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Abstract: While advance booking programs have been shown to be e¤ective for �rms to manage

uncertain demand, the e¤ectiveness of such programs is unclear when supply, demand, and price

risks are present in a supply chain. Motivated by an advance booking program for managing these

three types of risks in a �u vaccine supply chain, we present a two-stage Stackelberg game model

to examine the dynamic interactions between a manufacturer and a retailer over two stages. In

each stage, both �rms enter a Stackelberg game: the manufacturer sets his wholesale price and

the retailer determines her order quantity. However, when making the decisions in the second

stage, both �rms take into account the decisions chosen in the �rst stage as well as the information

about supply and demand revealed after the �rst stage. Our analysis shows that the advance

booking program is always bene�cial to the manufacturer but not to the retailer especially when

a supply shortage is likely to occur. Interestingly, we �nd that supply uncertainty and demand

uncertainty a¤ect the �rms�pro�ts in an opposite manner under the advance booking program:

the �rms� expected pro�ts tend to decrease in supply uncertainty, but they tend to increase in

demand uncertainty.

Key words: advance booking, dynamic game, healthcare, supply chain risk management

1 Introduction

In the classical newsvendor problem with uncertain demand, a �rm places a single order prior

to the start of the selling season by considering the trade-o¤ between over-stocking and under-

stocking. The problem is to determine an order quantity that maximizes the expected pro�t when

the procurement cost and the selling price are �xed. As an innovative way to manage uncertain

demand in the apparel industry, Fisher et al. (1994) examine an idea in which a �rm can place two

orders in the newsvendor problem setting: a pre-book order well in advance of the selling season,

and a regular order closer to the selling season. The pre-book order enables the �rm to secure some
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supply at a lower cost and the regular order allows the �rm to postpone her ordering decision until

more accurate information about demand becomes available. Fisher and Raman (1996) develop

a formal model to examine the bene�t of the advance booking program. This seminal paper has

motivated researchers to develop di¤erent models to explore the notion of advance booking in

various contexts. (In this paper, we refer to �advance booking� or �pre-booking� as an order

placed prior to a regular order, and we refer to �advance booking program�as an ordering system

in which both pre-book and regular orders are allowed.)

While advance booking programs were originally developed for managing uncertain demand,

many �rms have used this program to manage supply chains that face supply risk arising from

production yield uncertainty, demand risk due to market uncertainty, and price risk caused by the

imbalance of supply and demand. We o¤er two examples of such programs observed in practice.

First, consider an Integrated Circuit (IC) manufacturer that produces IC chips for its customers

(electronics device manufacturers). Besides demand risk due to rapid technological innovations, the

IC manufacturer faces the inherent yield uncertainty associated with IC fabrication. In addition,

there is a price risk in the IC market that is caused by the imbalance of supply and demand.

For example, due to a severe shortage of dynamic RAM (DRAM) chips in 1988, many computer

manufacturers lamented the surge in the price of DRAM chips. However, after a decline in sales

of personal computers in 2000, there was an over-supply of DRAM chips in 2000; Kanellos (2000)

reported the signi�cant drop in the market price of DRAM chips. In order to deal with the

problem of using uncertain supply to meet uncertain demand, many IC manufacturers such as

Hynix and Xilinx now o¤er advance booking programs to their customers. Under these programs,

each customer can place a pre-book order at a known price, and a regular order later. However,

the regular order is subject to uncertain price and its ful�llment is subject to availability. Because

pre-book orders are �lled �rst before regular or spot orders, customers are eager to place their

pre-book orders even without advance booking discounts (Brown 2009).

Second, consider a �u vaccine supply chain that faces challenges in matching demand with

supply. The challenges in this industry are highlighted in the following quote from an expert at the

Centers for Disease Control and Prevention (CDC) (Williams 2005): �We know �u is unpredictable.

We�ve learned that �u vaccine supply is unpredictable, and what we�re discovering now, of course,

is that the demand for a �u vaccine is also very unpredictable.� Because of these challenges, the

industry had experienced signi�cant mismatches of demand and supply in the past. For example,

in the 2006-7 �u season, there was an over-supply of 18.4 million doses that were discarded after
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the market experienced a supply of 120.9 million doses and a demand of 102.5 million doses (Health

Industry Distributors Association 2007). The imbalance of supply and demand can trigger price

�uctuations as well. For example, during the 2003-4 �u season, the supply of �u vaccines in the

U.S. was cut by nearly half from 100 million doses to 55 million doses due to contamination at

the Chiron�s plant that produces �u vaccines for the U.S. market (O¢ t 2005). Due to this severe

shortage, it was reported that the price went up by 10 times from $8-9 a dose to $80-90 a dose in

some areas (Flaherty 2004). As a way to reduce the imbalance of supply and demand, manufacturers

(e.g., Sano� Aventis) and distributors (e.g., FFF Enterprises, McKesson) have developed advance

booking programs for healthcare providers or retailers. Under these programs, pre-book orders are

usually placed between February and April when production is in progress, and the regular orders

are placed between September and December during the �u season after the production process is

almost complete. Once the supply of �u vaccine becomes available, it is �rst used to �ll pre-book

orders and the remaining supply, if any, is used to �ll regular orders. According to Yadav (2009),

the wholesale price for pre-book orders can be lower but the wholesale price for regular orders can

�uctuate a lot depending on the actual supply and demand.

While advance booking programs have been shown to be e¤ective for managing demand risk

in the literature, it is not clear if such programs are advantageous for managing supply, demand,

and price risks in a supply chain. Although demand risk is probably the most prevalent risk that is

getting all the attention, one cannot neglect the signi�cance of supply risk and price risk in supply

chains. As an initial attempt to examine advance booking programs under di¤erent types of risks,

we develop a two-stage dynamic Stackelberg game model of a two-level supply chain that faces all

three types of the aforementioned risks. Our base model entails one manufacturer and one retailer,

while we discuss its extension to multiple retailers. The �rst stage occurs during the �speculation

period�that takes place before uncertain yield and demand are realized. (Throughout this paper,

the terms �stage�and �period�are used interchangeably.) In this stage, the manufacturer (�he�) and

the retailer (�she�) enter a Stackelberg game in which the manufacturer acts as the leader by setting

his pre-book wholesale price and then the retailer acts as the follower by determining her pre-book

order quantity. At the end of the �rst stage, the actual yield is realized, and the manufacturer is

obligated to use his actual supply to �ll the pre-book order. After the retailer receives her allocation

associated with her pre-book order, the actual market demand is realized. This instant marks the

beginning of the second stage that takes place during the �reaction period�. In the second stage,

the manufacturer and the retailer enter another Stackelberg game that is similar to the one in the
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�rst stage in terms of their roles and decisions. However, when making the decisions in the second

stage, both �rms would take into account the decisions chosen in the �rst stage and the observed

information. The Stackelberg setting is appropriate in the industry such as the �u vaccine industry

where a large pharmaceutical company sells �u vaccines to a smaller healthcare provider possessing

a lower bargaining power1.

We analyze our model using backward induction: we �rst solve the second stage Stackelberg

game conditioning on the realized supply and demand and the decisions chosen in the �rst stage.

Then we solve the �rst stage Stackelberg game by embedding the equilibrium outcomes of the second

stage game in the �rms�expected pro�ts in the �rst stage. This involves solving the decisions of

two players in each of two stages, which turns out to be quite complex. To develop a tractable

analysis, we impose the following assumptions that are best described and justi�ed in the context

of �u vaccine supply chains.

