and environmental impacts that occur during production. Growth in demand for LIBs across a number of 
sectors is already placing strains on current lithium production capabilities, and will likely move 
production to increasingly low-grade resources over time (Helbig, C., Bradshaw, Wietschel, Thorenz, & 
Tuma, 2018; Ambrose & Kendall, 2019). It is unclear how the dynamics of supply and demand will affect 
the life cycle environmental impacts of lithium, and thereby the environmental impacts of technologies 
that rely on LIBs. Given the role of LIBs as an enabler of technologies associated with mitigating 
environmental impacts (e.g. electric vehicles and renewable electricity integration), the potential increase 
in impacts from lithium production are a concern. 

LIB demand is fueled in part by the falling price of LIBs; cost targets for LIBs set 10 and 15 years ago 
have already been met and exceeded; with costs now expected to fall below $80/kWh, enabling economic 
deployment in an increasing range of applications (U. S. Department of Energy, 2017; Curry, 2017; 
Nykvist & Nilsson, 2015).  Falling prices for LIBs are not a consequence of falling lithium prices. In fact, 
demand for lithium for use in LIBs is likely insensitive to increases in the price of lithium (Ciez & 
Whitacre, 2016) because, despite their name, the actual content of lithium in LIBs is low, and relative to 
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other costs in manufacturing, lithium costs are not large.  Thus, significant increases in the price of battery 
grade lithium carbonate may not slow adoption of LIBs and thus demand for LIBs.  

Recent growth in the demand for critical energy materials, which includes lithium, is a concern for 
climate mitigation efforts and local environmental impacts.  Previous studies have investigated the effects 
of increasing demand and decreasing resource quality on the environmental impacts of metal production. 
For example, production of copper has shifted to increasingly low grade resources with lower yields over 
the last century (Crowson, 2012; Memary et al., 2012).  Studies have indicated the significant decrease in 
the average copper ore grade, from greater than 12% Cu to less than 1% Cu by mass, has been 
accompanied by an order of magnitude increase in energy required for mining and beneficiation (Northey 
et al., 2017).  The grade of the deposit affects the design of the mine and processing facilities, as well as 
overburden, effluent and tailings generated, all of which influence the LCA of metals production 
(Durucan, S., Korre, A., & Munoz-Melendez, G., 2006). Average ore grade has been proposed as a 
characterization factor for comparing the life cycle environmental impacts of metal extraction (Vieira et 
al., 2012). Coupled with continued growth in demand for copper, these trends could result in a doubling 
of the climate impacts associated with the global copper cycle by 2050 (Kuipers et al., 2018).   

While several studies have considered the environmental impacts of lithium used in cathode materials and 
batteries (Grosjean et al., 2012; Speirs et al., 2014; Swart, Dewulf, & Biernaux, 2014; Notter et al., 2010; 
Li et al., 2014; Yu et al., 2014), only one study has considered potential variability in impacts resulting 
from the different resources that can supply lithium. Stamp, Lang, and Wäger (2012) modeled the 
production of lithium carbonate from generic brine and rock (i.e. pegmatite) sources, and considered 
potential implications for the environmental impacts of LIBs.   They found that carbonate from rock 
deposits generally have higher impacts than those from brine production, but that heating brines to 
accelerate the removal of water can quickly increase energy inputs and thus emissions related to lithium 
production (Stamp et al., 2012). 

While previous studies focused on issues and dynamics of lithium supply and demand with respect to the 
rapidly increasing demand for LIBs, no studies combined this modeling with quantitative assessment of 
environmental impacts from lithium production at different sites and from different resources.  Thus, the 
relationship between the environmental intensity of lithium production and increasing demand over time 
has not been previously explored. In addition, the projections of LIB demand for EVs have been highly 
variable across studies. Here we investigate the temporal dynamics of environmental impacts of lithium 
carbonate used for LIBs in the context of increasing demand and the need for expansion of production to 
new sites.   

To estimate environmental impacts dynamically we undertook the following research steps (steps one and 
two were completed in part one of this article series, while step three was completed here in part two):  

(1) Provide a novel forecast for demand for battery grade lithium carbonate to 2100 based on capacity 
for lithium battery manufacturing.   

(2) Develop a resource model to link forecasted demand to global lithium resources, development of 
known reserves, and the relative costs of dispatching new lithium resources to yield estimates of lithium 
production over time differentiated by the source deposit, which determines location and ore type of 
source. 
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(3) Develop LCA models founded on regionalized background data and engineering-based models for 
mining and refining of different resource types and resource qualities to evaluate the effects of expanding 
the supply of lithium on the environmental impacts of lithium for the battery market.   

Two scenarios for lithium production, an optimistic (high-demand) and a conservative (low-demand) 
scenario, were developed.  Under the optimistic forecast, demand continues to increase steadily after 
2050, to 7.5 million t LCE per year in 2100.  In the conservative scenario, global production increases 
from 237 thousand tons LCE in 2018, to 4.4 million tons LCE/year by 2100. The results of the resource 
model suggest that production from high grade brines could be sufficient to satisfy the majority of 
demand through 2035, but sustained future demand will require the development of lower grade and 
unfavorable deposits (Ambrose & Kendall, 2019). 

4.3 METHODS 
This study undertakes a temporally dynamic (considering an annual time step each year between 2018 
and 2100) LCA of battery grade lithium carbonate, tracked in units of lithium carbonate equivalent 
(LCE). The scope of the LCA includes energy consumption, chemicals, blasting and other site emissions 
to air and water, but excludes land transformation and some impacts from tailings (e.g. processing 
wastes). Regional energy inventory data were also used to reflect differences in primary energy sources 
and conversion technologies. The study provides a novel set of life cycle inventories (LCIs) for lithium 
carbonate used for large format LIBs (such as those used in EVs). Contributions of this study to the 
existing body of work include several factors that either are absent in previous studies or have been 
identified as requiring additional research. These include: 

• Inclusion of demand for large format LIBs sectors other than light-duty passenger vehicles (i.e. 
heavy-duty vehicles and stationary applications). 

• Changes in production sources (i.e. expansion of existing sites and development of new deposits) 
over time. 

• Variability in energy requirements and efficiency of lithium carbonate production across lithium 
deposits. 

• Regional availability of primary energy sources and electricity generation technologies. 

The methods used to develop the resource model are available in part one of this article series (Ambrose 
& Kendall 2019); here, we discuss the development of the LCA model. 

4.3.1 GOAL AND SCOPE 

The goal of the LCA model is to estimate the life cycle impacts for producing LCE from available 
primary resources.  The scope of the LCA is from mine to processor or refining gate and reflects specific 
resource conditions (e.g. the concentration of lithium in the ore), and differences in background systems 
(namely national-level energy systems). The functional unit selected is 1 kg of battery grade LCE (>= 
99% Li2CO3 by content).  Figure 1 provides a summary of the key processes and inputs included in the 
LCA model, and highlights the stages at which dynamic inventory modules have been developed to 
reflect local environmental conditions, regional availability of primary energy sources, electricity 
generation technology, and the effects of resource quality on material extraction, transportation, and 
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refining processes.  Future technological development in production machinery or electricity generation 
(e.g. increased renewables deployment) were not included in the scope. Potential implications and 
limitations of these assumptions are briefly summarized in the discussion section.  

  

Figure 4.1 Flows and Processes included in the Life Cycle Assessment Model 

 

4.3.2 LIFE CYCLE INVENTORY MODEL 

The lithium production process can vary from deposit to deposit, and many of the specifics regarding 
lithium processing are proprietary. Compounding the potential variability across production sites, many 
companies use different techniques for lithium processing depending on the desired outputs. Influencing 
factors include the concentration and distribution of lithium minerals within the deposit, the overall grade 
of the deposit, the presence of contaminants (such as magnesium), and the location of the deposit (Garrett, 
2004).  Production system design may also vary by estimated returns on different grades of output, for 
example low-grade hydroxides versus high-grade carbonate for LIBs, in addition to loss of product (e.g. 
tailings and slimes).  The life cycle inventory (LCI) model differentiates based on resource type and 
resource quality.  Separate production models were developed for each of the two resource types, 
classified as other minerals (mostly pegmatites) or brines, and then tailored to specific deposit conditions 
based on ore grade and background systems (namely the fuel source and electricity grid).  

For pegmatite resources, the first stage in production includes mining and raw ore recovery, which are 
affected by ore grade and depth of the deposit.  The major processing steps for these hard-rock minerals 
involve screening, comminution, magnetic separation, froth flotation, and drying (King, 2001). Screening 
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is the initial step to separate inputs based on particle size, followed by crushing. There are many different 
methods to achieve crushing based on the inputs, desired outputs, and rate of production. Aside from the 
grinding, power supply for conveyors is also required to transport materials.  Magnetic separation is used 
to remove any magnetized contaminants (such as iron). Although requirements range depending on the 
field strength needed, low intensity magnets can be used to generate up to a 15-kG field with only 16 kW 
of energy per pole needed (King, 2001). The largest energy inputs directly associated with pegmatite 
processing are heating, and comminution (Garret, 2004).  

After recovery, raw ore is processed through one or more additional circuits: dry material separation and 
recovery, heavy liquid material separation including froth flotation (FF), and hydrometallurgical recovery 
(HMR). Froth flotation is a widely used technique in mineral processing to separate materials based on 
the ability of air bubbles to attract and remove certain particles while other particles remain behind 
(Kawatra, 2001). The process is a highly variable step in pegmatite processing, primarily due to the 
unique physical and chemical properties of processing inputs depending on the location of mineral 
extraction. Froth flotation involves dewatering, the production of a rougher float and a cleaner float, and 
thickening with a goal of maximizing a high degree of recovery and meeting market specifications. Froth 
flotation of lithium spodumene can be achieved through anionic or cationic flotation. Anionic flotation 
typically provides high recovery rates, but lower purity concentrates, and vice versa for cationic flotation.  

In terms of energy inputs, froth flotation does not require a significant amount of direct energy, but that 
does not account for any energy inputs for producing chemicals used in froth flotation.  Additional 
processing also increases production costs, and energy inputs increase across the three processes. For FF 
and HMR, reagent inputs are also extensive. Reagent costs can represent 50% or more of average 
production costs, and additional FF and HMR processing may be required to concentrate and refine lower 
grade mineral deposits (Staiger, 2017). 

For brines, extraction begins with drilling to pump lithium brines to the surface, which are then often 
collected in solar evaporation pools.  Impurities in the final brine include boron, magnesium, and calcium.  
Unless processing facilities are located on-site or close to the evaporation ponds, the brine must be 
shipped via truck or rail to a processing plant. The major processes involved in the production of 
commercial grade lithium products from brine sources are impurity removal, settling, filtering, pressing, 
heating, precipitation, and thickening/drying (King, 2001). 

Impurity removal is done as an initial step to remove contaminants, including but not limited to boron, 
magnesium, and calcium. Boron is removed through solvent extraction. Magnesium and calcium are 
removed with lime and soda ash, respectively. The percentage of these contaminants in the brine directly 
affects the amount of solvents or chemicals and processing needed to remove a given impurity (Garret, 
2004). Accordingly, the value of a given brine source will range depending on the percentage of 
contaminants it contains.  After the initial impurity removal the remaining mixture progresses through a 
settling, filtration, and pressing process. Settling can be achieved via gravitational forces. Filter pressing 
requires pumps that vary in power use and efficiency depending on the inputs and rates of production. 
The goal of these processes is to increase the concentration of solid matter in the brine and remove 
unnecessary water and liquids. 
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The most energy intensive step to lithium brine processing (not including energy for chemical additives) 
is the thickening and drying processes. Settling and filtering require very low energy inputs and can rely 
mostly on gravitational forces. After heating and precipitation of lithium carbonate, the resulting solution 
must be thickened. Sedimentation uses cycles and vacuum belts for the thickening process. The heating 
and drying is usually achieved through a rotary steam-tube. These machines typically operate with a 
combustion chamber to achieve temperatures of approximately 980 °C. Lithium chloride and the 
concentrate is then made into lithium hydroxide or treated with sodium carbonate to produce lithium 
carbonate. Additional thermal energy is often required for concentrating brines, which may rely on locally 
available primary energy sources, such as geothermal resources (Yu et al. 2015). 

Though ore grades and geologic conditions are continuous variables, to make engineering model 
development and LCI model development manageable, all deposits are modeled as one of six 
hypothetical lithium production routes, three designations in descending order of preference for each of 
two categories of deposits; brines and other minerals.  Brines are grouped as high-grade brine, low-grade 
brine, and low-grade brine with low solar evaporation potential.  Other mineral deposits are grouped as 
high-grade pegmatite, low-grade pegmatite, and low-grade lithium minerals (i.e. those where the main 
lithium mineral is not identified, and/or is not a pegmatite or spodumene).  Throughput, efficiency, and 
material and energy inputs are estimated based on company reporting, patents, and prior studies (An et al., 
2012; Laferriere et al., 2012; Stamp, Lang, & Wäger, 2012; Garrett 2004).  Reference LCI datasets for 
sub-processes and production inputs were taken from the Ecoinvent Database Version 3.3 (Ecoinvent 
Centre, 2017).  To represent variability in energy generation, inventories for grid electricity were selected 
based on the region of the deposit. A full list of reference LCI datasets, as well as graphical descriptions 
of the process models are contained in the Appendix B.  

4.3.3  LIFE CYCLE IMPACT ASSESSMENT 

The LCA model applies the U.S. Environmental Protection Agency’s Tool for the Reduction and 
Assessment of Chemical and other Environmental Impacts (TRACI) impact assessment model (Bare 
2011).  The following impact categories were considered: global warming potential (GWP), acidification 
potential, ozone depletion potential, eutrophication potential, photochemical smog formation potential, 
human health – particulate, human health – cancer, and ecotoxicity.  Additional information on the 
selected impact categories and the indicators used to represent them is provided in the Appendix B-S2. 

4.4 RESULTS 

4.4.1 LCA RESULTS BY PRODUCTION PATHWAY 

While there are significant differences in energy inputs and throughput efficiencies across production 
pathways, impact assessment results do not show dramatic differences in most environmental impact 
categories (Figure 2).  Figure 2 uses the weighted average region for each production pathway to estimate 
impacts from electricity consumed.  In general, high and low grade brines show the most favorable results 
(i.e. lowest results) for toxicity-related impact categories and human health impacts from air emissions. 
High and low-grade pegmatites show more favorable results for GWP, smog formation and acidification. 
These results are primarily explained by differences in the chemical flows between brine and hard-rock 
mining and extraction processes.  We find moderate variation between the most favorable and least 
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favorable potential brine production pathways, with additional fuel use for drying in the “Unfavorable 
Conditions” brine scenario driving significantly higher toxicity-related air, water, and human health 
impacts.   

  

Figure 4.2 Impact Assessment of Lithium Production Pathways 

(AP = Acidification Potential in g SO3-eq; ETP = Ecotoxicity Potential in CTUe; EP = Eutrophication 
Potential in g N-eq; GWP = Global Warming Potential in kg CO2-eq; HHP = Human Health Particulate in 
g PM2.5-eq; HHC = Human Health Cancer in CTUh×108; HHNC = Human Health Non-Cancer in 
CTUh×107; ODP = Ozone Depletion Potential in mg×107 CFC-11-eq; SFP = Smog Formation Potential 
in kg×10 O3-eq)  

  

4.4.2 IMPACTS OVER TIME 

Combining the impact analysis with the resource projection, we observe the potential changes in impacts 
over time under the optimistic scenario (Figure 3).   Increasing impacts on fresh water, local air quality, 
and human health are likely to be concentrated around smaller deposits, which are likely to be developed 
after 2050.  Notably, global warming impact intensity from LCE production does not change significantly 
over time, however given significant growth in LCE production, total CO2e emissions from the lithium 
production sector will increase significantly.  There can be significant inter-annual variations in 
production share across lithium resources doe to overall market expansion, production capacity increases, 
and climate conditions for brine production. These effects are observable in Figure 3 as rapid shifts 
between years when new deposits are brought online.  As the market for lithium continues to grow after 
2050, these shifts are less noticeable as fewer new deposits with significant production potential come 
online.   A shift in future supply towards lower grade resources did not translate to significantly higher 
environmental impacts for lithium carbonate on average.   
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Figure 4.3 Impact Assessment of Production Weighted Lithium Production Over Time  

(AP = Acidification Potential in g SO3-eq; ETP = Ecotoxicity Potential in CTUe; EP = Eutrophication 
Potential in g N-eq; GWP = Global Warming Potential in kg CO2-eq; HHP = Human Health Particulate in 
g PM2.5-eq; HHC = Human Health Cancer in CTUh×108; HHNC = Human Health Non-Cancer in 
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CTUh×107; ODP = Ozone Depletion Potential in mg×107 CFC-11-eq; SFP = Smog Formation Potential 
in kg×10 O3-eq)  

Under the optimistic scenario, a larger share of production is supplied from lower-grade mineral deposits 
after 2080, but high and low grade brines continue to be the largest source of supply.  This is due to both 
the increased demand for lithium, as well as the limits on potential production from lower cost brines.  
Comparing the average impacts per kg LCE over two, ten-year periods, beginning in 2020 and 2080, 
significant increases in production from low-grade pegmatite and brine resources leads to only small 
increases in environmental impacts.  For example, GWP increases by 3% from 3.2 to 3.3 kg CO2e/kg 
LCE.  This translates to an increase of 0.14 to 0.16 kg CO2e/kWh of cathode material, assuming a nickel 
cobalt aluminum or manganese cathode precursor and a cathode energy density of 0.25 to 0.27 kWh/kg 
(Ciez & Whitacre, 2019).  Changes to water, toxics and particulate matter were larger than GWP, 
increasing by 11%, 12% and 15%, respectively.  While the impact intensity (i.e. impact per kg of LCE) 
does not change significantly over time, given significant growth in LCE production, total impacts from 
the lithium production sector will increase significantly.  For example, sector-wide CO2e emissions 
increased by at least two orders of magnitude between 2020 and 2080 (Appendix B-S3). 

Under the conservative demand scenario, there is no significant future development of low grade, hard-
rock sources of lithium.  This result in a 48% – 64% reduction in sector-wide environmental impacts from 
global LCE production in 2100 compared with the optimistic demand scenario. In addition, significant 
increases in the average impacts on ecotoxicity, eutrophication, and human exposure to particulates per kg 
of LCE after 2080 did not occur. An expanded description of results, including global sector-wide results, 
and data tables are provided in the Appendix B-S3. 

4.5 DISCUSSION 
Uncertainty in the results of an LCA can result from a number of sources: variability in assumed values, 
lack of knowledge, measurement errors, and choices related to model design and specification.  We 
considered the impacts of parametric uncertainty on model findings, specifically discount rate, production 
costs, reagent use, production energy inputs and sources, and mineral grade/type.  Changes to discount 
rate and production costs did not cause significant changes in the overall production forecast, but did 
affect year-to-year variation in estimated impacts.  This is also due to assumptions around the rate of 
potential production capacity expansion at existing and new lithium deposits.  Estimated production 
impacts are highly sensitivity to the extent of HMR processing, while the impacts of HMR processing are 
primarily due to consumption of reagents for collection and dispersion.   

For brine production, two primary sources of uncertainty are variability in the effective evaporation rate 
of solar ponds and the use of external energy sources to dry aqueous brines. Small increases in annual 
precipitation can cause months-long disruptions in the production of solar evaporated brines, as was 
experienced in the Atacama region in 2015 (Abad, 2017).  The use of natural gas for drying in the worst-
case scenario for brine production was the key factor driving increased impacts.   

A limitation of this study is the use of temporally static life cycle inventories for regional electricity 
generation and processing technologies that may not reflect changing energy sources for electricity 
generation (e.g. decreased consumption of coal and increased use of renewables), or advances in 



46 

 

machinery (e.g. improved heat rates for drying machinery). While impacts of regional electricity and 
natural gas sources were included, this did not result in significant differences across regions under 
current conditions.  Given the large contribution of a single brine deposit to global supply, development 
of local renewable resources, including geothermal and solar energy, could likely reduce the emissions 
associated with overall lithium production (Parrado et al., 2015; Lahsen, Muñoz, & Parada, 2010).    

The results of this study generally agree with existing estimates of life cycle impacts from LCE 
production.  Figure 4 shows the average results for impacts across rock and brine resources from 2020 to 
2100, with error bars indicating the minimum and maximum values observed across production pathways, 
compared with the inventories for LCE production from Ecoinvent for spodumene and brine respectively. 

  
Figure 4.4 Comparison of Findings with Existing Impact Estimates Pathways  

(AP = Acidification Potential in g SO3-eq; ETP = Ecotoxicity Potential in CTUe; EP = Eutrophication 
Potential in g N-eq; GWP = Global Warming Potential in kg CO2-eq; HHP = Human Health Particulate in 
g PM2.5-eq; HHC = Human Health Cancer in CTUh×108; HHNC = Human Health Non-Cancer in 
CTUh×107; ODP = Ozone Depletion Potential in mg×107 CFC-11-eq; SFP = Smog Formation Potential 
in kg×10 O3-eq)  

Other life-cycle based studies have also reported results that can be compared to findings from this study. 
Gaines et al. (2010) estimate that 163 MJ are required per kg to process ore into lithium hydroxide at a 
marketable condition. For the processing of brines into lithium carbonate, they estimated 44.7 MJ per kg 
were required, with 78% of that energy coming from fuel oils, 4% coming from propane, and the 
remainder coming from coal. The present study found energy inputs for producing LCE from pegmatites 
to range from 72 to 230 MJ/kg, while energy inputs from brines ranged 31 MJ/kg to 89 MJ/kg. In 
comparison to Gaines et al.’s findings, the present study found that energy inputs were lower for high-
grade resources, but significantly higher for low-grade resources in unfavorable conditions. The scope of 
the current environmental assessment is limited in that it did not include site impacts including land 
transformation for solar evaporation ponds, or site impacts to air and water from the storage/disposal of 
mining wastes.  While energy sources were estimated for deposit regions, these values were treated as 
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static.  Changes to the primary energy sources (i.e. a shift from coal to gas or renewables), or 
improvements in the efficiency of generation technologies could reduce the impacts of producing a kg of 
LCE.  In addition, the reference data used may not accurately reflect the impacts associated with a 
particular source or supply for reagents or energy sources.  

4.5.1 RECYCLED BATTERIES, RECOVERED LITHIUM, AND UNCONVENTIONAL RESOURCES 

Though excluded from the resource model in this analysis, recycling of batteries could be an important 
source of future lithium supply (Gruber, 2011; Pehlken, 2015). Some previous studies have assumed 
widespread and effective recycling of LIBs as a major source of future lithium; Mohr et al. (2012) 
estimated recycled lithium could represent 50% or more of lithium demand by 2050.  While there has 
been a proliferation of methods for recovering cathode materials, many developments remain at the 
laboratory scale which is a challenge for prospective analysis of environmental impacts (Zheng, Li, and 
Singh, 2014; Zhang et al., 2018).  Conventional material recycling processes can generally be divided into 
two categories: hydrometallurgical and pyrometallurgical. With the exception of some experimental in 
situ recycling processes, conventional pyrometallurgical recovery of high value metal alloys like nickel 
and copper from spent LIBs does not produce lithium as a coproduct.   

The focus of most existing recycling efforts for LIBs has been on recovering cobalt, due to both the 
quantity of cobalt in the cathode of batteries for consumer electronics (i.e. LCO), and the high value of 
recovered cobalt (Zhang et al., 2018). Attention has shift to recovering other high value materials, like 
nickel, copper, and aluminum, as battery systems have increased in size and cobalt content has fallen 
(Gaines, 2018).  For large format LIBs, widely expected to drive demand for lithium in the future, co-
precipitation of lithium nickel cathode materials combined with re-lithiation, sometimes called direct 
cathode recovery, is a promising pathway. Ciez and Whitacre (2019) recently examined the 
environmental impacts and costs of recycling processes for LIBs, including resynthesis of cathodes 
through direct cathode recovery at high cathode recovery rates (Ciez & Whitacre, 2019).  The authors 
found limited to insignificant benefits for battery GHG emissions from cathode recycling through 
hydrometallurgical or pyrometallurgical processes. The limited studies available suggest that recovery of 
lithium from spent cells provides no clear environmental or economic benefit.  Recovery of aluminum, 
the largest contributor to energy for cell materials and material related GHG emissions, and copper 
collector foils could reduce energy for cell material production by 70 to 80 MJ/kg of battery cells, or 34% 
- 69% (Dunn et al, 2015; Gaines, 2018).  The cost of leaching chemicals for lithium carbonate from 
recycled batteries could be more than the $8 per kg or $8000 per metric ton LCE (Gratz et al. 2014).  This 
suggests the price of recycled lithium carbonate would be significantly higher than the average cost of 
production of lithium from primary sources.  

In addition, successful recycling programs for e-wastes are an issue, as current collection rates for LIBs 
are ~3% (Swain 2017). While collection rates might be significantly improved for large-format LIBs over 
those in the general e-waste stream, a confounding factor for battery recycling economics is the potential 
for second-use applications of large-format LIBs in stationary applications. The primary determination of 
LIB service life in vehicles is power fade, and LIBs employed in high-power vehicle applications are 
likely to still have considerable capacity when retired.  A growing body of research has pointed to the 
technical and economic feasibility of LIB reuse or second life (Ahmadi et al. 2017, Richa et al. 2017, 
Martinez et al. 2018). To the extent batteries could be employed in secondary applications, batteries may 
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remain in service longer.  The value of recovered materials from recycled batteries may also be too low to 
motivate sufficient development of recycling infrastructure or to compete economically with second-life 
applications (Ciez & Whitacre 2019, Ambrose et al. 2014).   

Part one of this study assessed the potential for secondary lithium from recycled LIBs using a stock and 
flow model.  Assuming a high rate of LIB collection at end-of-life (85%), and assuming approximately 
half of all vehicle LIBs find secondary uses, the model showed the total stock of LCE in waste batteries 
awaiting recycling could approach 25% of global primary reserves by 2100.  The potential stock of LIB 
materials in retired LIBs could also grow as improvements to recycling technologies increase recovery 
rates. As LIB recycling processes and their technical, economic and environmental performance become 
clearer, future research could explore the effect of secondary lithium flows on the environmental intensity 
of average global lithium production. 

4.6 CONCLUSIONS 
Despite differences in impacts by production pathway and a changing mix of resources being dispatched 
over time, the average impact intensity of a kg of LCE changes very little even out to 2100, though some 
impact categories (including eutrophication, ecotoxicity, and human health particulate) do show non-
trivial increases around 2080 corresponding with new capacity from low-grade mineral ores. Examining 
results on a per-kg basis can be somewhat misleading, however, because the total quantity of lithium 
produced is increasing rapidly, meaning that total impacts from the sector will be much larger than today. 
Moreover, the impacts experienced by the communities that host lithium mining and processing sites may 
change dramatically when capacity is expanded or a new mine is opened.  In addition, the significant 
variability in environmental protections and enforcement in different regions over the world means that 
the estimates provided here probably underestimate the variability across production sites. Thus, the 
industry (or the industries reliant on lithium) should consider focusing on reducing impacts per unit of 
lithium production to prevent significant increases in the total burden of pollution from lithium 
production and to protect the communities where lithium is produced.  

Given these findings, future work might consider assessments that evaluate local conditions of production 
on a site-by-site basis to capture the variability in environmental impacts, not to mention the socio-
economic impacts, caused by expanding capacity at current sites and exploitation of new deposits. Given 
the significance of other constituent cathode and electrode materials, future resource analysis could also 
focus on cobalt (and to a lesser extent nickel). The underlying resource model used to develop this 
temporally and spatially resolved LCA could facilitate site-specific assessment of impacts likely to be 
experienced by communities under different demand forecasts, which could be important for 
understanding which communities may be disproportionately impacted. 
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5. LIFE CYCLE ASSESSMENT OF BATTERIES FOR LIGHT DUTY 
ELECTRIC VEHICLES 
5.1 PURPOSE AND SCOPE 
This chapter examines the materials requirements, environmental impacts, and uncertainties related to 
lithium-ion batteries.  Traction battery manufacture can be a significant contributor to vehicle production 
emissions, and battery performance may have a significant effect on the contribution of battery-related 
emissions to the vehicle life cycle. However the contribution of batteries to life cycle emissions hinge on 
a number of factors that are largely absent from previous analyses, most notably battery chemistry 
alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery, which 
is a function in part of battery sizing, battery service life, and differences in plug-in hybrid electric vehicle 
versus pure battery electric vehicle applications. This chapter compares life cycle GHG emissions from 
vehicle operation and battery production using a probabilistic approach based on 24 hypothetical EVs 
modeled on the current US market.   

This chapter includes some text adapted from Ambrose, H. and Kendall, A. Lithium traction battery 
chemistry and performance: life cycle greenhouse gas emissions implications for electric vehicles. 
Transportation Research Part D: Transport and the Environment 10.1016/j.trd.2016.05.009 

5.2 INTRODUCTION 
Lithium-ion batteries (LIBs) have become the preferred choice for energy storage in PEVs because they 
offer superior energy density, charge cycle performance, and decreased environmental burdens compared 
to other electrochemical options such as NiMH and lead acid (Ambrose, Gershenson, Gershenson, & 
Kammen, 2014). PEVs have been advocated in part because electric powertrain efficiency is significantly 
greater than conventional internal combustion engines (ICEs), and could lead to deep reductions in 
operational energy and GHG emissions.  As much as 75−95% of life cycle GHG emissions from ICE 
vehicles are attributable to fuel consumption and combustion for operation (Christian Bauer, Hofer, 
Althaus, Del Duce, & Simons, In Press; Castro, Remmerswaal, & Reuter, 2003; Geyer, 2008; Kim, 
Keoleian, Grande, & Bean, 2003).  However, increased vehicle production emissions, and decreased 
operation emissions, means that PEVs may experience a greater proportion of life cycle emissions during 
production compared to ICEs.  In fact, on a percent basis, PEVs may have double the emissions from the 
production phase, and previous studies have shown that battery manufacture alone can be responsible for 
35-41% of those production emissions for a 120-160 km range PEV (~24 kWh battery) (Hawkins, Singh, 
Majeau‐Bettez, & Strømman, 2013).  

Despite the potential importance of battery manufacture and replacement, very few life cycle assessment 
(LCA) based studies of PEVs or PEV traction batteries have considered multiple battery chemistries and 
differences in battery degradation and service life. Instead, separate bodies of research have developed 
with different foci: (i) LCA of PEVs and traction batteries; (ii) studies of electricity grids to determine 
operating emissions for PEVs; and (iii), empirical study, modeling, and performance testing of vehicle 
traction batteries.  Research progress in these three fields has had limited integration, and which, if 
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implemented, could reveal significant sources of uncertainty in emissions estimates for PEVs and 
important trade-offs for vehicle and climate policies. 

This study builds on these bodies of previous research by offering a novel integration of automotive 
battery cycle-life modeling and life cycle GHG assessment, with the specific goal of assessing how 
differences between lithium chemistries will affect GHG emissions performance.  We apply a 
probabilistic modeling approach, Monte Carlo simulation, to capture the inherent variability and 
uncertainty in predictive modeling of a PEV traction battery life cycle. This provides a new framework 
for comparison of emissions across life cycle stages and technological designs.  In addition to considering 
five possible LIB chemistries, the assessment captures spatial and temporal heterogeneity in electricity 
grid emissions, variability in battery-to-wheels efficiency including ambient climate impacts, causes and 
effects of battery aging and health, and uncertainty in lifetime e-VKT delivered by a battery.   

5.2.1 LITHIUM ION TRACTION BATTERIES 

In short-range configurations, traction battery manufacture is likely a small share of overall PEV 
production emissions due to the small size of the batteries involved (<6 kWh).  Early estimates for plug-in 
hybrid vehicles suggested that potential production emissions for a 10-15 mile all-electric PHEV to be 2-
5% of the vehicle’s life cycle emissions (Samaras & Meisterling, 2008). In the United States, ranges of 
PEVs, both pure electric and hybrid, have increased significantly over the last five years as more electric 
vehicle models have been introduced (see SI: Figure A and Table A for historical data) (U.S. Department 
of Energy, 2015). A favorable policy landscape for vehicles considered “zero emissions” at federal and 
state levels (Mock & Yang, 2014), in addition to rapidly falling battery prices (Nykvist & Nilsson, 2015), 
are helping to increase deployment of long-range PEVs. For long-range PEVs, such as an all-electric 
vehicle with 25 kWh of on-board storage, battery production likely contributes 12-15% of overall life 
cycle emissions (Christian Bauer et al., In Press; Hawkins et al., 2013).  

A variety of lithium cathode and anode materials are being used in, or considered for, mass market 
vehicles.  These chemistries have significantly different expectations for cycle life, from 1000 to over 
5000 cycles in vehicle service, as well as different nominal and maximum voltages (2.4V/2.8V to 
3.8V/4.2V) (Burke & Miller, 2009).  These differences affect the choice of battery management systems, 
cooling systems, and other components (Nelson, Bloom, & I Dees, 2011), and may affect cost. 
Heterogeneity in material composition of the battery also has implications for both the supply of raw 
materials and the economic value of recovered and recycled materials (Wang, Gaustad, Babbitt, & Richa, 
2014). 

Samaras and Meisterling (2008) was among the earliest studies to examine the life cycle GHG emissions 
from a PEV, comparing ICE, hybrid electric, and three PHEV applications (30, 60, and 90 km electric 
range distances). (Samaras & Meisterling, 2008).  The study assumed a lithium nickel-cobalt-manganese 
(NMC) battery chemistry, and modeled the battery’s production-related impacts and performance 
characteristics using the results of an often-cited study, Rydh and Sandén (2005) (Rydh & Sandén, 2005).  
Rydh and Sandén examined the NMC battery as one of a number of energy storage options for 
photovoltaic systems (not vehicle applications).  At the time of Samaras and Meisterling’s research there 
were no commercially produced PHEV vehicles, so their study was necessarily conjectural.  They found 
relatively small contributions from the battery to the life cycle impacts of the vehicle. 
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Notter et al. (2010) was among the earliest and most transparent studies that explicitly examined the 
contribution of LIB production to the life cycle emissions of a BEV (Notter et al., 2010). They model a 
lithium manganese-oxide (LMO) battery, developing their own life cycle inventory, and estimate 
significantly lower production-related impacts compared to those from Rydh and Sandén, and as a 
consequence those of Samaras and Meisterling. They find the LIB contributes 15% of life cycle impacts, 
based on the Ecoindicator 99 approach (Hawkins, Gausen, & Strømman, 2012).   

Majeau-Bettez et al. (2011) performed an LCA of three PEV battery chemistries, nickel metal-hydride 
(NiMH), lithium nickel-cobalt-manganese (NMC), and lithium iron-phosphate (LFP), and assume that the 
LFP battery has twice the cycle life, 6000, compared the NCM and NiMH batteries. Like Samaras and 
Meisterling, they develop the life cycle inventory and battery performance characteristics for the LIB 
based on the work of Rydh and Sandén. The authors show larger battery manufacturing impacts compared 
to the earlier studies of Notter et al. and Samaras and Meisterling.   

Hawkins et al. (2013) built upon Majeau-Bettez et al.’s results, taking the results of the two lithium-based 
battery chemistries, NMC and LFP, and contextualizing them in a full vehicle LCA. While Hawkins et al. 
account for the different masses required for the batteries, the battery use-phase is treated identically and 
both are assumed to last the vehicle lifetime. Hawkins et al. compared BEVs with ICE gasoline and diesel 
vehicles and showed the electricity grid used to charge PEV batteries was the most influential determinant 
of whether BEVs out-performed ICE vehicles. The publication of this article heralded a shift in the 
modeling approach for PEVs, by emphasizing the critical role of the electricity grid and the need for all 
future studies to consider grid heterogeneity.     

Several studies have also found that material production can be a significant contributor to the 
environmental burden of battery manufacture.  Notter et al. (2010) finds copper and aluminum have the 
largest overall impact on the environmental burden for a LMO battery, even fully allocating the impacts 
of lithium extraction to lithium salts, and with no credit for recycling of materials (Notter et al., 2010).  
Ellingsen et al. (2014), using primary data on NMC battery manufacture, also finds high impacts from 
graphite, aluminum and copper (Ellingsen et al., 2014).  Dunn et al. (2012) finds much lower impacts for 
cradle-to-gate battery production, mostly due to significantly lower estimates for cell and pack assembly 
energies; the authors find that closed loop recycling of key materials (cathode active material, aluminum, 
and copper) could reduce material production energies by 48% (J. B. Dunn, Gaines, Sullivan, & Wang, 
2012). 

A largely separate body of work has considered the effect of including temporal and spatial heterogeneity 
in electricity grids in the context of marginal rather than average electricity used to charge PEV batteries 
(the most influential being the work of Graff Zivin et al. 2014 (Graff Zivin, Kotchen, & Mansur, 2014)).  
These studies treat the vehicle rather simply, focusing on new ways of examining the consequences of 
adding PEV electricity demand to the existing grid. At the same time, additional sources of spatial and 
temporal heterogeneity that affect battery performance, such as climate effects on batteries have been 
increasingly studied (K. Kambly & Bradley, 2015; K. R. Kambly & Bradley, 2014; Meyer, Whittal, & 
Loiselle-Lapointe, 2012).  Yuksel and Michalek and Archsmith et al. combine both the spatial 
heterogeneity of marginal electricity emissions and some climate affects, among other considerations, to 
provide geography-dependent view of BEV performance (Archsmith, Kendall, & Rapson, 2015; Yuksel 
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& Michalek, 2015). Both show considerable variability in results by region, but consider only a single 
battery.  

Often absent from EV and LIB life cycle-based studies is research on battery performance testing and 
cycle life modelling, particularly for lithium cells designed for automotive applications.  Despite the 
common practice of assuming equal battery lifetimes across chemistries and vehicles in LCA studies, 
Burke et al. (2009, 2013) show 300-500% variation in the expected cycle life of automotive cells with 
different cathode materials (Burke, 2013; Burke & Miller, 2009).  Eddaheck et al. (2015) also finds 
variation of more than 50% for battery degradation rates across automotive cells of different lithium 
chemistries depending on thermal and charge conditions during storage.  Mathematical models of battery 
service life derived from accelerated battery testing also point to the potential for significantly shorter 
cycle lives than assumed in previous LCA studies, as well as differences across battery chemistries (Gu, 
Sun, Wei, & Dai, 2014b; Omar et al., 2014).  The interaction of battery aging and degradation with PEV 
GHG emissions performance has not been studied, and could present important considerations for original 
equipment manufacturers (OEMs) and policy stakeholders.   

5.2.2 LITHIUM CHEMISTRIES FOR ELECTRIC VEHICLE BATTERIES 

The conventional structure for a lithium battery consists of a graphite anode and lithium metal oxide 
cathode, with a lithium salt electrolyte (e.g. LiPF6) in organic solvent (e.g. ethylene carbonate-dimethyl 
carbonate).  Cathode and anode materials are bound to copper and aluminum collector foils with a resin 
binder and additional solvent.  A generalized common reaction process for C/LiPF6 in EC–DMC/LiMO2 

consists of: 

_` + aPbcd ↔ aP2`f + aP(]2bcd, D~0.5, _ = 6, jkl#WmU	~	3.7	p  (1) 

Reversible exchange of lithium ions between electrodes results in a significant electrical potential, as 
shown in Equation (1) (Scrosati & Garche, 2010).  Some automakers are now employing batteries with 
lithium metal oxides in both cathode and anode, such as Toshiba’s LTO-NMC cells used in the Honda 
Fit.  With some notable exceptions (e.g. Tesla Model S), the majority of automakers have employed 
pouch or prismatic lithium cells (20-60 Ah), as opposed to cylindrical cells often found in consumer 
electronics (<5 Ah) (Anderman, 2014b).  While prismatic and pouch cells usually have lower energy 
density (and specific energy), it is potentially easier to arrange them in modular pack architectures due to 
their shape. Modules of multiple cell bricks in series can also provide system "balancing,” where a 
differential current is applied to each cell during any charge operation.  This limits state of charge (SOC) 
mismatching, as well as capacity degradation. 

To maximize battery lifetimes, SOC is continually balanced across banks of cells by battery management 
systems (BMS).  DOD is limited to 75-85% of the pack’s rated capacity, as batteries have exponentially 
higher cycle life counts at increasingly low DOD. Utilizing a range of discharge less than the cell’s rated 
capacity improves its lifetime charge capacity and voltage degradation.  Traction battery lifetimes are 
usually expected to exceed standard powertrain warranty periods (~60,000 miles), but manufacturers 
caution against gradual capacity fade during this time.  5-8 year manufacturer warranties are common for 
traction batteries; although not all manufacturers guarantee for specific levels of capacity fade during the 
warranty period, 30% reduction in capacity is often considered the cut-off point for removal or 
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replacement (SI: Table D). In addition to manufacturer warranties, California’s Zero Emissions Vehicle 
(ZEV) mandate requires that PEV battery warranties must be extended to 10 years to earn ZEV credits, 
but this warranty need not specify a level of capacity loss (California Air Resources Board, 2011, 2014).  

Continued transformational changes in lithium traction batteries are likely due to strong cost drivers and 
high performance targets in automotive applications (Amine, Kanno, & Tzeng, 2014; Scrosati, 1989).  
Lithium metal couples with lower material costs can reduce battery pack prices, but there are a number of 
tradeoffs to be made, as evidenced in Table 1 and Figure 1.  Cost of material is also a critical decision 
variable for battery chemistry selection, so cathode materials with high levels of cobalt may not be 
economic choices for continued large-scale roll out of lithium traction batteries (Delucchi et al., 2014).  
This may explain why no currently mass marketed electric vehicle employs lithium cobalt oxide cells, and 
the majority of automotive cell suppliers have focused on NCA and LMO configurations (Anderman, 
2014b; Committee on the Assessment of Technologies for Improving Fuel Economy of Light-Duty 
Vehicles, 2015). LFP configurations also have slightly higher costs per kWh because more cells in series 
are required due to lower cell voltages (Anderman, 2014a).  LMO-NMC blends seem to provide very low 
cost, but require more aggressive cooling. LTO-NMC couples operate at lower voltages than other 
couples currently employed in automotive applications, and their low energy densities may limit their 
applications despite lower material costs. 