� Uncertain Supply: The production capacity is known and �xed in each �u season because

building or expanding the capacity is costly and time-consuming (3-5 years) due to the strin-

gent requirements of the FDA approval process (Matthews 2006). However, owing to the

biological nature of vaccine and the current production method of using chicken eggs, pro-

duction yield is highly uncertain with a wide range of values being equally plausible. Thus,

following Cho (2009), we shall use a proportional random yield model with �xed capacity.

� Uncertain Demand. The primary factor that determines the demand for �u vaccines is the

prevalence and severity of �u activities during the �u season which lasts usually from October

to March in the following year. As mentioned above by the CDC expert, the spread and

evolution of �u viruses are fundamentally uncertain.

� Uncorrelated Supply and Demand. The process yield of the manufacturing process determines

the available supply, whereas the �u activities during a �u season primarily determine the

demand for �u vaccines. Thus, we shall assume the uncertain supply and the uncertain

demand are not correlated.2

1 In a typical year, healthcare providers procure �u vaccines directly from distributors or manufacturers and the
proportion of orders from the federal government in the U.S. is only about 5% (Health Industry Distributors Asso-
ciation 2007). However, in the 2009-2010 �u season, healthcare providers acquire vaccines through the government
because of unusually high demand in a pandemic situation and anticipated delay and shortage of seasonal �u vaccine
and H1N1 supplementary vaccine.

2We do not consider a situation in which insu¢ cient supply creates an unexpected surge in demand due to public
fear or herd e¤ect.
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� No Demand Forecast Updating. Because of the long production lead time of 6-8 months, the

pre-book orders of �u vaccines are placed long before the actual �u season. As such, neither

the manufacturer nor the retailer can obtain more accurate forecast for consumer demand

during the �rst stage. However, for tractability, we shall assume that the second stage takes

place after all uncertainties have been resolved.3

� Non-Cancellable Pre-book Orders. According to the pre-book order forms provided by FFF

Enterprises and McKesson, the pre-book orders of �u vaccines are not cancellable4. However,

due to the uncertain supply, the manufacturer may not be able to �ll all pre-book orders. For

such un�lled pre-book orders, the manufacturer provides full refund. We do not consider the

time value of money.

� Uncertain Market Price. Based on anecdotal evidence (e.g., Fine 2004, Flaherty 2004), the

retail price of �u vaccines in the market appears to be higher (or lower) than average when

the actual demand is higher (or lower) than the actual supply. Hence, we shall assume a linear

down-sloping demand curve to model the impact of the imbalance of demand and supply on

the market price.

Our model captures the following key trade-o¤s that the retailer and the manufacturer face

under advance booking programs. If the retailer does not pre-book and postpones her ordering

decision until the uncertainties of supply and demand are resolved, she can avoid over-stocking but

she takes on the risk of paying a higher wholesale price in the event of a shortage (i.e., the actual

supply is lower than the actual demand). When there are multiple retailers, the retailer bears the

additional risk of not getting her regular order �lled because the pre-booked orders placed by the

other retailers are �lled �rst. On the other hand, if the retailer places a pre-book order, then she

reduces her price risk by committing the pre-book order at the known pre-book wholesale price.

However, she bears the risk of over-stocking and over-paying in the event when the actual demand

is lower than the actual supply. Therefore, it is unclear if the retailer should pre-book and if so,

how much the retailer should pre-book. The trade-o¤s faced by the manufacturer are essentially

the opposite of the retailer. The retailer�s pre-book order reduces the manufacturer�s demand risk

3This assumption is commonly used in the supply chain literature (see, e.g., van Mieghem and Dada (1999),
Cachon (2004), and Erhun et al. (2008)).

4See the pre-booking form used by FFF Enterprises at http://www.mmd.admin.state.mn.us/mmcap/pdf/1%20FFF
%20Enterprises%20Attachemnt%201.pdf. In the 2010-2011 pre-booking form, McKesson speci�es that orders may not
be cancelled after August 1, 2010 (see http://www.supplymanagementonline.com/�ushots/�uvaccineprebook.asp).
Note that information about uncertain demand and supply is seldom available prior to August 1.
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because it cannot be cancelled. However, it increases his price risk in the event when he can charge

a much higher regular wholesale price when the actual demand is higher than the actual supply.

By analyzing the above trade-o¤s between the �rms in the supply chain, we aim to answer the

following research questions:

(1) Who will bene�t from the advance booking program? The manufacturer, the retailer, or both?

If not both, when is this program not bene�cial to a member of the supply chain? What is the

source of the bene�ts?

(2) What are the impacts of production capacity, supply uncertainty, and demand uncertainty on

the manufacturer�s pricing decisions, the retailer�s ordering decisions, and the resulting pro�ts? Are

the e¤ects of supply uncertainty and demand uncertainty the same?

The remainder of this paper is organized as follows. In section 2 we review related literature. In

section 3 we present our model. In section 4 we derive the equilibria associated with three di¤erent

games in which only pre-booking, only regular ordering, or both pre-booking and regular ordering

are allowed, respectively. In section 5 we compare the equilibrium outcomes of the three games to

answer our �rst research question about the bene�ts of advance booking programs. In section 6 we

present comparative statics to answer our second research question about the impacts of capacity,

supply uncertainty and demand uncertainty. In section 7 we discuss an extension of our model to

multiple retailers. Section 8 concludes our paper. All proofs are provided in Appendix A1.

2 Literature Review

Our paper is related to two streams of operations management literature. The �rst stream deals

with the issue of advance booking, which is akin to quick response (QR). We provide a brief review

of QR models and refer the reader to Choi and Sethi (2010) for a comprehensive review. The

second stream deals with price postponement.

To our knowledge, Fisher et al. (1994) and Fisher and Raman (1996) are the �rst to introduce

the idea of advance booking programs in the retail industry. Iyer and Bergan (1997) analyze the

bene�t of QR in the supply chain consisting of one manufacturer and one retailer. In their model,

the retailer places an order once, but in the QR system, she can place the order after observing

partial demand information. They show that the manufacturer may not be better o¤ under QR.

Gurnani and Tang (1999) analyze a model that deals with a retailer�s two ordering decisions. In

their model, the wholesale price for the pre-book order is known, but the wholesale price for the
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regular order is uncertain. They examine the trade-o¤ between a more accurate forecast and a

potentially higher cost of the regular order. Donohue (2000) analyzes advance booking programs

in a supply chain consisting of one manufacturer and one retailer in which the manufacturer incurs

a higher production cost for the regular order. She examines how the wholesale price and returns

policy can achieve channel coordination. Brown and Lee (2003) analyze advance booking programs

in which a buyer can reserve the supplier�s capacity in advance and purchase an additional amount

later at an extra price after observing demand information. Weng and Parlar (1999), Tang et al.

(2004), and McCardle et al. (2004) study the bene�ts of advance-purchase discounts from retailers

to customers. Özer and Wei (2006) study advance purchase contracts between a manufacturer and

a retailer when there is asymmetric information about demand. They show that it is optimal for

the manufacturer to charge a higher wholesale price for the advance order than the regular order.

Ferguson (2003) and Ferguson et al. (2005) study the procurement decision of an end-product

manufacturer from a part supplier. They examine how the part price and the timing of produc-

tion and ordering decisions a¤ect the distribution of supply chain pro�ts between the buyer and

the supplier. Erhun et al. (2008) extend their work to a two-period model and investigate the

impact of the timing of the supplier�s ordering decisions and the additional demand information on

the manufacturer�s pricing and capacity decisions. By considering the case when demand follows

a binary distribution, they obtain closed-form equilibrium outcomes and also discuss additional

insights through numerical examples.

While the above papers analyze the value of advance booking in the context of demand un-

certainty or private demand information, Cachon (2004) studies the value of advance booking in

the context of risk allocation between members in a supply chain as in our paper. He shows that

the manufacturer can shift the risk of having excessive inventory to the retailer by o¤ering a price

discount for pre-book orders to the retailer.

Our work contributes to this stream of research in the following sense. First, we analyze the

bene�ts of advance booking programs in the presence of supply, demand and price risks. Much

of the previous e¤ort has been spent on analyzing the bene�ts of those programs when uncertain

demand is the only source of risk. However, in practice, �rms in various industries use advance

booking to manage various types of risk. Our e¤ort is analogous to the numerous extensions of

lot sizing models under uncertain demand to those in the presence of random yields. Second, we

examine the dynamic interactions between the manufacturer�s pricing decisions and the retailer�s

ordering decisions over two periods for the case when supply and demand uncertainties follow
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general probability distributions. With the exception of a few papers, most papers in the literature

assumes that only one �rm in a supply chain utilizes information obtained between two decision

instants and make his/her decisions dynamically, while the other �rm�s decisions are exogenous

or determined prior to observing new information. In particular, the manufacturer�s wholesale

prices to the retailer are given exogenously or set much in advance of the selling season, and the

pre-book price is assumed lower than the regular price. However, due to long production lead

time, it is common for a manufacturer to postpone his pricing decision for the regular order after

uncertainties are resolved. In this setting, because the regular wholesale price is not known to

the retailer in advance, the retailer has an incentive to place pre-book orders even without a price

discount (Brown 2009). Third, based on the Newsboy model, most models in the literature assume

exogenous market price and demand. In contrast, we adopt a price-sensitive demand model which

re�ects the imbalance of supply and demand. This enables us to analyze the causal relationships

among demand, supply and price.

Similar in spirit to our paper, the second stream of literature departs from the �rst stream

by considering price-sensitive demand and by allowing a �rm to postpone its price decision after

demand uncertainty is resolved. Van Mieghem and Dada (1999) present a two-stage model in

which a �rm makes three decisions: capacity, price, and production quantity. To evaluate the

bene�ts of postponements, they analyze various scenarios in which the �rm can postpone part or

all of those decisions after demand uncertainty is resolved in the second stage. Motivated by the

product postponement concept examined in Lee and Tang (1997), Chod and Rudi (2005) extend

Van Mieghem and Dada (1999) to the two-product case. They study the value of resource �exibility

and price postponement (also called responsive pricing). Recently, Tang and Yin (2007) analyze the

issue of price postponement in a setting where the demand function is known but the supply yield

is uncertain. This stream of work deals with a single �rm�s one-time decision under either demand

uncertainty or supply uncertainty. In contrast, our emphasis is on studying dynamic interactions

between two �rms in a supply chain over two periods under supply, demand, and price uncertainties.

3 The Model

Consider a two-level supply chain that is comprised of one manufacturer and one retailer. The

manufacturer M uses his plant with a �xed capacity k to produce a single product, and sells this

product through the retailer R over a short selling season. Due to the long production lead time,
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the manufacturer needs to start his production long before the start of the selling season. After the

season is over, unsold products are discarded. The objective of the manufacturer (or the retailer)

is to maximize his (or her) expected pro�t E�M (or E�R).

The manufacturer fully utilizes his capacity k but his actual output is subject to a random

production yield ~�. Using a proportional random yield model (e.g., Yano and Lee 1995), we

represent the manufacturer�s actual supply as k~�; where ~� follows a cumulative distribution F with

support over [�; ��] where � � 0. We normalize the mean yield to 1, i.e., E~� = 1; and allow ~� to

be greater than one, which is common in the production process having the inputs and outputs

measured in di¤erent units such as the �u vaccine manufacturing process (Cho 2009). Without loss

of generality, we shall assume that the unit production cost is zero.

The retailer faces a down-sloping demand curve p = 1+~"� q, where p represents a retail price

to consumers, ~" represents a random demand component, and q represents the quantity available

for sales by the retailer. Because q depends on the manufacturer�s actual supply k~�; the retail price

p is random and is a¤ected by both supply uncertainty ~� and demand uncertainty ~". We assume

that ~" follows a cumulative distribution G with support over [";�"], where E~" = 0 and " � �1.

Thus, the expected market potential, E[1 + ~"]; is normalized to 1. We assume that ~" and ~� are

independent.

The two-stage dynamic Stackelberg game between the manufacturer and the retailer begins

soon after the manufacturer starts his production. Figure 1 illustrates the sequence of di¤erent

events associated with this two-stage game. In this game, advance booking takes place at the

beginning of the �rst stage and regular ordering occurs at the beginning of the second stage. The

�rst stage occurs during the �speculation period�when both supply and demand are uncertain.

In this stage, the retail price p is also uncertain because it is a¤ected by demand and supply

uncertainties. The manufacturer acts as the leader who sets his pre-book wholesale price w1; and

the retailer acts as the follower who determines her pre-book order quantity x1. At the end of the

�rst stage, the production yield ~� is realized, and the manufacturer uses his actual supply k~� to

allocate a1 = minfk~�; x1g to �ll the pre-book order x1. If there is remaining supply after allocating

a1 (i.e., when k~�� a1 > 0), then the game proceeds to the second stage; otherwise, the game ends.

The second stage occurs during the �reaction period�when the uncertain demand component ~"

is also realized. Upon observing the remaining supply (k~��a1) and the realized demand component

~", the manufacturer acts as the leader by setting his regular wholesale price w2, and the retailer acts

as the follower by determining her regular order quantity x2. As we show later, whether or not the
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Stage 1: Advance Booking Stage 2: Regular Ordering

1w
• Manufacturer decides

wholesale price     .

• Retailer decides order
quantity     .1x

2w

2x

• Manufacturer decides
wholesale price     .

• Retailer decides order
quantity     .

Decisions

Events
θ
~

1a

• Yield     is realized.

• Manufacturer
allocates      to pre­
book orders.

ε~• Demand     is
realized. 2a

21 aa + at

• Manufacturer
allocates      to
regular orders.

• Retailer sells
.p

Figure 1: Timeline of Decisions and Events in the Model

actual supply k~� is observable by the retailer does not a¤ect the retailer�s ordering decision. At the

end of the second stage, the manufacturer allocates a2 = minfk~� � a1; x2g to �ll the regular order

by using his remaining supply (k~�� a1). In this way, the manufacturer assigns a higher priority to

the pre-book order x1 than the regular order x2. The quantity available for sales by the retailer is

q = a1 + a2; and the corresponding retailer price is p = 1 + ~" � (a1 + a2). Note that the price p

re�ects imbalance between demand (1 + ~") and supply (a1 + a2). By discarding all unsold units at

zero value at the end of the second stage, the manufacturer determines his actual pro�t.

4 Equilibrium Analysis

To analyze the bene�ts of advance booking programs in which both advance booking and regular

ordering are allowed, we �rst analyze two benchmark systems in which either advance booking

or regular ordering is used. In the �rst system, both the manufacturer and the retailer make

their decisions before uncertainties in supply and uncertain are resolved, hence we shall refer to

this game as the �speculative� Stackelberg game A. In the second system, the game between

the two �rms takes place after all uncertainties are resolved, hence we shall refer to this game as

the �reactive� Stackelberg game B. The analysis of these two games prepares us to analyze the

two-stage �dynamic� Stackelberg game AB presented in the previous section. We use backward

induction to derive subgame-perfect Nash equilibrium. To denote equilibrium outcomes in each of

these three games, we use the following notation: �ji denote the equilibrium pro�t of �rm i (=M

or R) in game j (= A;B or AB), wj1 and w
j
2 denote the equilibrium pre-book wholesale price and

regular wholesale price in game j, respectively, and xj1 and x
j
2 denote the equilibrium pre-book
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order quantity and regular order quantity in game j, respectively.