Table 5.1 Lithium chemistries for PEV traction batteries (Burke & Miller, 2009; Gu et al., 2014b; 
Omar et al., 2014) 

Chemistry 

Lithium 
Nickel 
Cobalt 

Aluminum 
Oxide 

Lithium 
Nickel 

Manganese 
Cobalt 
Oxide 

Lithium 
Manganese 

Oxide 

Lithium 
Iron 

Phosphate 

Lithium 
Manganese 

with 
Titanate 

Oxide 
Anode 

Chemistry group Nickelate 
Manganese 

Spinel Phosphate Titanate 

Abbreviation NCA NMC LMO LFP LMO/LTO 

Voltage 
(Nominal/Max) 3.6/4.2 3.6/4.2 3.6/4.0 3.2/3.6 2.4/2.8 

Energy Density 
(Wh/kg) 100-150 75-170 100-120 80-115 45-100 

Estimated Automotive 
Cycles 2000-3000 1000-2000 300-700 2000-3000 >5000 
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Figure 5.1 Comparing Lithium chemistries for automotive traction batteries 

 

5.2.3 PEV BATTERY PERFORMANCE       

Decreased material costs could enable wider-scale roll out of PEVs, but battery life cycle performance 
should be a key concern due to its influence on production-related emissions.  This investment in 
production emissions will generate life cycle emissions reductions only if batteries endure in vehicular 
service long enough to realize GHG savings from switching away from gasoline, though GHG savings 
hinges not only on production emissions from PEVs, but on the GHG-intensity of the electricity used for 
battery charging. Thus battery service life and battery performance over time should be important 
considerations in life cycle modeling of PEVs.  

Battery service life is a function of battery degradation, often referred to as battery aging, and is 
characterized by gradual capacity fade and impedance growth, eventually resulting in the need for battery 
replacement or vehicle retirement.  Both battery cycling and time cause battery aging, and battery aging is 
accelerated by the DOD and frequency of cycles, thermal conditions, and SOC/voltage conditions 
experienced by the battery.  Three primary underlying chemical processes occur during lithium battery 
aging: loss of cyclable lithium; electrode material loss to dissolution; and electrolyte degradation (Barré et 
al., 2013).  While intense charge cycling causes structural degradation of the electrode and active sites, 
the dominant fade mechanism when stored (i.e. due to time alone) is the growth of a resistive film; both 
processes also result in a loss of cyclable lithium (Ploehn, Ramadass, & White, 2004). Capacity 
degradation has clear impacts on vehicle range, but the combination of resistance-induced power fade and 
diminished capacity will ultimately determine a battery’s service life.   

Hot ambient temperature conditions have significant impacts on battery performance degradation during 
charge cycling and storage, which in turn affects automotive cycle life (Eddahech, Briat, & Vinassa, 
2015; Song et al., 2013).  Aging due to cycles or throughput, and aging due to storage at different SOC, 
can trade dominance depending on operating conditions.  For example, increased charge cycling of 
battery packs can increase estimated battery lifetime compared to calendar or storage-only estimates, if 
the battery spends longer periods at lower voltages or more optimal temperatures (Wood, Neubauer, 
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Brooker, Gonder, & Smith, 2012), and active thermal management can mitigate aging caused by extreme 
thermal conditions, but typically increases vehicle energy requirements.      

Premature battery degradation is a significant concern for vehicle manufacturers, especially considering 
the high price of battery replacement; the cost of a 25 kWh LIB pack at current prices is $7500-12500 
USD (Nykvist & Nilsson, 2015).  Vehicles have experienced premature battery degradation that resulted 
in the battery realizing less than 60-70% of the intended cycle life.  Idaho National Lab has conducted a 
long-term road test of four 2012 Nissan Leaf vehicles containing 24 kWh LMO/G battery based on AESC 
33Ah cells; after 80467 km (50000 mi) of daily driving (or approximately 700 cycles), vehicles had 
experienced over a 25% reduction in pack capacity (Shirk & Wishart, 2015).  Other empirical studies of 
LMO cells have obtained cycle lives 15-40% below theoretical estimates when considering automotive 
operating conditions (Gu, Sun, Wei, & Dai, 2014a; Gu et al., 2014b). LFP lifetimes, potentially greater 
than 3000 cycles at low charge/discharge rates and low ambient temperatures, can decrease by 50% or 
more at 40 oC or with rapid cycling(Omar et al., 2014; Zheng et al., 2015).  Long-cycle life lithium 
couples, such as Toshiba’s LTO cells, have begun to emerge into the market, but currently have little 
market share.  LTO-LMO couples are likely very long lived, with 50Ah prismatic pouches losing less 
than 1% capacity over 1000 cycles during fast charge cycling (6C) (Burke, 2013).   

5.3 METHODS 
This study uses established life cycle GHG assessment frameworks (British Standards Institute, 2011) to 
analyze life cycle emissions from PEV traction batteries. Non-CO2 GHG emissions are characterized in 
equivalent units of carbon dioxide (CO2e) using 100-year Global Warming Potentials (GWPs) from the 
IPCC’s 5th Assessment Report (Myhre et al., 2014).  Because there is a great deal of uncertainty in this 
research, the analysis uses a probabilistic rather than deterministic approach, which is increasingly a 
requirement of life cycle assessment guidance and standards (Finnveden et al., 2009).  Probabilistic or 
stochastic models allow for estimation of parameter values, such as emissions or energy consumption, 
when individual parameters are not precisely known, a common challenge in life cycle assessment. Fuzzy 
set theory is frequently used to estimate unknown parameter values and  Monte Carlo simulation is well 
accepted as an uncertainty propagation method in quantitative decision analysis (Livezey & Chen, 1983; 
Lloyd & Ries, 2007), and both are used in this study to carry out probabilistic life cycle modeling.  

Monte Carlo requires probability density functions (PDFs) for expected parameter distributions, which 
are then used in the context of repeated sampling to estimate results as confidence intervals, rather than 
point estimates.  Probabilistic modeling is also used in this study iteratively to identify key parameters 
and interrogate underlying assumptions.  Comparison of the impacts of parameter uncertainty (caused by 
a lack of available knowledge/data) and variability (fluctuations inherent to the system) on model outputs 
is also explored (Hauck, Steinmann, Laurenzi, Karuppiah, & Huijbregts, 2014).  

5.3.1 SCOPE OF ANALYSIS  

The scope of the life cycle GHG assessment reflects the goal of this study; to estimate the influence of 
battery service life and battery performance on life cycle GHG emissions. The life cycle stages included 
in the analysis are: battery material processing, battery manufacturing, and the battery use-phase 
(including electricity used during charging). The material processing phase encompasses all the 
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production steps prior to assembly for the cell (cathode active material, anode active material, binders, 
and electrolyte), packaging (plastics, insulation, etc.), and battery management systems (BMSs). Battery 
material inventories are grouped into four component types: electrodes (cathode/anode active materials, 
terminals and collector foils), structural (packaging, buss-bars, etc.), electrolyte, and management systems 
(including BMS and thermal).   

We consider five lithium chemistries (cathode-anode couples): NCA-G, NMC-G, LMO-G, LFP-G, and 
LMO-LTO (as described in Table 1), and estimate the composition and material requirements for seven 
traction battery design scenarios based on intended range, motor power, glider body energy requirements, 
cell structure, and thermal management of current on-road vehicles, as described in Table 2.  An iterative 
calculator for battery mass and volume, charge characteristics, and materials is employed based on the 
BatPaC model (J. Dunn, Gaines, Barnes, Wang, & Sullivan, 2012; Nelson et al., 2011).  The model 
allows for comparison between the material and energy flows for different chemistries based on a set of 
design scenarios centered on vehicle end-use, power requirements, and thermal considerations. Traction 
battery design scenarios are constructed to be representative of the PEV market, as well as capture 
significant differences in battery production and composition across vehicle design (PHEV or BEV) and 
intended range.   

Energy requirements and GHG emissions for these traction battery design scenarios are then used to 
develop sampling distributions for 24 PEV models representing the current US PEV market. The unit of 
reporting in this analysis reflects the primary function of the battery; energy storage to provide e-VKT. 
Thus results of the battery life cycle GHG analysis are normalized by the lifetime e-VKT. This 
normalized metric is appropriate for comparing the utilization potential of batteries (Majeau-Bettez, 
Hawkins, & Strømman, 2011; Matheys et al., 2007).  Vehicle e-VKT is simulated across vehicle and 
chemistry combinations based on the expected cycle lives of each battery chemistry.  
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Table 5.2 Traction battery design scenarios and simulated PEVs (energy requirement is calculated, 
all other data are from the US Department of Energy’s Advanced Fuels Data Center (U.S. 
Department of Energy, 2015)) 

Battery 
Scenario 

PEV 
Type Vehicle Model Battery Size 

(kWh) 
Motor 
Power (kW) 

Energy 
Requirement 
(Wh/VKT) 

Short-range 
PHEV 

PHEV 
15 

Toyota Prius Plug-in Hybrid 4.5 18.0 251.4 

Honda Accord Plug-in Hybrid 6.7 124.0 318.1 

BMW I8 7.1 125.0 294.1 

McLaren Automotive Limited P1 4.7 132.0 154.0 

Ford Fusion Energi Plug-in Hybrid 7.6 68.0 234.4 

Ford C-Max Energi Plug-In Hybrid 7.6 68.0 234.4 

Mid-range 
PHEV 

PHEV 
40 

Chevrolet ELR 16.9 126.0 283.5 

Cadillac Volt 15.7 111.0 256.1 

Long-range 
PHEV 

PHEV 
80 BMW i3 (REX) 21.6 96.0 175.5 

Short-range 
BEV EV 40 

Scion iQ EV 12.0 110.0 195.5 

Mitsubishi Motors Corporation i-MiEV 17.0 49.0 165.3 

Mercedes-Benz Smart fortwo EV 17.6 55.0 161.1 

Mid-range BEV 
(Low Power) EV 80 

Nissan Leaf 23.8 80.0 175.8 

Kia Soul Electric 27.0 81.0 180.4 

FIAT 500e 24.0 82.0 171.7 

Volkswagen e-Golf 27.1 85.0 202.7 

Honda FIT 20.0 92.0 50.0 

Mid-range BEV 
(High Power) EV 80 

Chevrolet SPARK EV 22.2 104.0 168.2 

Ford Focus Electric FWD 26.3 107.0 214.6 

Mercedes-Benz B-Class Electric 44.0 132.0 314.5 

Long-range 
BEV EV 100 

Toyota RAV4 EV 50.2 126.0 302.7 

Tesla Motors Model S 86.0 164 and 350 222.6 
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5.3.2 BATTERY SYSTEM DESIGN AND PRODUCTION EMISSIONS 

Battery design is considered through seven scenarios constructed around common PEV vehicle classes 
(PHEV15, PHEV40, PHEV80, BEV80, BEV200, BEV250). Battery scenarios are modeled based on 
intended vehicle type (PHEV or BEV), intended vehicle electric range, battery pack configuration, 
electric motor power, and the thermal management system.  Data for material composition per kWh, 
emissions per kWh, energy requirements per kWh, as well as pack energy density and mass were 
developed and used to generate sampling distributions.  These distributions were then applied to several 
vehicle designs within the PEV vehicle class. 

While battery packs are usually designed for a specific vehicle, real-world performance of a particular 
battery system will vary based on different vehicle types.  To assess variation in vehicle performance 
within battery design scenarios, we look at several specific vehicle models for each PEV class; for 
instance, the Ford C-max and Fusion Energi, as well as the Honda Accord Plug-in, are all simulated from 
the same underlying distribution of material composition and energy requirements, but adjusted for the 
specific vehicle design by the kWh capacity.  

All batteries are simulated as a prismatic cell type and a blend of steel and aluminum structural elements, 
and with only one exception, all scenarios utilize active liquid cooling systems.  Battery cycle life is used 
to simulate energy throughput and calculate lifetime e-VKT.  Lifetime e-VKT for each simulated vehicle 
and chemistry combination is based on initial estimated all-electric vehicle range, expected gradual 
capacity fade during vehicle service life, and estimated cycle life by chemistry.  Gradual capacity fade is 
estimated for small charge cycle intervals (<100 cycles), and the full electric range delivered by the 
charge cycle is used to estimate e-VKT. The distributions of key parameters are detailed in Table 3. 

End of LIB vehicular service life is assumed to occur after a 30% reduction in rated energy storage 
capacity from when the battery was new.  Battery cycle life is estimated for each lithium couple based on 
a meta-analysis of published sources and other publicly available data. Table B in the Supplementary 
Information (SI) summarizes the key parameters from the studies included in the meta-analysis.  
Empirical test data of prismatic or pouch cells are used when available; the most likely cycle life outcome 
is assumed to occur at or near ambient temperatures with relatively low (~2C) charge/discharge rates 
(Marano, Onori, Guezennec, Rizzoni, & Madella, 2009).  Lower-bound cycle life is assumed to occur due 
to calendar aging or cycling at elevated temperatures, as opposed to increased high c-rate cycling.  Aging 
effects and cycling effects are considered to be additive (Smith, Earleywine, Wood, Neubauer, & Pesaran, 
2012), and differences between vehicle duty cycles are simulated by way of thermal impacts (e.g. 
increased accessory load and increased battery degradation).  Upper-bound cycle life is estimated for 
optimal DOD cycling patterns and calendar storage limits, indicating the maximum expected cycles to be 
delivered by the battery before capacity fade thresholds are reached.  Extrapolated estimates are used 
where no complete cycle life data is available.   

Material production emissions estimates were calculated from life cycle material inventories in the 2014 
Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) (Argonne 
National Laboratory, 2014).  The material life cycle inventories (LCIs) are consistent across chemistries.  
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A distribution of emissions factors for electricity consumed during cell and pack assembly and vehicle 
use-phase is estimated from regional US emissions factors (Archsmith et al., 2015) (SI: Figure B).    

Energy consumed directly in cell and pack assembly is simulated stochastically based on existing 
inventories in published studies.  Energy requirements for cell and pack assembly are assumed to be the 
same across battery chemistries.  Fuel-cycle energy consumption is based on vehicle specific energy 
requirements (Wh/km), charger efficiency, and accessory load.  Charger efficiency varies based on the 
system and charging rate, but is typically between 85-95%. Climate impacts on accessory load factor are 
estimated to increase per mile energy consumption by 0-15% (Yuksel & Michalek, 2015).    

Production of the BMS is modeled based on results from Dunn et al. (2012) for a 5 kWh LiFePO4 
battery.  Data from general electronics manufacture is used where specific data for process burdens of 
circuit boards and semiconductors in BMS systems was unavailable. Recycling is not considered in this 
data (meaning no recycling credit is assigned to the BMS), however materials preserved in the 
manufacturing process (such as binders), are considered in the inventory. 

5.3.3 ELECTRICITY GRID EMISSIONS 

GHG emissions from electricity consumption are influential in determining the GHG intensity of battery 
operation, but also affect manufacturing because some processes are electricity-intensive such as cell and 
pack assembly. Understandably, much of the detailed modeling of use-phase impacts for PEVs has 
focused on variability in generation source, such as regional or temporal variations in electrical grids 
(Faria et al., 2013), and whether PEV charging demand should be modeled as marginal demand (e.g. as an 
additional unit of demand on the grid), or should be considered part of existing demand (Graff Zivin et 
al., 2014).   

Future electric vehicle charging at high penetration rates would represent significant demand for 
electricity, which could have modest to severe impacts on local utility grid emissions factors based on 
penetration of renewables, energy storage systems, electric vehicle range, level of public charging 
deployment, charging schedules, and charging rates (Hadley, 2006; Hadley & Tsvetkova, 2009; Jansen, 
Brown, & Samuelsen, 2010; Kintner-Meyer, Schneider, & Pratt, 2007; Weiller, 2011).  Current and future 
changes to the electricity generation system in the US will undoubtedly affect PEV emissions 
performance, and disparate carbon and climate policies at the state level are potentially exacerbating 
variation across regional emissions factors (Carley, 2011a, 2011b). Though these issues are important, 
this analysis does not include a prediction of future electricity grid emissions, but rather looks to recent 
history to estimate emissions from U.S. electricity and treats PEV charging as marginal demand.  

There appears to be a trend towards representing PEV charging demand as marginal, a paradigm shift 
initiated by the work of Graff-Zivin et al. and the successive studies that have built upon it (Graff Zivin et 
al., 2014). In accordance with this trend we use the results of Archsmith et al., which report estimates of 
life cycle GHG emissions for marginal demand across the North American Electric Reliability 
Corporation regions in the lower 48 states (James Archsmith, (Accepted)).  We chose this study because, 
unlike other available marginal emissions estimates, it includes total fuel cycle GHG emissions (rather 
than combustion-only emissions from power plants) and includes the contribution of marginal electricity 
supply generated from renewables.   
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5.3.4 SUMMARY OF PARAMETER DISTRIBUTIONS 

To implement a probability based life cycle model, parameter values must be represented as PDFs rather 
than point estimates. Table 3 summarizes the parameter PDFs developed and used in this analysis.   

Table 5.3 Summary of parameter distributions 

Parameter Minimum Likeliest Maximum Distribution 

Production Emissions 

Cell Production Energy (MJ/kWh) 316 960 2318 triangle 

Pack Assembly Energy (MJ/kWh) ~N(0.014,0.01)  normal 

Grid Emissions Factor (kg/kWh) ~LogN(μ=0.81,σ=0.13,k=-0.14) Log-normal 

Battery Cycle Life by Chemistry 

NCA Battery Cycles 400 1000 3000 triangle 

NMC Battery Cycles 1000 1700 3000 triangle 

LMO Battery Cycles 305 685 1000 triangle 

LFP Battery Cycles 1600 3200 5039 triangle 

LTO Battery Cycles 2000 5000 6800 triangle 

Material Production Emissions (kg CO2e/kWh) by Battery Type 

NCA BEV  39.86 42.87 45.54 triangle 

NCA PHEV 44.94 53.3 61.14 triangle 

NMC BEV  33.36 34.78 36.22 triangle 

NMC PHEV 38.78 48.32 53.85 triangle 

LMO BEV 36.29 39.83 42.98 triangle 

LMO PHEV 43.07 522.84 58.65 triangle 

LFP BEV 30.77 33.9 36.68 triangle 

LFP PHEV 35.89 43.21 49.56 triangle 

LTO BEV  28.17 31.79 34.98 triangle 

LTO PHEV 35.15 46.85 53.26 triangle 

Battery Charge and Discharge and Battery Aging 
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Charger Efficiency 85% -- 95% uniform 

Climate Induced Degradation 0% -- 20% uniform 

Climate Accessory Load 0%   15% uniform 

5.3.5 LIMITATIONS  

This study does not consider potential interactions of vehicle design, range, and battery chemistry on 
cycle life; it is possible that cycle life for certain chemistries is longer in particular vehicle designs due to 
correlation between vehicle type and frequency of certain drive cycles.  The effects of different thermal 
management strategies on average pack temperatures and impacts on battery aging are also not 
considered.  Regional levels of PEV deployment could also impact the probability of the occurrence of 
specific climate impacts or emissions from electricity.  Changes in future production systems, raw 
material provision, or operating grid efficiency could have significant impacts on emissions estimates and 
are not addressed in this study. 

Despite the widespread use of probabilistic modeling approaches in quantitative analysis, they suffer from 
several criticisms.  Inappropriate or arbitrary parameter distributions gives false confidence in unreliable 
results, lack of uncertainty incorporated into scenario analysis yields little information on key factors, and 
independent sampling of correlated parameters reduces comparability between modeled product stages or 
systems.  Dependent sampling has been used to facilitate comparisons between product stages 
(Henriksson et al., 2015); to that end, the same distribution of electricity emissions factors is used for 
production and use-phase energy consumption.  Fuzzy set quantitative analysis is used in this study to 
derive parameter distributions from empirical data, with the goal of limiting arbitrary application of 
density functions to parameters (Kala, 2005).  

5.4 RESULTS 
While battery composition varies considerably across chemistries (Figure 5.2a), GHG emissions impacts 
are predominately due to a few materials.  Including the battery management system (BMS), GHG 
emissions from material production were on average 20% of total battery production emissions (Figure 
5.2b).  Aluminum was responsible for approximately 40% of material production GWP for all five 
chemistries. Emissions attributable to energy directly consumed in cell and pack assembly was ~80% of 
total production emissions, or 157-475 kg CO2e/kWh.   
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Figure 5.2 Composition of lithium batteries and material GHG emissions by chemistry: (a) mean 
composition of traction batteries by components (% of total mass) (b) mean GHG emissions from 
materials by chemistry (% of total battery production emissions)  

 

As shown in Figure 5.3, mean cradle-to-gate GWP intensity for LIB chemistries is 256-261 kg/kWh, with 
only LFP and LTO showing statistically significant differences in production GWP between chemistries 
(Tukey-Kramer, \ = 0.05). Production emissions are log normally distributed, ranging widely from 194-
494 kg/kWh; upper bound estimates were predictably correlated with more carbon intensive electricity for 
cell assembly.  

 

 

Figure 5.3 Mean battery production emissions estimates for LIB chemistries 
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Significant differences are also observed across vehicle configurations and vehicle electric range (Figure 
5.4).  Battery production emissions intensity (e.g. per kWh of capacity) is 4% higher for PHEVs on 
average compared to BEV batteries. Small batteries (~5 kWh) had higher production emissions per kWh 
of capacity because many battery components or systems did not scale completely with pack size. 
Estimated lifetime e-VKT for traction batteries was 26000-86000 e-VKT, with significantly shorter 
estimates for PHEVs compared to BEVs.  Lifetime e-VKT for BEV vehicles was ~95,000 kilometers 
across all chemistries; long range vehicles, such as the Tesla model S, could reach well in excess of 
241,000 kilometers considering charge cycle degradation only.  PHEV lifetime was 13000-53000 e-VKT 
across chemistries and vehicles.   

 

Figure 5.4 Battery production emissions by PEV vehicle type and all-electric range  

 

Considering a likely electricity emissions factor range of 660-970 g CO2e/kWh, fuel cycle emissions rates 
for the US were estimated at 140-244 g CO2e/e-VKT.  The range of this estimate is likely more reflective 
of regional variability than temporal or seasonal variability within regions.  However, if the climate 
effects on batteries and grid emissions intensity were varied in a geospatially explicit manner, this would 
likely change (see Archsmith et al. for a discussion of this) (Archsmith et al., 2015). Battery production 
emissions of 4-17 g CO2e/e-VKT were ~7% on average of comparable fuel cycle emissions (Figure 5.5).  
The combined emissions rate (production and fuel cycle) was 148-261 g CO2e/e-VKT. 
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Figure 5.5 Battery and fuel cycle emissions rates 

 

Uncertainty in total life cycle emissions rates was predominately driven by emissions from the operating 
grid (Figure 5.6).  Climate and cycle-life were also key factors for overall emissions rates.  Larger 
uncertainties in the life-time of NCA batteries, combined with slightly higher material production 
emissions estimates, led to stronger affects from NCA lifetime estimates.  Climate and charging 
efficiency assumptions also varied total emissions estimates by +/- 5%.   

 

 

Figure 5.6 Sensitivity to key parameters 

 

5.5 DISCUSSION  
Lithium ion cell manufacture can be highly energy intensive.  For example, high temperatures and sterile 
conditions, which are energy-intensive and thus emissions-intensive processes, are required for binding 
cathode and anode active materials to collector foils, trimming and filling pouches with electrolyte, as 
well as sealing and testing of cells (J. Dunn et al., 2012).  Recent studies have illustrated that estimates of 
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energy consumption during cell manufacture can drive estimates of overall battery production emissions 
(C Bauer; Zackrisson, Avellán, & Orlenius, 2010)  Estimates for cradle to gate emissions for early 
Japanese cells were approximately 70 kg CO2e/kWh (Ishihara, Kihira, Terada, Iwahori, & Nishimura, 
2002), with direct energy in cell manufacture of 0-28.3 MJ/kWh (Amarakoon, Smith, & Segal, 2013). 
More recent studies have found much higher impacts: 133-338 kg CO2e/kWh based on energy 
consumption of 326-2318 MJ/kWh for cell manufacture (C Bauer; Ellingsen et al., 2014; Majeau-Bettez 
et al., 2011).  While earlier estimates are based primarily on laboratory test data, both Bauer et al. (2010) 
and Ellingsen et al. (2014), with the highest published estimates for cell manufacture energies, rely on 
inventories and other primary data from of existing cell manufacturers. 

Previous studies report a wide range of estimates for traction battery life cycle GHG emissions: 38-487 kg 
CO2e/kWh. This study’s estimates fall within that range, 193−494 kg CO2e/kWh (Figure 5.7).  Despite 
very different findings for emissions per kWh of capacity, Notter (2010) and Zackrisson (2012) find 
similar production impacts of 6−8 g CO2e/km, with fuel cycle impacts of 62−109 g CO2e/km.  Both 
Notter (2010) and Dunn (2012) stand out with very low estimates for battery production in comparison to 
other studies.  While previous research also point towards high-energy requirements (and emissions 
potential) from cell assembly, the significance of battery production emissions on a per VKT basis is 
strongly affected by battery cycle life.  This is due to the large uncertainties in current lithium battery 
performance, as well as the wide variability in cycle life expectations across chemistries.  

 

 

Figure 5.7 GHG emissions comparison for to other studies for PEV LIB Battery Production and 
PEV Operation  
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coal and natural gas(Armand & Tarascon, 2008). Comparing to a conventional vehicle producing 220 g 
CO2e/VKT, GHG payback periods for battery production (2-8 metric tons CO2e on average), are 
approximately 400-1150 cycles.  This estimate, while not taking into account battery aging, is already 
close to or exceeding battery cycle life for LMO configurations.  A push towards longer-range vehicles 
and larger capacity batteries could exacerbate uncertainties about life cycle performance by further 
extending carbon payback periods.  This underscores the need for life cycle GHG accounting; estimates 
of emissions performance based solely on the fuel cycle or tail pipe emissions could miss structural shifts 
in emissions between production and use-phase.   

Dependent sampling is used in this study to emphasize comparability within the life cycle GHG 
assessment framework and reveal non-intuitive trade PEV LIB Batteries offs between use-phase and 
production emissions. Some additional scenarios highlight this point. Consider a scenario where battery 
production and vehicle operation occur with different underlying distributions for electricity emissions 
factors.  This is a reasonable scenario to consider as the majority of automotive battery cells, including 
those used in the US, are currently manufactured in China and other Asian countries (SI: Table C).  In 
addition, over 50% of the US PEV market is in a single state: California.  The state’s reported utility 
emissions factors are also much lower than national averages.  Using a production grid intensity closer to 
some Asian manufacturing hubs (around 1 kg CO2e/kWh), and an average operating grid intensity for 
California (approximately 0.23 kgCO2e/kWh), production emissions increase to 214-687 kg/kWh, but the 
life cycle emissions rate decreases to 94-135 g CO2e/e-VKT. Doubling the expected range of production 
energy emissions intensities has little to modest impacts on per kilometer emissions rates, as exhibited by 
these results. Cycle life (including climate impacts), and operating grid emissions intensity are likely the 
key factors affecting traction battery emissions performance. 

Effective throughput of the traction battery over expected cycles has been used to estimate the total 
kilometers travelled by the vehicle.  Lifetime e-VKT generation for long-range traction batteries is 
currently highly uncertain due to a number of factors; some, including driver behavior, mechanical 
failure, and vehicle accidents, are not assessed in this study.  Regional variations in travel patterns and 
travel demands could also impact lifetime e-VKT.  Further research is required to assess how these 
factors will impact traction battery carbon payback period.  High mileage vehicles may come up against 
calendar aging considerations or accident/mechanical failure before maximum mileages are reached.  As 
more data on PEV usage and real-world battery cycle performance becomes available, estimates of 
effective lifetime e-VKT for PEVs is also likely to improve.   

5.6 CONCLUSION 
This research highlights a number of factors that influence the performance of PEVs from a GHG 
emissions standpoint; these findings can be used to inform the regulatory landscape for deployment of 
PEVs in the U.S. and globally, as well as shape engineering decisions for vehicle OEMs.  This 
probabilistic approach to considering life cycle battery performance as a function of chemistry and based 
on a meta-analysis of battery performance data, shows that the exclusion of production-related emissions 
for PEVs and realistic operating performance may ignore tradeoffs in production and operation emissions 
of PEVs. This means a life cycle approach for regulating emissions intensity (g CO2e/VKT) may be 
required to ensure that policies intended to reduce GHG emissions and preferentially encourage low 
emissions vehicles are successful.  This conclusion supports the findings of previous work on other 
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production-related emissions, even for non PEVs, such as those from lightweight materials, which can 
overwhelm the emissions reduction achieved during vehicle operation (Kendall & Price, 2012).  
Projections of future grid CO2e emissions intensity, which suggest significant reductions over time, and 
increasingly efficient ICE vehicle operation, serve to increase the contribution of production emissions to 
life cycle emissions for light-duty vehicles, and suggest that the need for a life cycle perspective in 
regulatory frameworks. 
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6. LIFE CYCLE ASSESSMENT OF FUTURE LIGHT DUTY 
ELECTRIC VEHICLES 
6.1 PURPOSE AND SCOPE 
The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of battery 
electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited battery 
capacities. However, two dominant trends in the U.S. BEV market make these studies increasingly 
obsolete: sales show significant increases in battery capacity and attendant range, and are increasingly 
dominated by large luxury or high-performance vehicles. In addition, an era of new use and ownership 
models may mean significant changes to vehicle utilization. At the same time, the carbon intensity of 
electricity is expected to decrease. Thus, the question is whether these trends significantly alter our 
expectations of future BEV LCGHG emissions. To answer this question, this chapter considers the 
possible evolution of three archetypal vehicle designs for the year 2018 and 2025; a high performance 
luxury sedan; and a luxury sport utility vehicle.  A LCGHG models developed and used to compare 
emissions for vehicles with longer range, different battery capacity, different use models, or operating 
grids.   

This chapter includes some text adapted from Ambrose, H., Wachche, S., Lozano, M., & Kendall, A. 
(Under Review) Life Cycle Assessment of Current and Future Electric Vehicles. Transportation Research 
Part D: Transport and the Environment. 

6.2 INTRODUCTION 
Transportation comprises 28% of U.S. greenhouse gas (GHG) emissions, 60% of which come from light-
duty vehicles (LDVs) (US Environmental Protection Agency, 2018). While a multipronged approach is 
needed to achieve deep reductions in transportation GHG emissions, rapid and extensive deployment of 
battery electric vehicles (BEVs) is viewed as a crucial part of nearly all strategies (Alexander, 2015a; 
Meszler et al., 2015; Sperling, 2018). BEVs are typically referred to as zero emissions vehicles (ZEVs) 
because they eliminate tailpipe pollution. However, as with other de-carbonization policies for the 
transport sector, such as those that promote biofuels, a life cycle perspective is required to understand the 
actual mitigation achieved by ZEVs, since emissions are not eliminated, but rather shifted upstream in the 
fuel cycle (to the power plant) and potentially increased in the vehicle production supply chain. BEVs can 
also have considerable variability in life cycle operation emissions given the heterogeneity of electricity 
grids over space and time (Cerdas et al., 2018; Tamayao et al., 2015; Yuksel and Michalek, 2015). 

Numerous life cycle-based studies have been conducted with the goal of verifying if BEVs achieve real 
reductions in emissions relative to internal combustion engine vehicles (ICEVs). These studies suggest 
that GHG emissions associated with energy for BEV operation (i.e. production of electricity) can be 44% 
- 80% of BEV LCGHG emissions. For non-operation GHG emissions, energy required for manufacturing 
of lithium-ion batteries is the primary driver of increased GHG emissions relative to ICEVs (Peters et al., 
2017). Uncertainty about battery manufacturing and a lack of primary data have contributed to a wide 
range of results for GHG emissions associated with battery production (Ambrose and Kendall, 2016; 
Ellingsen et al., 2014). Moreover, given the growth in BEV sales, the evolution of BEV designs and 
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model availability, and declining prices for traction batteries (Nykvist and Nilsson, 2015), previous life 
cycle assessments (LCAs) may not be representative of current and future BEV performance, vehicle 
specifications, or patterns of use. 

6.2.1 Review of Literature and Relevant Data 

A review of previous LCAs (here we use the term LCA to refer both to comprehensive LCAs that track a 
suite of environmental impacts as well as those that narrowly assess GHG emissions), summarized in 
Table 1, shows that most studies used the early generations of the Nissan Leaf as the exemplar BEV 
(Archsmith et al., 2015; Ellingsen et al., 2014; Graff Zivin et al., 2014; Hawkins et al., 2013; Majeau-
Bettez et al., 2011; Samaras and Meisterling, 2008; Tamayao et al., 2015). Because of this, most previous 
LCAs have used similar assumptions, including the ~24 kWh battery capacity and efficiency-oriented 
compact vehicle design. Many of the earliest LCA studies of electric vehicles found that emissions from 
the electricity grid used to charge EVs were the most significant contributor to life cycle CO2e emissions 
from BEVs (Hawkins et al., 2012). Justifiably, more recent studies have focused on interactions of BEVs 
and the electricity system, examining the consequential effects of replacing ICEVs with BEVs, and the 
intersection of charging strategies with the marginal dispatch decisions of electric utilities (Archsmith et 
al., 2015; Jenn et al., 2016; Yuksel and Michalek, 2015).  At least one study has considered the effect of 
battery range and vehicle size on BEV performance  (Ellingsen et al., 2016). They found commensurate 
increases in LCGHG with increasing battery and vehicle size and, similar to previous studies, found that 
electricity grid carbon intensity determined the preference of BEV vehicles over their conventional fossil 
fuel counterparts. 

While previous studies provided valuable insights about the life cycle performance of vehicles and the 
importance of electricity grid emissions (whether modeled as marginal or average emissions), the 
majority of these studies reflect outmoded assumptions about BEV vehicle designs and did not reflect 
trends in the BEV market. A review of U.S. BEV sales between 2012 and 2018 shows a marked shift 
towards significantly higher capacity batteries, longer vehicle ranges, and an increasing preference for 
high performance and luxury BEVs. The combined effect of these two trends is evident in Figure 1, 
which shows the U.S. sales-weighted average annual increase in BEV battery capacity of 6.5 kWh per 
year between the first quarter of 2012 and the second quarter of 2018, reaching 74 kWh by the second 
quarter of 2018. As the market for BEVs has grown, so too have the number of BEV models available. 
Instead of the efficiency-oriented compact passenger vehicle, the fastest selling BEV in the U.S. has 
become the leader in the luxury sedan segment (Alternative Fuel Data Center, 2018). Sport-utility BEVs 
have emerged as an important market segment with several major vehicle manufacturers launching cross-
over style BEVs (Gale, 2018). 

Two important trends in personal mobility are also changing the use-cases for BEVs: one, the increased 
use of and participation in on-demand ride sharing services; and two, increased reliance on automated and 
connected vehicle technologies to replace human driving activities (Greenblatt and Shaheen, 2015). While 
the net effects of these trends on vehicle travel is still unknown, the emergence of ride-hailing services 
like Uber and Lyft are having significant impacts on traditional modes (e.g. transit) and historical patterns 
of mobility (Clewlow and Mishra, 2017; Hall et al., 2018). Based on early research, individual shared or 
automated vehicles could generate three to four times the comparable annual VMT of a conventional 
(private) passenger vehicle (Fagnant and Kockelman, 2014; Gurumurthy and Kockelman, 2018; Loeb et 
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al., 2018). Vehicles participating in ride-hailing services can also experience significant mileage from 
return links, also known as dead-heading (Henao, 2017). While induced VMT has important implications 
for climate and environmental policy, use of shared, automated vehicle technologies (SAVs) could 
increase access to mobility, particular for vulnerable, disadvantaged, or mobility challenged populations 
(Harper et al., 2016). 

 

  



79 

 

Table 6.1 Review of Selected Vehicle and Performance Characteristics from Life Cycle Studies of 
BEVs and Gasoline Vehicles (ICEV and HEV)  

 

 

 

 

Study 
Vehicle 
Type 

Battery 
Capacity 
(kWh) 

Vehicle 
Production 
Emissions 
(kg CO2e) 

Battery 
Production 
Emissions  
(kg CO2e) 

Vehicle 
Operation 
Emissions  
(g CO2e/km) 

Samaras and Meisterling (2008) PHEV 20.1 7800 2420 40.0 

Notter et al. (2010) BEV 34.2 6200 1800 101 

Majeau-Bettez et al. (2011) BEV 24 7200 4704  

Dunn et al. (2012) BEV 28 7000 1092  

Hawkins et al. (2013) BEV 24 7813 4620  

Ellingsen et al. (2014) BEV 26.6  6400  

Zivin et al. (2014) BEV 24   69 – 293 

Miotti et al. (2015) BEV 19 – 60 7360 1090 120 – 185 

Tamayao et al. (2015) BEV 24 2444 4124 41 – 144 

Kim et al. (2016) BEV 24 7500 3400  

Archsmith et al. (2016) BEV 28 7710 1542 124 – 194 

Ellingsen et al. (2017) BEV 60  6390  

Average ICEV 

(N=8 Studies, see table S1.1 for 
details) 

ICEV  8294  191.5 

Average HEV (traction battery 
included in vehicle production; 

N=6 Studies, see table S1.1 for details) 

HEV  9420  195 
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Figure 6.1 BEV sales and battery capacities in the U.S.   

 

The combined effects of larger battery capacity; a shift towards large, high-performance BEV models; 
and the increased use of BEVs in high-mileage applications may challenge some of the widely accepted 
conclusions of earlier BEV LCAs, namely the small contribution of vehicle production-related emissions 
to life cycle emissions and that in many parts of the U.S. (and in regions throughout the world) BEVs 
provide GHG mitigation benefits (albeit sometimes small) relative to internal combustion engine vehicles 
(ICEVs). This observation led to the following research questions explored in this study: 

• How do current trends in BEV vehicle design, including increased battery capacity and high 
performance and luxury vehicles, affect LCGHG intensity of vehicle?  

• What is the combined effect of vehicle design trends and technology and electricity grid evolution 
on the LCGHG emissions intensity of BEVs?  

• How will these trends effect future emissions rates of BEVs, particularly in high-mileage 
applications like shared ride fleets? 
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6.3.1 GOAL AND SCOPE 

This study aimed to quantify the LCGHG emissions of three archetypal future BEVs that reflect the 
changing BEV market, as described below:  

• Archetype 1 - An efficiency-oriented compact vehicle (EOV), based on the Chevrolet Bolt.  
• Archetype 2 - A high performance luxury sedan (PLS), based on the Tesla Model S P100D. 
• Archetype 3 - A high performance SUV (PSUV), based on the Tesla Model X P100D.  

For each vehicle archetype, the study considers how future changes in vehicle design, battery 
performance, changing electricity grid, and annual mileage will affect the total LCGHG emissions of the 
vehicle. Results are presented in a functional unit of vehicle mile travelled (VMT), where total emissions 
are divided by the lifetime miles of the vehicle. This facilitates comparisons with ICEVs.  

For each vehicle scenario, we evaluate a set of 2025 models with improved battery systems (Table 2). We 
then compare this to both current market BEVs, as well as a set of 2025 models with increased battery 
capacity and travel range (Long Range or LR). 

The model includes both the operation and non-operation stages of the vehicle life cycle. The operations 
phase requires that differences in travel behavior and potential utilization strategies be considered. These 
differences are captured by modeling two sets of travel scenarios, which are applicable to the different 
vehicle models shown in Table 2: 

• A privately-owned vehicle in an average U.S. Household (referred to as the AVE scenario) 
• A service vehicle deployed in an urban, ride-hailing fleet (referred to as the SAV scenario) 

The vehicle life cycle is divided in two phases; the vehicle phase, which includes vehicle production and 
disposal, and the operation phase. The vehicle phase is broken down into the battery system and the rest 
of the vehicle, referred to as the glider. The end-of-life (EOL) stage includes disposal and recycling of the 
glider. Disposal and/or recycling of the traction battery is not included because of uncertainty in how 
batteries will be managed in the future, particularly as many more batteries are retired and either recycling 
networks or second life uses emerge.  

Use-phase emissions for BEVs are then estimated as a function of vehicle energy efficiency and the 
emissions associated with electricity production and delivery. Electricity emissions rates were modelled 
for both California and the U.S. national average based on the grid fuel mix from 2017 to 2025. To 
capture regional variability, changing fuel sources, and generation technologies in the electricity system, 
we also considered a range of electricity generation forecasts through sensitivity analysis as discussed in 
the next section. 

6.3.2 LCI INVENTORY MODEL 

The life cycle inventory (LCI) model tracks only energy consumption and GHG emissions. A three part 
LCI model was developed to estimate the required inputs of energy and raw materials and resulting 
emissions: part one evaluated the production of the vehicle glider body and balance of systems (the glider 
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model); part two evaluated the production of the battery system; and part three evaluated the generation of 
electricity supplied to charge the vehicle. 