4.1 Advance Booking Only: Speculative Stackelberg Game A

Consider the speculative Stackelberg game A that takes place before the supply and demand uncer-

tainties are resolved. In this game, each player makes a single decision: the manufacturer acts as

the leader by setting a pre-book wholesale price w1; and the retailer acts as the follower by placing

a pre-book order x1. We identify a subgame-perfect equilibrium by using backward induction: we

�rst �nd the retailer�s optimal pre-book order quantity xA1 (w1) for any given pre-book wholesale

price w1 and then �nd the manufacturer�s optimal pre-book wholesale price wA1 .

Suppose the retailer has received allocation a1 at the wholesale price w1 after yield ~� is realized.

Then she can sell this quantity at the retail price (1 + ~"� a1) and obtain an expected pro�t

E~" [�R(a1; w1)] = E~"[f(1 + ~"� a1)� w1g a1] = (1� a1 � w1)a1: (1)

From the �rst-order condition of (1), 1�w12 is the �ideal�allocation of a1 that the retailer would like

to receive when w1 � 1. However, the retailer does not decide on the allocation a1, but she decides

on the order quantity x1, where a1 = minfk~�; x1g. Despite the fact that the retailer does not have

direct control over a1; we claim that it is optimal for the retailer to order x1 = 1�w1
2 : Our claim

is based on the following arguments. First, suppose the retailer orders x1 > 1�w1
2 . If the actual

supply k~� > 1�w1
2 , then she is worse o¤ than ordering 1�w1

2 because her actual allocation is higher

than 1�w1
2 . Conversely, if k~� � 1�w1

2 ; then her expected pro�t is the same as that of ordering 1�w1
2 .

Thus, ordering x1 = 1�w1
2 dominates ordering x1 > 1�w1

2 . By using the same argument, we can

show that the retailer cannot be better o¤ by setting her order x1 < 1�w1
2 : Hence, we have proved

the following proposition.

Proposition 1 In the speculative game A, the retailer will set her pre-book order quantity xA1 (w1) =
1�w1
2 in equilibrium for any pre-book wholesale price w1 � 1:

Let aA1 (w1) = minfk~�; xA1 (w1)g denote the allocation that the retailer will actually receive when

ordering xA1 (w1). Then, the retailer�s expected pro�t and the manufacturer�s expected pro�t can
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be expressed respectively as follows:

E~� [�R(w1)] = E~�[(1� a
A
1 (w1)� w1)aA1 (w1)]; (2)

E~� [�M (w1)] = E~�[w1 � a
A
1 (w1)] = E~�

�
min

�
k~�w1;

w1 � w21
2

��
: (3)

By proving that E~� [�M (w1)] in (3) is a concave function of w1, we show in the proof that there

exists a unique optimal value wA1 that maximizes E~� [�M (w1)]. By substituting w
A
1 into x

A
1 (w1)

in Proposition 1, we can also characterize the equilibrium outcome of the retailer. The following

proposition summarizes the results.

Proposition 2 The equilibrium of the speculative game A satis�es the following:

(i) If k� � 0:25, then wA1 = 0:5; E�AM = 1
8 ; x

A
1 (w

A
1 ) = 0:25; and E�

A
R =

1
16 ;

(ii) If k� < 0:25, then wA1 > 0:5, E�
A
M < 1

8 ; x
A
1 (w

A
1 ) < 0:25, and E�

A
R <

1
16 .

Proposition 2 can be interpreted as follows. First, consider case (i) when the supply chain

operates as if there were no supply constraints (i.e., as if a1 = x1). In this case, the manufacturer

sets his pre-book wholesale price wA1 = 0:5 and the retailer pre-books x
A
1 (w

A
1 ) = 0:25. Consequently,

the actual allocation is aA1 (w
A
1 ) = minfk~�; xA1 (wA1 )g = 0:25 for any ~� and the expected retail price

is E~"[1 + ~"� aA1 (wA1 )] = 0:75: This is the classic double marginalization result: the manufacturer�s

pro�t is twice of the retailer�s pro�t. Next, consider case (ii) when the capacity k is lower and/or

yield ~� is more uncertain than case (i). In this case, a supply shortage can occur with the actual

supply k~� being lower than the retailer�s desired allocation of 0:25. To compensate for potential

low sales volume, the manufacturer increases his pre-book wholesale price by setting wA1 > 0:5:

This causes the retailer to reduce her pre-book order quantity so that xA1 (w
A
1 ) < 0:25: Because of

the potential shortage, both �rms obtain lower expected pro�ts in case (ii) than in case (i).

4.2 Regular Ordering Only: Reactive Stackelberg Game B

Consider the reactive Stackelberg game B that takes place after the uncertain supply k~� and the

uncertain demand ~" are realized. Let l = k~� denote the realized supply and m = 1+ ~" denote

the realized market potential (or maximum retail price). In this game, each player makes a single

decision: the manufacturer acts as the leader by setting the regular wholesale price w2; and the

retailer acts as the follower by selecting the regular order quantity x2. We identify a subgame-perfect

equilibrium by using backward induction as in the previous section.
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Suppose the retailer can decide on the allocation a2 for any given wholesale price w2, and sells

this allocated quantity at retail price p = (m � a2). Then the retailer�s pro�t is �R(a2; w2) =

f(m� a2)� w2g a2: When w2 � m, the retailer�s �ideal�allocation is a2 = m�w2
2 . By the same

argument as presented in the previous subsection, the optimal regular order quantity is xB2 (w2) =

m�w2
2 regardless of whether the actual supply l is observable by the retailer.5 When the retailer

orders xB2 (w2); the retailer will receive an allocation a
B
2 (w2) = minfl; xB2 (w2)g.

Anticipating the retailer�s best response xB2 (w2), the manufacturer will set his regular wholesale

price w2 that maximizes his pro�t:

�M (w2) = w2 � aB2 (w2) =

8<: w2l if w2 � m� 2l

w2(
m�w2
2 ) if m� 2l < w2 � m.

(4)

By observing that (4) has a structure similar to (3), we can use the same approach as in the proof

of Proposition 2 to establish the following results:

Proposition 3 The equilibrium of the reactive game B satis�es the following:

(i) If l � m
4 ; then w

B
2 =

m
2 , �

B
M = m2

8 ; x
B
2 (w

B
2 ) =

m
4 ; and �

B
R =

m2

16 ;

(ii) If l < m
4 ; then w

B
2 = m � 2l

�
> m

2

�
; �BM = (m � 2l)l

�
< m2

8

�
; xB2 (w

B
2 ) = l

�
< m

4

�
; and

�BR = l
2
�
< m2

16

�
:

We can interpret the above results in a similar fashion as in the previous subsection. First, when

the actual supply is su¢ ciently high (i.e., l = k~� � m
4 ) in case (i), Proposition 3 implies the double

marginalization outcome in which the manufacturer earns the twice of the retailer. However, when

there is a supply shortage (i.e., l < m
4 ) in case (ii), Proposition 3 asserts that the manufacturer

will increase his regular wholesale price above m2 so as to entice the retailer to set her regular order

quantity below m
4 . In this case, the pro�ts of both �rms decrease as the supply decreases.

In a later section, we shall compare the equilibrium outcomes of the reactive game B with

those of the other games. To make this comparison meaningful, we need to identify the ex-ante

equilibrium outcomes of game B . By applying Proposition 3 with the fact that l = k~� and m = 1+

~" , we can express the ex-ante expected wholesale price in equilibrium as:

E~�;~"
�
wB2
�
=
R ��
�

R �"
" max

�
1 + ~"

2
; 1 + ~"� 2k~�

�
dG(~")dF (~�): (5)

5 If the retailer can observe the actual supply l and l � m�w2
2

, then m�w2
2

is not the only optimal quantity. This
is because the retailer will receive l for any x2 � l ; hence, both �rms will obtain the same pro�ts.

13



Similarly, we can obtain the manufacturer�s ex-ante expected pro�t E�BM , the retailer�s ex-ante

expected regular order quantity ExB2 , and the retailer�s ex-ante expected pro�t E�
B
R in equilibrium.

4.3 Advance Booking and Regular Ordering: Two-Stage Dynamic Game AB

In this section, we analyze the two-stage dynamic game AB in which the manufacturer and the

retailer play the speculative Stackelberg game in the �rst stage before uncertainties in supply

and demand are resolved, and then play the reactive Stackelberg game in the second stage after

observing actual supply and demand. We �rst solve the second stage Stackelberg game conditioning

on the realized supply and demand and the decisions chosen in the �rst stage, and then solve the

�rst stage Stackelberg game by embedding the equilibrium outcomes of the second stage game into

the �rms�expected pro�ts in the �rst stage.

Let us �rst consider the retailer�s problem in the second stage for any given regular wholesale

price w2. In the second stage, the retailer has the information about the pre-book wholesale price

w1, the allocation a1 = minfk~�; x1g associated with the pre-book order x1, and the realized demand

component ~". Notice that the games ends when there is no available supply to �ll the regular order.

Hence, it is su¢ cient for us to focus on the case when the remaining supply after the �rst stage

l0 � k~��a1 > 0; hence a1 = x1: Given the available information, the retailer determines her regular

order quantity x2 that maximizes her pro�t over both stages. If the retailer receives the allocation

a2 = x2 for her order x2; the retailer�s pro�t over both stages satis�es

�R(x2; w2;x1; w1) = f(1 + ~"� x1 � x2)� w2gx2 + f(1 + ~"� x1 � x2)� w1gx1

= �x22 + (m0 � w2)x2 + (1 + ~"� x1 � w1)x1;

where m0 � 1 + ~" � 2x1. For any given pre-book order x1 and the regular wholesale price w2, we

can use the same argument presented in the previous subsection to determine the retailer�s optimal

regular order, getting:

Corollary 1 In the dynamic game AB, the retailer�s regular order quantity in equilibrium is

xAB2 (x1; w2) = max
n
0; m

0�w2
2

o
.

By noting that m0 � 1 + ~"� 2x1, the retailer�s regular order quantity xAB2 (x1; w2) decreases in the

pre-book quantity x1 and the regular wholesale price w2 as expected. Once the retailer places her

regular order xAB2 , she will actually receive an allocation of aAB2 = minfl0; xAB2 g.
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In anticipation of the retailer�s regular order quantity xAB2 (x1; w2), the manufacturer sets his

regular wholesale price w2. In the second stage, the manufacturer has information about the realized

yield ~� and the realized demand ~" (hence l0 and m0) as well as the pre-book decisions (w1; x1) made

in the �rst stage. By noting that aAB2 takes on di¤erent values depending on the value of m0, l0 and

w2, we can express the manufacturer�s pro�t over both stages as a function of w2 as follows:

�M (w2;x1; w1;m
0; l0) = w2a

AB
2 +w1a1 =

8>>><>>>:
w1x1 ifm0 � 0 or w2 > m0

w2l
0 + w1x1 ifm0 > 0 and w2 � m0 � 2l0

w2
m0�w2
2 + w1x1 if m0 > 0 and m0 � 2l0 < w2 � m0.

(6)

Notice that (6) has the structure similar to (4). As such, using Proposition 3, we can derive the

following results:

Corollary 2 The equilibrium of the dynamic game AB satis�es the following:

(i) If m0 > 0 and l0 � m0

4 ; then w
AB
2 (x1) =

m0

2 ; �M (x1; w1) =
m02

8 + w1x1; x
AB
2 (x1) =

m0

4 ; and

�R(x1; w1) =
m02

16 + (1 + ~" � x1 � w1)x1. The manufacturer has leftovers of l
0 � m0

4 at the end of

the season.

(ii) If m0 > 0 and l0 < m0

4 , then wAB2 (x1) = m0 � 2l0
�
> m0

2

�
; �M (x1; w1) = (m0 � 2l0)l0 +

w1x1

�
< m02

8 + w1x1

�
; xAB2 (x1) = l0

�
< m0

4

�
; and �R(x1; w1) = l02 + (1 + ~" � x1 � w1)x1 (<

m02

16 + (1 + ~"� x1 � w1)x1): The manufacturer has no leftovers at the end of the season.

(iii) If m0 � 0, then wAB2 can be any positive value; �M (x1; w1) = w1x1; x
AB
2 (x1) = 0; and

�R(x1; w1) = (1 + ~"� x1 � w1)x1: The manufacturer has leftovers of l0 at the end of the season.

The above results resemble Proposition 3 in the reactive game B. The di¤erence is that the market

potential m = 1 + ~" is replaced with m0 = 1 + ~"� 2x1 and the available supply l = k~� is replaced

with l0 = k~��x1. This is because the pre-book order is �lled prior to the regular order. In addition,

if m0 � 0; Corollary 1 implies that xAB2 = 0 for any positive w2 ; i.e., the retailer orders nothing in

the second stage when she has pre-booked and received too many units in the �rst stage in relation

to the realized demand.

Given the equilibrium outcomes of the second stage of the game, let us examine the retailer�s

problem in the �rst stage of the game. This takes place before uncertainties in supply and demand

are resolved. As shown in Corollary 2, the retailer�s pro�t in equilibrium depends on m0 and l0,

which in turn depend on random ~� and ~". Recall that the second stage is reached only when the

manufacturer has some remaining supply l0 = k~�� a1 > 0 to �ll the retailer�s regular order. When
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l0 � 0; the retailer receives an allocation of a1 = k~�; the game ends after the �rst stage, and the

retailer earns a pro�t of f(1 + ~"� k~�)�w1gk~�. Combining this observation with the results stated

in Corollary 2 for the case when l0 > 0, we can compute the expected pro�t of the retailer as a

function of (x1; w1) as follows:

E~�;~" [�R(x1; w1)] = E~�;~" [f(1 + ~"� a1)� w1ga1] + E~�;~"
�
m02

16
jm0 > 0; l0 � m0

4

�
+E~�;~"

�
l02jm0 > 0; 0 < l0 <

m0

4

�
: (7)

Similarly, by utilizing the results stated in Corollary 2, we can compute the manufacturer�s expected

pro�t as a function of (x1; w1) as follows:

E~�;~" [�M (x1; w1)]

= E~�;~" [w1a1] + E~�;~"

�
m02

8
jm0 > 0; l0 � m0

4

�
+ E~�;~"

�
(m0 � 2l0)l0jm0 > 0; 0 < l0 <

m0

4

�
: (8)

One can show that the retailer�s expected pro�t E~�;~" [�R(x1; w1)] given in (7) is a piecewise-

continuous function of x1 over the closed interval [0; 1+�"2 ] for any given w1. Hence, we can

compute the retailer�s optimal pre-book order quantity xAB1 (w1): By substituting xAB1 (w1) into

E~�;~" [�M (x1; w1)] in (8), we obtain E~�;~"
�
�M (x

AB
1 (w1); w1)

�
. It is also possible to compute the

manufacturer�s optimal pre-book wholesale price wAB1 by conducting a search over the closed inter-

val [0; 1+�"]. In a later section, we shall present an e¢ cient computational procedure for determining

xAB1 (w1) and wAB1 when the yield ~� and the demand ~" follow speci�c probability distributions.