Table 6.2: Overview of Scenarios Included in this Study 

  ICE 
car 

ICE 
SUV 

HEV 
car 

2012 
MY 
Leaf 

2018 
EOV 

2018 
PLS 

2018 
PSUV 

2025 
EOV 

2025 
PLS 

2025 
PSUV 

2025 
LR 
EOV 

2025 
LR 
PLS 

2025 
LR 
PSUV 

Fuel Economy 
(kWh/100 mi) 116 160 80 28.6 28.6 33.5 39.4 28.1 31.4 35.5 32.1 34.4 39.5 

Battery 
Capacity (kWh) ₋ ₋ ₋ 24 60 100 100 60 100 100 100 125 175 

Utilization (VMT) Scenarios (annual VMT in year 1 shown*) 

AVE 13467 14026 13467 12135 12135 12135 14026 12135 12135 14026 13467 13467 14026 

SAV-High  ₋ ₋ ₋ ₋ ₋ ₋ ₋ ₋ ₋ ₋ 69350 69350 69350 

Electricity Generation Mix Scenarios 

California 
Average (BAU) 

₋ ₋ ₋ þ þ þ þ þ þ þ þ þ þ 

California 
Average 
(carbon tax) 

₋ ₋ ₋ þ þ þ þ þ þ þ þ þ þ 

U.S Average 
(BAU) 

₋ ₋ ₋ þ þ þ þ þ þ þ þ þ þ 

U.S. Average 
with (carbon 
tax) 

₋ ₋ ₋ þ þ þ þ þ þ þ þ þ þ 

*VMT changes every year with a decreasing trend (NHTS, 2017) 

 

6.3.2.1 GLIDER MODEL 
The glider model examined the life cycle emissions of the vehicle without the battery, which included raw 
material acquisition and refining, processing, assembly and disposal. The reference LCI data for this 
model was acquired from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation 
(GREET) 2 Model developed by Argonne National Laboratory (Argonne National Laboratory, 2017b). 
This data source provides the per-mass life cycle embodied energy and air pollutants, including GHGs, 
for materials used in vehicles. The data were combined with estimates of the material composition of 
vehicle gliders and their masses. The mass used for each modelled glider was the curb weight of the 
reference vehicle for each archetype (EOV/Chevy Bolt, PLS/Tesla Model S, PSUV/Tesla Model X) 
reduced by the mass of the battery. The impacts of material transformation were calculated for each 
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material. The per-vehicle assembly and disposal impacts were assumed to be identical across all modelled 
BEVs. Other assumptions included the mass and number of replacements for fluids and tires, also 
acquired from the GREET 2 model. Further, because electricity use does not constitute a large portion of 
total energy use and resulting emissions in this phase, time dependence of the electric grid was not 
considered in the glider model–meaning that a vehicle produced in the future is modeled using the same 
electricity grid LCI as those produced today. For both 2018 and 2025 scenarios, glider material 
composition as well as per-mass emissions are assumed to be the same. And since no light-weighing was 
assumed, glider masses also remain the same. The baseline ICEV car, SUV, and HEV scenarios presented 
for comparison are taken from the default vehicle set in GREET2.  The resulting estimates for the 
material balance of the vehicles, the average energy input for assembly processes, and further details on 
the vehicle model can be found in the. 

6.3.2.2 BATTERY PRODUCTION 
Battery production LCIs were developed using the model described in Ambrose and Kendall (2016), 
which combines the Battery Performance and Cost (BatPAC) model and underlying research from 
Argonne National Labs (Dunn et al.); Nelson et al. (2011) with life cycle inventories from GREET 2 to 
examine the GHG emissions and material composition of lithium-ion batteries (LIBs) for light-duty 
applications.  The methods used to develop this model are described in Ambrose and Kendall (2016). All 
vehicle scenarios are assumed to use a lithium nickel manganese cobalt (NMC) battery chemistry. 
Variations of NMC have emerged as the dominate cathode chemistry for most light duty applications 
owing to its high specific power (Olivetti et al., 2017). The composition of lithium ion battery (LIB) 
packs can vary due to the type of cells used, thermal management systems, and structural elements. There 
is also considerable uncertainty in estimating the energy required for assembling LIB cells owing to 
limited, poor quality data (Peters et al., 2017). We considered several futures for battery design, 
production processes, and key inputs through a scenario based sensitivity analysis. These results, the 
normalized average material composition for each battery pack, assembly emissions estimates, as well as 
more discussion on the battery production model is included in the (Appendix D-S4). 

The baseline assumption is that no battery replacements are required over the course of a vehicle’s 
lifetime. This assumption and the conditions where battery replacement is likely to be needed is discussed 
in Section 3.1. 

6.3.3 USE-PHASE MODEL 

A use phase model was developed to estimate GHG emissions resulting from EV operation summarized 
in Equation 1, where the total emissions in kg CO2-equivalent (CO2e) for each technology (i) is the sum 
of, from 0 to the expected vehicle life (n), the annual miles travelled (VMT) in year (t), the average 
vehicle energy demands per mile (q?), the LCGHG emissions rate for electricity generation in each year 
(EF), and the efficiency of the charger system (r).  

csUtW#PkXuvwv? = ∑ pbx?C ∗ q? ∗
z{C r[|

}   Eq. (1) 

6.3.3.1 VEHICLE ENERGY DEMANDS 
An existing vehicle dynamics model, the Future Automotive Systems Technology Simulator (FASTSim) 
tool developed and maintained by the National Renewable Energy Lab (NREL), was used to estimate the 
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average vehicle energy demand (q?). FASTSim simulates vehicle energy demands as a function of 
primary physical forces including: drag, acceleration, ascent, rolling resistance, powertrain component 
efficiency and power limits, and regenerative braking (Brooker et al., 2015). Since FASTSim models 
vehicle performance at the powertrain component level, it allows users to modify the parameters of 
vehicle powertrain, such as battery capacity, energy density, motor power, glider dimensions, and weight 
to examine how powertrain design impacts fuel economy. The model was used to simulate vehicle energy 
demand. To ensure that this model represents vehicle performance appropriately, the model was 
parameterized for the 2012 and 2018 model years of the three archetypal vehicles and simulated results 
were validated against fuel economy values reported by the EPA (Environmental Protection Agency 
(EPA), 2018). FASTSim results were found to be within 7% range of the EPA reported fuel economy 
values for all models. 

 

Table 6.3: Vehicle mass and key parameters by scenario 

 

Table 6.3 shows the assumed curb weight and key vehicle specification inputs by vehicle scenario. The 
aerodynamic and motor specifications are held constant across each class of vehicle modeled. As 
explained in the section on Glider model, curb weights vary according to battery systems improvements 
and battery sizing. Hence in the 2025 vehicle models, the expected increase in future battery density 
brings down the curb weights when battery capacities remain the same as 2018 vehicle models. But as 
battery capacities are increased in the long range scenarios, the curb weights increase accordingly.  
Additional review of the vehicle assumptions and discussion is provided in the (Appendix D). 

6.3.3.2 VEHICLE MILES TRAVELLED (VMT)  
Two sets of scenarios for vehicle travel were developed: one representing primary use in a personal 
passenger vehicle application and another representing use in a shared on-demand or potentially 
automated ride-hailing fleet. The 2017 National Household Transportation Survey (NHTS) was used to 
estimate passenger vehicle travel. The 2017 NHTS collected information on the type (e.g. car, van, SUV, 
or truck), fuel, hybrid or electric powertrain, and annual mileage of vehicles present in the household.  
These data suggest: one, a strong decline in mileage generation over the life of the vehicle, with older 
vehicles generally less likely to experience high annual mileage; and two, significant differences in 

  
Leaf 
(2012) EOV PLS PSUV 

2025 
EOV 

2025 
PLS 

2025 
PSUV 

2025 
LR 
EOV 

2025 
LR 
PLS 

2025 
LR 
EOV 

Drag coefficient 0.32 0.31 0.24 0.25 0.31  0.24  0.25  0.31  0.24  0.25  

Frontal area (m2) 2.76 2.82 2.34 2.59 2.82  2.34  2.59  2.82  2.34  2.59  

Curb Weight (kg) 1557 1619 2215 2459 1448 1929 2173 1640 2050 2543 

Battery mass (kg) 290 460 766 766 288 481 481 481 601 841 
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mileage generation across vehicle types and fuel types, particularly for HEVs and BEVs. U.S. vehicle 
scrappage rates from 1999 – 2009 were used to estimate the average lifetime of vehicles for all scenarios 
(Jacobsen and Van Benthem, 2015). The average annual vehicles miles travelled for gasoline cars (i.e. 
automobiles and station wagons), hybrid cars, and gasoline SUVs (e.g. Santa Fe, Tahoe, Jeep, etc.) were 
used.  There are relatively few BEVs reflected in the 2017 NHTS sample (n=545 out of n=252,042 
vehicles). While BEVs reported approximately 10% fewer annual miles travelled compared to 
conventional gas vehicles, it was not possible to estimate the annual mileage by vehicle age. Therefore, 
the annual mileage for gasoline cars and SUVs were scaled linearly by the average difference to estimate 
annual miles for BEV scenarios.   

The SAV scenario was modelled based on secondary empirical data from ride hailing vehicles (Henao, 
2017), and simulations of potential future automated vehicle fleets (Fagnant and Kockelman, 2014; 
Gurumurthy and Kockelman, 2018; Loeb et al., 2018). In the SAV scenario, vehicles are assumed to 
travel 200 miles per day in service, and to have a declining utilization factor (i.e. days in service per year) 
averaging 80% over the vehicle lifetime. The assumed annual vehicle travel for both the passenger 
vehicle and SAV scenarios are provided in the (Appendix D).  

6.3.3.3 CHARGING  
BEVs are likely to utilize a range of private or public charging infrastructures with different power levels 
for charging events, which could impact the efficiency of refueling the vehicle (Smart and Schey, 2012; 
Tal et al., 2014). Sears et al. (2014) collected data on charger efficiency for a range of charging power 
levels and climate conditions from a small sample of Nissan Leaf and Chevy Bolt drivers; the authors 
found efficiency ranged 83.8% to 89.4% for Level 1 vs 2 charging events. There are much more limited 
data is available for the efficiency of high power chargers. It is likely that any variability in BEV 
emissions rate attributable to variation across charging infrastructures is less than that due to climate, 
driving distance, and other factors (Taggart, 2017). In this study, an average efficiency of r = 86% is 
used for all scenarios, and the sensitivity of results to this assumption is explored in the discussion. 

6.3.3.4 ELECTRICITY GENERATION 
LCAs of EVs have long struggled to determine how best to model electricity used in vehicle charging. 
The alternatives from a modeling perspective are typically framed as either a consequential perspective 
(how the additional or new demand from a BEV charging event is met) or an attributional perspective, 
where BEVs are treated as requiring an average unit of electricity. The average emissions or attributional 
approach assumes all electricity as a shared resource for all end uses, while the consequential emissions 
approach recognizes the role of certain generators in meeting marginal demand, thereby scaling in 
response to the incremental load of vehicle charging (Alexander, 2015b). Researchers have taken 
different approaches for estimating marginal emissions. Some studies try to identify the marginal 
electricity supply based on what will be or has been dispatched amongst the current mix of sources in 
response to an extra load, while other studies have looked at long term change in the grid mix in response 
to the additional demand from EVs (Archsmith et al.; Siler-Evans et al., 2012). While there is a strong 
argument for consequential approaches to estimating electricity emissions, the focus of this study is not to 
capture the short term consequences of deploying electric vehicles.  Instead, the goal is to estimate how 
trends in the foreground system (i.e. vehicle production and use) and background system (e.g. electricity 
grid mix) are likely to change the LCGHG performance of future vehicles. As such, the average fuel mix 



86 

 

and associated GHG emission factors are used to estimate vehicle operation emissions for each year of 
vehicle operation.  

The projected electricity generation by fuel source was obtained from the U.S. Energy Information 
Administration (2018). Two regions were considered, the California sub region of the Western Electricity 
Coordinating Council region (CAMX), and the U.S, national average. For both regions, emissions were 
evaluated under a reference case or business as usual scenario(BAU), and a carbon tax scenario assuming 
a $25 allowance fee on CO2 emissions from utility-scale electricity generators beginning at $25 (in 2017 
dollars) in 2020 and increasing at 5% per year in real dollar terms (U.S. Energy Information 
Administration, 2018). The average emissions rate (z{C) is estimated as the mass of GHG equivalent 
emissions per unit of delivered energy with Equation 2, where the weighted generation by year (t) and 
fuel source (x) is multiplied by the life cycle inventories (LCI) of emissions species (e) by fuel type (x), 
and the impact characterization factors (m): 

z{C =
~�*Ä-Å

∑ ~�*Ä-ÅÅ
∗ a`Ç2* ∗ V*   Eq. (2) 

The resource mix was broken into five fuel source categories: coal, natural gas, renewables, nuclear, and 
fuel oil. Generator technology LCI data were drawn from the 2018 GREET 1 model (Argonne National 
Laboratory, 2017a), and a representative LCI was estimated for each fuel source based on the net 
generation by generator type for each regional scenario (US Environmental Protection Agency, 2016). 
The renewables were treated as zero emission fuels here. The resulting carbon intensity forecasts for each 
electricity generation mix are shown in Figure 6.3(B), and the full results are available in Appendix D. 
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Figure 6.3 (A) Total Electricity Generation by Fuel Source in California and the US and (B) 
Average GHG Emissions per kWh for Residential and Commercial End-Uses for BAU and $25 
carbon tax ($25 C-tax) scenarios in California and the US (2017 – 2050) 

 

6.4 RESULTS 
LCGHG emissions for BEVs were found to range from 108 gCO2e/mile for an efficiency-oriented 
compact BEV in California up to 370 gCO2e/mile for the larger PSUV in the U.S. average scenario. This 
compares to conventional gasoline vehicle life cycle emissions of 460 to 503 gCO2e/mile and to hybrid 
electric vehicle life cycle emissions of 336 gCO2e/mile. Figure 4 summarizes the average contribution of 
vehicle and battery production, vehicle end of life, and vehicle operation to life cycle GHG emissions for 
each vehicle and utilization scenario. Life cycle emissions from BEVs under the California scenarios (105 
- 204 gCO2e/mile - black diamonds in Figure 6.4), were 37% - 50% lower than under the U.S. average 
scenario (210 – 342 gCO2e/mile). Across all the three vehicle archetypes, emissions for the long range 
(LR) vehicles increased by 7% - 13% for 2025 models.  Like conventional ICEVs and HEVs, the main 
driver of LCGHG emissions for BEVs is the operation phase. But while only 8% to 15% of LCGHG 
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emissions for ICEVs are attributable to vehicle production, production of electric vehicle and battery 
systems were estimated to contribute 20% - 55% of per mile emissions for BEVs. Production of the 
battery system contributed 37% - 40% of production emissions for BEVs, and 8% to 21% of overall per 
mile emissions. 
 

 

Figure 6.4 LCGHG Emissions by vehicle, grid, and utilization scenario 

 

While BEV emissions were lower under the carbon tax scenarios, the difference was significantly larger 
for the U.S. case. The $25 US carbon tax scenario reduced life cycle emissions of current (2018) BEVs by 
14% - 17% compared to the USAVG over an average 12 year vehicle life; emissions reductions grew to 
27% - 30% for 2025 BEV models. The carbon tax scenarios reveal the importance of assumptions about 
electricity generation over time in estimating use phase emissions rates and the significance of use-phase 
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emissions in life cycle emissions rates. This includes both the types of generation technologies and fuel 
sources associated with electricity for vehicle charging.  

 The SAV scenarios assume the 2025 LR vehicle archetypes and grid mix, and these vehicles are assumed 
travel approximately 200 miles per day, for an average of 5.45 times the annual mileage of the personal 
SUV scenario. The SAV scenarios resulted in lower LCGHG emissions for BEVs on a per mile basis 
compared to the private average personal vehicle scenarios when compared over equivalent service 
periods.  The use of BEVs could reduce LCGHG emissions of service vehicles by over 44% when 
switching from a comparable ICEV PSUV and 42% when switching from a comparable HEV to a 2025 
LR-EOV.  These reductions become more significant under the carbon tax scenarios, with the BEV SAVs 
averaging 57 – 86 gCO2e/mile under the California with $25 carbon tax scenario. 

In these high mileage applications, it is also expected that key vehicle systems will require additional 
replacement due to excessive wear. The results reported for the SAV scenarios assume replacement of 
vehicle battery based on expected lifetimes. Battery systems are assumed to be replaced after delivering a 
fixed number of equivalent charge and discharge cycles, and the estimates in Figure 6.4 for BEV SAVs 
assume an average 1 to 1.5 battery replacements over the average 12 year vehicle life. Vehicle 
powertrain, chassis, and other systems were not assumed to experience additional replacements as a 
function of mileage. The service life of the battery is discussed further in the next section.  

6.4.1 BATTERY REPLACEMENT AND SERVICE LIFETIMES  

Battery cycle life is generally defined by the total number of times a battery can deliver its energy storage 
potential in a particular discharge program (Barré et al., 2014; Fortenbacher et al., 2014; Han et al., 2014), 
thus the service life will vary under different duty cycles and operating conditions. The effective cycle life 
is highly dependent on the utilization of storage potential and the rate of discharge. A common metric or 
measurement of battery performance is cycles to 80% depth of discharge (DOD), or 80% of the battery 
energy storage potential. Cycles to 80% DOD is also convenient as utilization of the battery near the 
maximum and minimum of the battery potential are associated with accelerated battery degradation. 
Many battery systems are managed to prevent discharge below or charging above a certain threshold to 
prevent damage to the battery system.  While early lithium ion vehicle cells might only deliver several 
hundred cycles before experiencing noticeable capacity degredation (>20%), current and future batteries 
are expected to exceed 1000 cycles and may reach 5000 to 6000 cycles at 80% DOD (Burke, 2014; 
Howell et al., 2018). 

Given the average vehicle miles traveled (VMT) of personal vehicles and the range of vehicles included 
in the study, batteries would not necessarily exceed 1000 equivalent cycles over the average vehicle 
lifetime (12 years). Figure 6 shows the cumulative average battery cycles to 80% DOD for each scenario 
considered in this study. In ride hailing applications, recent literature suggest vehicles could travel more 
than 2 to 5 times the average daily vehicle miles of a comparable personal vehicle (Fagnant and 
Kockelman, 2014; Gurumurthy and Kockelman, 2018; Henao, 2017). In the SAV scenarios, where 
vehicles travelled 200 miles per day on average, battery replacement could be required over the vehicle 
lifetime to ensure that older vehicles continue to meet range requirements.  In the SAV scenario, battery 
systems are discharged completely on most days and experience 277 - 323 equivalent cycles per year 
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(Figure 6.6).  Assuming a limit of 1500 cycles to 80% DOD, the average vehicle would require one 
battery replacement on average (0.8 to 1.5 replacements in 12 years depending on battery size).  

 

 

Figure 6.6 Battery Cycles by VMT Scenario 

 

6.4.2 ELECTRICITY 

Emissions generated during the vehicle use-phase from producing electricity to charge the vehicle are on 
average more than 50% of LCGHG emissions. A key uncertainty in estimating use-phase emissions for 
BEVs stems from variability in the emissions rate for delivered electricity. The effects of BEV efficiency 
on per mile emissions have also been poorly addressed in many previous studies due to the limited types 
of vehicles evaluated. Figure 7 shows the relationship between vehicle efficiency (kWh/100 miles) vs. the 
GHG emissions per kWh of energy for vehicle charging. The labelled lines are constant emissions rates 
delimitating ranges of emissions from 100 to 500 gCO2e/mile. The average life cycle emissions rate for 
current and 2025 LR vehicle archetypes are also indicated in the California and U.S. reference case 
(BAU) grid scenarios in the left and right panels respectively.  
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Figure 6.7 EV LCGHG Emissions per Mile with Sensitivity to Grid Emissions and Vehicle 
Efficiency 
 

6.5 DISCUSSION  
Increasing BEV battery capacities could have mixed impacts on the life cycle emissions rate of grid-tied 
BEVs and the GHG abatement from a transition away from gasoline powered vehicles. Longer range 
BEVs could reduce barriers to adopting electric vehicles and enable more electric vehicle travel where 
charging infrastructure is undeveloped. But the materials and energy required to manufacture batteries 
could have a significant contribution to per-mile emissions rates, particularly when vehicles have low 
utilization. In the absence of other measures to de-carbonization electricity for charging vehicles, future 
longer range BEVs may have higher life cycle emissions rates than current BEVs. 

A shift towards larger, less efficient vehicles can offset current transportation emissions abatement 
measures, but would only increase the importance of vehicle electrification to goals for de-carbonization. 
The 2017 NHTS data used in this study suggest SUVs and larger passenger vehicles travel 8% more miles 
per year on average, but this discrepancy is skewed towards older vehicles. Older SUVs can travel 20% 
more miles than the comparable age US passenger car. Prior assessment by the EPA for the mid-term 
evaluation for the Corporate Average Fuel Economy Standard found a similar pattern of vehicle aging on 
annual vehicle miles travelled for cars and light trucks (US Department of Transportation, 2017). While 
larger BEVs could have twice the emissions rate of efficiency-oriented compact designs, the total 
reduction in emissions of switching from an ICE SUV to a BEV SUV is equivalent or greater to that for 
cars.  This highlights the need for more development of the BEV SUV and large vehicle market. 

Extending the vehicle life of BEVs and increasing vehicle utilization can lower the LCGHG emission 
intensity (i.e. gCO2e/km) rate of BEVs. BEVs in high-mileage applications such as ride-hailing were 
found to have lower LCGHG emissions despite the potential for additional battery replacement. This was 
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attributable to increased utilization of battery and vehicle systems (vehicles are usually idle), and the 
decreasing carbon intensity of electricity emissions. 

6.6 CONCLUSIONS  
This study examined trends in BEV design choices and use models including battery pack size, vehicle 
archetype, and vehicle utilization (annual VMT assumptions), as well as changing electricity emissions to 
examine the potential effects on LCGHG emissions of BEVs. While BEVs can reduce emissions relative 
to conventional ICEVs, trends in vehicle choice, utilization of increasing battery capacity, and 
considerations of future ownership and utilization models all influence their relative performance. In 
particular, the trend towards larger vehicles with larger battery packs leads to a deterioration in BEV 
GHG mitigation potential compared to ICEVs as a result of both vehicle production and operation 
emissions. At the same time, the decreasing carbon intensity of electricity grids over time, not to mention 
current and future differences over space (i.e. California versus U.S. average grid emissions), are largely 
countervailing trends that lead to improving GHG mitigation potential for BEVs over time. Increasing 
battery capacity (i.e. larger batteries), can reduce the per-mile life cycle emissions for vehicles, however, 
if they enable high-mileage use models, such as vehicles used in ride-hailing applications.  

These results suggest three important conclusions: (1) like all vehicle types (whether ICEVs or BEVs) 
larger high-performance vehicle choices are likely to decrease energy efficiency and thus increase 
emissions; (2) the most benefit for investing in large-capacity batteries and BEVs more generally are in 
high-mileage applications; and (3) including trends in BEV design choices, temporal and spatial 
heterogeneity of electricity grids, and new vehicle use and ownership models lead to non-negligible 
differences in estimates of the LCGHG emissions (and mitigation potential relative to ICEVs) of BEVs. 
The results highlight predictable opportunities to increase the abatement potential of BEVs, such as de-
carbonization of the electricity grid and a focus on vehicle energy economy. Slightly less obvious 
opportunities include right sizing batteries based on expected vehicle use, or put differently, higher 
utilization rates for BEVs (especially those with larger battery capacity). 
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7. LIFE CYCLE COSTS AND BARRIERS FOR ELECTRIFICATION OF 
TRANSIT BUSES 
7.1 PURPOSE AND SCOPE 
In 2018, the California Air Resources Board (CARB) adopted regulatory changes that will require all new 
transit buses in the state to be zero-emissions by 2040.  Battery electric buses (E-bus) are expected to be 
the primary technology adopted to achieve this policy goal.  While a transition to E-buses may support 
emissions reductions targets and provide other benefits for urban areas, a transition to electricity from 
conventional liquid and natural gas fuel buses could also create new costs and uncertainties for transit 
agencies. Resource-constrained transit agencies must consider tradeoffs between service coverage, 
frequency, and operating expenses against investments in new technologies. This chapter explores how 
bus electrification will impact these costs by assessing the total cost of ownership (TCO) of transit buses 
using a probabilistic approach. 

This chapter contains text from Ambrose, H., Pappas, N., Kendall, A.  (2017). Exploring the Costs of 
Electrification for California’s Transit Agencies. Institute of Transportation Studies, University of 
California, Davis, Research Report UCD-ITS-RR-17-16. 

7.2 INTRODUCTION 
The California Air Resources Board (CARB) is considering regulatory changes that would require an 
increasing share of transit buses to be zero-emissions by 2040 to mitigate transit’s contribution to local air 
pollution and greenhouse gas (GHG) emissions.  Transit operators serve multiple goals, including 
providing low-cost mobility to underserved populations and reducing pollution in urban communities. 
The proposed regulation will lead transit operators to purchase an increasing number of battery electric 
and fuel cell buses, which qualify as zero-emission buses (ZEBs). Battery electric buses (E-buses) are 
expected to be the primary zero-emission technology that will be adopted in the coming decades due to 
the high capital costs and limited availability of fuel cell buses.  While a transition to ZEBs is aligned 
with the state’s larger emissions reductions targets and has other benefits for urban areas, a transition to 
electricity from conventional liquid and natural gas fuel buses could create new costs and uncertainties for 
transit agencies. Resource-constrained transit agencies must consider tradeoffs between service coverage, 
frequency, and operating expenses against investments in new technologies; this research explores how 
electrification will impact these costs. 

ZEBs combined with renewable transportation fuel pathways are likely critical to meeting demand for 
mobility in a low carbon future.  The last fifteen years has witnessed a dramatic decline in the costs of 
vehicle hybridization, biofuels, renewable electricity generation, and vehicle light-weighting with 
advanced materials, which are enabling technologies for all zero-emission vehicles (ZEVs), and key to 
increasing the efficiency of vehicles while shifting them away from direct fossil energy combustion.  
Rapidly improving economics of battery storage, in particular, enable new ZEV applications, such as 
transit buses (Nykvist & Nilsson, 2015).  Today, there are a growing number of commercial offerings of 
ZEBs for transit agencies to consider, as well as demonstration data to draw upon (Center, 2014, 2015a, 
2015b; Cooney, Hawkins, & Marriott, 2013; Eudy, Prohaska, Kelly, & Post, 2016).  
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Transit agencies considering fleet technology upgrades need to consider the costs of vehicle ownership 
and operation when weighing vehicle purchase decisions. ZEB vehicle and fuel technology adoption offer 
new trade-offs between purchase and operation costs, uncertain vehicle and component system lifetimes, 
and the potential to consider environmental performance improvements.  The lifetime cost of electric 
buses include not only the purchase cost of the vehicles, but also of charging equipment, maintenance 
costs, the cost of energy, and potential battery replacement costs (Ellram & Siferd, 1998). Lifetime cost of 
ownership models are often used to compare vehicle purchase options or fleet operations scenarios, and 
take into account both the fixed costs of vehicle acquisition and operation (Jørgensen, Pedersen, & 
Solvoll, 1995).  Total cost, life cycle cost, product life cycle cost, and total cost of ownership are all 
related concepts that consider purchases in the context of longer term decision making (Ferrin & Plank, 
2002).  

Previous studies have found that the total cost for a transit bus over its lifetime is determined mostly by 
purchase price and fuel costs, when labor is excluded (Ahluwalia, Wang, & Kumar, 2012; Lajunen, 2014; 
Lowell, Seamonds, Park, & Turner, 2015).  This has also been true for ZEBs, although limited purchase 
price data or demonstration costs have often been available for study (Bubna, Brunner, Gangloff, Advani, 
& Prasad, 2010; Karlaftis & McCarthy, 2002).  Battery replacement costs for E-buses, and fuel cell stack 
replacements, have also been raised as potentially significant cost drivers.  E-bus charging equipment and 
other infrastructure upgrades can also have a significant impact on overall vehicle cost (Ambrose & Jaller, 
2016).  Another potential confounding factor for estimating the costs of ZEBs for agencies is the presence 
of other enabling technologies that can affect operating performance.  For example, on-route charging 
infrastructure for E-buses could both increase the costs of a system upgrade, but also allow for greater 
utilization and storage system size reductions (Cooney et al., 2013; Jang, Ko, & Jeong, 2012; Shirazi, 
Carr, & Knapp, 2015).   
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Figure 7.1 California Transit Fleets and Service Areas 

 (AC Transit = Alameda County Transit, LA Metro = Los Angeles County Metropolitan Transportation 
Authority) 

Transit agencies in California operate a wide range of fleets in a diversity of service areas and route 
systems, all of which will impact the costs of agency or route electrification. There are over 150 transit 
bus agencies in California operating more than 9000 buses that collectively travel 316 million vehicle 
miles annually. The 20 largest agencies by vehicles in service represent over 75% of all transit buses 
in California, and 85% of all passenger miles reported to the Federal Transit Administration (FTA). 
Los Angeles County Metro (LACMTA) operates nearly one quarter of all transit buses in the state, 
about four times that of the second largest fleet.   

Among and within these transit agencies, route distance and frequency are highly variable (Figure 1). 
Route distance and frequency affect the substitutability of E-buses for diesel and natural gas buses. 
Approximately 40% of the 6500 buses operated by the 20 largest agencies drive less than 150 miles 
per day and could be substituted for an E-bus given today’s technology. 

The State of California provides approximately a quarter of the capital and operating funds for transit 
agencies, with a slightly higher percentage for large agencies than small agencies by fleet size.  
Additional subsidies designed to accelerate the market for electric vehicles and to increase the use of 
alternative fuels in fleets are currently available to transit agencies adopting E-buses.  These subsidies 
significantly affect the economics of adoption and should be considered alongside other costs of adoption.  
One issue raised around the discussion of the Advanced Clean Transit (ACT) regulation has been the 
future value of these subsidies.  Transit agencies, who must make long term commitments to capital and 
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operating expenditures on constrained funding cycles, are reticent to commit to relying on these subsidy 
programs, which they view as uncertain. 

7.2.1 OBJECTIVE OF THIS STUDY  

The objective of this study is to compare the TOC of adopting E-buses to the TOC of conventional transit 
buses under uncertain future cost and technology parameters.  The study considers five possible vehicle 
and fuel technology combinations (referred to as pathways): diesel, diesel hybrid (hereafter called 
hybrid), compressed natural gas (CNG), CNG with a Low-NOX engine2 (LoNOX) technology. The 
analysis includes adoption costs for transit agencies, considering expected changes in vehicle and fuel 
costs over subsequent purchase decisions.  This report specifically considers: 

• Purchase Costs 
• Scheduled and Unscheduled Maintenance 
• Midlife Repower/Refurbishment 
• Fuel Costs 
• Powertrain Efficiency 
• Vehicle Duty Cycle 
• Infrastructure Upgrades 
• Existing Agency Infrastructure 
• Vehicle Replacement Ratios and Schedules 
• Vehicle Life 
• Policy Subsidies 

This study provides a rank ordering of how these factors contribute to uncertainty in predicting agency 
costs for adopting electric buses.  The study also provides an estimate for how state-wide replacement 
costs might change between now and 2030, and discusses the role of policy incentives. The study does 
not directly consider some operational labor costs, such as bus drivers and dispatch staff.  Aggregated per-
mile costs, which include labor, are used for all repair and maintenance costs.   

The study considers two purchase periods; each period represents intervals over which agencies will 
commit to bus replacement purchase decisions, and the likely costs agencies will experience over those 
replacements.  The first period compares prices for conventional alternatives to electric buses for 2016-
2018 new vehicle deliveries. The second period represents costs agencies might experience over the 
subsequent replacement decision, or 2028-2032 new vehicle deliveries, incorporating forecasted vehicle 
and energy costs across technologies. As agencies replace approximately 7%-8% of their bus fleet each 
year3, CA transit agencies are likely to replace approximately one quarter of the active transit bus fleet 
during the first purchase period.  The second five-year period represents the range of time when these 
same buses are likely to be replaced again.   

                                                   

2 CNG and LoNOx CNG engines include buses using Renewable Natural Gas (RNG).  Further discussion 
of RNG costs and incentives can be found in the section on fuel costs. 

3 This is consistent with a 12 to 14 year service life for transit buses. 
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Purchases are simulated for different agency profiles identified by agency size, route structure, historical 
financial performance, and existing infrastructure.  Three agency clusters (large, small, and rural transit 
agencies) were identified based on fleet size, operations data, route network, and service schedule: 

Scenarios for Agency Type: 

• Rural – less than 20 vehicles, limited depot infrastructure, NTD partial or rural reporter,  
• Small – less than 300 vehicles, mid-sized depots, split of dense and rural routes (<2 stops per-

mile) 
• Large – 300 – 1500 vehicles, over 100 vehicles per depot, high number of dense routes (>5 stops 

per-mile) 
 
Extrapolating from the current population of buses and major agency characteristics, we then estimate 
system-wide replacement costs under three scenarios for each time period. 

Scenarios for System Cost Estimates: 

• BAU – Full replacement of existing fleet with same vehicle and fuel pathway 
• All Electric – 100% replacement of existing fleet with electric buses 
• All LoNOX CNG - 100% replacement of existing fleet with LoNOX CNG buses 

 
These scenarios are used to simulate statewide transition costs over the same time intervals based on the 
current population of transit agencies and fleet composition. All results are presented in net present value, 
discounted to the year of purchase, assuming a 5% discount rate for base model runs.  Further discussion 
of methodological choices are addressed in the Appendix.  The next section discusses the key parameters 
affecting adoption costs, how these parameters were incorporated into this study, and the specific 
assumptions adopted.  
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7.3 FACTORS AFFECTING THE COSTS OF OWNERSHIP FOR TRANSIT BUSES 
The lifetime cost of ownership for a vehicle is an important indicator for transit agency operators 
considering new bus technologies and fuels. The lifetime cost of ownership generally includes changes in 
capital expenses (vehicle purchase, infrastructure, and facility upgrades) as well as operational expenses 
(fuel, repairs, and maintenance).  Additional considerations that could impact the costs of adopting 
electric transit buses include the effects of route structure, planning for infrastructure investment, and 
decisions about technical configurations (i.e. on-route vs. optimized depot charging vs. convenience 
charging only).   

This section of the report discusses each of these issues in more detail. Each subsection begins with 
background on the available data related to a set of key cost considerations, and closes with the specific 
assumptions adopted by the study.  In each case, a probability distribution for parameter assumptions is 
estimated for each purchase period. Infrastructure investments, including storage depots, maintenance 
bays, and refueling facilities, are amortized through the use of a capital recovery factor and normalized by 
service life or mileage. In the sections on purchase prices and fuel prices respectively, we discuss state 
policies which incentivize the use of E-buses and significantly affect the cost structure of E-bus 
operations.  Finally, we discuss some of methodological issues in estimating lifetime cost of ownership, 
and how certain methodological choices might lead to different conclusions.   

A key focus of this study is characterizing how changes to key parameter assumptions contribute to 
uncertainty in estimating the lifetime costs of transit bus ownership.  Including uncertainty is crucial to 
making robust cost comparisons.  Uncertainty in lifetime costs stems from stochastic and cyclical 
variability in key costs, as well as uncertainty that arises from a lack of knowledge about likely parameter 
values.  The latter is especially important when considering future costs, as costs for emerging 
technologies are not well established and are subject to considerable future change.  It is also difficult to 
disaggregate variability from measurement errors and conflicts in the historical data for existing 
powertrains and fuels.   To assess the effects of these variations on total cost, probabilistic parameter 
assumptions are combined through economic discounting and correlated random sampling to estimate the 
net present value of lifetime vehicle costs. 

7.3.1 PURCHASE COSTS 

The American Public Transportation Association (APTA) Public Transportation Vehicle Database   offers 
a micro-level view on transit bus fleet composition with information including purchase price, vehicle 
age, and powertrain type. The APTA database includes purchase prices for 1,000 price points of 40’ 
diesel, CNG, diesel hybrid, battery, and hydrogen bus purchases made by reporting transit agencies, and 
was used to assess the distribution of bus purchase prices by powertrain type for this study.  

The average costs California agencies paid for buses over the most recent replacement decisions is shown 
in Table 7.1. Over the last ten vehicle model years (2005 to 2015), diesel bus prices have increased by 13-
15%, while CNG bus prices have increased by almost 20% in California. For comparison, CARB’s 
Transit Agency Workgroup reported from stakeholders that new 2016 diesel and CNG bus costs were 
approximately $480,000 and $520,000 respectively. This also aligns with trends in the APTA data for 
California; conventional bus prices are forecast to continue to increase by more than 2.3% per year 
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between now and 2030 (CARB, 2015).  Agencies we spoke with during this study also cited increasing 
costs for conventional buses.   

Table 7.1 Average Bus Prices for 2010 to 2015 Model Year Vehicles Reported to APTA 

 

 

The use of diesel and gas engines with improved combustion and emissions control is part of the CARB 
mobile sources strategy to achieve ozone attainment in the South Coast Air Quality Management District. 
Engines meeting the 2023 NOx emissions standard of 0.02 gNOx/bhp are common referred to as Low-
NOx (LoNOX) LoNOx engines that are compatible with renewable natural gas (RNG) have also been 
proposed as a low-carbon heavy-duty fuel pathway.   As an example, CNG transit buses are available 
with a Cummins Westport ISL G-Near Zero (NZ) engine, which achieves 2023 NOx standards. An ISL 
G-NZ upgrade is estimated to cost from $8,000-$25,000 more than the traditional ISL G engine, and 
currently there is no diesel engine on the market that meets the same emissions standard (Kassel & 
Leonard, 2016).  In contrast, E-bus and hydrogen fuel cell bus purchase costs are expected to continue to 
decline with advances in battery technology (Eudy et al., 2016) and fuel cell systems.  The CARB Transit 
Agency Workgroup expects that a 300 kWh battery bus will decline from roughly $850,000 in 2015 to 
$730,000 in 2030, assuming that the battery is the sole source of cost reduction (CARB, 2015).  While the 
cost reductions for E-buses could be moderate to negligible, low cost reductions will likely coincide with 
considerable performance improvements, which could enable further system resizing and impact the costs 
of adoption. 

Many E-buses are eligible for special incentive programs which can decrease purchase costs. The Hybrid 
and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP) is a program implemented by 
CARB that provides purchase subsidies for vehicle purchases, including E-bus transit buses.  Several E-
buses were eligible for the HVIP under the most recent funding period, with subsidies ranging from 
$80,000 to $101,000 per vehicle4.  HVIP funding is allocated by the state each year through the budget 
process.  The principal sources of funds, the Low Carbon Transportation and Air Quality Improvements 
Program (AQIP), is also experiencing high competition, and ARB maintains a tracker on its website to 
display how quickly and when HVIP funds are exhausted.  In general, the HVIP program is not expected 

                                                   

4 A complete list of HVIP approved vehicles is released by the ARB each year: 
https://www.californiahvip.org/docs/HVIP_EligibleVehicles.pdf 

Bus Length CNG Diesel Hybrid Std. Error

35 ft $475,000 $441,639 $606,620 $14,308
40 ft $485,038 $446,651 $619,439 $2,125
45 ft $550,307 $541,112 $702,794 $2,109

60 ft $802,000 $724,442 $850,000 $6,433
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to serve as a reliable, long-term funding source for transit agencies; but, it is likely the state will continue 
to provide some form of subsidies for fleet electrification, perhaps in a reduced form. 

This study assumes the purchase prices for buses shown in Figure 7.2.The price distribution in the 
current period is derived from the APTA purchase data. For the future purchase period, conventional 
vehicles’ purchase price are assumed to increase 3% per year, while the average costs of E-buses 
decreases by ~1% (Figure 7.2).  This assumes that E-bus battery costs reductions and increasing 
production scale will be equal to or greater than price inflation for conventional buses between the two 
periods. 

 

Figure 7.2 Bus Purchase Cost Assumptions 

 

This study also assumes continued subsidization by the state of both E-bus fuel and vehicle purchases.  
For comparison, purchase subsidies are also included for the LoNOX pathway.  Subsidies are assumed to 
decrease by ~50% between the current and future purchase period, from just under $95,000 on average, to 
$50,000 (Figure 7.3). 
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Figure 7.3 Bus Purchase Subsidy Assumption 

 

7.3.2 FUEL COSTS 

The Low Carbon Fuel Standard (LCFS) provides a per unit of fuel subsidy for the use of low carbon 
fuels, such as the electricity consumed by E-buses or hydrogen consumed by fuel cell vehicles. The LCFS 
credit for E-buses replacing conventional transit buses is $0.10-$0.14 per kWh of charging energy (the 
credit value fluctuates with the LCFS market).  The LCFS credit can represent 100% or more of the 
electricity rate proposed by some utilities for over-night, managed charging.  The LCFS credit value 
potentially reduces the fuel costs of E-buses to a few cents per-mile (Figure 7.4).  The range for diesel 
cost in Figure 4 reflects vehicle fuel economy for both conventional and hybrid powertrains. Boxes show 
25th and 75th percentile of per-mile costs with medians indicated on the centerline, while the whiskers 
represent maximum and minimum costs. “Electricity with LCFS Credit” represents the expected per-mile 
fuel costs with credit revenue. 5 

LCFS is one of several state climate programs intended to improve the value proposition of low-carbon 
alternatives, including Cap and Trade, which generates considerable funding for low-carbon projects. Cap 
and Trade funds have become a robust source of funding for many of the state’s GHG-related initiatives, 
with $2.2 billion in Cap and Trade funds budgeted for the 2017-2018 fiscal year alone.6  While the LCFS 
                                                   

5 This analysis assumes diesel or diesel-hybrid fuel economy of 2.5-6.5 MPDGE, a CNG fuel economy of 2-5 MPDGE, 
and electric bus energy requirements of 2-3 kWh/mile. These ranges are drawn both from the NTD 2014 data, and 
the range of E-bus fuel economies from Eudy et al. (2014) and data from Antelope Valley Transit. The LCFS prices 
assume an LCFS credit price of $100 with energy efficiency ratio for diesel displacement. The net LCFS credit was 
calculated to be $0.11 to $0.13 per kWh using the CARB LCFS credit calculator or $0.10 to $0.29 per MPDGE for 
RNG (https://www.arb.ca.gov/fuels/lcfs/dashboard/creditpricecalculator.xlsx).  

6 For a longer discussion of issues to be considered in the long-term viability of Cap and Trade Funds and 
LCFS linkage see http://www.lao.ca.gov/Publications/Report/3553 



105 

 

is authorized until 2030 under SB32 (signed in 2016), the recently passed extension to Cap and Trade also 
gives the ARB authority to apply additional market-based declining annual emissions limits to 2020 
(AB398 Sec. 5. 38562.(a)). For these reasons, E-bus fuel subsidies are likely a secure source of funding 
for the expected life of vehicles.  Thus the net fuel costs for agencies using electricity will depend on both 
the utility rate structure and policy incentives. 