For general probability distributions of ~� and ~", there are no closed-form expressions for xAB1 (w1)

and wAB1 : Even so, we are able to make analytical comparisons between the equilibrium outcomes

associated with the dynamic game AB and those of the speculative game A and the reactive game

B in the next section.

5 Comparisons of Equilibrium Outcomes in Games A, B and AB

In the last section, we have determined the equilibrium outcomes associated with three separate

games: the speculative game A, the reactive game B, and the dynamic game AB that involves

both games A and B sequentially. In section 5.1, we �rst show how the equilibrium outcomes

capture the trade-o¤s that each �rm faces. Then we compare the equilibrium outcomes of game
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AB with those of games A and B. While our main results are proved in section 5.2 under general

probability distributions of yield ~� and demand ~", we conduct our numerical study in section 5.3

by assuming their speci�c probability distributions. These comparisons will enable us to answer

our �rst research question regarding the bene�ts of advance booking programs.

5.1 Firms�Trade-o¤s in Equilibrium Outcomes

Suppose the retailer pre-books nothing and places only a regular order as in the reactive game

B. Then she avoids the risk of overstocking but bears the risk of a higher wholesale price when

there is a supply shortage. This trade-o¤ is formally captured in the equilibrium wholesale prices

as stated in Proposition 3. Let us consider the case when the actual supply is low relative to the

realized demand (i.e., k~� = l < m
4 =

1+~"
4 ). Statement (ii) of Proposition 3 states that the regular

wholesale price wB2 = m�2l = 1+~"�2k~� (> 0:5 + 0:5~") ; which is ex-ante uncertain and increases

as the actual yield ~� decreases or the realized demand ~" increases. On the other hand, the pre-book

wholesale price w1 is known to the retailer in the speculative game A or the dynamic game AB.

For example, in game A, Proposition 2 reveals that the pre-book wholesale price wA1 is 0.5 or a

constant that is greater than 0.5. Thus, wB2 > w
A
1 when the supply turns out to be low relatively

to the demand. This con�rms that the retailer bears the price risk when she pre-books nothing.

Next, suppose the retailer only pre-books without placing a regular order as in the speculative

game A. Then she avoids the price risk by paying the known pre-book wholesale price wA1 but

she bears the risk of overstocking, which leads to a lower retail price p. This trade-o¤ is also

captured in the equilibrium outcomes. Consider the speculative game A as follows. Statement (i)

of Proposition 2 shows that the retailer pre-books xA1 = 0:25 when k� � 0:25. However, if the

retailer knew that the demand is going to be low, she would have pre-booked less than 0:25. For

example, in the reactive game B, statement (i) of Proposition 3 shows that, after observing the

demand ~", the retailer would order xB2 =
m
4 = 0:25(1 + ~") < x

A
1 when ~" < 0 and k~� � 1+~"

4 : Hence,

the retailer bears the risk of overstocking when she only pre-books.

Using the same approach, one can utilize the results presented in Propositions 2 and 3 to

highlight the trade-o¤s the manufacturer faces when deciding his pre-book wholesale price and

regular wholesale price. To avoid repetition, we omit the details.
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5.2 Analytical Comparisons of Equilibrium Outcomes

We now compare the equilibrium outcomes of the dynamic game AB presented in Section 4.3

with those of the reactive game B presented in Section 4.2. Even though there are no closed-form

expressions for the manufacturer�s optimal pre-book wholesale price wAB1 and for the retailer�s

optimal pre-book order quantity xAB1 (w1), we are able to establish the following results:

Theorem 1 (a) In equilibrium, the manufacturer�s and the retailer�s expected pro�ts in the dynamic

game AB are greater than or equal to their respective ex-ante expected pro�ts in the reactive game

B; i.e., E�ABM � E�BM and E�ABR � E�BR , where the equalities hold when xAB1 = 0.

(b) In equilibrium, the regular wholesale price in the dynamic game AB is lower than or equal to

that in the reactive game B; i.e., wAB2 � wB2 for any realized yield ~� and demand ~".

(c) In equilibrium, the total order quantity in the dynamic game AB is larger than or equal to that

in the reactive game B, while the regular order quantity in the dynamic game AB is smaller than

or equal to that in the reactive game B; i.e., xAB2 � xB2 � xAB1 + xAB2 for any realized yield ~� and

demand ~".

Relative to the case when the manufacturer allows the retailer to place only a regular order

as in the reactive game B, Theorem 1(a) shows that both the manufacturer and the retailer will

obtain higher expected pro�ts when both pre-book and regular orders are allowed as in the dynamic

game AB. To explain this result intuitively, notice that game B is a special case of game AB in

which the retailer pre-books nothing, i.e., x1 = 0, so the retailer has an additional option to place

a pre-book order x1 in game AB. Thus, for any given pre-book wholesale price w1, the retailer can

do at least as well in game AB as in game B by setting her pre-book quantity xAB1 (w1) = 0: This

additional option enables the retailer to obtain a higher expected pro�t in game AB. Similarly,

the manufacturer has an option to set his pre-book wholesale price w1 in game AB in addition to

his regular wholesale price w2 in game B. Because the manufacturer as a Stackelberg leader can

always induce the retailer to choose xAB1 (w1) = 0 by setting w1 su¢ ciently high, the manufacturer

also obtains a higher expected pro�t in game AB. Therefore, relative to the case when only regular

ordering is allowed, the manufacturer can create a win-win situation by o¤ering advance booking

in addition to regular ordering. By mitigating the demand, supply and price risks, the advance

booking program improves the overall supply chain performance.

Theorem 1(b) states that the manufacturer charges a lower regular wholesale price in equilib-

rium under the dynamic game AB than under the reactive game B. To see this, observe from

18



Corollary 2(i) that the regular wholesale price wAB2 (x1) in game AB decreases in the pre-book

quantity x1 when the actual supply is su¢ ciently large. Combining this observation with the fact

that the regular wholesale price wB2 in game B is equal to wAB2 (0) in game AB for the case when

x1 = 0, we obtain the result as stated in Theorem 1(b). This reveals two bene�ts of the advance

booking program to the retailer: a known pre-book wholesale price as opposed to an uncertain

regular wholesale price, and a potentially lower regular wholesale price. These bene�ts provide

an intuitive explanation about why the retailer can obtain a higher pro�t when the manufacturer

o¤ers advance booking as well as regular ordering.

In addition, Theorem 1(c) asserts that the manufacturer can entice the retailer to order more

in total by o¤ering advance booking in addition to regular ordering. Since the expected supply

is constant (= k), this implies that the expected leftovers after the selling season will be reduced.

Hence, advance booking is bene�cial to the manufacturer.

Next, by comparing the equilibrium outcomes of the dynamic game AB presented in Section

4.3 with those of the speculative game A presented in Section 4.1, we establish the following results:

Theorem 2 (a) In equilibrium, the manufacturer�s expected pro�t in the dynamic game AB is

greater than or equal to that in the speculative game A; i.e., E�ABM � E�AM where the equality

holds when xAB1 � min
�
k��; 1+�"2

	
:

(b) For any given pre-book wholesale price w1, the retailer�s pre-book quantity in the dynamic game

AB is smaller than or equal to that in the speculative game A; i.e., xAB1 (w1) � xA1 (w1) 8w1:

Furthermore, if wAB1 � wA1 , then xAB1 (wAB1 ) � xA1 (wA1 ).

Relative to the case when the manufacturer allows only a pre-book order from the retailer as

in the speculative game A, Theorem 2(a) shows that the manufacturer obtains a higher expected

pro�t in the dynamic game AB. In view of the result stated in Theorem 1(a), it su¢ ces to prove

that E�BM � E�AM . Our proof is based on two observations. First, in game B, the manufacturer

can utilize information about the realized demand and supply to set the regular wholesale price

accordingly. Better information enables the manufacturer to extract more surplus from the retailer.

Second, observe from Proposition 3 that the manufacturer�s ex-post pro�t �BM in game B is increas-

ing and convex in uncertain demand component ~". By using Jensen�s inequality, it is easy to check

that the manufacturer will obtain higher ex-ante expected pro�t in game B as demand uncertainty

increases (see Appendix A1 for details). Combining these two observations with Theorem 1(a), we

can conclude that E�ABM � E�BM � E�AM : Next, consider the case when the retailer�s pre-book
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quantity xAB1 is su¢ ciently high (i.e., xAB1 � min
�
k��; 1+�"2

	
). In this case, the retailer will never

exercise the additional option of placing a regular order. Therefore, both �rms obtain the same

expected pro�ts in both games AB and A:

The result in Theorem 2(b) is intuitive because the retailer has an additional opportunity

to place a regular order in the dynamic game AB after observing demand and supply. Since the

second result in Theorem 2(b) relies on the condition wAB1 � wA1 , we shall investigate this condition

numerically in the next section.

5.3 Numerical Comparisons of Equilibrium Outcomes

To complement our analytical �ndings presented earlier, we conduct extensive numerical exper-

iments. For our numerical study, we assume that ~� is uniformly distributed between 1 � r and

1 + r, where r 2 (0; 1] represents the degree of supply uncertainty, and that ~" = e (representing

high demand) with probability 0.5 and ~" = �e (representing low demand) with probability 0.5,

where e 2 (0; 1] represents the degree of demand uncertainty6. We have constructed 810 scenarios

by varying capacity k from 0:1 to 1 and by varying both the level of demand uncertainty e and

the level of supply uncertainty r from 0:1 to 0:9 with an increment of 0:1. For each scenario of

(k; e; r), we compute equilibrium outcomes in games A; B and AB. (See Appendix A2 for details

about the computational method.) By comparing these equilibrium outcomes, we have veri�ed the

results stated in Theorem 1 regarding game AB versus game B. In addition, we draw the following

observations regarding game AB versus game A that augment the results stated in Theorem 2. To

illustrate, we present the results of 27 scenarios in Table 1.

Observation 1 (a) In equilibrium, the pre-book wholesale price in the dynamic game AB is higher

than or equal to that in the speculative game A, i.e., wAB1 � wA1 :

(b) In equilibrium, the retailer�s expected pro�t in the dynamic game AB can be greater or smaller

than that in the speculative game A, i.e., E�ABR � E�AR can be either positive or negative.

(c) In equilibrium, the expected total order quantity in the dynamic game AB can be larger or

smaller than that in the speculative game A; i.e., [(xAB1 + ExAB2 ) � xA1 ] can be either positive or
6We have chosen simple probability distributions that reasonably approximate the �u vaccine supply chain in the

following sense. The uniform distribution of the yield re�ects the fact that a wide range of yields are equally plausible
in producing �u vaccines (see Cho (2009) and references therein). Due to the fact that a �u is either contained locally
or spreads across regions, a �u season is typically either mild (low demand) or severe (high demand). The binary
demand distribution is also used for tractability in the literature (e.g., Erhun et al. (2008), Anand and Mendelson
(2009)).
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negative.

Observation 1(a) veri�es the condition stated in Theorem 2(b); hence, xAB1 � xA1 : Because the

retailer pre-books less in game AB, one may suspect the manufacturer may become worse-o¤ by

giving the retailer the additional option. However, in the dynamic game AB, the manufacturer

also has an additional option to set his regular wholesale price after uncertainties in supply and

demand are resolved but prior to receiving a regular order from the retailer. Due to this option

of postponing his pricing decision, the manufacturer can a¤ord to set a higher pre-book wholesale

price in game AB so that wAB1 � wA1 as shown in Observation 1(a). Also, our numerical result

suggests that wAB1 � EwAB2 (omitted). Hence, when there are two chances to set the wholesale

price as in the dynamic game AB; it is optimal for the manufacturer to set a higher wholesale

price in the �rst stage, and then switch to a lower price (in expectation) in the second stage. This

result is not uncommon due to strategic interactions between two parties over time. For instance,

Donohue (2000) shows that the pro�t margin in the �rst stage must be set higher than that in the

second stage to coordinate a two-level supply chain.

In contrast to the result stated in Theorem 1(a), Observation 1(b) reveals that the retailer can

be worse o¤ in the dynamic game AB than in the speculative game A (i.e., E�ABR < E�AR) especially

when the capacity k is su¢ ciently low, say k = 0:1. When k = 0:1, the last column of Table 1

reveals that the remaining supply is likely to be unavailable (i.e., l0 � 0) or low relative to the

desired allocation associated with the regular order (i.e., 0 < l0 < m0

4 ). When the remaining supply

is su¢ ciently low, the regular wholesale price can be much higher than the pre-book wholesale

price. For example, consider the case when (k; e; r) = (0:1; 0:5; 0:5); one can apply Corollary 2(ii)

to show that the highest possible value of wAB2 occurs when ~" = e (high demand) and ~� = 1 � r

(low yield) so that wAB2 (= 1:4) > wAB1 (= 0:81) > wA1 (= 0:75). In addition, Table 1 shows that the

expected total order quantity is smaller in game AB when k = 0:1 so that (xAB1 + ExAB2 ) < xA1

(Observation 1(c)). Hence, when the capacity is su¢ ciently low, the retailer can be better o¤ under

the speculative game A by pre-booking a larger quantity at a lower price than under the dynamic

game AB. In short, �speculation�could pay o¤ for the retailer when the risk of a supply shortage

is high!
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Table 1. Numerical Comparisons of Equilibrium Outcomes between Game AB and Game A.