 

Figure 7.4 Average per-mile fuel costs for transit buses 

 

Predicting and accounting for electricity costs is fundamental to understanding the overall costs of transit 
electrification. However, accurate prediction of electricity costs is complicated by complex and changing 
utility pricing structures. Utility services are generally billed with multiple components, including a 
commodity component (in kilowatt-hours), a capacity component (in kilowatts) billed at the customer’s 
peak monthly or annual capacity, and customer charges billed per meter regardless of usage. These can be 
highly variable depending on the time of year, time of day, location of charging, and other factors, and 
pricing structures will depend on the size of the fleet being charged. Further, utility pricing is not fixed for 
the life of the fleet. Unlike most procurement, utility contracts are generally not developed bilaterally 
between the customer and the utility, but instead developed by the utility and approved by a regulator or 
local governing board. As a result, agencies are not able to secure fixed price contracts over the life of a 
bus or of charging infrastructure. 

Diesel has historically been the dominant fuel for transit buses, and continues to be at the national level.  
In California, about 37% of active buses in the state rely on diesel fuel.  Diesel prices have shown 
considerable volatility over the last 15 years, ranging from $1.12 to $4.97 (Figure 7.5).  Adjusting for 
seasonality, the average expected price currently is $2.21 per gallon, with 90% prediction interval of 
$1.86 to $3.82 per gallon.  The price of diesel is expected to increase by 2030 in part due to climate and 
renewable fuel policies like LCFS.  If LCFS credit prices increase, the costs of offsets for diesel refiners 
will also increase, which in turn is likely to be passed through to consumers.  
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Figure 7.5 California and U.S. Retail Diesel Prices (DGE = Diesel Gallon Equivalent) 7 

 

CNG buses deliver very competitive per-mile fuel costs due to the low market price of natural gas.  
Average CNG transit bus fuel economy is actually equivalent to or lower than conventional diesel buses 
for most routes (Clark, 2009; Lajunen & Lipman, 2016).  As recently as 2015, agencies reported paying 
less than $0.50 per diesel gallon equivalent for CNG.  Prices of CNG have increased moderately in the 
last two years, and are expected to continue to do so. In 2016, the average prices of CNG were $0.60 to 
$0.84 per DGE for commercial and residential deliveries respectively ($8.4 - $12 per thousand cubic 
feet)8.  The EIA Annual Energy Outlook forecasts that commercial CNG prices will increase almost 40% 
by 2030, which is slightly more than the forecast increases in diesel fuel prices over the same period 
(33%).  Individual agencies are likely to enter into fuel price contracts, which could offer more 
competitive rates than average retail prices. 

RNG is an alternative fuel option for CNG fleets. RNG can be produced from biomass or animal wastes 
and can generate revenue through LCFS credit sales.  Recent reports and response to solicitations offered 
to transit agencies suggest that RNG would be available at the market rate for CNG.9 In this case, the 
natural gas provider would collect any revenue from LCFS and reflect those offsets in the market price 
offered. LCFS credit generation varies depending on the fuel production pathway (geography and 
feedstock); as there is little information on where RNG would be sourced, the impact of LCFS revenue on 
                                                   

7 U.S. Energy Information Administration, Gas and Diesel Fuel Updates 
https://www.eia.gov/petroleum/gasdiesel/ 

8California Natural Gas Prices, https://www.eia.gov/dnav/ng/hist/n3010ca3m.htm  

9 Ramboll Environ and MJ Bradley & Associates, 2016, "Zero Emissions Bus Options: Analysis of 2015-
2055 Fleet Costs and Emissions." 
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market pricing for RNG is difficult to estimate.  RNG is also an approved pathway under the Federal 
Renewable Fuel Standard (RFS), and credits earned under the RFS (Category D3) represent a significant 
potential source of revenue for RNG producers.   Considering average prices for D3 RINs, the overall 
impact of RFS credits on RNG prices is likely much greater than the LCFS ($3000 per MMBTU in RFS 
revenue vs. <$100 per MMBTU for LCFS).  This further complicates predicting the price of RNG. 

At current electricity prices, agencies can only anticipate significant reductions in fuel operating costs 
from electrification with credit incentives through the LCFS. These credits may change over time.  A 
$100 dollar LCFS credit price, with the conversion ratio for displacing fossil fuels in buses, would 
amount to a credit of $0.11-$0.12 per kWh consumed for E-bus charging.  The price of electricity and the 
per-mile E-bus efficiency likely need to be below $0.10/kWh and 2 kWh/mile respectively for per-mile E-
bus fuel costs to fall below $0.20/mile (the low end of conventional per-mile fuel costs). With the LCFS 
credit, electric buses could deliver a fivefold reduction in per-mile fuel costs; without the LCFS credit, 
there could be no significant differences in per-mile prices when compared against current prices for 
CNG.  

This study assumes the relative fuel costs depicted in Figure 7; prices are shown for both the current and 
future purchase period. In the future purchase period, the range of electricity prices are assumed to be 
effectively constant. Diesel and CNG costs are assumed to increase in the future purchase period by 
approximately 3.5% per year, in line with forecasts from the U.S. Energy Information Administration and 
CARB.10  Fuel system maintenance includes costs for maintaining compressors and tanks (in the case of a 
CNG system), as well as chargers (in the case of Electric).   

                                                   

10 The Annual Energy Outlook and complete pricing forecasts are available at the EIA website 
https://www.eia.gov/outlooks/aeo/data/browser/ 
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Figure 7.6 Fuel Cost Assumptions (DGE=Diesel Gallon Equivalents) 

 

For electricity, an LCFS credit price of $100 is assumed for both periods.  In the future period, the energy 
equivalent ratio (EER) used to calculate the displacement credit value is decreased from 4.2 to 2.7, 
making the incentive equivalent to that received for heavy truck electrification and other heavy duty fuel 
displacements.  Simultaneously, the carbon intensity of grid electricity decreases due to the State’s 
Renewable Portfolio Standard and increasing penetration of lower-carbon electricity generators.  The net 
effect is a decrease in the future per kWh LCFS subsidy of 12.5% (Figure 8). Overall, the net cost of 
electricity for E-buses will be highly sensitive to changes in the EER. 

 

Figure 7.7  LCFS Credit Value for E-buses 

 

7.3.3 REPAIR AND MAINTENANCE COSTS 
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Operations and maintenance costs at some agencies represent over 75% of annual expenditures. With the 
exception of labor,11 maintenance and fuel are the most significant contributors to per-mile operations and 
maintenance costs.  A long-range study of early model Proterra E-buses at Foothill Transit reported 10% 
lower per-mile maintenance costs and 50% lower overall maintenance costs compared to CNG buses.  
This was owing to the simpler propulsion systems of electric buses and fewer replaceable/serviceable 
power or drivetrain components.12  The Foothill Study has been very influential in setting initial cost 
expectations; however, forecasting remain uncertain due to a lack of other data to corroborate the results 
of this early work. 

In addition to the lower maintenance and repair costs, the study also showed that the E-buses had higher 
rates of unscheduled maintenance issues or repairs that required the bus to be taken out of service.  
Unscheduled maintenance events decreased the overall utilization of the E-buses (as measured by days of 
available service), which can increase overall operating costs.  The study found that decreases to 
scheduled maintenance repair and maintenance costs offset the increases in unscheduled maintenance 
issues and additional labor hours.  But the net 10% per-mile cost reduction does not include potentially 
significant cost considerations resulting from these reliability issues.  These could range from providing 
roadside assistance or compensating passengers due to drained batteries, to the need to purchase 
additional reserve buses to compensate for limited bus range.  These issues were not addressed by the 
study.   

The Federal Transit Administration (FTA) National Transit Database (NTD) contains extensive data on a 
wide array of operational attributes of transit agencies.  

 Illustrates the heterogeneity among the 20 largest transit agencies in California in terms of vehicle 
operating expenses, maintenance costs, and per passenger costs. The variability in costs reflects the 
diversity of operating structures, conditions, and systems experienced by agencies.  

                                                   

11 One potential source of uncertainty for this assumption is the time duration of bus assignments. Where 
CNG buses are replaced with multiple electric buses due to range restrictions, changing out buses may 
require additional return trips to a depot facility or require additional labor hours. In general, buses are in 
service longer than a single driver’s shift and are already organized around changing drivers during shifts, 
but labor costs could be significant. 

12 Proterra Model BE-35, See L. Eudy, R. Prohaska, K. Kelly, M. Post, "Foothill Transit Battery Electric 
Bus Demonstration Results," National Renewable Energy Laboratory (NREL), Golden, CO, 2016. 
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Figure 7.8 Financial Service and Maintenance Statistics for the 20 Largest Agencies by Bus Fleet 

 

NTD 2014 database tables were used to inform maintenance cost analysis, collision probabilities, and the 
distribution of bus age by powertrain type.  2014 NTD maintenance data for per-mile maintenance cost, 
including mechanical failures, was cross-referenced with estimates from other sources. Because many 
transit fleets have heterogeneous fleets in terms of powertrain type and bus size, weighting is required to 
estimate operating costs and service mileage by fuel type from the NTD.  For any given fleet, if more than 
80% of agency fuel costs came from a single fuel type (on an energy equivalent basis), maintenance cost 
observations for that fleet were assigned to that fuel type. Figure 10a shows the aggregate distribution of 
per-mile expenses for diesel, diesel-hybrid, and CNG active transit buses in California.  Historically, per-
mile maintenance costs often exceed fuel costs for conventional diesel buses.  Figure 10b shows that per-
mile maintenance related vehicle failures have very low occurrence for transit buses on average, which 
suggests that a small portion of the fleet is likely to experience a majority of issues. The highly-skewed 
distribution of per-mile maintenance costs also suggests that average maintenance costs may be inflated 
by a small number of vehicles with significantly higher-than-average occurrence of high cost maintenance 
events.   



111 

 

 

Figure 7.9 Distribution of Expenses per Mile and Failure Type per Mile in 2014 NTD 

A: service costs per-mile for all vehicle types in the NTD, and B: occurrences of mechanical failure 
during service.  

This study assumes maintenance costs to be constant for each powertrain type. Table 2 shows the 
assumed range of per-mile maintenance costs by fuel type estimated from the NTD.  E-bus maintenance 
costs are estimated based on reporting to the ARB, the study by Eudy et al. (2014), and data provided by 
LACMTA.  Per mile maintenance costs for the LoNOx scenario assumes the same per-mile maintenance 
costs of CNG.  Future maintenance costs of E-buses are highly uncertain; past transitions and pilot studies 
suggest that initial deployment may involve increased maintenance costs and unscheduled vehicle 
outages. Over the long run, E-buses are expected to deliver lower per-mile maintenance costs compared 
to conventional vehicles because of simplified powertrains and service schedules.  However, decreasing 
maintenance costs may be attributable to improved operational systems and best practices, knowledge that 
may be slow to spread between firms.  System improvements may also be predicated on significant 
capital investments or be restricted by existing agreements (i.e. new maintenance facilities or union 
contracts).  As there is little data to reliably estimate the potential decrease in maintenance costs for E-
buses, the study adopts the conservative assumption that there are no improvements to maintenance costs 
between the study periods. 
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Figure 7.10 Maintenance Costs per Mile 

 

7.3.3.1 MIDLIFE OVERHAULS 
Midlife overhaul is a special kind of maintenance operation that has a high fixed cost and occurs at a 
dependable interval for many buses.  It is also a key potential cost difference for electric buses, as the 
midlife may be a point for replacement of the traction batteries depending on current performance. Mid-
life bus overhauls can cost between $35,000 and $65,000 dollars depending on the vehicle design, 
powertrain, and fuel system according to data reported to APTA. Battery replacement for a ~250 kWh 
battery is expected to be $50,000 to $75,000 based on target price of $200-$300 per kWh, making battery 
systems a significant portion of E-bus purchase costs and the largest cost of a mid-life overhaul if they 
require replacement. 

One E-bus manufacturer, BYD, offers a 12 year warranty to 80% of the original capacity on their battery, 
suggesting that there would be no additional liability for battery replacement at midlife.  For other E-
buses, the used batteries could be sold for second-life applications, leading to a resale value and 
mitigating some of the replacement cost.  Alternatively, used batteries could be used in stationary 
applications for strategic timing of electricity storage and charging and by the transit agency itself.  

Many agencies do not conduct midlife overhauls for the entire fleet, instead focusing on only required 
maintenance schedules and other proactive activities including sample tear downs and inspections.  While 
midlife overhauls are assumed to occur in this study, this reflects the conservative outlook of agencies 
that must prepare for a worst-case scenario of fleetwide midlife rebuilds.   

This study assumes midlife overhauls occur for 95% of vehicles by the 7th year of service, with a small 
probability that some vehicles retire at 12 years of service with no overhaul; Figure 11 shows the assumed 
costs for each of the pathways.  While this likely represents a much higher probability of midlife 
overhauls than agencies could require, it also represents a risk averse view of potential funding for midlife 
overhaul costs.  Midlife overhaul costs are assumed to be 5% higher for LoNOX compared to 
conventional CNG engines, with a correlated 30% increase in the standard deviation of expected prices. 
E-bus midlife overhaul costs are expected to decrease significantly due to both declining battery prices 
and improvements to battery cycle life (i.e. fewer mid-life battery replacements). 
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Figure 7.11 Midlife Overhaul Cost Assumptions 

 

7.3.4 DEPOT AND INFRASTRUCTURE COSTS 

Infrastructure costs can be a significant driver of the overall costs of bus fleet operations over the long 
term. Infrastructure costs include construction of depots, maintenance, and refueling systems, as well as 
operations and maintenance of those assets.  There are some examples of recent construction projects to 
draw on.  The Los Angeles Metropolitan Transportation Authority, the largest agency in the state, opened 
its newest depot in 2014; a garage depot with maintenance, cleaning, and refueling infrastructure capacity 
for 200 buses. The construction cost was reported to be $95 million dollars which is equivalent to about 
$85,000 per bus in parking and storage costs per year13.  

A smaller operator, Antelope Valley Transit, is in the process of converting their fleet with 85 all-electric 
BYD buses and a depot upgrade. Costs for construction and upgrades to onsite electrical infrastructure 
were almost $6 million dollars, which included the construction of an onsite 1.5 MW diesel generator.  
The agency has plans to purchase renewable diesel to maintain the 77,000 gallon backup tank.  While 
operations and maintenance costs for E-bus chargers might be very low, back-up electricity systems could 
pose extra costs.  

The costs of additional electric charging infrastructure are likely to vary by depot due to a number of 
factors, including existing utility connections, facility age, and location. Recent filings at the California 
Public Utility Commission, including proposed rate cases for southern California utilities, suggest that 
interconnection costs may by significantly lower than these projections. In addition, BYD, one of the 

                                                   

13 When the costs are amortized over the average number of buses that might occupy each unit of capacity 
over the life of the depot. 
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largest E-bus suppliers, provides depot chargers at no cost with purchased buses. Conversely, the 
selective use of on-route charging could significantly increase capital costs for agencies, as on-route 
charging systems currently cost as much as 10 times comparable depot systems. The study assumes all 
buses rely on depot charging in both purchase periods. 

Yet another complicating factor for agency investments is the timing of previous capital investments in 
fuel infrastructure and vehicles. Several transit agencies in the South Coast Air Basin began transitioning 
to CNG fleets in response to the 2000 CARB Fleet Rule for Public Transit Agencies, which required that 
agencies either purchase advanced technology vehicles or switch to an alternative fuel in order to meet a 
2007 engine model year standard for transit fleet emissions. The alternative fuel path required agencies to 
have 85% of bus purchases be diesel alternatives by 2009 or meet the 0.1 g/bhp-hr NOX standard, 
essentially requiring extensive investment in CNG infrastructure. Some agencies are concerned that 
investments in fuel infrastructure, including CNG stations and storage, could become stranded before 
their scheduled depreciation. While diesel agencies tend to manage their own fuel systems, CNG fleets 
have options for third party CNG fueling station contracts.  LA Metro, among others, has adopted this 
approach; in these cases, there is minimal ownership of CNG refueling systems and therefore no sunk-
cost infrastructure investments. 

Depot expansion costs are difficult to predict precisely, and do not necessarily scale with small changes in 
bus capacity. For instance, agency bus fleets can vary by 15% or more over five year periods without 
change to depot infrastructure. Attributing specific depot expansion to E-bus purchases is also highly 
uncertain. As agencies increase the share of their fleet running on electricity, it may become possible to 
explore additional economies of scale, including reducing the number of additional charger purchases per 
bus acquired.  Further assessment is necessary to evaluate the costs of depot improvements or expansions 
for different agencies. This would include an evaluation of parking/service capacity, egress and right of 
ways, building electrical systems, and level of utility interconnection. This ranking process would also 
inform route prioritization and long-term planning.   

In this study, infrastructure costs are amortized over their capacity and service life through the use of a 
capital recovery factor.  Figure 7.12 shows the amortization of depot retrofits based on the agency type.  
Capital recovery factors for electric and conventional depot infrastructure are based on a 40 year and 50 
year life respectively, with fixed costs identified based on reported depot capacity and operating structure 
in NTD. Depot upgrade costs are assumed to range from $2 to $7 million dollars.  Average depot capacity 
and occupancy was used to identify likely quadrants for depot costs (only a portion of the table is shown 
for larger agencies). 
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Figure 7.12 Depot Capital Amortization 

 

Table 7.2 shows the average buses per depot for California transit agencies, which were used to estimate 
depot upgrade costs for agencies.  Despite the presence of a number of depots reported with 200 and 300 
bus capacity by some mid-sized agencies, the average number of active buses per depot facility is usually 
low.  Comparing with Table 2, we see the large differences between the expected per bus costs of depot 
retrofits, which are not expected to scale linearly with depot capacity.  For this reason, we assume a 
conservative minimum cost of $2 million dollars per depot.   

Table 7.2 Average Active Buses per Depot for California Agencies 

 

 

7.3.5 VEHICLE LIFE 

While the service life of some buses exceeds or falls short of the average expected lifetime, the majority 
of transit buses in the state are replaced based on a set schedule dictated by funding.  The largest of these 

Average Buses Per Depot

Excluding Rural With Rural 
Agencies

> 75 Buses/Depot 
Average

< 25 Buses/Depot 
Average

Mean 38 28 112 8
Median 25 14
Max 175 175

Min 2 1
St Dev 37.8 34.8

Total Buses 8016 8285 5087 928

Agency Count 89 128 13 80
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programs for California agencies are the FTA Urbanized Area Formula Program (5307) and Bus Facilities 
(5339), as well as FTA Capital Program (5309) and State of Good Repair (5337), which have 
requirements for the minimum service life of capital assets.   Buses are generally required to meet a 
minimum service life of 12 years, but many agencies keep their vehicles for 14 years to minimize their 
lifetime costs of ownership on a per-mile basis.  A countervailing factor is that agencies are motivated to 
take advantage of replacement funds when they become available.  Because of these constraints, we do 
not assess potential differences in vehicle life across powertrain technologies as it is assumed all vehicles 
are designed to meet these requirements. 

Figure 7.13 shows the age distribution for active transit buses in the state from the 2015 reporting to 
APTA, which shows a sharp decline in active buses after 14 years of service in 2001. 

 

 

Figure 7.13 Age Distribution for Active Transit Buses in 2014 

 

In this study, the distribution of average vehicle lifetimes is assumed to be governed by two key factors: 
one, each agency’s decisions on how long to keep buses after they are eligible for replacement; and 
two, the random chance that buses fail due to accident or mechanical issue prior to their expected 
retirement.  The probability of serious mechanical failure is simulated based on early retirement and 
accident data from NTD.  The resulting distribution of vehicle lifetimes is assumed to be constant in both 
purchase periods for all powertrains.  LoNOX CNG engines are assumed to have the same probability of 
failure and vehicle lifetime as conventional CNG buses, as the service lifetime is driven primarily by 
funding requirements. 

7.3.6 TECHNOLOGY PERFORMANCE 
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Technology performance, in particular range and downtime, may affect the number of vehicles required 
by an agency. Because E-buses have shorter ranges and longer fueling times than CNG, diesel and hybrid 
buses, E-bus adoption may require a larger fleet. 

7.3.6.1 RANGE 
Agencies may require additional buses if the effective range a bus can travel per charge is insufficient to 
meet the distance required by the duty cycle. The number of additional buses that must be purchased 
depends on the route structure, the vehicle range per charge, and the charging system. Examining routes 
for the 20 largest agencies, we conclude that roughly 9% more bus purchases may be required if the fleet 
is fully electrified by 2030; that number drops to 8% or 4% if the target year is 2034 or 2040, 
respectively.  

However, this estimate assumes no alternatives to depot charging. Depending on the route structure, on-
route charging can decrease the number of additional buses needed by facilitating a longer daily service 
range. However, on-route charging systems can currently cost more than three times as much as depot 
charging systems.  

On-route charging systems come in multiple varieties. Fast-charging systems can cost as much as 
$500,000 for a 500 kW system, while smaller 60 to 80 kW systems have been installed at much lower 
costs. Depot systems are typically $20,000 to $60,000 per charger for 20 to 80 kW.14 The costs of 
additional buses and charging systems and the route-specific logistics of charging would need to be 
evaluated in more detail to determine whether on-route or depot charging is more cost-effective for 
specific agencies. 

The real-world deployments of E-buses in California can provide some insights on the technology 
performance factors that affect fleet size requirements. Antelope Valley Transit, which recently 
transitioned their entire fleet to electric, has been experiencing high variance in effective range across 
drivers (from 120 miles to 220 miles for the same vehicle).  But, this also indicates that current market E-
bus technology is capable of delivering nearly 220 miles of effective service in some cases on ~300kWh 
batteries. Proterra is currently marketing a new E2 series with a proposed capacity up to 660kWh. While 
no E2 buses are currently in service, expected improvements to battery capacity and performance suggest 
that longer range E-buses will be available in the near term.   

7.3.6.1 REPLACEMENT RATE 
Replacement rate is a difficult performance metric to generalize across agencies because of the diversity 
of design solutions agencies might adopt.  In addition, replacement rate is also a function of both effective 
range and bus daily travel distance, both of which are correlated with the route structure. In most cases, 
transit agencies do not assign specific buses to specific routes, and in some, rotate buses between domicile 
depots for maintenance purposes.  This makes it increasingly difficult to estimate the number of buses 
that will be required for agencies to replace their existing active and spare flees.   

                                                   

14 For further discussion of charging system costs, see the ACT working group discussion documents or 
data assumptions at https://www.arb.ca.gov/msprog/bus/actmeetings.htm. 



118 

 

 

Figure 7.14 Electric Bus Replacement Rate Assumption for Large Agencies 

 

Figure 7.14a illustrates the relationship between E-bus range and the percent of routes that can be 
replaced with E-buses on a 1:1 basis. Figure 7.14b illustrates how that relationship translates into fleet-
wide replacement rates. Once E-buses reach a range of 245 miles, replacement rates settle at one.  In the 
most conservative case, every bus in the fleet must be available to meet any random series of assignments 
at an agency.  A series of assignments represents some number of trips (>1), for all or a portion of a given 
route, over a given service day. Based on these assignments, we can quantify the distribution of daily 
effective range required by buses at agencies.  Electric buses, particularly in the near term, cannot always 
meet daily range requirements.  Over the course of a year, these mismatches result in electric buses 
realizing fewer miles, which in turn increases per-mile costs over the lifetime of the vehicle. 

In this study, replacement rate is estimated for each class of agency based on their current service 
patterns.  The E-bus effective range constraint in the current replacement period is assumed to be 120 
miles per charge.  This represents a conservative view on the reliable range delivered by buses currently 
in operation or being delivered.  For the second replacement period, effective range is assumed to 
improve to 220 miles.  This translates to a ~73% reduction in average daily mileage mismatch, but varies 
between agencies.  Figure 7.15 shows the shows the replacement ratios assumed for each agency type by 
period. 
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Figure 7.15 Replacement Rates by Agency and Period 

 

7.3.7 VEHICLE FUEL EFFICIENCY 

Variability in fuel efficiency is an important consideration when comparing transit buses, as the 
variability across powertrains can directly translate to fuel savings.  Fuel economy can also be variable 
across agency routes and schedules.  The duty cycle variability represents the combined and interacting 
effects of powertrain, route, traffic conditions, operator, and other environmental factors.  Numerous 
studies have pointed to the strong correlation between operating conditions and average efficiency of 
transit buses.  Because transit bus efficiency is so low, small improvements in fuel economy can translate 
to substantial savings.  A five percent fuel economy improvement can produce savings of $25,000 to 
$50,000 dollars over the life of a bus (approximately 500,000 miles). Transit bus fuel economy can vary 
by as much as 2-3 times across combinations of duty cycles.  

Vehicle fuel consumption is often modelled as a function of the forces acting on the vehicle, otherwise 
known as road load.  Excepting for auxiliary energy demands, the energy required to power a vehicle can 
be attributed to the need to overcome primary physical forces including inertia, aerodynamic resistance, 
friction at the wheels, and internal friction (e.g. transmission).  Aerodynamic resistance is a significant 
driver of fuel consumption at higher speeds.  Acceleration forces, which urban transit buses experience 
more often, have high power demands and translate to energy fuel consumption differences depending on 
powertrain.  Both speed and acceleration are important for estimating fuel consumption for a given duty 
cycle.  

The specific fuel consumption (SFC) represents the average vehicle energy demands per unit mass and 
distance travelled. SFC is a function of aerodynamic resistance, rolling resistance, average speed, 
acceleration, powertrain efficiency, auxiliary loads, and vehicle mass.  Aerodynamic resistance is a 
function of air density, the frontal area of the vehicle, the mass of the vehicle, and the square of the 
velocity. Rolling resistance is a function of the vehicle mass and the tires; different tires and tire 
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configurations produce a range of coefficients of rolling resistance.  Inertial forces relate to the energy 
required to accelerate and decelerate the vehicle mass.  

In this study, we estimate vehicle fuel economy across a series of powertrains using route schedule 
information and data from Google Maps.  Sixty-seven agencies were considered and route fuel economy 
projected based on average speed, stop density, and trip length.  The average distribution of fuel 
economies was used, with subsets estimated for smaller and larger agencies by bus fleet size.  Figure 7.16 
is an example of the fuel economy modelling for routes operated by Golden Gate Transit.  Further 
discussion of the route fuel economy modelling is included in the appendix. 

 

Figure 7.15 Vehicle Fuel Economy Example 

 

The average fuel economy by bus length and agency type is depicted in Figure 7.17.  Due to a lack of 
grade data which significantly affects the fuel requirements on many rural routes, no reliable estimates 
were available for fuel economy for rural agencies.  
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Figure 7.16 Average Fuel Economy by Agency, Fuel, and Length 

 

7.3.8 ANNUAL MILEAGE 

While transit buses on average experience approximately 40,000 miles per year, the actual annual mileage 
can vary strongly by agency.  In general, agencies do not assign buses to specific routes or even tours; but 
agencies do have buses that generally operate on a set of routes or domicile in certain depots.  Low 
average speed routes generate fewer miles travelled for the equivalent service hours.  While there is little 
resolution at the top and bottom end of annual mileage (Figure 7.18), we can observe a longer tail in the 
buses experiencing higher-than-average mileage.  While average mileage variation is very high, variation 
in lifetime mileage is expected to be far lower for each agency.  Over the course of the bus lifetime, 
transit agencies are also incentivized to even out the mileage of buses to ensure maximum utilization of 
the asset.  
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Figure 7.17 Annual Mileage Distribution of Active 40ft Buses 

 

In this study, buses are assumed to average between 440,000 to 590,000 revenue service miles over their 
life, which translates to 36,000 and 42,000 miles per year. To estimate the range mismatch of electric 
buses (e.g. replacement rate), daily estimated travel mileage was used.  Daily travel mileage has much 
higher variance than annual travel mileage; to improve estimates, both revenue and non-revenue annual 
miles are estimated for each agency class (Figure 7.19).  Annual mileage is assumed to be constant across 
the two periods. 

 

 

Figure 7.19 Annual Revenue and Non-Revenue Mileage Assumptions 
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7.3.9 EXTERNALITIES AND DAMAGES 

Air quality effects and changes in service quality are also important outcomes for the communities served 
by transit agencies in the State; these effects might be considered alongside financial considerations or 
they may be integrated into an economic assessment by estimating their value.  Environmental damages 
may have significant economic value, but are difficult to assess and there is still high methodological 
uncertainty.  But there are many types of externalities of electrification that may prove beneficial, but 
difficult to quantify in this attributional cost assessment.  

Many studies have pointed to the potentially significant health costs of emissions from large buses in 
urban areas.  Tong et al. (2017) found that climate and are pollution damages for transit buses could range 
from $60,000 to $120,000 over the service lifetime (Tong, Hendrickson, Biehler, Jaramillo, & Seki, 
2017).  While health costs are not considered directly in this study, decreased or eliminated mobile source 
emissions from bus electrification are likely to offer additional benefits for transit agencies and urban 
centers.  This is especially true in California, which has a high share of renewable generation in the 
electricity grid. 

In addition to emissions, e-buses likely have other difficult to price benefits.  Based on Altoona testing, 
electric buses are quieter for passengers, operators, and pedestrians, which reduces noise pollution.15 
Electric buses can be 6-9 decibels quieter than average CNG buses, and 12-17 dBA quieter than diesel. In 
addition, electric powertrains do not require a clutch or other transmission which can reduce driver 
fatigue. Decreased vehicle noise also creates a better environment for passengers and operators.  

For the purpose of this study, the direct and indirect costs of environmental damages and social impacts 
are not considered.  In the discussion section, we allude to some of the research needed to better 
internalize societal costs into purchase decisions and pricing.  

7.3.10 SUMMARY OF FACTORS AFFECTING THE COSTS OF E-BUSES 

• The purchase price of an E-bus is 40%-60% higher than a conventional bus, and some 
agencies must acquire more depot or maintenance yard capacity for bus electrification. This 
significantly increases capital costs, necessitating a shift in the quantity and source of 
income for agencies.  

• Currently, federal sources provide a majority of capital funding for bus projects; however, 
the formula for calculating the capital cost subsidy is not cost reflective, and federal funding 
may not match increasing investment.  

                                                   

15 See Pennsylvania Transportation Institute and Bus Testing and Research Center. (2015). New Flyer, Model XE40, 
University Park: Pennsylvania State University. LTI-BT-R1405. And, Pennsylvania Transportation Institute and Bus 
Testing and Research Center. (2015). Proterra, Inc. Model BE-40, University Park: Pennsylvania State University. 
LTI-BT-R1406. 
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• Operating costs currently comprise 75% of annual expenditures, and fuel costs are a key 
contributor. Electricity costs can be highly variable over time and space, and a utility’s 
contractual terms may change during the life of the bus. Given current prices, only with 
credit incentives through the Low Carbon Fuel Standard (LCFS) can an agency anticipate 
significant reductions in fuel operating costs. 

• Variable maintenance costs for electric buses can be 50% lower per-mile thanks to 
simplified propulsion system, but maintenance costs at transit agencies show strong 
heterogeneity; not all agencies will experience the same magnitude in maintenance costs 
reductions from electrification 

• Depot expansion costs are a significant investment for agencies but vary strongly by depot 
characteristics; amortized over the life of the vehicle, can represent $15,000-$40,000 in real 
additional costs. 

• Vehicle fuel efficiency varies across agencies operating areas and route characteristics, but 
system planning on vehicle purchase are currently separate decision-making operations 

• The costs of purchase and operation for conventional transit bus pathways, including Diesel 
and CNG, are expected to increase significantly over the next decade. 

• E-bus effective range is increasingly rapidly, but technology performance mismatch when 
replacing conventional vehicles remains an issue 

7.3.11 LIMITATIONS OF THE UNIT COST APPROACH 

Uncertainty in comparing alternatives stems from multiple sources, including the parameter uncertainty 
and variability discussed in the previous section.  An additional confounding factor for policy analysis 
could be described as decision uncertainty.  There are two model frameworks traditionally adopted for 
comparing purchase alternatives in the context of fleet replacement.  The first, a unit replacement model, 
is often used to compare the total cost of ownership across several purchase alternatives.  The unit 
replacement model focuses on costs related to the acquisition, maintenance, and operation of an asset over 
its useful life. For example: does alternative A cost more than alternative B? The second, a systems 
operations model, looks at the total costs of a handful of state decisions over the course of some defined 
decision space.  And an equivalent question, what is the cost of operating a given system over some time 
x given alternative A vs. alternative B.  Analysis of unit or system costs can provide contrasting 
conclusions and support different decision making outcomes. 

A potential key difference between unit and systems cost approaches is the endogeneity of labor costs.  
An agency system cost model could include an explicit ledger of positions and salaries for operations and 
overhead management.  Due to the heterogeneity of agency operating structures, areas, and service 
requirements, a generalized agency system cost function is difficult to estimate.  Even estimating 
individual agency operational labor costs requires assumptions about the route network and schedule, 
which could ignore the opportunity for optimization of system planning and technology deployment.   

While it is possible to incorporate additional labor costs into unit cost comparisons, scaling of unit costs 
up to the system level is likely to provide only a coarse estimate of actual system costs.  This can easily be 
illustrated by the fact that mean vehicle costs often do a poor job of representing the real costs 
experienced by each agency.  Whether looking at system or unit costs, decision making is improved by an 
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understanding of how a lack of knowledge about the future and variability in assumptions contribute to 
uncertainty when comparing technology alternatives.  

This study focuses on uncertainty in comparing unit costs for agencies.  Some agency system costs are 
considered by way of infrastructure investment and route structures, but the study does not directly 
consider labor costs for operations, including drivers, which can be a key component of per-mile system 
cost.  

 

7.4 RESULTS 
Based on the range of prices transit agencies have been experiencing, current replacements of CNG, 
Diesel, or Hybrid transit bus cost between $1,009,283 and $1,663,309 on average to own and operate over 
the lifetime of the vehicle (Table 7.3).  The cost of an electric bus ranges from $1,457,594 for a 35 ft bus, 
to $2,243,745 for a 60 ft bus. While costs for electric buses are higher on average in the current 
replacement period compared to LoNOX and conventional options, they are also eligible for increased 
incentives which could mitigate the cost differential.  In the current period, purchase and fuel incentives 
decrease Electric TCO by $224,00 to $284,000, compared to $80,000 on average for purchase incentives 
on LoNOX options. 

Table 7.3 Total Costs by Fuel-pathway and Length (Current Prices, No Incentives) 

 

 

Current Replacement - Cost per Vehicle

length mean sd min max

35ft $1,009,283 $68,705 $830,996 $1,306,957

40ft $1,031,649 $70,115 $844,422 $1,272,759

60ft $1,467,920 $82,703 $1,255,888 $1,796,200

35ft $1,184,842 $88,692 $948,543 $1,548,364

40ft $1,207,792 $90,434 $968,066 $1,563,480

60ft $1,663,309 $112,114 $1,349,373 $2,133,882

35ft $1,457,594 $103,484 $1,124,418 $1,926,870

40ft $1,482,993 $105,591 $1,172,864 $1,955,112

60ft $2,243,745 $142,617 $1,837,121 $2,859,840

35ft $1,255,245 $75,394 $1,049,107 $1,544,680

40ft $1,281,118 $76,627 $1,078,655 $1,579,615

60ft $1,629,124 $89,927 $1,397,001 $1,993,127

35ft $1,291,721 $92,078 $1,056,398 $1,602,729

40ft $1,320,942 $91,622 $1,076,154 $1,635,541

60ft $1,874,295 $127,055 $1,547,259 $2,291,260

Diesel

Electric

Hybrid

LoNOx

CNG



126 

 

By 2030, the costs of replacing the conventional transit bus fleet is expected to increase; 2030 TCOs for 
conventional options ranged from $1,190,00 to $2,060,000.  The average TCO of an electric bus 
decreased by 16% on average by 2030, in-line with CNG and LoNOX options. While the average costs of 
buses all increase, electric buses are expected to have the lowest lifetime vehicle cost by after 2030.  As 
reported in Table 7.4, by 2030, purchase and fuel incentives were on average 12% of the electric bus 
TCO.  

 

Table 7.4 Total Costs by Fuel-pathway and Length by 2030 (No Incentives) 

 

 

Looking at the distribution of likely cost outcomes in Figure 7.18, we observe the difficulty of reliably 
distinguishing the difference between powertrain or pathway costs. In both purchase periods, the 
differences between average costs may not fully characterize the experience of any agency, as evidenced 
by the large overlapping probability densities. We can also observe the strong delta caused by policy 
subsidies; in the current replacement period, HVIP and LCFS rebates over the vehicle life are worth 
~$250,000 dollars, with a slight majority coming from fuel subsidies.  By 2030, purchase subsidies are 
expected to decrease but fuel subsidies increase as electric buses realize more annual miles due to 
improving range.  

Current Replacement - Cost per Vehicle

length mean sd min max

35ft $1,190,605 $73,872 $982,589 $1,517,056

40ft $1,216,324 $74,706 $1,012,306 $1,533,674

60ft $1,767,293 $91,485 $1,510,232 $2,157,085

35ft $1,433,000 $116,296 $1,110,427 $1,975,647

40ft $1,463,584 $120,193 $1,113,982 $2,050,889

60ft $2,060,027 $159,178 $1,575,978 $2,753,648

35ft $1,222,590 $84,708 $935,251 $1,548,293

40ft $1,243,567 $85,936 $945,470 $1,596,988

60ft $1,864,846 $119,013 $1,495,618 $2,319,163

35ft $1,518,651 $90,247 $1,262,949 $1,918,517

40ft $1,553,500 $92,826 $1,266,178 $1,948,299

60ft $2,007,075 $115,926 $1,653,252 $2,530,584

35ft $1,279,258 $94,312 $984,840 $1,616,734

40ft $1,308,181 $95,588 $1,045,794 $1,670,869

60ft $1,829,271 $125,366 $1,494,942 $2,275,287

Diesel

Electric

Hybrid

LoNOx

CNG
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Figure 7.18 Lifetime Costs of Ownership per Bus 

 

The current average per-mile cost of conventional transit bus operations is $1.82 to $3.01 per-mile (Table 
7.5).  Electric transit buses in the current replacement period had an average per-mile cost of $2.62 - 
$4.04, 18-20% higher than the comparable CNG bus.  In the second replacement period (Table 7.5), the 
per-mile cost differential between CNG and Electric has decreased to less than 3%. 

With	State	
Incentives	

(HVIP	+	LCFS)	
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Table 7.5  Per Mile Costs by Pathway and Length (Current Prices, No Incentives) 

 

 

 

Current Replacement - Cost per Vehicle

length mean sd min max

35ft $1.82 $0.16 $1.38 $2.50

40ft $1.86 $0.17 $1.42 $2.54

60ft $2.65 $0.23 $2.05 $3.63

35ft $2.14 $0.19 $1.68 $2.87

40ft $2.19 $0.19 $1.69 $2.91

60ft $3.01 $0.26 $2.33 $3.90

35ft $2.62 $0.25 $1.91 $3.71

40ft $2.67 $0.26 $1.92 $3.71

60ft $4.04 $0.39 $2.91 $5.52

35ft $2.27 $0.19 $1.78 $2.99

40ft $2.31 $0.19 $1.79 $3.04

60ft $2.95 $0.24 $2.28 $3.88

35ft $2.33 $0.23 $1.75 $3.40

40ft $2.39 $0.23 $1.75 $3.44

60ft $3.38 $0.34 $2.49 $4.53

Diesel

Electric

Hybrid

LoNOx

CNG
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Table 7.5 Per Mile Costs by Period and Bus Length by 2030 (No Incentives) 

 

 

Turning back to the graphical representation, Figure 21 shows the high probability of equivalent per-mile 
costs from conventional and LoNOX buses for near-term replacement period. For the second replacement 
period, costs for replacing any bus with an electric or CNG could have similar per-mile costs over the 
vehicle lifetime.  With state incentives, the costs of E-buses in the next replacement period are lower than 
CNG or LoNOx options. 

Current Replacement - Cost per Vehicle

length mean sd min max

35ft $2.15 $0.19 $1.65 $2.83

40ft $2.19 $0.19 $1.67 $2.91

60ft $3.19 $0.27 $2.46 $4.27

35ft $2.59 $0.24 $1.86 $3.54

40ft $2.65 $0.25 $1.92 $3.67

60ft $3.73 $0.35 $2.72 $5.07

35ft $2.21 $0.21 $1.57 $3.01

40ft $2.24 $0.21 $1.55 $3.05

60ft $3.37 $0.33 $2.42 $4.67

35ft $2.74 $0.23 $2.10 $3.65

40ft $2.81 $0.24 $2.09 $3.65

60ft $3.63 $0.31 $2.67 $4.78

35ft $2.31 $0.23 $1.71 $3.24

40ft $2.36 $0.23 $1.71 $3.24

60ft $3.29 $0.33 $2.43 $4.57

Diesel

Electric

Hybrid

LoNOx

CNG
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Figure 7.19 Lifetime Costs of Ownership per Mile 

 

The effects of electric buses range restrictions are more apparent in the near term when looking at lifetime 
costs of ownership normalized on a per-mile basis by agency.  In the left panel of Figure 7.20, we can 
observe the wide range of potential costs for electric buses in rural applications, with ~50% higher cost 
uncertainty compared to large agencies. 

 

Figure 7.20 Per Mile Costs by Agency and Length 

 

With	State	
Incentives	

(HVIP	+	LCFS)	

With	State	
Incentives	

(HVIP	+	LCFS)	
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Finally, averaging across bus lengths and agency types, Table  shows the average TCO in both the current 
and 2030 period, as well as the value of incentives.  The magnitude and direction of change in E-bus costs 
relative to conventional options between the first and second purchase period are indicative of both the 
change in average costs for conventional alternatives and the change in E-bus prices.  In the second 
replacement period, the lifetime costs of E-buses are 16% lower on average.  Incentives in the 2030 
period are likely to lower the costs of electric buses by an additional 12%.  When incentives are included, 
the LoNOX pathway is not significantly different than the average price of CNG buses by 2030. In both 
periods, incentives decrease TCO for LoNOX by 5% on average.   
Table 7.7 Summary of Average TCO by Pathway and Period 

 

 

7.4.1 SYSTEM-WIDE REPLACEMENT COSTS 

If a regulation is adopted that shifts the entire fleet to E-buses over a normal replacement cycle (i.e. no 
accelerated retirement of existing buses), another important question is how the costs of full fleet 
replacement differ, given uncertainty in how costs vary across agencies of different characteristics.  Table  
provides an estimate of the costs of replacing the entire fleet for E-buses in both the current and next 
replacement cycle.  This type of analysis ignores the intertemporal cost changes (i.e. exchanging capital 
for operating costs), but provides a rough estimate for the direction and magnitude of expected changes in 
replacement costs over the near term.  

The mean lifetime cost for replacing and operating the current fleet is $7.7 billion dollars (Table ).  The 
lifetime cost of replacing the current fleet with 100% electric buses with current prices increases net costs 
for agencies by $1.24 to $1.28 billion dollars (~17%).  Electrification increases total costs by $2.92-$2.97 
billion dollars, of which $1.67 to $1.71 billion dollars is offset by HVIP and LCFS subsidies.  By 2030, 
replacing the fleet with 100% electric is estimated to decrease net lifetime costs by $730 to $768 million 
dollars, with $1.21 to $1.25 in HVIP and LCFS subsidy.  

Current	Average	
TCO

Average	TCO	
2030

CNG $1,169,617 $1,391,407

Diesel $1,351,981 $1,652,203

Hybrid $1,388,495 $1,693,075

LoNOx $1,495,652 $1,472,237

Electric $1,728,110 $1,443,667

LoNOx Incentives -$80,658 -$68,598

Electric Incentives -$249,389 -$180,008
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Table 7.8 Total System Replacement Costs (Billion USD$) 

 

 

Figure 7.21 shows the expected changes in likely system cost outcomes over the next two vehicle 
replacement cycles.  As evident, the likelihood of an all-electric fleet increasing or decreasing costs is not 
necessarily well-represented by a comparison of average (mean) costs.  There is also a significant 
difference in the total subsidies required to bring costs for E-buses in line with business as usual 
replacement costs across the two periods.  By 2030, both the cost difference between BAU replacement 
and the value of subsidies offered to E-buses appear to decline significantly.   

 

Figure 7.21 Statewide Bus Transition Costs 

 

Another important consideration regarding costs of a statewide bus electrification goal is the variability in 
costs experienced by different agencies.  In particular, small and rural agencies have orders of magnitude 
smaller fleets, operate fewer high density routes (e.g. a higher percentage of low stop density/high speed 

period mean sd min max

Current $11.87 $0.77 $10.01 $14.59

By 2030 $14.32 $0.92 $11.79 $17.99

Current $13.03 $0.80 $10.86 $16.16

By 2030 $12.85 $0.84 $10.50 $15.93

Current $14.37 $0.77 $12.11 $17.62

By 2030 $12.57 $0.83 $9.78 $15.56

BAU

All LoNOx

All Electric

With	State	
Incentives	

(HVIP	+	LCFS)	
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routes), and smaller reserve fleets compared to urban agencies.  For these reasons, they are likely to 
experience higher fixed infrastructure costs and more problems with accommodating E-bus range and 
service issues in the near term.  Figure 25 shows how these factors can contribute to differences in TCO 
for buses.  Smaller agencies have higher lifetime ownership costs for transit buses on average, but some 
smaller agencies are likely to have costs for electric buses 7.5% higher than larger agencies. At the 
extremes, a small rural agency could experience 75% higher adoption costs compared to the largest urban 
fleets.   

Diesel powertrains are a notable exception to the general cost trend for large vs. small agencies; this is in 
part due to lower per-mile maintenance costs for diesel vehicles at small agencies compared to large 
agencies.  The group of small, rural agencies may operate 5% of active buses, but represent more than 
half of transit agencies in the state.  Including these agencies in the scope of an electrification target 
significantly increases the uncertainty of predicting the costs of the regulation with regard to the costs of 
system-wide replacement for a given powertrain.   

7.4.2 DRIVERS OF VARIANCE IN CURRENT VEHICLE COSTS 

As illustrated above, uncertainty can be a confounding factor when comparing the lifetime cost of transit 
bus ownership.  The variance in TCO for both conventional diesel and CNG buses is primarily driven by 
the annual miles, purchase costs, fuel efficiency, and vehicle life (Figure 7.).  Total spending on fuel over 
the vehicle life is a significant operational cost, but its contribution to uncertainty is reflected across 
vehicle fuel efficiency, annual miles, vehicle life, and fuel costs.  In Figure 25, bar width shows range of 
per mile costs, values are minimum and maximum range of parameter considered, ordered by contribution 
to variance. 
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Figure 7.24 Screening Sensitivity Analysis of Parameters Affecting TCO of Transit Buses by 2030 

 

A change of $0.10/kWh in the cost of electricity for E-buses represents approximately $72,000 dollars in 
net present value.  At $0.12/kWh, the upper end of expected LCFS subsidy for E-bus charging, the LCFS 
subsidy decreases the total cost of ownership of e-buses by almost 10%. While overall, electricity costs 
are likely to be contractually predictable, a lack of empirical data contributes to increased uncertainty 
about e-bus maintenance costs.  Despite the low costs suggested by initial demonstrations, the 
maintenance costs, including training and capital investments, will remain a potentialt concern. 

E-buses represent a different value proposition for transit agencies transitioning from conventional buses; 
diesel buses and CNG buses historically have relatively low fixed upfront costs and high variable 
operations costs. Given the variability in purchase prices for conventional buses, upfront costs have a 
significant effect on the uncertainty in lifetime costs.  If agencies transition to a fleet that has higher fixed 
upfront costs and lower operations costs, the uncertainty in a question of whether total costs are 
equivalent becomes one about variable costs.  Maintenance, fuel costs, purchase and fuel subsidies are all 
primary sources of uncertainty for E-bus lifetime costs.   

 

Figure 7.25  Screening Analysis of Statewide Fleet Replacement with 100% Electric Buses 

 

At the state level, uncertainty in transition costs for electric buses in the current term are driven in large 
part by bus range limitations and technology replacement issues (Figure  - Left).  Replacement ratios for 
large and small agencies will be a key concern in transition costs.  By 2030 (Figure 27 – Right), the 
effects of range mismatch and replacement ratio is signfiiantly reduced.   Over both periods, uncertainty 
in fuel costs, state incentives, and maintenance costs, are signficant hurdles to accurately predicting 
transition costs.  
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7.5 DISCUSSION 
A key limitation of this study is the assumption of independent costs between the first and subsequent 
purchase periods. E-buses currently represent a new market entry, and will face continued barriers to 
widespread commercialization. Near-term adoption of E-buses may be critical to ensuring long term 
viability (i.e. lower costs and improved technology performance) of E-buses.  Any deterministic 
projection of medium to long term costs that does not consider near-term rates of adoption may 
overestimate potential improvements to the economics of E-buses.  A “purchase period” scenario model 
was chosen in this study to illustrate how expected cost changes between now and the next time an 
agency replaces the same bus could affect TCO.  It is unclear what levels of E-bus deployment are 
necessary to ensure that E-bus prices continue to fall.  But, the costs of owning and operating a 
conventional bus has been increasing steadily.  The results of this study suggest that if conventional bus 
prices continue to increase, E-buses will quickly become the most cost effective alternative given current 
policy. 

The current purchase price of an E-bus can be more than 40% higher than what agencies have paid for 
conventional alternatives. But the economics of E-buses are improving rapidly, in part due to spillover 
effects from widespread deployment of electric powertrains and lithium batteries in light duty vehicle 
applications.  E-bus battery costs are expected to decline by $85,000 or more, while the per-kW costs of 
electric motors and power electronics are expected to fall by almost 40%.16  This study adopts a 
conservative assumption that all cost reductions over the next decade will enable further performance 
improvements for E-buses, not price reductions. In turn, E-buses in the next replacement period offer little 
to no mismatch in technical service potential, but still have slightly higher purchase costs. The assumption 
is notably conservative as some E-buses available today can replace conventional buses over a variety of 
duty cycles.  A key exception to this price assumption is the possible replacement of lithium batteries 
before the end of its service life; these costs are assumed to fall dramatically in the second replacement 
period.   

Even with this conservative assumption on pricing, E-buses are likely to become the most cost effective 
choice for transit agencies within their next two major replacement cycles.  While increased capital costs 
may be offset by lower operating expenses, whether all agencies are able to realize these lower lifetime 
costs is still in question. At the system level, significant cost reductions are realized from full replacement 
with E-buses. However, there is heterogeneity, and small rural agencies may be forced to increase costs or 
decrease service to electrify their fleets. Perhaps equally important, purchase costs for diesel and CNG 
fueled buses have and are expected to continue to increase over time.  This is driven in part by 
increasingly stringent emissions regulations, but also by a range of performance improvements.  

It is also important to consider whether agencies will be able to achieve equivalent technical performance 
and maintain current service levels without additional capital outlays on E-buses. Agencies may require 

                                                   

16 The Department of Energy, Electric Drive Program expects the cost of electric motor and power 
electronic costs to fall from $12/kW to $8/kW by 2022 
https://energy.gov/sites/prod/files/2016/06/f32/edt000_rogers_2016_o_web.pdf 
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additional buses if the effective range a bus can travel per charge is insufficient to meet the distance 
required by the duty cycle, and the agency does not have sufficient schedule flexibility to reassign these 
buses. The number of buses that must be purchased will depend on the route structure, the vehicle range 
per charge, and the charging system. 

In the real world, electric vehicle efficiency and range will depend on several factors, including driver 
behavior, route, environmental conditions, and traffic conditions.  The average vehicle range and 
efficiency may also not be the appropriate metric for design of an electric bus system, as it may reflect 
suboptimal operation of the battery system with respect to maximizing its service life, or may increase the 
risk of adverse service events due to inadequate battery capacity. Nevertheless, fuel costs over the lifetime 
of a bus are more than 2-3 times greater than costs for midlife overhauls and battery replacement, which 
are expected to cost less than $100,000 over 14 years (for more discussion, see the section on Midlife 
Overhaul). 

E-buses available in 2016 are assumed to have an effective range of 120 miles per charge, increasing 
linearly to 250 miles per charge by 2035. Proterra17 currently markets XR and E2 series Catalyst buses, 
respectively listed with 130-190 and 250-350 miles of range per charge. Proterra is a small, start-up 
manufacturer and the E2 is not yet available (Proterra has delivered 100 buses into service,18 equivalent to 
less than 5% of the LACMTA fleet). Regardless, it is widely expected that longer range power systems 
will become available in the coming decade. This will be due to improvements in battery technology, 
decreasing battery costs, and improvements to vehicle efficiency. Average vehicle range may also not be 
the appropriate metric for design of an electric bus system; average range may reflect suboptimal 
operation of the battery system with respect to maximizing its service life. To minimize the risk of 
adverse service events due to inadequate battery capacity, buses may be purchased to meet a minimum 
daily range. 

Depending on the route structure, on-route charging can decrease the number of additional buses needed 
by facilitating a longer daily service range. However, on-route charging systems can currently cost more 
than three times as much as depot charging systems. On-route charging systems come in multiple 
varieties. Fast-charging systems can cost as much as $500,000 for a 500 kW system, while smaller 60 to 
80 kW systems have been installed at much lower costs. Depot systems are typically $20,000 to $60,000 
per charger for 20 to 80 kW.19 The costs of additional buses and charging systems and the route-specific 
logistics of charging would need to be evaluated in more detail to determine whether on-route of depot 
charging is more suitable, and what the overall costs of buses and chargers would be. 

                                                   

17 https://www.proterra.com/products/catalyst-40ft/ 

18 https://www.proterra.com/press-release/proterra-continues-north-american-market-leadership-with-
milestone-deployment-to-san-joaquin-rtd/ 

19 For further discussion of charging system costs, please see the ACT working group discussion 
documents or data assumptions at https://www.arb.ca.gov/msprog/bus/actmeetings.htm. 
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As agencies increase the size of their electric fleets, each may also be able to optimize charging 
infrastructure and decrease the number of additional chargers required per additional bus acquired. In 
addition, E-bus ranges are improving rapidly even as the costs of energy storage fall and the market for 
electric buses is growing. This suggests that capital costs for electric may fall faster than other 
conventional technologies that have already achieved learning and scale economies. 

Agencies face clear tradeoffs between expanding service and increasing investments into existing 
services, like electrifying routes. Historically, route and service planning and maintenance operations 
separate decision-making processes. Preparing for an all-electric fleet will likely require better integration 
of maintenance and planning departments. Future route and system planning should consider the 
performance characteristics of electric vehicles and strategic build-out of electric bus depots. In addition, 
fuel costs may vary across prospective charging facilities by location; route planning could also consider 
how routes might be reorganized to improve service without requiring the purchase of additional buses.  

7.5.1 BATTERY REPLACEMENT  

Lithium-ion batteries have become the preferred choice for electric vehicles because of high-energy 
densities, long cycle life, robust operating range, and low cost. Charge and discharge cycles progressively 
degrade the performance of lithium batteries in electric buses, eventually resulting in the need for 
replacement.20 Electric battery warranties typically cover a range of service with a guaranteed percentage 
of the new capacity; for instance, a typical electric bus warranty might guarantee a battery to deliver a 
minimum of 80% of its initial discharge capacity after 12 years. Discharge capacity or depth of discharge 
(DOD) is commonly used to rate the functional capacity of a battery over a duty cycle. A 12 year to 80% 
DOD schedule translates to a loss in effective vehicle range of approximately 1.5% per year.  

Capacity degradation has clear impacts on vehicle range, but the combination of resistance-induced power 
fade and diminished capacity will ultimately determine battery end-of-service. Increases to battery 
internal resistance reduce round-trip efficiency and will gradually render the battery inoperable in high-
power applications. While both phenomena reduce the battery’s capabilities, resistance increases make 
stored energy inaccessible.   

While stored energy is rendered inaccessible for the high-power output typical of heavy-duty electric 
vehicle duty cycles, batteries could be functional in lower-power applications. A retired electric bus 
battery could retain upwards of 70% of its new capacity in some applications. A growing body of research 
has pointed to the opportunities for potential secondary-use of retired electric vehicle batteries in 
stationary applications.21 Unfortunately, this research has also indicated that there may be limited 

                                                   

20 See Schaltz, E., Khaligh, A., & Rasmussen, P. O. (2009). Influence of battery/ultracapacitor energy-storage sizing 
on battery lifetime in a fuel cell hybrid electric vehicle. IEEE Transactions on Vehicular Technology, 58(8), 3882-
3891; Cooney, G., Hawkins, T. R., & Marriott, J. (2013). Life cycle assessment of diesel and electric public 
transportation buses. Journal of Industrial Ecology, 17(5), 689-699. 

21 See H. Ambrose, D. Gershenson, A. Gershenson, D. Kammen, Driving rural energy access: a second-life 
application for electric-vehicle batteries. Environmental Research Letters 9, 094004 (2014); S. J. Tong, A. Same, M. 
A. Kootstra, J. W. Park, Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental 
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economic viability in repurposing electric vehicle batteries, primarily due to consistently improving 
performance and lower costs from newer batteries, as well as uncertain performance from degraded 
batteries. Nevertheless, given the large size and capacity of electric bus batteries (>300 kWh compared 
with ~25 kWh for passenger electric vehicles), repurposing may prove a viable revenue stream in the 
presence of policies promoting the provision of additional grid-tied storage (e.g. California’s AB 2514). 

7.5.2 UNCERTAINTY IN STATE-WIDE ADOPTION COSTS 

When considering total compliance costs for the state (given a goal to transition to 100% E-buses), it is 
also important to consider the structure of existing fleets. Fleets that have already transitioned to CNG 
have likely made significant investments in CNG refueling infrastructure and maintenance facilities.  As 
such, there is a significantly different change in costs for CNG compared to diesel fleets. As the majority 
of the state’s CNG fleet operates in the Southern portion of the state, this creates a divide between 
incentives for Northern and Southern California Transit Agencies, although there are also a number of 
large, urban fleets in the South Coast that may be well positioned to electrify some of their routes.   

Another interesting finding of the screening analysis depicted in Figure 7.26 is that given the wide range 
of potential depot improvement costs considered ($15,000-$40,000 dollars per bus), capital cost 
improvements were not the most important factor when considering uncertainty in statewide adoption 
costs.  While this range of assumed costs did not include some of the most extreme estimates, it seems 
unlikely that infrastructure improvements are the biggest source of uncertainty for whether a transition to 
electric buses would decrease costs on the whole and on average for California transit agencies. 

Finally, another consideration is how annual expenditures will change over time given a move to adopt 
electric buses.  Given a 2040 target for transit fleet electrification, we might expect agencies to delay the 
majority of purchases of E-buses till ~2030, and instead focus early efforts on small demonstration or 
pilot projects while waiting for E-bus technology and prices to improve. This type of purchase or 
replacement schedule is consistent with the likely costs reflected in Figure 7.26.  Transitioning to electric 
buses increases annual expenditures as new investments in infrastructure are made.  Over time, E-buses 
deliver lower operating costs and overall decrease total expenditures.  The time required for agencies to 
realize savings from electrification (blue arrow) is due to uncertainty in technology and policy; namely 
fuel costs and subsidies.  The overall investment required to achieve the lower operating costs suggested 
by E-buses is driven by uncertainty in capital costs. 

                                                   

and numerical investigation. Applied Energy 104, 740-750 (2013); J. Neubauer, A. Pesaran, B. Williams, M. Ferry, J. 
Eyer, paper presented at the 2012 SAE World Congress and Exhibition, Detroit, Michigan, 2012. 
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Figure 7.26 Change in Annual Expenditures for Large Agency with 100% Electric by 2040 

 

7.5.3 EMISSIONS BENEFITS 

A shift to E-buses can effectively eliminate tailpipe emissions, potentially leading to local air quality 
improvements. These air quality benefits may accrue to pedestrians, cyclists, drivers and passengers as 
well as to individuals living, working, and traveling near transit routes. These local air quality 
improvements are likely to be of particular interest to communities currently experiencing air pollution 
burdens from other mobile and stationary sources. Even when considering the lifecycle emissions 
associated with electricity generation, the high penetration of renewables and other low-emitting 
generators in the California grid mean that E-buses have lower per-mile emissions rates than buses using 
other fuels (Ercan & Tatari, 2015; Lajunen & Lipman, 2016).  In addition to air quality benefits, electric 
buses also significantly reduce GHG emissions (Table 7.8). An 85% reduction in per-mile emissions of 
GHGs could avoid more than a million metric tonnes of CO2-equivalent per year. 

Any comparison of emissions rates should take into account potential changes in the technology used to 
generate the electricity. California’s strong target for renewable generation suggests E-buses will continue 
to deliver reliably low emissions electricity.   
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Table 7.6 Per Mile Emissions Comparison for E-buses and CNG (grams/mile)22 

  2018 Electric 2030 Electric CNG 
(Conventional) 

VOC 0.14 0.10 2.01 
CO 0.78 0.56 4.97 
NOX 0.87 0.63 2.74 
PM10 0.08 0.07 0.03 
PM2.5 0.06 0.05 0.03 
SOX 0.52 0.43 0.57 

CH4 2.16 1.50 22.26 
N2O 0.02 0.02 0.24 
CO2 742.07 524.61 2898.65 
CO2e (GWP100) 802.40 566.55 3527.24 

 

The reduction in NOX emissions and local pollutants (VOC and CO) will also have significant economic 
benefits in terms of reduced public health impacts. While these costs are not considered here, they entail a 
potentially substantial economic benefit in addition to those associated with carbon abatement. 
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8. LIFE CYCLE MODELLING OF TRUCK ELECTRIFICATION 
8.1 PURPOSE AND SCOPE 
California’s freight transportation system is a vital part of the state’s economy, but is a significant 
contributor to greenhouse gas (GHG) emissions and generates an even higher portion of local pollution. 
For example, over half of particulate aerosol and nitrogen oxides (NOX) emissions from highway vehicles 
are from medium and heavy duty vehicles.  These vehicles often operate in parts of the state with already 
poor air quality, exacerbating already unhealthy conditions.  The state’s primary strategy for reducing 
emissions from the on-road freight sector relies on deploying new vehicle and fuel technologies. The 
majority of emissions reductions from freight activities are expected to come from the deployment of new 
emissions control devices on combustion-based powertrains, efficiency improvements, and on-road zero 
emissions vehicle technologies. Given the rapidly developing market for electric truck technologies, and 
recent focus on electrification strategies for heavy duty vehicles (HDVs) in California policymaking, this 
report focuses on truck electrification. Where emissions occur, and how emissions of different pollutants 
are affected by factors including vocation, duty cycle, powertrain configuration, and fuel pathway, will 
influence the effectiveness and economic costs of emissions reduction strategies. Thus, these are all 
important considerations in the research approach.  

The goal of this research is to quantify the life cycle environmental impacts and life cycle costs for on-
road goods movement in California to estimate the abatement potential and economic costs and benefits 
of electrifying California’s freight truck sector.  This chapter  contains text from: Ambrose, H., & 
Kendall, A.  (Under Review). Life Cycle Modelling of Technologies and Strategies for a Sustainable 

Freight System in California. Institute of Transportation Studies, University of California, Davis, 
Research Report. 

8.2 INTRODUCTION 
Today’s transportation system relies on technologies that impose pollution on the local environment and 
contribute to global warming through greenhouse gas emissions (GHGs). This is particularly true for 
goods movement through heavy duty vehicle (HDV) systems.  While HDVs are less than 5% of the total 
US vehicle fleet, they account for 18% of transportation energy use, close to 80% of on-road diesel use, 
and well over half of particulate aerosol and nitrogen oxides (NOX) emissions from highway vehicles 
(Davis, Williams, & Boundy, 2016).  Liquid fuel use from medium and heavy duty vehicles has increased 
more rapidly in both relative and absolute terms than consumption by other sectors (Council, 2010). With 
increasing demand for on-road freight transportation, and a seeming lack of cost effective substitutes, 
these trends are expected to continue into the near future (Grenzeback et al., 2013).  

California has a history of critical air quality issues, including persistent non-attainment areas for federal 
ozone and air borne particulate matter standards.  HDVs are of particular concern as they emit high levels 
of particulate matter and a complex mixture of pollutants including ozone precursors (Adar & Kaufman, 
2007; Heinrich & Wichmann, 2004; Seagrave et al., 2006). The state’s freight transportation system and 
related industries are a vital part of the state’s economy, but constitute the majority of on-road diesel fuel 
use and generate a high portion of local pollution in parts of the state with poor air quality.  On-road 
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goods movements by vans, trucks, tractors, and other HDVs contribute the largest share of GHG and 
criteria emissions from freight activities.  In recognition of these challenges, a number of policies, plans 
and orders have been issued.  Governor Brown’s Executive Order B-32-15 encourages adoption of freight 
vehicle technologies and infrastructure that allow for reductions in these impacts and the use of 
alternative energy and fuels. Caltrans, the California Air Resources Board, and other agencies have 
contributed to the development of a Sustainable Freight Action Plan (SFAP) for the State.  The SFAP 
identifies two primary strategies, increasing freight efficiency and transitioning to zero-emission 
technologies.   

The state’s primary strategy for reducing emissions from the freight sector relies on deploying new 
vehicle and fuel technologies.  California has outlined its plan to reduce NOx, PM, and toxics from 
heavy-duty mobile sources over the next decade in the State Implementation Strategy (SIP).  This 
includes a call to reduce emissions of NOx in the South Coast and San Joaquin air districts 80% by 2032.  
California has also set a target to reduce GHG emissions by 40% by 2030 under the Global Warming 
Solutions Act SB32. To achieve these regulatory objectives, California facilitates the deployment of zero-
emission and near-zero emission vehicles and equipment into the heavy-duty sector. Zero-emission 
vehicle technologies include battery electric medium/heavy-duty vehicles (BEVs) and fuel cell electric 
vehicles (FCEVs), while near-zero emission technologies include low NOX engines paired with 
renewable fuels, and engines and vehicles with greater efficiencies.   

Comparing technology performance and ensuring the integrity of reductions across the HDV sector 
requires assessing the costs and benefits of technology deployment, including impacts on the 
environment.  A transition to advanced HDVs and low-carbon fuels is likely to increase the importance of 
a life-cycle perspective in vehicle policy, as has been demonstrated in the light-duty sector.  Shifting of 
emissions between life cycle stages may occur when a change to a process or input causes new impacts to 
emerge at different stages in a product’s life cycle. For zero-emission HDVs running electricity, 
hydrogen, or biofuels, the majority of emissions are expected to occur upstream of the vehicle’s tailpipe.  
This poses important questions for the distribution of costs and transfer of benefits from policy action, 
and necessitates a life cycle framework for calculating costs and benefits.  

Compared to fossil fuels, the emissions and environmental impacts of renewable fuel pathways and 
vehicle supply chains are more complex and difficult to estimate (Lade & Lin Lawell, 2015; McCollum & 
Yang, 2009; Witcover, Kessler, Eggert, & Yeh, 2015; Yeh et al., 2012). There has been considerable 
scholarly debate over the emissions reductions potential of biofuels (Searchinger et al., 2008), particularly 
for heavy duty vehicles (Delucchi, 2010; Durbin, Collins, Norbeck, & Smith, 2000; Janaun & Ellis, 2010; 
McCormick, Graboski, Alleman, Herring, & Tyson, 2001; O’Hare et al., 2011; Richard J Plevin, 
Delucchi, & Creutzig, 2014; Shi et al., 2006), and the proper methodology for estimating the emissions of 
grid-tied electric vehicles (Cai, Wang, Elgowainy, & Han, 2012; Soimakallio, Kiviluoma, & Saikku, 
2011; Venkatesh, Jaramillo, Griffin, & Matthews, 2011; Weber, Jaramillo, Marriott, & Samaras, 2010; 
Whitaker, Heath, O’Donoughue, & Vorum, 2012).   The performance of emissions control devices for 
criteria pollutants and toxics can also be highly uncertain, occasionally resulting in inverse trends between 
quantity of emissions and toxicity due to ambient conditions, maintenance, load, or age (Clark, Kern, 
Atkinson, & Nine, 2002; Herner et al., 2011; Kado et al., 2005). 
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There are further methodological and practical challenges to quantifying the environmental impacts of 
transportation technology policies.  These can include characterizing the innovation or diffusion of new 
technologies (Carlsson, Jacobsson, Holmén, & Rickne, 2002; Scherer, Harhoff, & Kukies, 2001), 
quantifying the impacts of incentives or funding (Reinganum, 1989), and the market structure of specific 
industries (Sutton, 2001).  Substitution and other market-mediated effects also complicate prediction of 
impacts on pollution from technology change (Richard J Plevin et al., 2014).  In total, these issues come 
down to capturing uncertainty and tradeoffs in the effects of technology change or the appropriate 
direction to incentivize change (O’Hare et al., 2011; Richard Jay Plevin, 2010; Richard J Plevin et al., 
2014).   

LCA is a standardized methodology for assessing the environmental impacts of a product system ((ISO), 
2006). The scope of LCA is typically limited to environmental impacts, but the life-cycle framework is 
also used to assess costs (as in LCC) and other metrics for sustainability(Kloepffer, 2008; Reed, 2012).  
LCC applies life cycle principles to evaluate the economic impacts of decision-making (Fuller & 
Petersen, 1996; Woodward, 1997).  Taken together, LCC and LCA provide a robust framework for 
assessing costs and benefits of decision-making over time, in addition to the potential for capturing 
spatio-temporal tradeoffs in impacts.  

In the context of LCA, a life cycle encompasses the relevant stages of the life of a product, i.e. “all 
activities, or processes, in a product’s life result in environmental impacts due to consumption of 
resources, emissions of substances into the natural environment, and other environmental exchanges” 
(Rebitzer et al., 2004). LCA has previously been used to identify significant drivers of emissions for 
vehicle and fuel technologies (i.e. hotspots), identify risks of burden shifting (where emissions may be 
reduced at one stage or location, but increased at another), and to assess potential systems and substitution 
effects (i.e. attributional or consequential impacts) (Ambrose & Kendall, 2016; Kim, Wallington, 
Sullivan, & Keoleian, 2015; Lajunen & Lipman, 2016; Xu et al., 2015).  A transition to advanced HDVs 
and low-carbon fuels is likely to increase the importance of a life-cycle perspective in vehicle policy, as 
has been demonstrated in the light-duty sector. 

This research quantifies the life cycle emissions and costs of heavy-duty truck electrification across a 
range of goods movement vocations and operational strategies.  The study focuses on the effects of duty 
cycle on battery capacity requirements and charging strategies. These results are also used to estimate the 
magnitude and costs of potential abatement for California based on state-wide vehicle population data.    

8.3 METHODS 
This research uses LCA and LCC methods to quantify the environmental impacts and costs of adopting 
battery electric heavy duty trucking used for urban delivery and intermodal operations in California.  The 
goal of the study is to compare the costs, performance, and emissions of electric and conventional trucks 
for goods movement applications. A specific focus of the study is estimating the costs of avoided 
emissions from electrification of freight vehicles on a life cycle basis, here-after termed life cycle 
abatement cost.   

To implement a LCA and LCC, modeling is required to represent relevant vehicle types (class and 
vocation), operations, and related technical and infrastructure systems.  A vehicle’s vocation will 
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determine both the vehicle class and type, as well as its expected duty cycle (i.e. operations). A model of 
freight vehicle operations was developed based on a set of representative vehicle location data. Battery 
capacity requirements and costs are then analyzed across a range of charging strategies and vehicle duty 
cycles.  Changes in key background technical systems, namely battery specific energy and electricity 
generation technologies, were also evaluated between 2020 and 2040.  Finally, the results were combined 
with a forecast of freight truck population and travel for California to quantify the total costs and 
abatement potential of truck electrification.   

The scope of the cost assessment included: 

• Purchase Costs 
• Scheduled and Unscheduled Maintenance 
• Repower/Refurbishment 
• Fuel Costs 
• Powertrain Efficiency 
• Infrastructure Costs 
• Vehicle Life 
• Policy Subsidies 

The scope of the environmental assessment included the total fuel cycle (production, delivery, 
combustion), and vehicle operating emissions including evaporative emissions. The production of the 
vehicle frame, body, and powertrain were excluded from the system boundary. The variety of truck types 
considered and a lack of previous research characterizing different HDVs prevented their inclusion. 
Previous research has often shown that fuel cycle impacts cause the majority of impacts for on-road 
vehicles.  In addition, comparison of the conventional and electrified trucks would be nearly identical 
with the exception of the powertrain.  

The results are reported in three reference or functional units:  

• Per mile: divided by lifetime vehicle mile travelled by vehicle class 
• Per ton-mile: divided by effective cargo capacity per average mile travelled 
• Statewide: weighted by in-state truck population and truck activity by class 

Given the diversity of truck types, configurations, and cargo capacities, per mile impacts may not be 
comparable across vehicle classes.  Therefore, emissions are also reported based on the average loaded 
capacity over the duty cycle.   

The life cycle abatement costs  for each class is estimated as the difference in life cycle costs for each 
truck class and fuel pathway (i.e. diesel, gasoline, and electric) on a per mile basis, divided by the 
difference in the life cycle emissions for each pollutant type.  The result is a vector of cost per unit 
emissions avoided by emissions category and performance metric.    

8.3.1 VEHICLE CLASSES AND SPECIFICATIONS 

Medium and heavy duty trucks service a variety of diverse vocations and are often heavily customized to 
fit specific applications.  Unfortunately, the Federal Highway Administration, US Census Bureau, and 
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EPA maintain different definitions of heavy duty vehicles by gross vehicle weight, which can lead to 
confusion (DOE; USDOT).  Table 2, adapted from Guilano et al. (2018), describes the types of vehicles 
in these classes as well as the range of vehicle weights when loaded vs. unloaded (in pounds) used in this 
study.  The weight of the vehicle is one of the primary factors influencing fuel requirements, but varies 
considerably during the duty cycle due to the need for return links or ‘dead-heading’ in most goods 
distribution vocations.   

Table 8.1 Description of Vehicle Weight and Capacity by Vehicle Class 

FHWA 
Vehicle Class 

Description 
Min Vehicle 

Weight 
(Unloaded) 

Max 
Vehicle 
Weight 

3 
Heavy duty pick-up, small box truck, 

walk-in van, step vans 8000 14000 

4 Heavy duty pick-up, small box truck, 
city and parcel delivery, large walk-in van 

8000 16000 

5 Two-axle, six-tire, single-unit trucks, large 
walk-in van, city delivery truck 

10000 19500 

6 Two-axle, six-tire, single-unit trucks, beverage 
trucks,, parcel delivery 

12000 26000 

7 Four or fewer axles, refuse trucks, semi-tractor, 
less than truckload cargo (containers) 12000 33000 

8 Four or more axle single-trailer trucks, heavy 
semi-tractor, dump truck, refrigerator truck 33001 80000 

 

Figure 8.1 shows the estimated population of Class 3-8 in-state registered vehicles and total annual 
vehicle miles travelled by vehicle class and year from 2018 to 2040 (EMFAC 2017).  For the vehicle 
population considered, light commercial vehicles represent about 68% of vehicles and 58% of annual 
VMT.  Total VMT across these vehicle categories is expected to increase between 2020 and 2040 
primarily due to increased use of medium and heavy commercial vehicles.   For example, VMT from 
Class 6 in-state registered vehicles is expected to increases by 2.7 million VMT annually by 2040. 
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Figure 8.22 Vehicle Population (lines) and Annual Miles Travelled by Vehicle Class  (Branch, 2017) 

 

8.3.2 GOODS MOVEMENT VOCATIONS 

Costs and emissions were estimated for each vehicle class across a representative set of vocation data.  
Many of the vocations and duty cycles that HDVs are designed for involve high power requirements, 
brake and tire wear, and other operational inefficiencies that increase vehicles’ fuel requirements and use-
phase emissions rates (Holmberg, Andersson, Nylund, Mäkelä, & Erdemir, 2014).  The significant factors 
that affect emissions from HDVs include: vehicle class and weight, driving cycle, vehicle vocation, fuel 
type, engine exhaust aftertreatment, vehicle age, and terrain (Clark et al., 2002).  Studies have established 
the close links between duty cycle, fuel type, and vehicle energy demands (Simpson, 2005; Sovran & 
Blaser, 2003).  In fact, duty cycle can be the most significant driver of uncertainty in operational 
emissions estimates from HDVs (Yanowitz, McCormick, & Graboski, 2000).   

Data on freight vehicle operations were analyzed in order to evaluate the impacts of duty cycle, vehicle 
class, and load on costs and emissions.  Freight vehicle operations data were obtained from the National 
Renewable Energy Lab Fleet DNA Data Project (Walkowicz, Kelly, Duran, & Burton, 2014).  FleetDNA 
data is gathered from remote dynamometer trackers providing driving conditions and location at one 
second intervals. Table 2 describes the vehicle data used in this study.  As evidenced in Table 2, similar 
vehicle classes can travel 2 to 3 times as many miles per day across vocations, and average daily travel 
may not well reflect the routes and travel requirements of many vehicles in the fleet.    

In addition to daily travel distances, the driving route and driving conditions also influence fuel 
requirements.  The fuel required to operate a vehicle is primarily driven by physical forces (e.g. air 
resistance, rolling resistance, and inertia), vehicle efficiency, and auxiliary loads.  Figure 8.2 shows the 
duty cycle data by average speed and acceleration for each vocation and vehicle class.  Higher average 
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acceleration is associated with more frequent stops per mile and lower fuel economy.  Air resistance at 
higher average speeds can also be a significant driver of fuel consumption. 

                                                                                                            

Table 8.2 FleetDNA Vehicle Drive Cycle Data by Vocation and Vehicle Type 

Vehicle 
Class 

Vehicle 
Description Vocation Description 

Vehicle 
Records 

Total 
Trips  

Average 
Daily 

Driving 
Distance 

(mi) 

Max Daily 
Driving 
Distance 

(mi) 

3 Service Van Telecom 29 281 32.8 63.9 

8 Tractor Beverage Delivery 722 7480 70.6 339.2 

6 Straight Truck Warehouse Delivery 60 1076 93.0 191.5 

4 Step Van Parcel Delivery 271 2547 55.7 131.9 

6 Straight Truck Parcel Delivery 117 1079 28.28 85.2 

5 Walk In Parcel Delivery 299 4080 42.8 231.8 

4 Step Van Linen Delivery 291 3887 64.8 200.9 

6 Straight Truck Linen Delivery 19 76 62.3 90.8 

5 Walk In Linen Delivery 113 1775 77.7 261.7 

6 Straight Truck Food Delivery 357 3099 38.9 81.2 

8 Tractor Food Delivery 136 1453 164.4 568.3 

8 Tractor Local Delivery 292 3866 127.3 248.9 
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Figure 8.2 Average Speed and Acceleration by Duty Cycle and Vehicle Class in Fleet DNA 
Composite Data 
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Vehicle energy demands, or average fuel consumption per unit distance-mass travelled (specific fuel 
consumption – SFC), can be estimated from these data through Equation 1: 

Equation 1 

Ñ{` =
`J*FA ∗ jJ*FAd + F̀AÄÄ?|Ö + \(1 − áF*Ö*|)

áEAà*FCFJ?|
+

zJ�2â�*Ä
b^*ä ∗ TPu#

 

`J*FA =
1
2 ∗ q`å{ç

b^*ä
 

F̀AÄÄ?|Ö = NN` ∗ m 

Where: 

jJ*FA = WUtkY_XWVP>	usUUY 

\ = >ℎWtW>#UtPu#P>	W>>UlUtW#PkX 

Ñ{` =
{èUl

bWuu ∗ TPu#WX>U
 

`J*FA = WUtkY_XWVP>	tUuPu#WX>U 

F̀AÄÄ?|Ö = tkllPXm	tUuPu#WX>U 

NN` = >kUêêP>PUX#	kê	tkllPXm	tUuPu#WX>U 

q = WPt	YUXuP#_ 

`å = >kUêêP>PUX#	kê	WUtkY_XWVP>	tUuPu#WX>U 

 

SFC was estimated for each vehicle observation for empty and loaded masses as described in Table 2.  
The efficiency of the electric drive motor and regeneration motor are assumed to be 92% and 85% 
respectively based on values from (O'Keefe, Simpson, Kelly, & Pedersen, 2007; Schwertner & 
Weidmann, 2016).  For comparison, the assumed powerplant efficiency of an equivalent diesel engine is 
38%.  The estimated vehicle energy requirements in kWh per mile are shown in Figure 4.  Comparison 
with diesel vehicle efficiency is discussed in the results section. 
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Figure 8.23 Estimated Electric Truck Energy Demands per Mile 

 

8.3.3 VEHICLE PURCHASE AND OPERATING COSTS 

Vehicle purchase and operations cost data were drawn from the AFLEET model and other existing data 
sources (Burnham, 2016).  Electric truck purchase costs are broken down into three categories: the chassis 
(e.g. vehicle body and powertrain); the battery system; and charging infrastructure.  The battery system, 
which can represent 50% to 70% of the cost of new electric freight vehicles (Board, 2018), is discussed in 
the next section. Charging infrastructure is discussed with electricity costs in the section on charging 
strategies.  Table 3 shows the assumed purchase costs for the average (diesel) conventional alternative 
used to estimate abatement costs.  The electric chassis cost is assumed to represent the total vehicle 
purchase cost lest the battery system.   Battery cost and charging infrastructure costs are discussed in the 
following sections.  The purchase cost of conventional trucks is assumed to increase by 2% per year based 
on tightening emissions standards, while maintenance and repair costs are assumed to be constant over the 
study period. 
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Table 8.3 Purchase and Maintenance Cost Assumptions 

Vehicle 
Class 

Conventional 
Purchase Cost 

Conventional 
Maintenance 

Cost (per mile) 

Electric 
Chassis 

Purchase 
Cost 

Electric 
Maintenance 

Cost (per mile) 

Tires 
(per 
mile) 

Repairs 
(per 
mile) 

3 $39,500 $0.204 $27,650 $0.151 $0.04 $0.08 

4 $46,500 $0.201 $32,550 $0.139 $0.04 $0.06 

5 $65,000 $0.201 $45,500 $0.137 $0.04 $0.06 

6 $75,000 $0.204 $52,500 $0.162 $0.04 $0.05 

8 $90,000 $0.194 $63,000 $0.173 $0.04 $0.10 

(Note: battery system and charging infrastructure costs are variable and handled through scenario analysis 
described separately) 

 

8.3.4 BATTERY COSTS AND PERFORMANCE 

A forecast was developed to assess potential improvements in the cost and mass of future battery systems.  
Reduction in the costs of emerging energy technologies can result from increasing production scale, 
maturing supply chains, new efficiency gains, and new innovations.  The effects of industrial learning and 
knowledge acquisition can be characterized by technology experience curves (Neij, 2008).  Experience 
curves have a long history of use for examining the relationship between deployment of a technology and 
the price of a technology (Wright, 1936). Equation (1) shows the form of an experience curve, C(U), 
which is the unit cost of a lithium ion battery (LIB) in $/kW or $/kWh as a function of a given level of 
cumulative deployment (M). 

Equation 2 

`(M) = `} ∗ (M/M})]J 

 

Where `}= the initial cost, M}= the initial production factor, and a = the coefficient of learning.   

The Learning Rate (LR), shown in equation (2), represents the reduction in the unit cost of a technology 
with every increase in production.  It is commonly estimated using a base of two, and as such represents 
the reduction in costs of a technology with each doubling of cumulative production: 

Equation 3 

aN = 1 − 2í	
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The technology experience curve has been widely applied to photovoltaic (de La Tour, Glachant, & 
Ménière, 2013; Harmon, 2000), gas (Colpier & Cornland, 2002), and energy storage technologies 
(Matteson & Williams, 2015; Weiss, Junginger, Patel, & Blok, 2010). While traditionally used for 
retrospective studies, the LR model provides insight into the magnitude of impacts on technology prices 
from further increases in the rate of technology production 

We take the average of two potential scenarios for learning based on Niikvist (Nykvist & Nilsson, 2015): 
one, a whole industry average for large-format LIBs; and two, LIBs designed for high 
power/performance.  These scenarios are used to capture the range of potential cost improvements across 
submarkets for vehicle LIBs.  The Whole Industry Average scenario assumes an initial price of `}= 
$1585 USD/kWh (2011USD) with an average LR=14%.  The High Performance scenario, assumes an 
initial price of $725 USD/kWh and a LR=6%. As 18% learning rates are common in many emerging 
technologies (Kittner, Lill, & Kammen, 2017), these represent relatively conservative assumptions.   

Historical sales and production data were combined with forecasts of manufacturing capacity to estimate 
cumulative production (Figure 8.24 8.4). The forecast for annual production of LIBs is based on current 
and planned LIB cell manufacturing facilities constructions or expansions, as well as publicly available 
data on global LIB production capacity (Chung, Elgqvist, & Santhanagopalan, 2016; Curry, 2017).  All 
production facilities are assumed to produce 90% of their rated capacity. From now to 2030, annual 
production increases at an average rate of 5.5% per year.  After 2030, annual production grows linearly at 
2% per year through 2040.  The low price scenario represents learning across all applications of large 
format LIBs, and quickly declines to reflect the lowest market price as production increases.  This is 
contrasted with the high price scenario, where the initial price more closely reflects the entry point of 
high-power, large format LIBs into the vehicle market. 

 

 

Figure 8.24 Estimated Vehicle Battery Pack Costs 2015 to 2050 
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In addition to continued reductions in the costs of LIB systems, the specific energy, power, and cycle life 
of LIBs are also expected to increase over time.  A range of proprietary cathode chemistries, cell sizes, 
and architectures are used to build LIB packs for vehicles.  The effective battery pack energy density is a 
function of both cell performance and battery/thermal management systems, and there are significant 
opportunities for improvement.  LIB pack energy densities in passenger electric vehicles increased by 
some 50% compared to initial model offerings, while further increases in the cell energy densities by 
factors of 2 and 3 are possible with today’s LIB technologies (Thackeray, Wolverton, & Isaacs, 2012).  
Figure 8.25 illustrates the potential improvements in cell cathode energy density from transition to new 
anode materials and reductions in anode quantity. The magnitude and rate of improvements in LIB pack 
energy density were forecast based on theoretical values for current automotive cathode materials and 
technology development targets set by the Department of Energy for LIB cells and packs (Energy, 2017). 
Current pack energy density was estimated using the BatPAC Model for a pack based on nickel 
manganese cobalt (NMC) cells (Dunn, Gaines, Barnes, Sullivan, & Wang, 2014).  Based on 
improvements observed in light duty vehicle applications, pack energy density is assumed to increase by 
3% per year between now and 2040, increasing from 110 Wh/kg to almost 260 Wh/kg. 

 

Figure 8.25 Potential Improvements in Li-ion Cell Energy Density 

 

8.3.5 CHARGING STRATEGIES AND BATTERY CAPACITY 

The types and location of charging infrastructure, combined with vehicle charging schedules, influence 
both the costs and emissions attributable to vehicle charging events.  The availability of charging 
infrastructure also influences the battery capacity requirements for a given duty cycle.  Electric vehicle 
system charging levels (e.g. Levels 1, 2, and 3) are commonly used to characterize the different levels of 
power provided from charging systems.  For medium and heavy duty systems, higher power charging 
systems are likely required to meet duty cycle requirements given the larger capacity of batteries and high 
utilization of vehicles.  For each vocation, four charging infrastructure scenarios were evaluated: managed 
Level 2 over-night depot charging for a small fleet; managed Level 2 over-night depot charging for a 
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large fleet; managed depot DC Fast Charging; and finally, opportunistic DC fast charging.  Table 8.4 
shows the main costs for charger infrastructure for the three charging systems considered.   

 

Table 8.4 Electric Truck Charger System Costs (Burnham, 2016) 

EVSE Level Level 2 DC Fast 50kW 
DC Fast 
250kW 

Description 
Single Station 

(Cost per 
charger) 

Cost per 
charger 

Cost per 
charger 

Hardware $1,360 $15,000 $23,000 

Elect. Materials 0 $500 $500 

Other Materials $100 $500 $500 

Electrician Labor $220 $2,500 $2,500 

Other Labor 0 $14,000 $14,000 

Mobilization $140 $1,000 $1,000 

Permitting $20 $200 $200 

Transformer 0 $9,000 $18,000 

Maintenance  Cost (per year) $720 $1,200 $1,200 

Power Output (kW) 19 50 250 

Managed Charging ($/kWh) $0.05 - $0.12 $0.05 - $0.12 $0.08 - $0.14 

Unmanaged Charging ($/kWh) $0.07 - $0.20 $0.08 - $0.26 $0.08 - $0.26 

On-Route Charging ($/kWh) - - $0.06 - $0.09 

Demand Rate ($/kW) - $8 $8 

 

The cost of electricity consumed during charge events is a function of the utility rate schedule, which 
traditionally has two components for commercial customers: demand charges, which correspond to the 
highest level of power (i.e. kW) demand during the billing period; and usage charges, which is the rate 
charged per kWh of energy supplied.  Managed charging and lower power systems can be used to 
decrease the costs of charging vehicles by reducing demand charges for high-power, opportunistic 
charging that can occur during peak demand periods.  Charging costs are estimated from California utility 



156 

 

rate data obtained from the draft Battery Electric Truck and Bus Charging Cost Calculator (Version 3.0) 
created by the California Air Resources Board.   

Two main charge scheduling strategies were assessed, depot managed and opportunistic charging, as 
described in the scenarios above.  In depot charging scenarios, vehicles are assumed to have a single 
charge event per duty cycle, occurring overnight, and managed to minimize demand charges.  In 
opportunistic charging, vehicles are assumed to utilize high-power DC fast chargers while the vehicle is 
idle during the duty cycle to supplement electric range, with additional depot charging at lower power 
levels between duty cycles.  A key potential benefit of the opportunistic or on-route charging is to 
decrease the size of the vehicle traction battery system. To evaluate the opportunistic charging scenarios, 
we assessed the duration of stops and dwell times from the Fleet DNA data.  Figure  shows the average 
dwell time on the left.  For the opportunistic charging scenarios, we assume vehicles could be charged 
when the vehicle dwell time at the stop exceeds 30 minutes.  This results in approximately 12 to 18 
minutes of average on-route charging time assuming no deviation in route or duty cycle. 

 

  

Figure 8.6 Average Dwell Time at Stops in Minutes 

 

Based on the charging strategy, we then evaluated the potential battery capacities required to meet each 
duty cycle.  Figure 8.7 shows the percentage of trips by total fuel energy requirement for electric trucks 
by vehicle class, based on the trips observed in the Fleet DNA database.  For the depot charging scenario, 
the battery capacity must be sufficient to meet the vehicle energy requirement for the duty cycle.  It is also 
important to restrict the depth of discharge of the battery to prevent damage to the battery system. 
Therefore, we assume 80% of the battery capacity in the depot charging scenario is sufficient to deliver 
90% of daily energy requirements by duty cycle.  In the opportunistic charging scenarios, the battery 
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capacity is estimated to be the daily energy requirement, less energy delivered during opportunity DC fast 
charge event(s). The minimum battery size is constrained at 25 kWh for all scenarios. 

For all scenarios, the maximum duration of over-night depot charging was assumed to be 11 hours.  For 
Level 2 charging systems, this results in approximately 200 kWh in potential charging (e.g. 11 hours at 19 
kW, or 209 kWh per day).  For Class 8 vehicles, the minimum duty cycle energy requirement exceeded 
the maximum deliverable energy and Level 2 charging was not considered for the Class 8 vehicle 
scenarios. 

  

 

Figure 8.7 Energy Required by Duty Cycle and Daily Travel Distance 

 

8.3.6 GENERATION OF ELECTRICITY 

A key factor in estimating emissions from operation of electric freight vehicles is quantifying the 
emissions associated with generation of electricity for vehicle charging. Emissions from electricity were 
estimated based on a forecast of average utility generation mix.  Even for a particular resource, emissions 
and combustion efficiency can vary significantly between generator technologies.  For example, 
combined cycle natural gas generators are more than twice as efficient as conventional combustion 
turbines (Spath & Mann, 2000), so not only the resource mix, but the generator technology mix must be 
modeled.  The projected electricity generation by fuel source was obtained from the Energy Information 
Agency’s Annual Energy Outlook (2018) and National Energy Model regional electricity generation 
module for the California sub region of the Western Electricity Coordinating Council region (CAMX).  
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Emissions were evaluated under the reference case or business as usual (BAU) scenario. The average 
emissions rate (z{C) is estimated as the mass of GHG equivalent emissions per unit of delivered energy 
with Equation 4, where the weighted generation by year (t) and fuel source (x) is multiplied by the life 
cycle inventories (LCI) of emissions species (e) by fuel type (x), and the impact characterization factors 
for each species (M) 

Equation 4 

z{C =
{èUlC2

∑ {èUlC22
∗ a`Ç2* ∗ b* 

 

The resource mix was broken into five fuel source categories: coal, natural gas, renewables, nuclear, and 
fuel oil. Generator technology LCI data were drawn from the GREET 1 model (Argonne National 
Laboratory, 2017), and a representative LCI was estimated for each fuel source based on the net 
generation by generator type for each regional scenario (US EPA, 2016). 

 

8.3.7 CONVENTIONAL VEHICLES AND EMISSIONS FROM OPERATION 

In order to estimate the magnitude and cost of avoided emissions, the performance of gasoline and diesel 
pathways were also evaluated for the five vehicle classes.  For conventional gasoline and diesel freight 
vehicles, there are a multitude of emissions sources from fuel production, to fuel combustion, vehicle 
operation, and vehicle storage.  Table 8.4 describes the categories of operations emissions tracked in the 
EMFAC database.  While electric and conventional freight vehicles will both cause emissions from fuel 
production, break and tire wear, there are several sources of exhaust and operational emissions from 
gasoline and diesel vehicles with different appropriate units of analysis.  Emissions associated with 
start/stops, storage, or idling, which are key sources pollution from diesel vehicles, can be highly variable 
across duty cycles with comparable distances and speeds. To ensure a comparable counterfactual across 
the duty cycles assessed, the speed weighted emissions for each vehicle class were obtained from the 
EMFAC database.  The average life cycle emissions were estimated for each composite drive cycle using 
the duty cycle and vehicle speed data.   

 

Table 8.5 Sources of Operations and Combustion Emissions for Freight Vehicles (Branch, 2017) 

Process type Unit EMFAC Associated Data 

Running Exhaust gram/veh-mile VMT by Speed Bin 

Idle Exhaust gram/veh-idle hour Number of Idle Hours 

Start Exhaust gram/veh-start Number of starts 

Hot Soak Evaporative gram/veh-start Number of starts 
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Running Loss Evaporative gram/veh-hour Vehicle running hour 

Partial Day Running Loss Evaporative gram/veh-hour Vehicle Population 

Multi-Day Running Loss Evaporative gram/veh-hour Vehicle Population 

Partial Day Diurnal Loss Evaporative gram/veh-hour Vehicle Population 

Multi-Day Diurnal Loss Evaporative gram/veh-mile Vehicle Population 

Brake Wear gram/veh-mile VMT over all speed bin 

Tire Wear gram/veh-mile VMT over all speed bin 

 

 

8.3.8 CONVENTIONAL FUEL PRODUCTION EMISSIONS 

The production of fuel for conventional vehicles requires recovery of raw crude oils, refining, and 
distribution.  An emissions inventory for gasoline and diesel in California was obtained from the GREET 
Model from Argonne National Laboratory.  Values were converted to the per gallon equivalent for diesel 
or gasoline using the lower heating value for each respective fuel.  The US national average gasoline 
(Gasoline, Table 8.6), is provided for comparison. 

 



160 

 

Table 8.6 Emissions from Producing, Refining, and Distributing Gasoline and Diesel Fuels  

Inventory Flow Gasoline 
California 
Gasoline 

Low Sulfur 
Diesel 

Unit 

Total Energy  31,550 28,252 36,413 Btu/gal 

WTP Efficiency 78.1% 79.9% 82.7%  

Fossil Fuels 29,926 26,788 34,539 Btu/gal 

Coal 2,314 1,915 2,671 Btu/gal 

Natural Gas 18,796 18,074 21,694 Btu/gal 

Petroleum 8,815 6,799 10,174 Btu/gal 

Water consumption 6 7 7 gal/gal 

CO2 (w/ C in VOC & CO) 1,652 1,416 1,907 g/gal 

CH4 19 21 22 g/gal 

N2O 0 0 0 g/gal 

GHGs 2,313 2,130 2,669 g/gal 

VOC 3 3 4 g/gal 

CO 2 2 2 g/gal 

NOx 4 5 5 g/gal 

PM10 0 1 0 g/gal 

PM2.5 0 0 0 g/gal 

SOx 3 3 3 g/gal 

BC 0 0 0 g/gal 

OC 0 0 0 g/gal 

 

8.3.9 CONVENTIONAL FUEL PRICES 

A forecast for conventional fuel prices was obtained from the US Energy Information Administration fuel 
price components analysis for the US pacific region.  (Administration, 2019).  The price of conventional 
fuels can be volatile, but average fuel prices are expected to increase steadily over the next two decades 
(Figure). 
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Figure 8.9 Retail Price of Gasoline and Diesel in California, 2018 – 2050 

 

8.3.10 POLLUTION DAMAGES 

Exposure to concentrations of fine particulate matter and other criterial pollutants is associated with 
negative health impacts, including asthma, increased risk of cancer, and premature mortality (Fann, 
Baker, & Fulcher, 2012).  HDVs are of particular concern as they emit high levels of particulate matter 
and a complex mixture of pollutants including ozone precursors. The South Coast Basin, which includes 
Los Angeles County, represents approximately 10% of the US population, but 34% of the population-
weighted national exposure to ozone above the 8-hour limit. NOX is a key ozone precursor and a 
combustion by-product from both diesel and natural gas engines. According to California’s Mobile 
Sources Emissions Inventory and Model, trucks are expected to remain the largest share of daily NOx 
emissions in both the South Coast and neighboring San Joaquin Valley for the near future.   

The Air Pollution Emission Experiments and Policy analysis (AP2) model is an integrated assessment 
model that links emissions of air pollution to exposures, physical effects, and monetary damages in the 
contiguous United States (Muller & Mendelsohn, 2007).  The AP2 model was used to estimate the cost of 
pollution damages for ground level sources by air basin for California, adjusted to 2018 dollars using the 
consumer price index.  Two scenarios for pollution and marginal damages were considered: one, a BAU 
scenario assuming continued use of conventional diesel and gas vehicles through 2040; and two, a 
scenario assuming 100% electrification of Class 3-8 vehicles by 2040.   

8.4 RESULTS 
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This section reports the estimated life cycle emissions and costs for both electric and conventional freight 
vehicles.  Emission and costs are reported in two functional units to represent the performance of the 
technology system, namely per mile travelled and per ton-mile.  The ton-mile functional unit reflects the 
average load and capacity of the vehicle over typical duty cycles. The life cycle abatement costs for each 
class is defined as the difference in life cycle costs for each truck class (conventional vs. electric), divided 
by the difference in the life cycle emissions inventories.  The result is a vector of cost per unit emissions 
avoided by emissions category and performance metric.  The total baseline emissions for the California 
population of Class 3 – 8 vehicles is then compared to the potential emissions reductions from 100% fleet 
electrification by 2040.  Pollution damage costs and avoided damages are then estimated based on 
projected in-state truck activities.   

8.4.1 CONVENTIONAL FREIGHT VEHICLES 

The life cycle costs of operating a conventional freight vehicle are primarily variable, namely fuel costs.  
The average life cycle cost for current Class 3 – 8 vehicles over an average 12 year service life was found 
to range from $112,592 for Class 3, to $639,276 for a Class 8 truck.  But, the average does not well 
describe the absolute cost of some observed cases, where high utilization and fuel costs corresponded 
with total life cycle costs an order of magnitude higher than average (Figure 8.10). 

 



163 

 

 

Figure 8.10 Life Cycle Cost of Conventional (Gasoline and Diesel) Class 3 to 8 Vehicles 

 

The mean estimated GHG emissions rate of Class 3-8 gasoline and diesel vehicles are shown in Figure . 
For GHGs, emission range from 546 to 1622 g/mile on average.  Emissions of oxides of nitrogen (NOx) 
were found to range from 0.3 g/mile for service trucks and vans, to 3.4 grams per mile for Class 8 tractor 
trucks on average.  Figure 11 also reflects the considerable outliers in some emissions categories related 
to duty cycles with frequent stops or other inefficiencies.   
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Figure 8.11 Emissions per Mile for Conventional Class 3-8 Vehicles (DSL = Diesel, GAS = Gasoline) 

 

To calculate the ton-mile emissions, the emissions rate per mile was divided by the estimated average 
load for each vehicle class (March, 2001).  The average cargo load was calculated based on the vehicle 
capacity and reflects the need for return links or ‘dead-heading’ in most cargo distribution.  While tank 
and trailer trucks can operate at maximum loads 80% of the time, vans and service vehicles ‘weight-out’ 
less than 20% of the time. Table 8.6 shows the per ton mile emissions for each of the scenarios.  The mid-
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sized, class 5 trucks had higher emissions on average due to a combination of their more limited capacity 
and typical vocations.  The Class 8 vehicles have much lower emissions on a per ton mile basis, but 
require much greater levels of cargo consolidation and are not amendable to all vocations. 

 

Table 8.7 Average GHG Emissions Rate (g/ton-mile) for Conventional Vehicles by Year (DSL = 
Diesel, GAS = Gasoline) 

Fuel 
Emission 

Type 
Class 3 Class 4 Class 5 Class 6 Class 8 

DSL CH4 0.56 0.50 0.47 0.46 0.28 

DSL CO 0.44 0.32 0.13 0.11 0.12 

DSL GHGs 501.72 420.39 544.58 440.85 190.26 

DSL N2O 0.07 0.06 0.08 0.07 0.03 

DSL NOX 0.27 0.20 1.52 0.98 0.40 

DSL PM10 0.11 0.09 0.10 0.07 0.02 

DSL PM2.5 0.05 0.05 0.05 0.03 0.01 

DSL SOX 0.08 0.07 0.07 0.07 0.04 

DSL VOC 0.26 0.21 0.09 0.09 0.06 

GAS CH4 0.54 0.47 
   

GAS CO 0.74 0.40 
   

GAS GHGs 815.53 692.01 
   

GAS N2O 0.02 0.02 
   

GAS NOX 0.27 0.21 
   

GAS PM10 0.09 0.08 
   

GAS PM2.5 0.04 0.04 
   

GAS SOX 0.09 0.08 
   

GAS VOC 0.31 0.19 
   

 

8.4.2 E-TRUCK LIFE CYCLE COSTS AND EMISSIONS 
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The median life cycle cost of electric Class 3-8 vehicles is comparable or equivalent to current 
conventional vehicles in many applications (Figure 8.12).  The wide distribution of outcomes relates to 
both variability in electricity prices (e.g. managed vs. unmanaged charging), as well as the variations in 
duty cycles. For the current model year, the median life cycle cost ranged from $79 thousand for Class 3 
vehicles to $327 thousand for Class 8 tractors.  While masked in the wide distribution of outcomes, the 
median cost of electric Class 3-8 vehicles are expected to decline between 2018 and 2040 due to 
reductions in the costs of battery systems (Figure 8.13) 

 

 

Figure 8.12 Life Cycle Costs of Electric Class 3-8 Vehicles 
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Figure 8.13 shows the estimated cost of the battery pack for each vehicle class by model year.  Significant 
reductions in battery pack costs did not correspond with significant decreases in the overall life cycle 
costs of electric Class 3-8.  This is due to the large share of fuel costs for these vehicles, as well as the 
significant variability in electricity prices for charging, which ranged from a few cents to close to one 
dollar per mile.   

 

 

Figure 8.13 Battery Pack Cost by Year and Vehicle Class 

 

The emissions rates of both conventional and electric freight vehicles are expected to change over time.  
For conventional vehicles, this is primarily due to the increased use of emissions control devices and 
other efficiency improvements.  Though not considered in this study, emissions rates could also change 
due to fuel blending and substitution.  For electric vehicles, in addition to potential improvements in 
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efficiency, the technologies and fuel sources used to generate electricity are also changing.  Figure  shows 
the emissions rate per mile changing over time in line with these shifts in electricity generation.   

 

 

Figure 8.14 Emissions per Mile for Electric Trucks, 2018 - 2040 

 

Table 8.8 shows the average emissions rate for electric trucks over the time horizon divided by the 
effective cargo capacity.  While the emissions rates for electric trucks change dramatically, they are 
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relatively constant after 2024 compared with the prior decade.  The values in Table 8.8 then primarily 
reflect the estimated emissions rate for electric trucks operating in a future (cleaner) grid.   

 

Table 8.8 Emissions per Ton-mile for Electric Class 3-8 Vehicles (g/ton-mile) 

Emission Type Class 3 Class 4 Class 5 Class 6 Class 8 

CH4 0.45 0.40 0.38 0.37 0.23 

CO 0.13 0.11 0.11 0.10 0.06 

GHGs 158.44 140.21 132.92 129.69 79.58 

N2O 0.00 0.00 0.00 0.00 0.00 

NOX 0.15 0.13 0.13 0.12 0.08 

PM10 0.01 0.01 0.00 0.00 0.00 

PM2.5 0.00 0.00 0.00 0.00 0.00 

SOX 0.05 0.05 0.05 0.04 0.03 

VOC 0.03 0.02 0.02 0.02 0.01 

 

8.4.3 PER-MILE EMISSIONS ABATEMENT 

Emissions abatement represents the avoided emissions from electrification of a class of freight vehicles.  
As unit reductions (e.g. replacement of a specific vehicle or fleet) and system wide reduction are both of 
concern, emissions abatement is estimated per mile travelled and for the system wide emissions 
reductions for California given electrification of the in-state Class 3-8 vehicle population.  As emissions 
from electric vehicles and conventional vehicles both change over time, we first estimated the emissions 
avoided for deploying an electric truck in any vehicle class in each year between 2018 to 2040.  

Figure 8.15 shows the emissions abatement achieved by replacing conventional trucks with electric trucks 
in grams per mile across the vehicle and powertrain scenarios considered. Most emissions, including 
GHGs (which include CO2, CH4, and N2O reported in units of CO2-equivalent (CO2e)), show that 
electrification reduces emissions; however, electrification could result in increased emissions of CH4 and 
SOX under some use cases.  These tended to be limited outliers, and the potential reduces over time with a 
further shift toward renewable electricity generation.   
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Figure 8.15 Emissions Abatement (grams/mile) from Electrification of Diesel (DSL) and Gasoline 
(GAS) Trucks by Vehicle Class.  
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8.4.4 STATEWIDE RESULTS 

Now we assess the total magnitude of potential abatement from truck electrification, as well as the 
avoided pollution damages.  Combining the forecasted vehicle population and activity data shown in 
Figure 8.22 with emissions rates for conventional vehicles by model year, we first estimated a baseline 
emissions inventory representing BAU (Figure 8.16).  Under this BAU case, life cycle emissions remain 
flat across most categories despite increasing vehicle activity.  This is due to the gradual adoption of more 
efficient vehicles and emissions control technologies for conventional gas and diesel vehicles.   

 

 

Figure 8.16 BAU Statewide Emissions from Conventional Class 3-8 Trucks 
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In order to estimate the potential abatement from a state-wide fleet electrification target, we assume 100% 
of VMT must be electric by 2040 with a linear rate of increase in fleet size from 2020 to 2040 (Figure 
8.17).  This translates to a target fleet of over 250 thousand Class 3-8 electric vehicles deployed by 2030, 
and 500 thousand by 2040.   

 

 

Figure 8.17 Assumed Electric Truck eVMT (Bars) and Vehicle Population (Lines) 

 

Given the deployment trajectory in Figure 8.17, we then estimated the emissions abatement and damages 
avoided given a 100% electrification by 2040.  As the fleet costs for electric was generally lower than the 
conventional BAU, average abatement costs trended toward or below zero.  As distribution of electric 
truck costs was much wider and skewed higher than conventional alternatives, the mean or average 
becomes a poor test statistic to compare abatement potential and cost.  Figure 8.18 shows the upper 
probability interval (95%) on the cost of abatement in dollars per ton.  We can observe that abatement 
costs are likely higher for light commercial (Class 3 and 4) vehicles as compared to Class 6-8.   
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Figure 8.18 Abatement Costs for 100% Electrification by 2040 ($/tonne) 

 

The estimated range of avoided emissions in metric tons per year by vehicle class is shown in Figure 8.19. 
For GHGs (CO2e emissions), the largest share of potential abatement comes from electrification of Class 
6-8 vehicles, where efficiency gains are greatest.  The relative certainty of GHG emissions benefits from 
truck electrification is contrasted with the wide intervals suggested for abatement of key pollutants like 
fine and ultrafine particulate matter.  Class 3 and 4 vehicles are large contributors to PM and VOC 
emissions.  Electrification of medium sized (Class 3 and 4) vehicles resulted in a wide range of potential 
outcomes. Full electrification by 2040 results in a reduction in GHG emissions of 102 to 148 million 
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metric tonnes of CO2 equivalents per year, and approximately 10 thousand metric tonnes of fine and ultra-
fine particulate matter.   

 

 

 

Figure 8.19 Statewide Emissions Abatement from Electrification of Class 3-8 Trucks 
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Reductions in emissions from truck electrification would have additional societal benefits in the form of 
reductions in the incidents of negative health impacts or premature mortality from conventional truck 
pollution.  While the benefits of GHG emissions abatement are global, avoided air quality pollutants 
benefits local communities.  This is particularly true in communities that already experience 
disproportionately high concentrations of pollutants.  The avoided cost of damages in Figure  is estimated 
for in-state Class 3-8 vehicles, modelled based on the weighted pollution damages and truck activity in 
each air basin.   

 

 

Figure 8.20 Avoided Pollution Damages per year in California from Class 3-8 Truck Electrification 

 

Total pollution related health damages from conventional Class 3-8 vehicles were estimated to range from 
to $971 to $2,179 million dollars in 2018.  Electrification could reduce pollution related damages by $507 
million dollars per year by 2025, and by some $1.6 billion dollars on average by 2040.  Electrification of 
Class 3 and 4 trucks resulted in a wide range of emissions outcomes, but the potential benefits with 
respect to avoided pollution damages are quite significant (Figure 8.20).    



176 

 

8.5 DISCUSSION 
The rapidly falling costs and improving performance of LIBs are enabling an increasingly wide array of 
plug-in electric light and heavy-duty vehicle technologies (PEVs). Nearly 30 GWh of LIBs have been 
deployed in US light-duty PEVs since 2012.  The most rapid growth in the global market for PEVs is now 
occurring in China, where over 30 GWh of LIBs for were deployed in truck and bus applications in 2017 
(Yearbook, 2017).  Global manufacturing capacity for LIBs is expected to reach 250 GWh by 2020, and 
could surpass annual production of lead acid batteries (~500 GWh/year) by the year 2040 (Curry, 2017). 
As sales of PEVs have increased, the average capacity of batteries in PEVs have also increased by some 
32 kWh/vehicle in the US.   If the trend continues, by 2020 the average vehicle sold would have three 
times the battery capacity of the comparable passenger PEV a decade earlier. 

Vehicle electrification is also a primary strategy for reducing urban pollution and climate-forcing 
emissions from transportation. Inefficient, fossil-fuel combustion engines are a major driver of pollution 
and negative health impacts near roadways, and contribute almost a third of CO2 emissions from 
developed countries (IEA, 2017). PEV technologies have matured more rapidly than other alternatives, 
such as hydrogen fuel cells, while widespread adoption of biofuels have encountered both constraints on 
supplies (Janaun & Ellis, 2010) as well as cases where emissions intensity were equivalent to 
conventional diesel and gasoline (O’Hare et al., 2011; Searchinger et al., 2008). Programs to incentivize 
the deployment of PEVs directly or indirectly subsidize the price and production of large format LIBs 
(Prior, Wäger, Stamp, Widmer, & Giurco, 2013).  In the US, California and nine other states have EV 
sales targets through the Zero Emissions Vehicle credit program23; California has enacted multiple 
incentive programs to reach a target of 5 million PEVs sold by 2030, which would exceed 15% of new 
vehicle sales (CARB, 2015; OPR, 2013; Witcover et al., 2015).  The European Union is also seeking to 
have 30% of new vehicle sales be electric by 2030, while several countries and cities have committed to 
100% electric vehicle sales goals or bans on conventional, fossil vehicles.  China has taken the lead in 
PEV deployment, with sales likely to exceed one million vehicles per year by 2020, in addition to 
deployments of more than 500,000 electric HDVs.  The push for passenger PEVs has a direct effect on 
battery technology improvement and reductions in cost over time. 

8.5.1 BATTERY PACK SIZE AND COST 

As LIBs have gotten cheaper, LIB systems for vehicles have gotten larger and demands higher.  In light-
duty vehicles, this looks like 20 kWh per vehicle in increasing battery size over the last 5 years.  In the 
HDV sector, battery capacities for some models of electric buses have doubled in just two years, from 
300 to 600 kWh (Center, 2012, 2017).  Historically, the prohibitive costs and additional mass of large 
batteries have been the primary hurdle limiting PEV applications.  Today, HDV applications are targeting 
systems between 350 and 600 kWh, such as the much publicized Tesla semi-truck.  

                                                   

23 Connecticut, Maryland, Massachusetts, New York, Oregon, Rhode Island, Vermont New 
Jersey, and Maine 
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Larger LIB systems could also impact vehicle weight. While vehicle light-weighting could be used to 
offset a portion of the battery weight, material substitution strategies can have the adverse effect 
increasing life-cycle GHG emissions of vehicles (Kelly, Sullivan, Burnham, & Elgowainy, 2015; Kendall 
& Price, 2012). Increasing vehicle weights is a concern for the maintenance and design of pavement and 
road infrastructure (Cebon, 1989), while potential reductions in cargo capacity is a key issue for freight 
applications. Few studies have considered the potential impacts of battery systems on vehicle weight and 
axel loads, and particularly their effects on payload capacity of electrified trucks.  The addition of a 
battery system exceeding 2,000 kg in mass could result in a reduction in the effective payload capacity of 
the loaded vehicle due to restrictions on axle weights.  As battery systems improve, increases in energy 
and power density at the pack level could enable further applications. 

Figure 8.21 shows a range of estimated battery pack cost, mass, and percentage of vehicle cargo capacity 
for 2018 in white and 2030 in grey.  Currently, battery packs can represent 20% or more of the vehicle 
cargo capacity.  By 2030, both the costs and mass of the equivalent sized battery pack are expected to 
decrease by almost 50%.  
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Figure 8.21 Electric Class 3-8 Vehicle Battery Cost and Mass 2018 vs 2030 

 

There are some potential effects on increasing battery capacity and range that are not analyzed here, but 
could be important for PEV performance and adoption.  First, large battery capacities could lead to 
significant improvements in battery life and reduced battery capacity fade in future PEVs.  Reducing the 
depth of discharge of LIBs remains one of the most effective methods for improving cycle life, which 
usually requires oversizing the battery for the duty cycle (Barré, Suard, Gérard, & Riu, 2015).  Given 
appropriate storage conditions (Waldmann, Wilka, Kasper, Fleischhammer, & Wohlfahrt-Mehrens, 
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2014), larger batteries could remain in service longer, thereby reducing demand for battery replacements. 
Thus, while not immediately obvious, increasing battery material demands initially, could reduce battery 
material demands over the vehicle life cycle if battery replacement(s) are avoided.  There is also the 
potential for positive feedback loops with respect to improving PEV performance and battery longevity, 
and more widespread adoption of PEVs (or adoption of PEVs in new vehicle sectors). 

8.5.2 RESOURCE CONSTRAINTS 

Needed growth in production capacity of LIBs for PEVs may cause unintended environmental 
consequences throughout the supply chain of raw material acquisition and component manufacturing.  A 
number of studies and recent articles have drawn attention to the potential challenges of rapidly 
increasing demand for lithium and cobalt.  While dramatic increases in the price of lithium may not be 
immediately impacting the price of batteries today (Ciez & Whitacre, 2016; Maxwell, 2015), there are 
notable examples of local environmental and social impacts inflicted on communities in South America 
expanding demand for LIB cathode materials ("Clean energy—an increasingly precious metal," 2016; 
Jaffe, 2017), and cobalt in Africa (Frankel, 2016). There are also examples of supplies of minor materials 
disrupting the supply of major technologies (Eichstaedt, 2011).   

The term critical energy materials is used to refer to a class of materials used in LIBs, permanent magnets, 
and photovoltaics with considerable risk of supply disruption, constraint, and significant environmental 
impact (Erdmann & Graedel, 2011). Given expected growth in demand for LIBs to meet low carbon 
transportation objectives, the low abundance of some LIB material elements in the lithosphere, but 
perhaps more importantly, the highly concentrated production of particular materials in a single country 
or region, understanding future demand for LIBs may be crucial for avoiding significant supply 
disruptions as well as social and environmental impacts for producing communities.  

A number of recent studies have sought to examine potential resource constraints for lithium (Gruber et 
al., 2011; Mohr, Mudd, & Giurco, 2012; Pehlken, Albach, & Vogt, 2015; Speirs, Contestabile, Houari, & 
Gross, 2014; Swart, Dewulf, & Biernaux, 2014; Vikström, Davidsson, & Höök, 2013; Ziemann, 
Grunwald, Schebek, Müller, & Weil, 2013), with the exception of (Olivetti, Ceder, Gaustad, & Fu, 2017), 
none have included LIBs over 50 kWh.  While there is considerable uncertainty in the amount of lithium 
or cobalt required for a given battery chemistry, the aforementioned studies also use lower assumptions 
for materials required (<4 kg per vehicle).  Resource availability may become an issue with potential for 
increasing system sizes in addition to emerging applications for ever larger systems.  Further research 
should consider how the changing costs and performance of LIBs will affect LIB design and system 
selection for future vehicles. 

8.6 CONCLUSIONS AND NEXT STEPS 
This research demonstrates a method for estimating the costs, magnitudes, and benefits of emissions 
reductions from vehicles used for freight goods movements.  The key findings include that battery electric 
trucks could avoid significant emissions of GHG and air quality pollutants, while providing overall cost 
savings in some applications. The value of avoided pollution health costs and premature mortality from 
truck electrification were also significantly higher than the estimated increase in private (vehicle) costs.  
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The report also provides emissions inventories for Class 3-8 conventional and electric vehicles by cargo 
mass (e.g. ton-mile) that reflects the full fuel cycle. 

A key next step will be to expand the scope of the cost and LCA models to include the production of 
vehicle and battery systems.  Though fuel cycle environmental impacts tend to dominate the life cycle 
impacts of all vehicles, the environmental impacts and material requirements of battery and vehicle 
powertrain systems may also be a source of significant environmental impacts.  In addition, as the 
electricity grid transitions to greater proportions of renewable energy sources, the proportional 
contributions of batteries in an electric truck’s life cycle will grow.  LIB manufacturing processes require 
significant inputs of materials and energy, and are likely to have a significant contribution to emissions 
associated with vehicle production.  In addition, end-of-life management processes for LIBs are not well 
characterized and could create opportunities for downstream hazards.  

Incentives for adoption of zero-emissions truck technologies, like electric trucks, can create co-benefits in 
the form of criteria pollution abatement.  The value of those incentives, with respect to avoided damages, 
is also regional due to exposure and incidence.  Future research will also focus on looking at the spatial 
distribution of avoided damages and relate those damages back to regional truck activity, as well as 
statewide and local fuel and purchase incentives.   
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9. CONCLUSIONS 
 

Addressing climate change and local environmental impacts are the principle challenges for this and 
future generations. The confounding factors for these problems include inequity, social justice, and the 
drive for continued economic development. Vehicle electrification combined with energy system 
integration has emerged as one of the most viable pathways for deep decarbonization (Chu & Majumdar, 
2012). The research interests underpinning this dissertation are guided by the larger movement towards 
electrification of light and heavy-duty vehicles and linkage with low-carbon, renewable energy systems. 
There is clearly a need to better understand the distribution of environmental impacts and costs on local 
and global scales. 

This dissertation explores the performance, costs, and environmental impacts of batteries and electric 
vehicles. In general, it finds that vehicle electrification has the potential to deliver significant emissions 
reductions when compared to continued reliance on conventional gas and diesel vehicle technologies.  
However, the magnitude of these reductions is highly dependent on assumptions related to how vehicles 
are charged (e.g. electricity grids), how vehicles are operated, and to a lesser but still significant extent, 
how vehicles are designed. For light duty vehicles, this research shows that trends in vehicle and battery 
design have the potential to reduce the greenhouse gas emissions reduction potential of vehicle 
electrification.  For heavy duty vehicles, this research suggest the benefits of vehicle electrification in 
reduced air pollution are significant and should be considered in any economic analysis.    

The body of studies presented in this dissertation are limited.  None consider the potential for modal 
substitution (e.g. switching from a private vehicle to a carpool, train, bus, bicycle, or electric scooter). 
While the travel patterns of vehicles are discussed, the actual determinants of travel behavior and impacts 
of travel behavior on emissions from light duty EVs are not considered.  In summary, more research is 
required to address the central question examined in this dissertation (i.e. “does vehicle electrification 
make transportation more sustainable?”). 

9.1 NEXT STEPS 
This section discusses three potential next steps to be undertaken that would build upon this dissertation:  

9.1.1  END OF LIFE MANAGEMENT OF ELECTRIC VEHICLE BATTERIES 

Some 50 million metric tons of electronic wastes (E-waste) are generated globally each year, and less 
than one quarter of current global e-wastes are composed of “clean energy technologies” like large format 
LIBs used in EVs. In 2014, less than 16% of global e-waste recycling and end-of-life disposal was 
documented under formal processes (Balde, Forti, Gray, Kuehr, & Stegmann).  The potential 
environmental impacts of disposed or recycled batteries and the appropriate management strategies for 
retired batteries remain open research questions (Richa, Babbitt, Gaustad, & Wang, 2014; Wang, 
Gaustad, Babbitt, & Richa, 2014; Zhang et al., 2018). Spent LIBs are considered hazardous wastes, due to 
their high concentrations of lead, cobalt, copper, and nickel (Kang, Chen, & Ogunseitan, 2013).   

After primary use in a vehicle, potential end-of-life (EOL) pathways for LIBs include reuse or 
repurposing (“second life”), materials recovery (recycling), and disposal. Characterizing the EOL stage 
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for LIBs is important in order to evaluate opportunities to reduce environmental impacts from improper 
disposal, and to account for benefits from displacement of mining and primary materials acquisition 
through recovery. E-wastes like photovoltaic modules and LIBs often have hazardous but potentially 
valuable materials (Fthenakis). 

Given the large capacity and high performance of modern vehicle batteries, retired batteries could still 
offer significant capacity in lower-power, secondary applications (e.g. battery storage for electricity grid 
applications). A growing body of research has examined the economic feasibility and environmental 
impacts of second-life applications (Ahmadi, Young, Fowler, Fraser, & Achachlouei, 2017; Ambrose, 
Gershenson, Gershenson, & Kammen, 2014; Martinez-Laserna et al., 2018; Martinez-Laserna et al., 
2016; Richa, Babbitt, Nenadic, & Gaustad, 2017).  LIBs depend on a short list of materials with unique 
properties and few substitutes. There may be environmental and economic trade-offs between mandated 
recycling programs and encouraging repurposing for secondary use, as well as barriers to developing 
necessary recycling infrastructure. 

There are important equity implications for managing the EOL of LIBs.  Globally, much current e-waste 
recycling occurs in ad-hoc or informal facilities with no environmental controls. This can result in high 
levels of human exposure to dangerous chemicals and heavy metals, and high levels of risk for vulnerable 
segments of the population (Ericson et al.; Orlins & Guan).  Studies have identified the continued role of 
informal disposers and middle-men in EOL management of LIBs from consumer electronics.  With the 
potential for significant environmental impacts from even formal recycling operations (Ogunseitan, 
2016), there is clear need for policies to promote safe and equitable disposal practices. 

The proposed next steps would include using system dynamics models coupled with techno-economic, 
life cycle assessment (LCA) models to predict the future flow and condition of end-of-life (EOL) LIBs 
and quantify the environmental impacts and economics of EOL processes.  The research would develop 
and refine strategies for sustainable life cycle management of LIBs, with a strategic focus on fleets and 
other large-scale deployments. 

9.1.3  GLOBAL STRATEGIES FOR LOW-CARBON, URBAN MOBILITY 

In an increasingly global world, the potential environmental impacts of technology transitions on 
developing economies are often poorly addressed. Developing and industrializing economies will 
undoubted by low carbon technology transitions both through global supply chains and technology 
transfer. Developing economies will continue to demand more energy as their economies grow; the 
challenge for sustainable development is not just to meet this demand with progressively more efficient 
and renewable technologies, but transform current paradigms of development and consumption.  

Not only does one quarter of the global population not have reliable access to electricity, even fewer have 
adequate access to mobility. Increasing rates of vehicle ownership and vehicle miles travelled are driving 
rapid increases in demand for energy in developing economies. For example, the Chinese vehicle fleet is 
projected to surpass that of the US within decade, and India now has the fourth largest volume of new 
vehicle sales globally (9). Most developed markets are characterized by saturated vehicle ownership and 
an ageing vehicle fleet, which contribute to slow fleet turnover. Developing vehicle markets are also 
characterized by a lack of appropriate alternative fuel vehicle designs or transit mode choices.  
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The proposed research would build upon methods and models developed in this dissertation and take a 
multimodal perspective on the drivers of demand for personal mobility. This would involve a focus on the 
underlying determinants of travel behavior (e.g. demand for goods and services), linking the potential for 
substitution of new modes/models (e.g. sharing, e-commerce, automation) and new technologies (e.g. 
electric vehicles and personal mobility devices) to reduce emissions and impacts associated with 
transportation systems.  It could also involve consideration of marginal abatement costs for electricity 
generation and infrastructure. The research could reveal, among other trends, the potential distribution of 
environmental impacts and inform the efficacy of incentive programs to support climate policy objectives.  

9.1.4  LIFE CYCLE BASED REGULATORY REFORM 

 “As we move toward a low-carbon economy, we need new policies that consider emissions in a systemic 
and systematic way.”  - Dan Sperling 

In the context of sustainable transportation, policy must take a more dynamic view of technological 
development; this means allowing for new technologies to emerge that challenge conventional models of 
mobility (e.g. autonomy and personal vehicle ownership), while still achieving emissions reduction 
targets (e.g. net reduction in emissions or average emissions per person mile traveled). One challenge will 
be to reconcile the tension between the need for simplicity and transparency in developing implementable 
and enforceable policy and the desire for scientific accuracy in emissions accounting.  LCA provides a set 
of analytical tools that could inform the design of performance-based evaluation systems.  Life-cycle 
based policies potentially offer more methodological accuracy than current systems, but could increase 
the costs of administration, and likely require a more complete understanding of emissions over the 
product life cycle.  

Previous research has shown that only regulating tailpipe emissions can lead to perverse outcomes for 
future vehicles, where vehicles with higher life cycle emissions but lower tailpipe emissions are preferred 
over vehicles with lower total emissions. Kendall and Price (2012) illustrated the risk of such an outcome 
in a case study of a future hybrid electric vehicle (HEV).  Their study showed a future HEV with higher 
life cycle emissions could be preferred over a vehicle with lower life cycle emissions simply due to the 
effects of light-weighting materials. Hawkins et al. (2013) arrived at a similar conclusion for BEVs, 
suggesting some form of life cycle-based emissions standards are required. At the fleet level, BEV 
incentive and credit programs must also be structured such as not to further erode the potential reductions 
in emissions through leakage or substitution (Jenn, Azevedo, & Michalek, 2016) 

The proposed research would posit lifecycle based policies that include upstream and material-related 
emissions for the next generation of vehicle technologies, and analyze the economic tradeoffs between 
LCA and conventional mobile source enforcement programs including with respect to economic costs, 
implement ability, enforceability, and efficacy.  The research would also seek to quantify some of the 
potential risks and uncertainties of expanding the types of climate mitigation and adaptations actions 
credited under policy, as well as tradeoffs and burden shifting. 
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APPENDICES 
A: DATA AND INFORMATION ON LITHIUM DEPOSITS 
The following materials provide support and additional documentation for the first chapter: 

The section is organized as follows: 

• S1: Full list of Lithium deposits and deposit information 

• S2: Lithium production cost data 

• S3: Recycling stock and flow model 
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S1 – Identified Lithium Deposits and Available Data 

Table S1-1 (below) details the data used to classify available deposits, reserves, and resources: 

Table S1-1: Lithium Deposit and Resource Data 

Deposit Name Country Type Mineral 
LI 
Grade 

Reserve 
(Mt) 

URR 
(Mt) 

Mg/Li 
Ratio 

Prod 
Model 

Bonneville Salt Flats USA Brine Brine 0.004 
 

1.97 100 BW 

Great Salt Lake USA Brine Brine 0.006 0.3 0.5 133.33 BW 

Searless Lake USA Brine Brine 0.0083 
 

0.03 4.1 BL 

Fox Creek Canada Brine Brine 0.01 0.3 0.5 10 BL 

Salton Sea USA Brine Brine 0.022 0.5 2 1.27 BL 

Silver/Clayton Peak USA Brine Brine 0.03 0.1 0.3 1.33 BL 

Qaidam/Qinghai/Taijinaier China Brine Brine 0.03 1 3.3 34 BL 

Smackover USA Brine Brine 0.038 0.5 1 20 BL 

Rincon Argentina Brine Brine 0.04 1.4 2.8 8.5 BL 

Dangxioncuo/DXC China Brine Brine 0.045 0.1 0.2 0.22 BL 

Salar del Hombre Muerto Argentina Brine Brine 0.062 0.85 0.9 1.46 BL 

Cauchari Argentina Brine Brine 0.062 0.5 0.9 2.84 BL 

Olaroz Argentina Brine Brine 0.09 0.2 0.3 2 BH 

Maricunga Chile Brine Brine 0.092 0.2 0.4 8 BH 

Salar de Uyuni Bolivia Brine Brine 0.096 3.6 10.2 20.83 BL 

Lake Zabuye China Brine Brine 0.097 0.8 1.5 0.01 BH 

Salar de Atacama Chile Brine Brine 0.14 16.1 35.7 6.4 BH 

Dead Sea Israel Brine Brine 0.002 1.9 2 1700 BW 

Sua Pan Botswana Brine Brine 0.002 
 

0.3 133.33 BW 

Brawley USA Brine Brine 0.005 
 

1 100 BW 

Beaverhill Lake Canada Brine Brine 0.005 
 

0.59 10 BL 

Diablillos Argentina Brine Brine 0.003 
 

0.9 8 BL 
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Sal de Vida Argentina Brine Brine 0.035 
 

0.3 2 BL 

Taghawkor Afghanistan Rock Spodumene 2.8 
 

0.002 
 

PH 

Helmand Basin Afghanistan Rock Spodumene 2.8 
 

0.2 
 

PH 

Katawaz Basin Afghanistan Rock Spodumene 1.6 
 

0.01 
 

PH 

Parun Afghanistan Rock Spodumene 1.5 
 

0.03 
 

PH 

Greenbushes Australia Rock Spodumene 1.9 0.6 0.7 
 

PH 

Mt Marion Australia Rock Spodumene 0.65 
 

0.02 
 

PL 

Mt Cattlin Australia Rock Spodumene 0.5 
 

0.07 
 

PL 

Koralpe Austria Rock Spodumene 0.78 0.1 0.1 
 

PL 

Aracuai/Cachoeira Brazil Rock Petalite 0.67 
 

0.023 
 

PL 

Deposit Name Country Type Mineral 
LI 
Grade 

Reserve 
(Mt) 

URR 
(Mt) 

Mg/Li 
Ratio 

Prod 
Model 

Big Bird/Curlew Canada Rock Spodumene 1.72 
 

0.2 
 

PH 

Moblan Canada Rock Spodumene 1.7 
 

0.04 
 

PH 

Bernic Lake/Tanco Canada Rock Spodumene 1.28 0.02 0.14 
 

PH 

Wekusko Lake Canada Rock Spodumene 0.79 
 

0.028 
 

PL 

Yellowknife Canada Rock Spodumene 0.66 0.1 0.13 
 

PL 

Separation Rapids Canada Rock Petalite 0.62 
 

0.072 
 

PL 

Barraute/Quebec Canada Rock Spodumene 0.53 
 

0.37 
 

PL 

La Corne Canada Rock Spodumene 0.52 0.2 0.4 
 

PL 

La Motte Canada Rock Spodumene 0.5 
 

1.023 
 

PL 

Snow Lake Canada Rock Pegmatites 0.03 
 

0.026 
 

PW 

Niemi Lake Canada Rock Spodumene 0.9625 
 

0.001 
 

PL 

Sirmac Lake Canada Rock Pegmatites 0.03 
 

0.003 
 

PW 

Nama Creek Canada Rock Pegmatites 0.03 
 

0.01 
 

PW 

Violet Canada Rock Pegmatites 0.03 
 

0.01 
 

PW 

Moose 2 Canada Rock Spodumene 0.9625 
 

0.016 
 

PL 
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Thor Canada Rock Pegmatites 0.03 
 

0.02 
 

PW 

Gods Lake Canada Rock Spodumene 0.9625 
 

0.025 
 

PL 

FI Canada Rock Pegmatites 0.03 
 

0.03 
 

PW 

James Bay/Lithium One Canada Rock Pegmatites 0.03 
 

0.13 
 

PW 

English River Greenstone Canada Rock Spodumene 0.9625 
 

0.13 
 

PL 

Yichun China Rock Lepidolite 2 0.2 0.5 
 

PL 

Jaijika China Rock Spodumene 0.6 0.2 0.5 
 

PL 

Daoxian China Rock Lepidolite 0.55 0.1 0.2 
 

PL 

Hupei China Rock Petalite 0.67 
 

0.042 
 

PL 

Lijiagou China Rock Petalite 0.67 
 

0.06 
 

PL 

Maerkang China Rock Spodumene 0.6 0.2 0.5 
 

PL 

Gajika China Rock Spodumene 0.6 0.3 0.6 
 

PL 

Jinchuan China Rock Petalite 0.67 
 

0.5 
 

PL 

Ningdu China Rock Petalite 0.67 
 

0.5 
 

PL 

Kitotolo Congo Rock Spodumene 0.6 
 

0.8 
 

PL 

Manono Congo Rock Spodumene 0.6 1.5 3 
 

PL 

Länttä Finland Rock Spodumene 0.43 0.35 0.68 
 

PW 

Bougouni Mali Rock Amblygonite 1.4 
 

0.03 
 

PL 

Karibib Namibia Rock Petalite 1.4 
 

0.15 
 

PL 

Barroso Portugal Rock Petalite 0.72 
 

0.01 
 

PL 

Tastyg Russia Rock Spodumene 1.86 
 

0.05 
 

PH 

Etykinskoe Russia Rock Lepidolite 0.79 
 

0.046 
 

PL 

Vishnyakovskoe Russia Rock Pegmatites 0.49 
 

0.21 
 

PW 

Goltsovoe Russia Rock Spodumene 0.37 
 

0.29 
 

PW 

Deposit Name Country Type Mineral 
LI 
Grade 

Reserve 
(Mt) 

URR 
(Mt) 

Mg/Li 
Ratio 

Prod 
Model 

Zavitinskoe Russia Rock Spodumene 1.115 
 

0.14 
 

PH 
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Belerechenskoe Russia Rock Spodumene 1.115 
 

0.05 
 

PH 

Voznesenskoe Russia Rock Pegmatites 0.49 
 

0.14 
 

PW 

Achivansky/Uchastok Russia Rock Pegmatites 0.49 
 

0.05 
 

PW 

Pogranichnoe Russia Rock Pegmatites 0.49 
 

0.05 
 

PW 

Orlovskoe Russia Rock Lepidolite 0.79 
 

0.05 
 

PL 

Urikskoe Russia Rock Spodumene 1.115 
 

0.3 
 

PH 

Polmostundrovskoe Russia Rock Pegmatites 0.49 
 

0.4 
 

PW 

Ulug-Tanzek Russia Rock Pegmatites 0.49 
 

0.3 
 

PW 

Kolmorzerskoe Russia Rock Pegmatites 0.49 
 

0.84 
 

PW 

Jadar Valley Serbia Rock Jadarite 0.84 0.5 1 
 

PL 

Mina Feli Spain Rock Lepidolite 0.5 
 

0.005 
 

PL 

Järkvissle Sweden Rock Spodumene 0.45 
 

0.003 
 

PW 

Varuträsk Sweden Rock Spodumene 0.45 
 

0.001 
 

PW 

Kings Mountain Belt USA Rock Spodumene 0.68 
 

5.9 
 

PL 

Bessemer City USA Rock Pegmatites 0.67 
 

0.42 
 

PL 

McDermitt/Kings Valley USA Rock Hectorite 0.53 1.1 2 
 

PL 

North Carolina USA Rock Spodumene 0.68 1.6 5.5 
 

PL 

Bikita Zimbabwe Rock Spodumene 1.4 
 

0.17 
 

PH 

Kamativi Zimbabwe Rock Spodumene 0.28 
 

0.28 
 

PW 

Masvingo Zimbabwe Rock Spodumene 0.84 
 

0.057 
 

PL 

Barkam Zimbabwe Rock Pegmatites 0.396 
 

0.22 
 

PW 
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Table S2-1 Lithium Production Cost Data 

Country Grade Type 
Process 
Model 

Cost 
Estimate 

($/ton 
LCE) 

Year of 
Estimate 

Real Costs 
(2018$US

D/ton 
LCE) Deposit Name Source 

Argentina Low Brine BL $2,000 2013 $2,086 Cauchari 
*Roskill 
Lithium 

Argentina Low Brine BL $2,000 2014 $2,071 Cauchari 
*Roskill 
Lithium 

Argentina Low Brine BL $3,300 2015 $3,669 Cauchari 
*Roskill 
Lithium 

Argentina Low Brine BL $3,500 2016 $4,010 Cauchari 
*Macquarie 
Research 

Australia High Pegmatite PH $3,700 2016 $4,239 Greenbushes 
*Macquarie 
Research 

Canada High Pegmatite PH $3,000 2013 $3,129 James Bay 
*Roskill 
Lithium 

Canada High Pegmatite PH $3,000 2014 $3,106 James Bay 
*Roskill 
Lithium 

Canada Low Pegmatite PL $4,500 2016 $5,155 James Bay 
*Macquarie 
Research 

Canada Low Pegmatite PL $4,000 2014 $4,142 La Corne *Lafierre 

Canada Low Pegmatite PL $3,655 2017 $3,916 La Corne *Lafierre 

China Low Brine BL $3,000 2013 $3,129 Lake Zabuye 
*Roskill 
Lithium 

China Low Brine BL $3,000 2014 $3,106 Lake Zabuye 
*Roskill 
Lithium 

China Low Brine BL $4,150 2015 $4,614 Lake Zabuye 
*Roskill 
Lithium 

China Low Brine BL $3,300 2016 $3,781 Lake Zabuye 
*Macquarie 
Research 

Australia Low Pegmatite PL $4,500 2016 $5,155 Mt Caitlin 
*Macquarie 
Research 

China Low Brine BL $3,200 2013 $3,337 Qinghai Lake 
*Roskill 
Lithium 

China Low Brine BL $3,200 2014 $3,313 Qinghai Lake 
*Roskill 
Lithium 
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Country Grade Type 
Process 
Model 

Cost 
Estimate 

($/ton 
LCE) 

Year of 
Estimate 

Real Costs 
(2018$US

D/ton 
LCE) Deposit Name Source 

China Low Brine BL $5,500 2015 $6,115 Qinghai Lake 
*Roskill 
Lithium 

Chile High Brine BH $2,250 2013 $2,346 Salar de Atacama 
*Roskill 
Lithium 

Chile High Brine BH $2,300 2014 $2,382 Salar de Atacama 
*Roskill 
Lithium 

Chile High Brine BH $3,200 2015 $3,558 Salar de Atacama 
*Roskill 
Lithium 

Chile High Brine BH $2,200 2016 $2,520 Salar de Atacama 
*Macquarie 
Research 

Chile High Brine BH $2,000 2013 $2,086 Salar de Atacama 
*Roskill 
Lithium 

Chile High Brine BH $2,000 2014 $2,071 Salar de Atacama 
*Roskill 
Lithium 

Chile High Brine BH $3,000 2015 $3,336 Salar de Atacama 
*Roskill 
Lithium 

Chile High Brine BH $2,100 2016 $2,406 Salar de Atacama 
*Macquarie 
Research 

Argentina High Brine BH $3,000 2014 $3,106 Salar de Olaroz 
*Roskill 
Lithium 

Argentina High Brine BH $5,100 2015 $5,670 Salar de Olaroz 
*Roskill 
Lithium 

Argentina High Brine BH $2,600 2016 $2,979 Salar de Olaroz 
*Macquarie 
Research 

USA Low Brine BL $4,000 2013 $4,172 Silver/Clayton Peak 
*Roskill 
Lithium 

USA Low Brine BL $4,000 2014 $4,142 Silver/Clayton Peak 
*Roskill 
Lithium 

USA Low Brine BL $4,300 2015 $4,781 Silver/Clayton Peak 
*Roskill 
Lithium 

USA Low Brine BL $2,800 2016 $3,208 Silver/Clayton Peak 
*Macquarie 
Research 

China Low Pegmatite PL $4,300 2014 $4,452 Xinjiang/Ganfeng 
*Roskill 
Lithium 
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Country Grade Type 
Process 
Model 

Cost 
Estimate 

($/ton 
LCE) 

Year of 
Estimate 

Real Costs 
(2018$US

D/ton 
LCE) Deposit Name Source 

China Low Pegmatite PL $4,500 2013 $4,693 Xinjiang/Ganfeng 
*Roskill 
Lithium 

China Low Pegmatite PL $8,200 2015 $9,117 Xinjiang/Ganfeng 
*Roskill 
Lithium 

China Low Pegmatite PL $4,000 2016 $4,583 Xinjiang/Ganfeng 
*Macquarie 
Research 

China Low Pegmatite PW $5,000 2013 $5,214   
*Roskill 
Lithium 

China Low Pegmatite PW $5,000 2014 $5,177   *Galaxy 

Canada Low Pegmatite PL $4,200 2013 $4,380   
*Roskill 
Lithium 

Argentina Low Brine BL $1,800 2014 $1,864   
*Morgan 
Stanley 

Chile High Brine BH $2,000 2014 $2,071   
*Morgan 
Stanley 

Chile High Brine BH $2,200 2014 $2,278   
*Morgan 
Stanley 

China High Brine BH $3,000 2014 $3,106   
*Morgan 
Stanley 

Argentina High Brine BH $3,000 2014 $3,106   
*Morgan 
Stanley 

Canada High Pegmatite PH $3,000 2014 $3,106   
*Morgan 
Stanley 

China Low Brine BL $3,200 2014 $3,313   
*Morgan 
Stanley 

China Low Brine BL $3,200 2014 $3,313   
*Morgan 
Stanley 

China Low Pegmatite PL $4,000 2014 $4,142   
*Morgan 
Stanley 

China Low Pegmatite PW $4,400 2014 $4,556   
*Morgan 
Stanley 

China Low Pegmatite PW $9,100 2015 $10,118   
*Roskill 
Lithium 
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Country Grade Type 
Process 
Model 

Cost 
Estimate 

($/ton 
LCE) 

Year of 
Estimate 

Real Costs 
(2018$US

D/ton 
LCE) Deposit Name Source 

China Low Pegmatite PW $4,300 2016 $4,926   
*Macquarie 
Research 

Australia High Pegmatite PH $4,100 2016 $4,697   
*Hatch 
Consulting 

Chile High Brine BH $2,500 2016 $2,864   
*Hatch 
Consulting 

Argentina High Brine BH $3,100 2016 $3,551   
*Hatch 
Consulting 

Argentina Low Brine BL $3,750 2016 $4,296   
*Hatch 
Consulting 

China Low Pegmatite PL $5,600 2016 $6,416   
*Hatch 
Consulting 

China High Pegmatite PH $5,800 2016 $6,645   
*Hatch 
Consulting 

China Low Brine BL $4,300 2016 $4,926   
*Hatch 
Consulting 

Canada Low Pegmatite PL $2,700 2016 $3,093   
*Hatch 
Consulting 

Canada High Pegmatite PH $3,260 2016 $3,735   
*Hatch 
Consulting 

USA Low Brine BW $6,400 2016 $7,332   
*Hatch 
Consulting 

USA Low Pegmatite PL $3,900 2016 $4,468   
*Hatch 
Consulting 

Canada High Pegmatite PH $4,930 2017 $5,282   *McKinsey 

China Low Pegmatite PW $8,500 2017 $9,108   *McKinsey 

China Low Pegmatite PL $6,100 2017 $6,536   *McKinsey 

China Low Brine BW $3,300 2017 $3,536   *McKinsey 

Australia High Pegmatite PH $4,300 2017 $4,607   *McKinsey 

Australia Low Pegmatite PL $5,800 2017 $6,215   *McKinsey 

Chile High Brine BH $2,100 2017 $2,250   *McKinsey 
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Country Grade Type 
Process 
Model 

Cost 
Estimate 

($/ton 
LCE) 

Year of 
Estimate 

Real Costs 
(2018$US

D/ton 
LCE) Deposit Name Source 

Argentina High Brine BH $2,400 2017 $2,572   *McKinsey 

 

The production cost model was estimated as a multilevel or random effects model.  The model in 
simplified form can be expressed as: 

ìtkYè>#PkX	`ku# = î(ï, ñ) 
ï = \ÖFJG*,CfE* 
ñ = ñCfE* 

Where we estimate the average production cost for each combination of grade-type levels, with the 
standard deviation associated with deposit type.  The summary of the model coefficient estimates, 
standard error on the mean estimates, and significance test values are listed below. 

The model coefficients are listed in table S2-2. 

Table S2-2 Production Cost Model Coefficients 

                Estimate Std. Error t value Pr(>|t|) 

High Grade Brine    2869.4 291.8 9.834 1.26e-14 *** 

Low Grade Brine    3745.7 291.8 12.837 < 2e-16 *** 

Unfavorable Brine    5434.0 922.7 5.889 1.38e-07 *** 

High Grade Pegmatite    4283.0 435.0 9.846 1.20e-14 *** 

Low Grade Pegmatite    5079.7 326.2 15.571 < 2e-16 *** 

Unfavorable pegmatite    6516.5 532.7 12.232 < 2e-16 *** 

Residual standard error: 1305 on 67 degrees of freedom 

Multiple R-squared:  0.9214, Adjusted R-squared:  0.9143  

F-statistic: 130.9 on 6 and 67 DF, p-value: < 2.2e-16 
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S3 Lithium recycling stock and flow model 

The potential for recycled lithium from batteries was investigated via a simplified stock and flow model 
of the lithium production system (Figure S8-1).  We track four stocks: lithium in primary resources, 
lithium in batteries, lithium in secondary resources, and lithium in waste stocks awaiting recycling.   

Figure S3-1 provides a visual description of the stock and flow model 

Figure S3-1 Recycling Stock and Flow Model 

 

 

 

The flows between these stocks are mitigated by several factors, including: 

• Production rate – global production of LCE 
• % of End-use Lithium in Batteries – share of total lithium market for large-format LIBs 
• Battery Material production efficiency – the inverse of material losses during production 
• Battery Service Lifetime – years in primary application 
• Battery EOL Collection Rate – the rate which batteries are collected for recycling or second-life 

when retired 
• Battery Second-life Survival Rate – the percentage of retired batteries that can be repurposed to 

serve economically in a secondary application 
• Battery Secondary Service Lifetime – years in secondary application 
• Recycling Material Recovery Efficiency – percentage of material recovered from recycled 

batteries 
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The recovery process consists of three stages modelled off the critical review by Zheng et al. (2014).  The 
first stage is pretreatment which primarily consists of mechanical shredding and sorting of plastic fluff; 
minimal material is lost during pre-treatment.  Secondary treatment involves separating the cathode from 
the collector foil, with NMP solvent for instance.  As much as 20% of the potential cathode material is 
lost during secondary treatment.  The final step, deep recovery, involves dissolution of the cathode 
materials through leaching or electrolytic reactions.  The average material efficiencies assumed are shown 
in table S3-1. 

Table S3-1 Recycling Material Balance 

  Input 
Material 

Recovered 

Pretreatment 100 % 98% 

Secondary Treatment 98 % 78% 

Deep Recovery 78 %  50.6% 

 

Table S3-2 shows the estimated recovery of materials from a 100 g LiCo2 cell based on the assumed 
recycling process described above.   

Table S3-2 Estimated Material Recovery for Sample  LIB Cell (Zeng et al., 2014) 

 LIB Cell (100g initial weight) 
Material 

Recovered (g) 

Iron 18 

Copper 9 

Aluminum 3 

Plastics 7 

Cobalt 12 

Lithium 1.5 

Nickel 0.1 

 

The results of the recycling stock and flow model were then fed back into the lithium production model.  
In this displacement scenario, recovered lithium from recycled batteries is assumed to displace primary 
lithium demand, essentially decreasing the annual demand for primary lithium production.  The 
displacement scenario was only evaluated for the optimistic demand case, given the significantly slower 
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development of recycled battery stock under the conservative model.  Figure S3-2 shows the annual 
global production of primary lithium under the displacement scenario by country of origin, and Figure 
S3-3 the results by production pathway. 

 

 

Figure S3-2 Recycling Stock and Flow Model 

Figures S3-2 and 3 indicate the potential for recovered lithium to displace primary production.  Given the 
continued development of lithium and other critical energy materials in degraded and potentially 
recyclable devices, there is good reason to consider the future value of these resources, as well as when 
and where recycled stocks will develop.  Another potential consideration is delaying or avoiding the 
expansion of production capacity from low grade and unfavorable mineral resources with 
disproportionate local environmental impacts. 
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Figure S3-1 Recycling Stock and Flow Model 
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B.  INVENTORY AND IMPACT ASSESSMENT DATA FOR LITHIUM 
The section is organized as follows: 

• S1: Life cycle inventory model description and data 

• S2: Impact Assessment Description 

• S3: Expanded Results 
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S1: Life cycle inventory model description and data  

The LCI model is based on a generic process model of production for rock and brine resources 
respectively.  This section provides graphical representations of the lithium production process, as well as 
a full description of the life cycle inventory data used in the study.   

For pegmatites and other lithium containing minerals, numerous processing stages require energy inputs 
(Figure S1-1).  Mechanical separation and comminution processes require between 150 and over 1000 
kWh per ton of lithium carbonate.  High temperatures are also used during beneficiation processes, which 
can result in significant inputs of fossil energy. 

For brines, the processes usually begins with pumping of the lithium brine; the power requirements vary 
based on the depth, size, and number of bore, while the initial concentration of brines can vary an order of 
magnitude (Figure S1-1).    The concentrated brine is harvested and transported to the processing facility.   
The key energy inputs in conventional or favorable processing conditions are during pumping, pre-
heating the  slurry before treatment addition of  soda ash, and heating during the thickening and drying.   
Additional fossil or electrical energy inputs  can occur when additional processing is required for 
concentrating the brine, removing impurities, or transportation between site locations.  
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Figure S1-1 Key Inputs and Processes for Lithium Minerals 

  

Figure S1-2 Key Inputs and Processes for Lithium Brines 

 

Mined Ore Stationary 
Grizzly

Vibrating 
Grizzly

Coarse 
Crushing

Intermediate 
Crushing

Fine 
Grinding

Superfine 
Grinding

Magnetic 
Separation

Froth 
Flotation

20-300 mm 20-300 mm 20-300 mm <100 mm 10-100 mm 0.125-10 mm < 0.125 mm

Pulp
Ferromagnetic

materials

Separation

37-97 kW 
Motor

3-4 kWh/t

Comminution

5-6 kWh/t 20-30 
kWh/t

100-1000 
kWh/t

16 
kW/pole

Oleic Acid,
Pine oil

10 kW motor,
760-1040rpm

15-33 °C

Beneficiation

18% solids
96.24% recovery Rotary 

Thermal 
Dryer

Kiln

Drying

25rpm

980 °C 1050-1100 
°C

Thickener

10 kW motor,
10rph for 15-

m

Lithium 
Carbonate

5% moisture by weight

Some paramagnetic 
minerals

*Conveyors: 115-1506 t/hr, 22-132 kW 
motor

Heat (Energy) Inputs

Power (Energy) Inputs

Material Inputs

Process

By-products

Pegmatite Processing

Concentrated 
Brine

Filtering Settling and 
Storage

Transport Pre-
Heating

Precipitation 
of Li2CO3

Thickening

Heat (Energy) Inputs

Power (Energy) Inputs

Material Inputs

Process

By-products

Impurity 
Removal

Lime
Ca(OH)2

Boron (B)
Magnesium (Mg)

Calcium (Ca)

Rotary Steam-
Tube Dryer

Cyclones Vacuum BeltDrying

3.7-500kw, 3-
6rev

980 °C 1050-1100 °C

50kW, <1 hr

180 °C

Lithium 
Carbonate

Pumping

100 °C
Soda Ash 
Na2CO3

Sodium and 
Potassium Chloride 

(NaCl / KCl)

500kW for 
100-300 GPM

150 to 1500 
ppm Li

>6,000 ppm 
(up to 6% lithium LiCl)

Evaporation rates 
760 – 3300 
mm/year

10Wh per gallon



214 

 

Another uncertainty in estimating material and energy inputs into lithium processing is the design of the 
production circuit.  After recovery, raw ore is processed through one or more additional circuits: dry 
material separation and recovery , heavy liquid material separation including froth flotation (FF), and 
hydrometallurgical recovery (HMR). Depending on ore grades, increased processing and beneficiation 
increases requirements of energy and consumable reagents, increases material loses to tailings, and results 
in increased generation of overburden and other mining wastes.  Figure S2-2 illustrates the impacts on the 
rate of material recovery from beneficiation of lower grade ores. 

Figure S1-3 Processing and recovery stages for pegmatites

 
 

The resulting material and energy flows in the life cycle inventory model are described in Table S1-1.  To 
facilitate the design of the engineering model, processing machinery and inputs are grouped into 19 
categories for which a reference LCI was obtained or estimated.   

Reference LCI data was obtained from the Ecoinvent database (Ecoinvent Centre, 2017).  As no LCI data 
was available for the collector agents used in HMR concentration, two proxy LCI models were estimated 
using material safety data from the manufacturer.  In addition, ten inventories for utility provided 
electricity were also obtained to estimate impacts from regional electricity generation.  For Argentina and 
Bolivia, the Chilean electricity inventory is used.  For other Asian and developing countries without 
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electricity inventory data, the Oceania inventory is used.  The resulting list of 38 reference LCIs is 
described in Table S1-2.  
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Table S1-1 Summary of Life Cycle Inventory Models for Lithium Production Processes 

Process Model Description High-grade 
Pegmatite 

Low-grade 
Pegmatite 

Low-grade 
Lithium 

Minerals 

High-grade 
Brine 

Low-grade 
Brine 

Low-Grade 
Brine/Unfa

vorable 
Conditions 

HMR 
Concentrati

on 

Large Machine (steady state 
hours) 

1.32E-03 2.20E-03 3.68E-03 3.00E-02 3.39E-02 3.39E-02   

Average Machine (high load 
hours) 

2.93E-03 4.87E-03 8.09E-03         

Small Machine (steady state 
hours) 

8.79E-03 1.46E-02 2.42E-02         

Blasting (kg) 1.40E-04 2.33E-04 3.86E-04         

Butanol (kg) 1.47E-02 1.47E-02 1.47E-02         

CollectorC (kg)             4.30E-02 

CollectorL (kg)             7.70E-01 

Dispersant (kg)             3.74E-02 

Fatty Acid (kg)             4.14E-02 

Ferrosilicon (kg) 3.23E-02 5.36E-02 8.89E-02         

Filtering Earth Bentonite (kg) 6.12E-04 1.02E-03 1.71E-03         

Heat, Natural Gas (MJ)         1.92E-01 4.47E-01   

Mining Truck (tkm) 4.57E-03 4.57E-03 7.59E-03 2.75E-03 3.11E-03 4.86E-03   

Quicklime (kg)           5.30E-01   

Soda Ash (kg)             1.10E-01 

Sodium Hydroxide (kg)             1.89E-01 

Sulfuric Acid (kg)             1.44E-03 

Unspecified Lorry (kg)       2.00E-03 2.66E-03 2.66E-03 4.00E-03 

Electricity (kWh) 1.74E-02 2.88E-02 4.79E-02 7.14E-03 9.50E-03 9.50E-03 1.83E-02 

                

Source Stamp 
(2013) 

Laferriere 
(2012) 

Laferriere 
(2012) 

Stamp 
(2012) 

Stamp 
(2012) 

An (2012) Laferriere 
(2012) 
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Table S2-2: Reference LCIs used in this study 

Ecoinvent Average Machine, high load 

Ecoinvent Butanol 

Ecoinvent Carbonate from Brine 

Ecoinvent Carbonate from Spodumene 

Ecoinvent Concentrated Lithium Brine 

Ecoinvent Fatty Acid 

Ecoinvent Filtering Earth Bentonite 

Ecoinvent HCL Acid at Gate 

Ecoinvent HCL Acid Market 

Ecoinvent Heat, Natural Gas, CN 

Ecoinvent Heat, Natural Gas, Low-NOx, CN 

Ecoinvent Heat, Natural Gas, Low-NOx, RER 

Ecoinvent Heat, Natural Gas, RER 

Ecoinvent Hydroxide from Brine 

Ecoinvent Large Machine, steady state 

Ecoinvent Small Machine, steady state 

Ecoinvent Soda Ash 

Ecoinvent Sulfuric Acid 

EcoInvent Unspecified Lorry 

Ecoinvent, Blasting, RER 

Ecoinvent, Carbonate from Brine 

Ecoinvent, Estimated CollectorC 

Ecoinvent, Estimated CollectorL 

Ecoinvent, GLO Market for Ferrosilicon 

Ecoinvent, GLO market for sodium hydroxide, without water, in 50% solution state 

Ecoinvent, Generic Mining Truck (on-site 
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Ecoinvent, GLO market for Quicklime 

Ecoinvent, Market for medium voltage Australia 

Ecoinvent, Market for medium voltage Brazil 

Ecoinvent, Market for medium voltage Canada 

Ecoinvent, Market for medium voltage Chile 

Ecoinvent, Market for medium voltage China 

Ecoinvent, Market for medium voltage Europe 

Ecoinvent, Market for medium voltage Germany 

Ecoinvent, Market for medium voltage Oceania 

Ecoinvent, Market for medium voltage Spain 

Ecoinvent, Market for medium voltage USA 

     

 

 

  



220 

 

S2: Description of Impact Assessment Categories 

Global warming potential (GWP) 

Carbon dioxide (CO2) equivalent emissions to air with the 
potential to contribute to global warming, combining 
emissions of CO2, N2O, CH4, and other potent GHG 
emissions based on their relative contribution to radiative 
forcing on a 100-year time horizon (Updated to AR5, IPCC 
5th Assessment). 

Acidification potential 
Emissions that contribute to acidic pollution expressed as 
equivalent hydrogen ions (H+) from nitrogen and sulfur 
emissions to soil and water 

Ozone depletion potential 
Substances released to air that could deplete stratospheric 
ozone reported in chlorofluorocarbon-11 equivalents 

Eutrophication potential 

Emissions to air and water that can enrich freshwater and 
coastal water bodies with nitrates or phosphates represented in 
nitrogen equivalents. These pollutants can accelerate 
biological productivity (growth of algae and weeds) and 
deplete oxygen in aquatic ecosystems 

Photochemical smog formation 
potential 

Air emissions of NOx, VOCs, and other ground level ozone 
forming chemicals reported in units of ozone equivalence. 
TRACI uses the maximum incremental reactivity method to 
estimate the likely tropospheric ozone smog formation 
potential from VOCs, which have several chemical fate 
pathways 

Human health - particulate 

Human health - particulate – Air pollution emissions 
including particulate matter consisting of inhalable coarse 
particles between 2.5 and 10 microns (PM10) & fine particles 
less than or equal to 2.5 microns (PM2.5) and their precursors 

Human health - cancer 

Cancer comparative toxicity unit (CTUcancer), human health 
non-cancer comparative toxicity unit (CTUnon-cancer), and 
Ecotoxicity comparative toxicity unit (CTUeco) – metrics that 
represent the emissions of known carcinogens and toxics to 
urban air, nonurban air, freshwater, seawater, natural soil, and 
agricultural soil based on a chemical fate model. Human 
health cancer aims to provide information about emissions 
known to cause human cancer.  Human health non-cancer 
represents contributions to other kinds of toxicity. 
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Ecotoxicity Freshwater or marine toxicity or damage. 
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S3: Expanded Results 

Section 3 provides some additional results.  Table S3-1 contains the average impact assessment scores for 
each production pathway and the baseline values from Ecoinvent.  For electricity, the weighted average 
region for each production pathway is used.  The impacts of HMR processing is also provided for 
comparison. 

 

 

Table S3-1 Impact assessment results for each production pathway (all per kg LCE) 

TRACI 
Category 

High-grade 
Pegmatite 

Low-
grade 

Pegmatite 

Low-
grade 
Rock 

Minerals 

High-
grade 
Brine 

Low-
grade 
Brine 

Low-grade 
Brine/Unfa

vorable 
Conditions 

Rock 
Baseline 

Brine 
Baseline 

HMR 
Concentration 

ETP 15.80 16.58 17.88 6.69 11.91 16.82 19.88 15.48 14.61 

HHC 11.71 13.44 16.31 9.06 12.96 15.98 13.74 24.06 9.08 

HHNC 5.32 5.65 6.19 2.69 4.47 6.59 8.72 6.44 4.82 

GWP 2.28 2.67 3.32 3.06 3.97 5.28 2.06 2.23 1.66 

HHP 5.58 6.84 8.94 2.47 3.88 5.47 12.43 2.94 3.66 

ODP 5.32 5.80 6.60 7.45 9.83 11.46 2.76 2.92 4.60 

SFP 1.85 2.20 2.80 3.84 4.73 5.36 1.78 2.22 1.29 

AP 15.78 17.79 21.15 16.73 22.72 29.60 23.78 17.93 12.62 

EP 16.30 17.16 18.60 7.09 12.48 17.47 9.03 20.86 14.98 

(ETP = Ecotoxicity Potential in CTUe; HHC = Human health cancer in CTUh×109; HHNC = 
Human health non-cancer in CTUh×107; GWP = Global Warming Potential in kg CO₂-eq; HHP = 
Human health particulate in g×107 PM2.5; ODP = Ozone depletion potential in mg×107 CFC-11-eq; 
SFP = Smog formation potential in kg×10 O3e-eq; AP = Acidification potential in g SO3-EQ; EP = 
Eutrophication potential in g N-eq) 

While the average intensity of lithium carbonate production changes only moderately over the study 
period, the total impacts of the global production system do increase with increasing demand (Figure S3-
2). 
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Figure S3-2 Total impacts from 
global lithium carbonate production, 
2018 to 2100 (ETP = Ecotoxicity 
Potential in CTUe; HHC = Human 
health cancer in CTUh×109; HHNC = 
Human health non-cancer in 
CTUh×107; GWP = Global Warming 
Potential in kg CO₂-eq; HHP = Human 
health particulate in g×107 PM2.5; ODP 
= Ozone depletion potential in mg×107 
CFC-11-eq; SFP = Smog formation 
potential in kg×10 O3e-eq; AP = 
Acidification potential in g SO3-EQ; EP 
= Eutrophication potential in g N-eq) 
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Finally, Figure S3-3 compares the average production impacts for average periods, 2020 to 2040 and 2080 to 2100. We can observe with the 
significant increase in production from low grade pegmatite and brine resources, there are moderate increases in environmental impacts.  Impacts to 
water, emissions of toxics and  aerosol particulate matter increased by over 11%.  Global warming impacts per kilogram of lithium carbonate 
equivalent increase by 3% from 3.23 to 3.33 kg CO2e/kgLi2CO3e.  Overall, these changes to impacts from increasing production of unfavorable or 
unconventional resources were minor. 

 
Figure S3-3  Comparing impacts per ton for current vs future LCE supply (ETP = Ecotoxicity Potential in CTUe; HHC = Human health 

cancer in CTUh×109; HHNC = Human health non-cancer in CTUh×107; GWP = Global Warming Potential in kg CO₂-eq; HHP = Human 
health particulate in g×107 PM2.5; ODP = Ozone depletion potential in mg×107 CFC-11-eq; SFP = Smog formation potential in kg×10 O3e-
eq; AP = Acidification potential in g SO3-EQ; EP = Eutrophication potential in g N-eq)
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In Part 1 of this work (Resource Model), the author’s also considered a conservative projection for lithium 
demand.  This conservative projection sought to investigate the effects of slowed growth in the demand for 
lithium from batteries post 2050 and lower estimated primary resource availability.  Estimating the logistic 
growth model for the resource requires information about both historic and current demand as well as the 
total recoverable resource (i.e.URR).  Based on identified deposits and prior published estimates, there is a 
wide range of potential URR, from 55 Mt to 99 Mt of lithium as Li metal, or 293 to 527 Mt of LCE. This 
span of resource estimates is used to estimate a low-demand, or conservative, scenario and a high-demand, 
or optimistic, scenario. In addition, the study used a short term forecast of lithium demand to expand the 
historical record of lithium production based primarily on expected increases in global lithium battery 
manufacturing between now and 2030. 

The conservative demand scenario reflects decreased development of low grade minerals in the later part 
of this century.  This is due to the comparably higher costs of expanding production from these sources, 
lower yields, and sufficient supply potential from larger brine sources to meet increasing demand.  This 
result in a 48% – 64% reduction in sector-wide environmental impacts from global LCE production in 2100 
compared with the optimistic demand scenario (S3-4).  The most significant reductions occur in the 
categories of ecotoxicity, eutrophication, and human exposure to particulates.   

In addition, significant increases in the average impacts on per kg of LCE after 2080 did not occur (Figure 
S3-5).  The average impact value estimated per kg of LCE was 18-23% lower by 2100 for the same three 
impact categories (e.g. ecotoxicity, eutrophication, and human exposure to particulates).  Under the 
conservative scenario, development of low grade pegmatite resources occurs far slower and we do not see 
the decline in the supply of LCE from low grade pegmatite resources towards the end of 2100. 
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Figure S3-4 Total impacts from 
global lithium carbonate production 
under the conservative demand 
scenario, 2018 to 2100 (ETP = 
Ecotoxicity Potential in CTUe; HHC = 
Human health cancer in CTUh×109; 
HHNC = Human health non-cancer in 
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health particulate in g×107 PM2.5; ODP 
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C. SUPPORTING INFORMATION FOR CHAPTER 5 

 
Table A. Vehicle battery scenarios, representative models, and US sales volume [1] 

Battery Scenario PEV Type Vehicle Model US Sales      
(Up to 4/2015) 

Short-range PHEV PHEV 15 

Toyota Prius Plug-in Hybrid 39600 

Honda ACCORD Plug-in Hybrid 1025 

BMW I8 1163 

Ford FUSION Energi Plug-in Hybrid 20166 

Ford C-MAX Energi Plug-In Hybrid 20122 

Mid-range PHEV PHEV 40 
Chevrolet Volt 68139 

Cadillac ELR 1731 

Short-range BEV EV 40 

Scion iQ EV 0 

Mitsubishi Motors Corporation i-MiEV 1844 

Mercedes-Benz Smart fortwo EV 4104 

Mid-range BEV 
(Low Power) 

EV 80 

Nissan Leaf 68267 

Kia Soul Electric 612 

FIAT 500e 7993 

Volkswagen e-Golf 1172 

Honda FIT 1122 

Mid-range BEV 
(High Power) EV 80 

Chevrolet SPARK EV 2981 

Ford Focus Electric FWD 4879 

Mercedes-Benz B-Class Electric 1426 

Long-range BEV EV 100 
Toyota RAV4 EV 2432 

Tesla Motors Model S 45371 
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Table B. Battery Cell Test data literature. Abbreviations: d = discharge, ch = charge, E = empirical, M = modeling, MP = 
manufacturer predicted, DOD = depth of discharge, RPT = reference performance test, CC-CV = constant current, constant 
voltage, EVPC = Electric Vehicle Power Characterization. 

Lead A
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reference 

C
hem

istry:  
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M
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Shape  

C
 R

ate 

d/ch  

C
ycles 

D
O

D
 (%

)  

C
apacity Fade (%

)  

R
esistance Inc. (%

) 

Test 

Tem
p (C

) 

E/M
/M

P 

Omar [2] LFP/C - -   

1C d 3221 80 20 126 cycle life room E 
1C d 1600 80 20 127 cycle life 40 E 
10C d 1100 80 20 156 cycle life 55 E 
15C d 559 80 20 140 cycle life 55 E 

Kim [3] LFP/C - - Pouch 4C d 3000 85 15 - cycle life room E 

Song [4] LFP/C - 18650 Cylinder 
3C d 600 95 5 - cycle life 25 E 
3C d 600 70 30 - cycle life 55 E 
3C d 250 80 20 - cycle life 55 E 

Zheng [5] LFP/C 

Tianjin 
Lishen 
Battery 

Joint-Stock 
Co., Ltd. 

18650 Cylinder 

1C d 600 98 2 0 cycle life 25 E 
10C d 600 86 14 9 cycle life 25 E 

10C d 600 73 27 13 cycle life 55 E 

Ouyang [6] LFP/C - - - 

1/2C ch 50 96 4 - cycle life, RPT -10 E 

1/2C ch 50 81 19 - cycle life, RPT -10 E 

1/2C ch 50 73 27 - cycle life, RPT -10 E 
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Zhang [7] LCO/C Sony US 18650S Cylinder 1/2C ch, d 800 68 32 747 Arbin battery - E 

Ramadass [8] LCO/C Sony 18650 Cylinder 
C/9-1C d 800 69 31 58 CC-CV, 

discharge room E 

C/9-1C d 800 64 36 83 CC-CV, 
discharge 45 E 

Li [9] LCO/C Sanyo UF653467 Prismatic 1C ch, d 286 70 30 -37 cycle life room E 

Ning [10] LCO/C Sony US  18650 Cylinder 

1C d 300 91 10 12 cycle life, 
Arbin battery ambient E 

3C d 300 83 17 18 cycle life, 
Arbin battery ambient E 

Shirk [11] LMO/C 2012 Nissan 
Leaf   Prismatic 

ACL2 ch 685 25 75 31 LPP, EVPC ~20-40 E 
DCFC ch 685 30 70 33 LPP, EVPC ~20-40 E 

Erdas [12] 
Spinel LTO - CR2016 Coin 

1C d 100 59 41 - cycle life - E 
1C d 30 80 20 - cycle life - E 

Spinel Ag-
LTO - CR2016 Coin 1C d 100 98 2 - cycle life - E 

Yu [13] 
Spinel LTO - CR2025 Coin 5C d 400 94 6 - cycle life 25 E 

- CR2025 Coin 5C d 400 88 12 - cycle life 25 E 
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Spinel V-
LTO 2C d 1713 98 2 - cycle life 25 E 

Yang [14] LFMP-C/V-
LTO - CR2032 Coin 3C d 400 98 2 - cycle life room E 

Morales [15] LFP/LTO - - Coin 4C d 2500 83 17 - cycle life room E 

Burke [16] NMO/LTO Altairnano 24V, 50Ah Prismatic 
4C&C/2 ch, d 1000 99 1 - cycle life 40 E 

4C&C/3 ch, d 16647 80 20 - cycle life 40 M 

Yi [17] 
Spinel LTO - CR2026 Coin 10 C ch, d 200 87 13 - cycle life - E 
LTO-LLTO - CR2025 Coin 10 C ch, d 200 82 18 - cycle life - E 

Burke [18] 

NCM/C EIG - - - - 2000-
3000 80 20 - cycle life - E 

Mn Spinel/C - - - - - 1000 80 20 - cycle life - E 

NCA/C - - - - - 2000-
3000 80 20 - cycle life - E 

LFP/C EIG - - - - >3000 80 20 - cycle life - E 
Mn 

Spinel/LTO Altairnano - - - - >5000 80 20 - cycle life - E 

Wong [19] NCA/C - - - 

1C d 400 100 0 - cycle life - E 
25C d 400 80 20 - pulse 50 E 

83C d 400 94 6 - continuous 34 E 
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Watanabe [20] NCA/C - - Cylinder 
1C ch, d ~1000 80 20 - cycle life 25 E 
1C ch, d ~300 80 20 1540 cycle life 60 E 

Bodenes [21] NCM/C - - Cylinder 
C/5 d 26 93 8 100 cycle life 85 E 
C/5 d 29 78 22 1115 cycle life 120 E 
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Table C. Battery OEMs and their Automotive Partners 

Cell Producer Vehicle Chemistry 
 Capacity 

Configuration 
Specific Energy 

(Ah) (kWh/kg) 
AESC Nissan Leaf LMO 33 Pouch 155 

LG CHEM Li-Tec Renault Zoe NMC 36 Pouch 157 
Li-Tec Daimler Smart NMC 52 Pouch 152 

Li Energy Japan Mitsubishi i-MiEV LMO 50 Prismatic 109 
Samsung Fiat 500e NMC 64 Prismatic 132 

 Lishen Tianjin Coda LFP 16 Prismatic 116 
 Toshiba Honda Fit LTO-NMC 20 Prismatic 89 

Panasonic Tesla Model S NCA 3.1 Cylindrical 248 
Sanyo  -- -- 22 Prismatic 112 
LEJ  -- -- 21 Prismatic 108 

 
 

Table D. Plug-in Electric Vehicle and Battery Warranties [22-27] 

Manufacturer 

Standard 
Vehicle 

Warranty 
Powertrain/Battery/Hybrid Unique Component 

Years Miles Years Miles Capacity 
Fade 

Battery 
Specific Comments 

Nissan 8 100000 5 60000 30% Yes   

Ford 8 100000 8 100000 Not 
Specified No   

Tesla (65) 4 50000 8 125000 Not 
Specified Yes 

*Excessive 
capacity loss 

covered, but not 
specified 

Tesla (85) 4 50000 8 Unlimited Not 
Specified Yes 

*Excessive 
capacity loss 

covered, but not 
specified 

Honda 3 36000 5 60000 Not 
Specified No 

*Excessive 
capacity loss 

covered, but not 
specified 

Fiat/Chrysler 4 50000 8 100000 Not 
Specified Yes   

BMW 4 50000 8 100000 30% Yes   
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Figure A. US sales of PEVs shows move toward longer-range vehicles [1] 
 

 

Figure B. Marginal US National Electricity Reliability Corporation (NERC) region 
marginal grid emissions intensities used in this study [28] 
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Figure C. Battery cycles by chemistry. Abbreviations: Lithium Manganese Oxide = LMO, 
Lithium Nickel Manganese Cobalt Oxide  = NMC, Lithium Nickel Cobalt Aluminum Oxide = NCA, 
Lithium Iron Phosphate = LFP, Lithium Manganese with Titanate Oxide Anode = LTO 
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D. SUPPORTING INFORMATION ON EV LCA 
These supporting materials provides summary tables used to generate all figures in the main text.  The 
supporting material also contains sections with additional calculations and data as described in the main 
text.  The SM is organized as follows: 

• Section S1. Literature survey for Life Cycle GHG Emissions from Battery Electric (BEV), 
Internal Combustion Engine (ICEVs) and Hybrid Electric Vehicles (HEVs) 

• Section S2. US Battery Electric Vehicle Sales, 2012 to 2019 
• Section S3. Vehicle Production  
• Section S4. Battery Production  
• Section S5. Vehicle Energy Demands 
• Section S6. Annual Vehicle Miles Travelled 
• Section S7. Electricity Generation 
• Section S8. Full Results 
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Section S1. Literature survey for Life Cycle GHG Emissions from Battery Electric (BEV), Internal Combustion Engine (ICEVs) and 
Hybrid Electric Vehicles (HEVs) 

Table 1 in the main text summarizes some of the key findings of prior studies examining the life cycle greenhouse gas emissions of light duty 
vehicles, and provides comparison with both pure gasoline vehicles with a hybrid electric powertrain, and conventional gasoline ICEVs.  Table 
S1.1 provides a full list of the studies included, referenced, or used for calculations in Table 1.  

 

Table S1.1 Summary of Studies Examining the Life Cycle GHG Emissions of BEVs, ICEVs, and HEVs (Archsmith et al., 2015; 
Bandivadekar, 2008; Burnham et al., 2006; Dunn et al., 2012; Ellingsen et al., 2014; Graff Zivin et al., 2014; Hawkins et al., 2013; Kendall and 
Price, 2012; Kim et al., 2016; MacLean and Lave, 2003; Majeau-Bettez et al., 2011; Mercedes, 2008; Miotti et al., 2016; Notter et al., 2010; 
Samaras and Meisterling, 2008; Tamayao et al., 2015) 

 

Study 
Vehicle 
Type 

Battery 
Capacity 

(kWh) 

Vehicle + Battery 
Production (kg 

CO2e) 

Battery 
Production  

(g CO2e/km) 

Vehicle + Battery 
Production  

(g CO2e/km) 

Vehicle 
Operation  

(g CO2e/km) 

Samaras and Meisterling (2008) PHEV 20.1 7903 10 41 40 

Notter et al. (2010) BEV 34.2 6253 7 32 101 

Majeau-Bettez et al. (2011) BEV 24 7396 19 48  

Dunn et al. (2012) BEV 28 7039 4 32  

Hawkins et al. (2013) BEV 24 7934 18 50  

Ellingsen et al. (2014) BEV 26.6  26 26  

Graff Zivin et al. (2014) BEV 24    69 - 293 
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Study 
Vehicle 
Type 

Battery 
Capacity 

(kWh) 

Vehicle + Battery 
Production (kg 

CO2e) 

Battery 
Production  

(g CO2e/km) 

Vehicle + Battery 
Production  

(g CO2e/km) 

Vehicle 
Operation  

(g CO2e/km) 

Miotti et al. (2016) BEV 19 - 60 7389 4 34 120 - 185 

Tamayao et al. (2015) BEV 24 2616   41 - 144 

Kim et al. (2016) BEV 24 7640 14 44  

Archsmith et al. (2016) BEV 28 7765 6 37 124 - 194 

Maclean and Lave (2003) ICEV  9600  38 285 

Samaras and Meisterling (2008) ICEV  8500  34  

Burnham et al. (2006), in Hawkins et al. (2012) ICEV  7600  30  

Burnham et al. (2006), in Hawkins et al. (2012) ICEV  7000  28  

Notter et al. (2010) ICEV  6370  25 121 

Hawkins et al. (2013) ICEV  6566  26  

Miotti et al. (2016) ICEV  8178  33 282 

Archsmith et al. (2016) ICEV  7207  29 248 

Kim et al. (2016) ICEV  6200  25  

Kim et al. (2016) ICEV  7200  29  

Kim et al. (2016) ICEV  7000  28  

Kim et al. (2016) ICEV  7500  30  
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Study 
Vehicle 
Type 

Battery 
Capacity 

(kWh) 

Vehicle + Battery 
Production (kg 

CO2e) 

Battery 
Production  

(g CO2e/km) 

Vehicle + Battery 
Production  

(g CO2e/km) 

Vehicle 
Operation  

(g CO2e/km) 

Burnham et al. (2006), in Hawkins et al. (2012) HEV  9200  46  

Bandivadekar (2008) HEV  10800  54  

Samaras and Meisterling (2008) HEV  8800  44  

Mercedes (2008), in Hawkins et al. (2012) HEV  10600  53  

Kendall and Price (2012) HEV  9900  40 139 

Kendall and Price (2012) HEV  17300  69 131 

Miotti et al. (2016) HEV  9200  46 242 
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Section S2. Battery Electric Vehicle Sales in the US 

Table S2.1 summarizes the monthly sales data used to create Figure 1 in the main text.  The monthly 
vehicle sales data was obtained from the Inside EVs Monthly Sales Scorecard (Loveday, 2019). The 
estimated average vehicle battery pack capacity was obtained from the EPA vehicle fuel economy data 
file. 

 

Table S2.1 US Battery electric vehicle sales 

 

Model 

Average 
Battery 

Pack 
Capacity 

2012 2013 2014 2015 2016 2017 2018 

BMW I3 BEV 33 0 0 6092 11024 7625 6276 6119 

FIAT 500e 24 0 260 5132 6194 5330 5380 2740 

Ford Focus 33.5 683 1738 1964 1582 901 1817 558 

Chevrolet Bolt EV 60 0 0 0 0 579 23297 16674 

Honda Clarity BEV 25.5 0 0 0 0 0 1121 1133 

Hyundai IONIQ EV 28 0 0 0 0 0 432 204 

Kia Soul Electric 30 0 0 359 1015 1728 2157 1113 

Mercedes B250e 28 0 0 774 1906 632 744 89 

Mercedes Smart 
fortwo ED 17.6 137 923 2594 1387 657 544 467 

Mitsubishi i-MiEV 16 588 1029 196 115 94 6 0 

Nissan LEAF 24 9819 22610 30200 17269 14006 11230 13388 

Tesla Model 3 75 0 0 0 0 0 1772 131382 

Tesla Model S 85 2171 19000 17800 25202 28896 27060 22445 

Tesla Model X 100 0 0 0 214 18223 21315 19150 

Volkswagen e-Golf 24.2 0 0 357 4232 3937 3534 1026 
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Figure S2.2 Average, Sales-Weighted Battery Capacity (Left) and Fuel Economy (Right) 

 

Section S3. Vehicle Production 

To model the emissions of the glider production, the material composition of the glider and its mass along 
with life cycle inventory of those materials is required. The life cycle inventory used to model LCGHG 
emissions associated with vehicle production, assembly, and disposal was acquired from the GREET 2 
model. Their data on material acquisition and transformation, vehicle assembly, and vehicle disposal was 
combined with glider mass and composition to estimate emissions. In this study, the battery system was 
modelled separately from the rest of the vehicle, referred to as the glider. Hence the glider mass is 
calculated by subtracting battery mass from the curb weight. The material compositions for the Leaf 
(2012), PLS and the PSUV vehicle scenarios are based on material composition used in a similar study 
(UCS 2015) which builds off of material data used in GREET 2 model. The material composition for the 
EOV scenario is from the vehicle teardown performed on Chevrolet Bolt by Munro associates. 

 

The material composition of the glider and mass used for each of the four modeled vehicle scenarios can 
be seen in Table S2.1.  

 

Table S2.1 Average Glider Composition and Mass by Vehicle Group 

 EOV PLS PSUV Leaf (2012) 

Steel 54.25% 21.0% 21.0% 66.0% 

Cast Iron 4.24% 3.0% 3.0% 2.0% 

Wrought Aluminum 2.12% 26.0% 26.0% 1.5% 

Cast Aluminum 8.50% 17.0% 17.0% 5.0% 
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Copper/Brass 7.63% 6.0% 6.0% 5.5% 

Glass 4.24% 4.0% 4.0% 3.0% 

Average Plastic 13.56% 15.0% 15.0% 12.0% 

Rubber 2.54% 2.6% 2.6% 2.0% 

Glass Fiber-Reinforced Plastic 0.00% 2.5% 2.5% 0.0% 

Others 3.0% 2.9% 2.9% 3.0% 

Glider Mass (lbs) 2,609 3,505 4,043 2,785 

 

Additional considerations included material transformation, fluid use, assembly, and disposal, which were 
also acquired from GREET 2 model. Fluids are included in the body and powertrain material life cycle 
stage of this study’s model, and in EVs include brake fluids, powertrain coolant, and windshield fluid; 
sedans and SUVs were assigned different sets of lifetime fluid use, with the latter having higher fluids 
use. All vehicles were given identical assembly and disposal impacts, where the energy use was 11.57 
mmBTU and 3.26 mmBTU respectively. Note that the modeled emissions may underestimate true 
impacts, as the life cycle emissions of the approximately 3% of “other” materials was not accounted for. 
Additionally, since electricity does not play a major role in this phase, time dependence of the electric 
grid was not included. 

Section S4. Battery Production 

The battery production model examined the cradle to gate of the battery life cycle, which included 
emissions from raw material extraction and refining, production, and assembly. An existing tool, the 
Battery Performance and Cost Model (BatPaC) constructed by Argonne National Laboratory, was used as 
the basis for the battery production model. BatPaC is based on a robust study of the material properties of 
LIB electrode and packaging materials, as well as battery pack design and production. BatPaC estimates 
the cost and composition of the LIB pack systems; in prior work (Ambrose, 2016), we connected these 
these outputs to material life cycle inventory data to estimate the GHG intensity of battery production 
processes. BatPaC offers the capabilities to compare the performance of different LIB cathode materials, 
however nickel rich cathode compounds NMC (e.g. 622 and 811), are being predicted to dominate light 
duty automotive applications (Curry, 2017).  Table S3.1 summarizes the key parametric assumptions 
relating to the battery pack design, i.e. pack size, mass, power output, and cell and module capacity.  The 
scenarios were developed based publicly available data on current models of archetypal vehicles 
described in main text.   

 

Table S4.1 Battery Pack Configuration Detail 
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 Leaf EOV PLS PSUV 2025 
EOV 

2025 
PLS 

2025 
PSUV 

2025 
LR-
EOV 

2025 
LR-
PLS 

2025 
LR-

PSUV 

Pack Capacity (kWh) 24 60 100 100 60 100 100 100 125 175 

Pack Mass (kg) 295 434 723 723 288 481 481 481 601 841 

Battery power, kW 100 170 386 568 170 386 568 170 386 568 

Battery energy kWh 24 60 100 100 60 100 100 100 125 175 

Number of cells per 
module  8 29 516 516 29 516 516 48 648 906 

Number of cells in 
parallel 2 3 6 6 3 6 6 3 6 6 

Number of modules in 
row 24 2 2 2 2 2 2 2 2 2 

Number of rows of 
modules per pack 2 5 8 8 5 8 8 5 8 8 

Number of modules in 
parallel 1 1 1 1 1 1 1 1 1 1 

Battery Cathode 
Chemistry LMO NMC  NMC NMC NMC NMC NMC NMC NMC NMC 

 

The resulting breakdown of key materials are summarized in Table 32.2.  Material LCIs were then 
obtained from the GREET 2017 model, and used to estimate the total energy and global warming 
potential for battery material production (measured in CO2 equivalents, or GHGs). We also conducted a 
sensitivity analysis on assumptions about battery assembly energy requirements (as measured by the kWh 
of energy input per kWh of usable storage) and pack energy density for the future vehicle case (Table 
S2.2). . 

 

Table S4.2 Battery Material Composition by Scenario 

 

 Leaf EOV PLS PSUV 2025 
EOV 

2025 
PLS 

2025 
PSUV 

2025 
LR-
EOV 

2025 
LR-
PLS 

2025 
LR-

PSUV 
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Aluminum (%) 32% 22% 32% 33% 22% 32% 33% 28% 24% 24% 

Graphite (%) 12% 20% 14% 13% 20% 14% 13% 27% 12% 12% 

PVDF (%) 2% 2% 2% 1% 2% 2% 1% 3% 1% 1% 

Binder (%) 2% 2% 2% 1% 2% 2% 1% 3% 1% 1% 

Copper (%) 11% 12% 17% 20% 12% 17% 20% 4% 6% 6% 

Electrolyte (%) 2% 11% 9% 9% 11% 9% 9% 5% 34% 34% 

Steel (%) 9% 3% 0% 0% 3% 0% 0% 2% 4% 4% 

Coolant (%) 0% 1% 4% 3% 1% 4% 3% 2% 4% 4% 

Plastics 2% 2% 2% 3% 2% 2% 3% 3% 2% 2% 

BMS 1% 0% 1% 1% 0% 1% 1% 0% 1% 1% 

Cathode Active 
Material (%) 27% 24% 17% 15% 24% 17% 15% 23% 11% 11% 

 

Table S2.3 and S2.4 show the results of the scenario based sensitivity analysis of battery production 
energy and GHG emissions. Under the high assembly energy scenario, total energy requirements and 
GHG emissions more than doubled. While the efficiency of production processes increases significantly, 
those gains are not sufficient to offset the increases in battery capacity. 

 

Table S4.3 Battery Scenarios Sensitivity Analysis for 2025 

 Leaf EOV PLS PSUV 2025 
EOV 

2025 
PLS 

2025 
PSUV 

2025 
LR-
EOV 

2025 
LR-
PLS 

2025 
LR-

PSUV 

Assembly Energy 
Low (kWh) 804 2,118 3,530 3,530 2,118 3,530 3,530 3,530 4,413 6,178 

Assembly Energy 
High (100 
kWh/kWh) 

2,374 5,904 9,876 9,912 5,904 9,876 9,912 9,801 12,305 17,229 

Assembly Low 
GHGs (kg) 420 1,108 1,847 1,847 1,033 1,722 1,722 1,722 2,152 3,013 

Assembly High 
GHGs (kg) 1,242 3,089 5,167 5,186 2,879 4,816 4,834 4,780 6,001 8,402 
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Material GHGs 1,481 3,080 5,133 5,133 2,048 3,414 3,414 3,381 4,226 5,916 

 

Energy inputs and GHG emissions from battery assembly are primarily attributable to environmental 
controls and formation cycling. We assumed a constant inventory for battery assembly energy based on 
electricity generation for industrial purposes in South Korea. If the primary energy source for battery 
assembly was changed, this could significantly impact the emissions attributable to battery assembly 
energy inputs. 

Section S5. Vehicle Energy Demands 

FASTSim is a system analysis tool by NREL to compare the drivetrain performance. The model was first 
verified by modifying the inputs for three vehicles of our focus and cross checking the resulting fuel 
economy values with the 2018 values reported by the EPA. The vehicle parameter inputs are provided in 
Table S3.1 

 

 Table S5.1 Vehicle Input Parameters for FASTSim 
 

2018 2025 2025 LR 

  PLS PSUV EOV Leaf 
(2012) 

PLS PSUV EOV PLS PSUV EOV 

Drag coefficient 0.24 0.25 0.308 0.315 0.24 0.25 0.308 0.24 0.25 0.308 

Frontal area (m2) 2.341 2.59 2.816 2.755 2.341 2.59 2.816 2.341 2.59 2.816 

Curb weight (lbs) 
input to fastsim 

4883 5421 3570 3433 4254 4792 3192 4784 5851 3616 

Curb (kg) 2215 2459 1619 1557 1929 2173 1448 2170 2654 1640 

Vehicle glider 
mass (kg) 

510 723 503 763 630 844 575 535 652 498 

Battery mass  766 766 460 290 481 481 288 601 841 481 

Motor power 
(kW) 

285 311 60 80 285 311 60 285 311 60 

Battery power 
(kW) 

300 327 160 86 300 327 160 325 350 200 
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Battery energy 
(kWh) 

100 100 60 24 100 100 60 125 175 100 

 
Section S6. Annual Vehicle Miles Travelled (VMT) 

Two sets of scenarios for vehicle travel were developed: one, representing primary use in a personal 
passenger vehicle application (US Department of Transportation).; and two, representing use in a shared 
on-demand or potentially automated ride-hailing fleet. In all scenarios, annual VMT decreases as the 
vehicles age due to a variety of factors. Table S4.1 shows the assumed annual mileage for each scenario. 

 

Table S6.1 Annual VMT by Vehicle Scenario 

Vehicle Age Gas Car Gas SUV HEV EV Car EV SUV 

0 13467 14026 14199 12135 12638 

1 13596 14227 13981 12251 12820 

2 12092 12790 12953 10895 11525 

3 12774 13594 13255 11510 12249 

4 12896 13367 13448 11620 12044 

5 12254 12974 12161 11042 11691 

6 11860 12446 13809 10686 11214 

7 11356 12445 11145 10232 11214 

8 12345 12572 12185 11123 11328 

9 11655 12799 12383 10502 11532 

10 10319 11560 11490 9299 10417 

11 10160 11506 11598 9155 10368 

12 10624 10548 12733 9573 9505 

13 9419 9863 9326 8488 8887 

14 9195 11801 7593 8285 10633 

15 8590 9783 12789 7740 8815 

16 8817 8972 7993 7944 8085 

17 8421 10245 7729 7588 9231 

18 9133 9590 3002 8230 8641 
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19 8329 10004 4009 7505 9015 

20 8072 9803 9547 7273 8833 
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Section S7. Electricity Generation 

This section provides the complete results of the electricity generation analysis and the resulting forecast 
for grid carbon intensity. The study considered two regional scenarios: the California subset of the WECC 
region (CAMX) and a US national average. The study also considered two policy scenarios: a business as 
usual case and a carbon tax scenario with a $25 dollar per ton cost of carbon. The Annual Energy Outlook 
2018 defines the Reference case in which: population (including armed forces overseas) grows by an 
average rate of 0.6%/year, nonfarm employment by 0.7%/year, and productivity by 1.6%/year from 2017 
to 2050. The real gross domestic product increases by 2.0%/year from 2017 through 2050, and growth in 
real disposable income per capita averages 2.2%/year (U.S. Energy Information Administration, 2018). 

For all scenarios, the study considered a time horizon from 2018 to 2050. Data on the net electricity 
generation by year by fuel source was obtained from the Annual Energy Outlook created by the Energy 
Information Administration. The AEO forecast is based on outputs of the National Energy Model, a large 
scale economic equilibrium model of energy supply and disposition (Gabriel et al., 2001). 

The average net generation by fuel source is provided for a subset of years in Table S5.2.  

Table S7.1 Average Net Generation by Fuel Source for Residential 

 and Commercial End Uses 

 

Scenario Region Fuel Source 2016 2020 2025 2030 2035 2040 

Re
fe

re
nc

e 
ca

se
 

U
S-

A
V

G
 

 Coal 30% 28% 27% 26% 25% 24% 

 Petroleum 1% 0% 0% 0% 0% 0% 

 Natural Gas 34% 32% 33% 34% 34% 34% 

 Nuclear 20% 18% 16% 15% 14% 14% 

 Renewable Sources 15% 20% 22% 23% 26% 28% 

 Other 0% 1% 1% 1% 1% 0% 

W
EC

C-
CA

M
X

 

 Coal 5% 4% 0% 0% 0% 0% 

 Petroleum 0% 0% 0% 0% 0% 0% 

 Natural Gas 45% 33% 30% 27% 22% 20% 

 Nuclear 10% 10% 5% 0% 0% 0% 

 Renewables 40% 53% 65% 73% 78% 80% 

$2
5 

ca
rb

o
n 

al
lo

w
an

ce
 

fe
e 

U
S-

A
V

G
 

 Coal 30% 20% 9% 3% 1% 1% 
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 Petroleum 1% 0% 0% 0% 0% 0% 

 Natural Gas 34% 40% 40% 42% 42% 39% 

 Nuclear 20% 18% 18% 17% 16% 16% 

 Renewable Sources 15% 22% 32% 37% 40% 43% 

 Other 0% 1% 1% 1% 1% 0% 

W
EC

C-
CA

M
X

 

 Coal 5% 0% 0% 0% 0% 0% 

 Petroleum 0% 0% 0% 0% 0% 0% 

 Natural Gas 45% 45% 30% 19% 14% 14% 

 Nuclear 10% 9% 5% 0% 0% 0% 

 Renewables 40% 45% 66% 81% 86% 86% 

 

The average generation by fuel source data was combined with the life cycle emissions inventory data to 
estimate the emissions rates by year. For each fuel source, a regionally representative LCI was estimated 
using data from the GREET 1 model. Table S6.2 shows the estimated LCIs by fuel source and scenario. 
The final row of the table shows the estimated total greenhouse gas emissions of each kilowatt hour 
provided in carbon dioxide equivalents. A 100 year global warming potential is assumed, with 
characterization factors taken from the IPCC AR5. 

 

Table S7.2 Life Cycle Inventory by Fuel Source and Regional Scenario 

 

Flow 

California (CAMX) National Average (US-AVG) 

Unit 

Coal Oil 
Natural 

Gas Nuclear Coal Oil 
Natural 

Gas Nuclear 

Total 
energy 10751.1 12251.1 8402.1 3806.2 11560.4 12251.1 10246.5 3806.2 btu/kWh 

Fossil fuels 10740.3 12178.1 8392.7 123.9 11548.7 12178.1 10234.9 123.9 btu/kWh 

Coal 10527.7 38.7 3.9 13.8 11320.2 38.7 4.8 13.8 btu/kWh 

Natural gas 43.2 832.2 8356.1 96.6 46.4 832.2 10190.3 96.6 btu/kWh 

Petroleum 169.4 11307.3 32.6 13.6 182.1 11307.3 39.8 13.6 btu/kWh 
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VOC 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 g/kWh 

CO 0.2 1.2 0.5 0.0 0.2 1.2 0.6 0.0 g/kWh 

NOx 1.4 7.2 0.5 0.0 1.5 7.2 0.6 0.0 g/kWh 

PM10 0.4 0.3 0.0 0.0 0.4 0.3 0.0 0.0 g/kWh 

PM2.5 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.0 g/kWh 

SOx 3.5 6.7 0.1 0.0 3.8 6.7 0.1 0.0 g/kWh 

CH4 1.6 1.2 1.6 0.0 1.7 1.2 1.9 0.0 g/kWh 

N2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 g/kWh 

CO2 1069.2 1030.8 500.9 8.3 1149.7 1030.8 610.8 8.3 g/kWh 

CO2 (w/ C 
in VOC & 
CO) 1069.8 1033.0 501.9 8.3 1150.3 1033.0 612.1 8.3 g/kWh 

GHGs 
(CO2e) 1114.0 1064.8 545.4 9.0 1197.9 1064.8 665.1 9.0 g/kWh 

 

 

Finally, the estimated average carbon intensity of electricity generation for each year is provided in Table 
S6.3. 

 

Table S7.3 Average Carbon Intensity of Electricity Generation by Year and Scenario 

 

Year California (CAMX) US (Average) CA ($25 C-tax) US ($25 C-tax) 

2017 296.7 525.1 297.4 522.2 

2018 308.4 523.2 306.3 521.7 

2019 297.1 506.5 299.5 502.1 

2020 228.0 496.3 248.6 438.1 

2021 216.5 485.5 220.4 408.3 

2022 190.0 477.4 175.1 378.4 
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2023 160.3 479.6 167.6 356.2 

2024 149.8 484.7 154.8 338.7 

2025 166.0 487.7 163.5 322.1 

2026 180.4 489.7 174.4 305.6 

2027 174.7 488.1 155.0 288.7 

2028 168.5 486.3 140.3 281.8 

2029 161.1 485.8 125.2 278.0 

2030 149.3 484.4 101.0 269.1 

2031 135.0 480.8 85.2 263.9 

2032 127.4 476.6 84.3 259.0 

2033 123.2 473.0 82.2 254.6 

2034 123.8 471.0 78.8 250.2 

2035 120.8 467.0 77.8 246.7 

2036 117.9 465.7 77.0 243.3 

2037 114.7 463.3 77.0 240.1 

2038 112.4 460.5 77.1 235.1 

2039 112.8 458.3 75.2 231.0 

2040 109.3 456.0 73.7 225.6 

2041 108.8 454.1 72.4 220.0 

2042 108.4 451.3 69.8 214.0 

2043 107.2 449.3 69.8 211.4 

2044 105.7 448.3 69.5 208.2 

2045 104.0 445.9 69.6 204.7 

2046 98.7 442.3 70.1 200.4 

2047 97.1 440.0 70.5 196.3 
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2048 96.3 437.9 70.7 191.5 

2049 96.7 437.0 70.4 185.5 

2050 94.8 436.6 70.9 184.0 

 

Section S8: Full Results 

This section provides a table view of the complete results of the final GHG estimates. 

 

Beginning on the next page, table S6.1 contains per mile GHG emissions attributable to vehicle and 
battery for each vehicle design scenario. The phase column corresponds with the key categories of 
emissions in producing the vehicle and battery system.  

 

Table S6.2 shows the use-phase GHG emissions per mile for each vehicle and grid scenario.  In addition 
to the results in the previous table, S6.2 adds the pre mile emissions rates for the three SAV scenarios. 
Use-phase emissions were estimated as a function of vehicle energy demands and electricity generation. 
The emissions rate decreases as the vehicle life decreases as the service life increases due to the 
(generally) decreasing carbon intensity of the grid. But the extent of this effect diminishes with the 
decreasing annual mileage. 

 

Table S6.3 provides the total results, which are the sum of the vehicle and battery emissions with the use 
phase emissions. As such, the total results are presented by grid scenario and service life in years. Table 
S6.3 makes clear the key trend, namely the increasing share of production emissions in life cycle 
emissions and per mile emissions for passenger vehicles.
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Table S8.1 Battery and Vehicle GHG Emissions (g CO2-e / mile) by Vehicle and Utilization Scenario 

 
ICE 
LDV 

ICE 
SUV 

HEV 
Leaf 

(2012) 
EOV PLS PSUV 

2025 
EOV 

2025 
PLS 

2025 
PSUV 

2025 
LR-
EOV 

2025 
LR-
PLS 

2025 
LR-

PSUV 

SAV 
ICE-
SUV 

SAV 
HEV 

SAV 
LR-
EOV 

SAV 
LR-
PLS 

SAV 
LR-

PSUV 

Body and Powertrain 
Materials 32.7 34.3 27.4 28.5 29.6 53.0 57.9 29.6 53.0 57.9 26.7 47.8 52.2 7.1 5.6 5.2 9.3 10.7 

Glider Assembly 4.8 4.5 4.5 5.3 5.3 5.3 5.0 5.3 5.3 5.0 4.8 4.8 4.5 0.9 0.9 0.9 0.9 0.9 

End of Life 1.4 1.4 1.4 1.6 1.6 1.6 1.5 1.6 1.6 1.5 1.4 1.4 1.4 0.3 0.3 0.3 0.3 0.3 

Battery Materials 0.3 0.4 1.5 10.6 23.3 36.8 33.8 15.5 24.5 22.5 22.5 32.4 42.8 0.1 0.3 11.3 16.3 20.5 

Battery Production    3.0 7.9 13.2 12.4 7.9 13.2 12.4 11.9 14.9 19.6   6.0 7.4 9.4 

Use (12 years - 
USAVG) 420.9 462.5 301.2 169.9 161.0 206.9 218.4 150.4 167.1 195.0 156.0 189.4 222.8 462.5 301.2 176.9 219.2 257.6 

Use (12 years - 
CAMX) 420.9 462.5 301.2 72.5 68.7 88.3 93.1 45.5 50.6 58.9 47.2 57.3 67.4 462.5 301.2 47.2 57.3 67.4 
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Table S8.2 Battery and Vehicle GHG Emissions (g CO2-e / mile) by Vehicle and Utilization Scenario 

 Grid Scenario EOV PLS PSUV 

2018 

Average US Grid 255 - 215 360 - 295 374 - 306 

Average US Grid with $25 C-tax 231 - 173 329 - 241 341 - 249 

Average California Grid 167 - 119 246 - 171 254 - 175 

Average California Grid with $25 C-tax 168 - 115 247 - 166 255 - 170 

2025 

Average US Grid 235 - 198 303 - 245 335 - 273 

Average US Grid with $25 C-tax 171 - 131 233 - 171 253 - 187 

Average California Grid 131 - 92 189 - 128 201 - 136 

Average California Grid with $25 C-tax 122 - 82 178 - 116 189 - 122 

2025 Long 
Range 

Average US Grid 250 - 209 331 - 270 393 - 318 
Average US Grid with $25 C-tax 184 - 140 251 - 186 298 - 219 

Average California Grid 143 - 100 201 - 137 240 - 161 

Average California Grid with $25 C-tax 134 - 89 189 - 124 226 - 145 
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Table S8.3 Use-phase GHG Emissions by Grid and Vehicle Scenario 

Grid Scenario 

Service 
Life 

(Years) 

Leaf 
(2012) 

EOV PLS PSUV 
2025 
EOV 

2025 
PLS 

2025 
PSUV 

2025 
LR-
EOV 

2025 
LR-
PLS 

2025 
LR-

PSUV 

SAV 
LR-
EOV 

SAV 
LR-
PLS 

SAV 
LR-

PSUV 

Unit 

CAMX 8 75.5 75.7 88.5 104.3 50.6 56.7 64.1 57.8 62.1 71.4 57.7 62.0 71.2 g CO2e/mile 

CAMX 12 70.6 70.8 82.7 97.6 47.5 53.3 60.2 54.3 58.3 67.1 54.0 58.0 66.6 g CO2e/mile 

CAMX 16 65.8 65.9 77.1 91.2 45.4 50.9 57.7 51.9 55.7 64.3 51.4 55.2 63.4 g CO2e/mile 

CAMX 20 62.2 62.4 73.0 86.5 44.0 49.3 55.9 50.2 53.9 62.3 49.5 53.2 61.1 g CO2e/mile 

USAVG 8 165.2 165.6 193.6 227.6 157.9 177.0 199.6 180.4 193.6 222.4 180.3 193.6 222.4 g CO2e/mile 

USAVG 12 164.3 164.8 192.6 226.4 156.4 175.3 197.7 178.7 191.8 220.4 178.5 191.7 220.2 g CO2e/mile 

USAVG 16 163.3 163.8 191.5 225.1 155.1 173.8 196.1 177.1 190.1 218.6 176.9 189.9 218.1 g CO2e/mile 

USAVG 20 162.2 162.7 190.2 223.7 153.9 172.5 194.7 175.8 188.7 217.0 175.3 188.2 216.2 g CO2e/mile 

CAMX-$25C 8 76.3 76.5 89.4 105.4 41.0 45.9 52.0 46.8 50.3 57.9 46.7 50.1 57.5 g CO2e/mile 

CAMX-$25C 12 69.2 69.4 81.1 95.8 36.8 41.3 46.8 42.1 45.2 52.2 41.7 44.8 51.4 g CO2e/mile 

CAMX-$25C 16 61.8 62.0 72.5 86.0 34.5 38.7 44.0 39.4 42.3 49.0 38.8 41.7 47.9 g CO2e/mile 

CAMX-$25C 20 56.9 57.1 66.8 79.5 32.9 36.9 42.0 37.6 40.4 46.8 36.8 39.5 45.4 g CO2e/mile 

USAVG-$25C 8 141.4 141.8 165.8 195.2 91.9 103.0 116.2 105.0 112.7 129.5 104.9 112.6 129.3 g CO2e/mile 

USAVG-$25C 12 129.3 129.7 151.6 178.9 88.7 99.4 112.3 101.3 108.8 125.2 101.1 108.5 124.7 g CO2e/mile 

USAVG-$25C 16 121.5 121.8 142.4 168.4 86.1 96.5 109.1 98.3 105.5 121.6 97.8 105.0 120.6 g CO2e/mile 

USAVG-$25C 20 116.1 116.4 136.0 161.2 83.7 93.8 106.2 95.6 102.6 118.3 94.7 101.6 116.7 g CO2e/mile 
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Table S8.4 Total GHG Emissions by Grid and Vehicle Scenario 

Grid Scenario 
Service 

Life 
(Years) 

Leaf 
(2012) 

EOV PLS PSUV 
2025 
EOV 

2025 
PLS 

2025 
PSUV 

2025 
LR-
EOV 

2025 
LR-
PLS 

2025 
LR-

PSUV 

SAV 
LR-
EOV 

SAV 
LR-
PLS 

SAV 
LR-

PSUV 
Unit 

CAMX 8 145 167 246 254 131 189 201 143 201 240 79 103 120 g CO2e/mile 

CAMX 12 122 136 198 204 105 148 158 115 159 188 68 87 102 g CO2e/mile 

CAMX 16 107 119 171 175 92 128 136 100 137 161 62 78 92 g CO2e/mile 

CAMX 20 97 107 153 155 83 114 121 90 123 143 57 72 85 g CO2e/mile 

USAVG 8 238 255 360 374 235 303 335 250 331 393 187 233 273 g CO2e/mile 

USAVG 12 219 229 317 329 210 265 294 223 291 343 177 219 258 g CO2e/mile 

USAVG 16 209 215 295 306 198 245 273 209 270 318 171 211 248 g CO2e/mile 

USAVG 20 201 206 280 290 189 232 258 200 256 300 167 206 242 g CO2e/mile 

CAMX-$25C 8 146 168 247 255 122 178 189 134 189 226 70 91 106 g CO2e/mile 

CAMX-$25C 12 120 135 196 202 95 137 145 104 146 172 57 74 87 g CO2e/mile 

CAMX-$25C 16 103 115 166 170 82 116 122 89 124 145 51 65 76 g CO2e/mile 

CAMX-$25C 20 92 102 146 148 73 102 107 79 109 127 46 59 69 g CO2e/mile 

USAVG-$25C 8 213 231 329 341 171 233 253 184 251 298 121 153 179 g CO2e/mile 

USAVG-$25C 12 182 194 272 281 145 192 210 156 209 247 109 137 161 g CO2e/mile 

USAVG-$25C 16 165 173 241 249 131 171 187 140 186 219 102 127 150 g CO2e/mile 

USAVG-$25C 20 153 159 220 226 121 156 170 129 171 199 97 120 141 g CO2e/mile 
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