Parameters Equilibrium Outcome Comparisons
k e r E�ABM �E�AM E�ABR �E�AR wAB1 �wA1 xAB1 �xA1 xAB1 +ExAB2 �xA1 Prob�

0.1 0.1 0.1 0.001 -0.001 0.010 -0.105 -0.005 1.000
0.1 0.1 0.5 0.006 -0.003 0.049 -0.124 -0.024 1.000
0.1 0.1 0.9 0.008 -0.003 0.086 -0.143 -0.043 1.000
0.1 0.5 0.1 0.001 -0.001 0.010 -0.105 -0.005 1.000
0.1 0.5 0.5 0.006 -0.004 0.058 -0.102 -0.025 0.930
0.1 0.5 0.9 0.008 -0.005 0.110 -0.128 -0.047 0.840
0.1 0.9 0.1 0.007 -0.006 0.088 -0.092 -0.039 0.500
0.1 0.9 0.5 0.012 -0.008 0.127 -0.112 -0.059 0.500
0.1 0.9 0.9 0.016 -0.009 0.166 -0.133 -0.078 0.556
0.4 0.1 0.1 0.017 0.012 0.062 -0.125 0.063 0.000
0.4 0.1 0.5 0.013 0.013 0.043 -0.132 0.051 0.258
0.4 0.1 0.9 0.015 0.009 0.069 -0.137 0.024 0.354
0.4 0.5 0.1 0.037 0.019 0.080 -0.192 0.023 0.275
0.4 0.5 0.5 0.035 0.015 0.063 -0.149 0.026 0.274
0.4 0.5 0.9 0.034 0.013 0.085 -0.148 0.010 0.346
0.4 0.9 0.1 0.095 0.018 0.078 -0.237 -0.034 0.500
0.4 0.9 0.5 0.087 0.022 0.099 -0.191 -0.020 0.373
0.4 0.9 0.9 0.081 0.023 0.128 -0.177 -0.025 0.326
0.7 0.1 0.1 0.017 0.012 0.062 -0.125 0.063 0.000
0.7 0.1 0.5 0.017 0.012 0.062 -0.125 0.063 0.000
0.7 0.1 0.9 0.016 0.011 0.066 -0.131 0.044 0.185
0.7 0.5 0.1 0.047 0.027 0.062 -0.125 0.063 0.000
0.7 0.5 0.5 0.045 0.026 0.065 -0.136 0.055 0.059
0.7 0.5 0.9 0.040 0.020 0.075 -0.137 0.035 0.183
0.7 0.9 0.1 0.114 0.058 0.095 -0.154 0.059 0.000
0.7 0.9 0.5 0.109 0.051 0.092 -0.171 0.037 0.118
0.7 0.9 0.9 0.097 0.039 0.116 -0.168 0.013 0.175

*Prob represents Prfl0 � 0 or 0 < l0 � m0

4 g in the dynamic game AB:

6 Comparative Statics

We now examine our second research question: what are the e¤ects of capacity, demand uncertainty,

and supply uncertainty on the manufacturer�s pricing decisions, the retailer�s ordering decisions,

and the resulting pro�ts? As it turns out, these factors have several e¤ects that are not necessarily

unidirectional. We take a numerical approach to explore the dominant e¤ects of these factors

and to compare comparative statics across all three games A, B and AB. (In Appendix A3, we

analyze comparative statics associated with games A and B using stochastic ordering relations

under general probability distributions of yield and demand.)

By using the same set of parameter values for (k; r; e) as presented in Section 5.3, we obtain

the results as reported in Table 2. We examine the impact of each factor as follows. For capacity

k, we compute the di¤erence in the equilibrium outcomes associated with the adjacent values of k
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for any given (r; e). Because there are 81 possible pairs of (r; e) and 9 increments of k, there are

729 scenarios for which we can examine whether the equilibrium outcome increases or decreases

with an increase of k. For example, the �rst three entries in the �rst row of Table 2 characterize

the impact of capacity k. As k increases, the pre-book quantity xA1 in game A has increased in 432

scenarios, decreased in 0 scenario, and unchanged in 297 scenarios (out of 729 scenarios). Similarly,

we examine the impact of supply uncertainty r and demand uncertainty e in 720 scenarios. We

now use our results presented in Table 2 to discuss the impact of k; r; and e on the equilibrium

outcomes across all three games.

Table 2. Comparative Statics
k r e

" # � " # � " # �
Game A xA1 432 0 297 126 306 288 0 0 720

wA1 0 432 297 306 126 288 0 0 720

E�AR 432 0 297 72 360 288 0 0 720

E�AM 432 0 297 0 432 288 0 0 720

Game B ExB2 542 0 187 0 460 260 0 494 226

EwB2 0 542 187 460 0 260 494 0 226

E�BR 542 0 187 148 389 183 526 171 23

E�BM 542 0 187 0 537 183 697 0 23

Game AB xAB1 550 9 170 221 331 168 76 519 125

ExAB2 521 70 138 132 423 165 179 428 113

xAB1 +ExAB2 591 0 138 41 512 167 41 565 114

wAB1 63 512 154 431 111 178 502 78 140

EwAB2 0 591 138 470 83 167 583 23 114

E�ABR 591 0 138 179 441 100 514 183 23

E�ABM 591 0 138 5 582 133 697 0 23

6.1 Comparative Statics: Advance Booking Only in Game A

In the speculative game A, Table 2 shows that, as capacity k increases, the expected pro�ts of

both �rms increased in 432 scenarios out of 729 scenarios. These scenarios correspond to the case

when k� = k(1 � r) < 0:25 in Proposition 2(ii). In this case, there is a positive probability that

supply will be lower than the retailer�s �ideal�allocation. Proposition 4 in Appendix A3 asserts

that, as capacity k increases, the manufacturer would push the product to the retailer by lowering

his pre-book wholesale price. Responding to a lower wholesale price, the retailer would increase her

ordering quantity as shown in Proposition 1. As a result, both �rms earn more expected pro�ts.

The remaining 297 scenarios correspond to the case when k(1 � r) � 0:25. Since there is always

enough supply in this case, the equilibrium outcomes do not change with an increase of capacity.
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Figure 2: Pre-book Wholesale Price wA1 in the Speculative Game A

Table 2 reveals that supply uncertainty r will always hurt the manufacturer�s expected pro�t

E�AM . This is intuitive because as r increases, the manufacturer bears more risk in game A where

the manufacturer receives all orders before observing uncertain demand and supply. Interestingly,

however, supply uncertainty does not always hurt the retailer�s expected pro�t E�AR. To see why

this is the case, let us �rst examine the impact of r on the pre-book wholesale price wA1 . Observe

from Proposition 2 that if k(1 � r) � 0:25; wA1 = 0:5; otherwise, wA1 is varying with r. It turns

out that wA1 is not monotonic in r; as illustrated in Figure 2. When the minimum supply k(1� r)

is lower than but close to 0.25 (e.g., k = 0:3 or 0:4; and 0:4 � r � 0:6), the supply risk is low.

In this case, as the supply risk increases with an increase of r, a supply shortage is more likely

to occur. To compensate for potential low sales volume, the manufacturer would increase his pre-

book wholesale price. In contrast, when k(1� r) is much lower than 0.25 (e.g., k = 0:1 or 0:2; and

0:6 � r � 0:9); the supply risk is high. As the supply risk becomes more eminent with an increase in

r, the manufacturer would reduce his pre-book wholesale price wA1 in order to secure more pre-book

orders from the retailer. Since the retailer would acquire a higher pre-book order quantity at a

lower price on average, a higher level of supply uncertainty r could improve the retailer�s expected

pro�t7.

Demand uncertainty e does not a¤ect the equilibrium outcomes of game A. This is because the

retailer maximizes her expected pro�t which does not depend on the level of demand uncertainty

e as shown in (1).

7 In Table 2, there are 72 scenarios in which E�AR is increasing in r, although there are 126 scenarios in which w
A
1

is decreasing in r and xA1 is increasing in r. This di¤erence is simply due to the fact that E�
A
R is neither monotonic

in wA1 nor in x
A
1 :
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6.2 Comparative Statics: Regular Ordering Only in Game B

In the reactive game B, both �rms make their decisions after observing the realized demand and

supply. Thus, we examine the comparative statics of the ex-ante equilibrium outcomes. Appendix

A2 presents the closed-form expressions of the ex-ante equilibrium outcomes and the signs of their

�rst derivatives with respect to r; e and k under various conditions. Based on these detailed

analyses, we next discuss the results summarized in Table 2.

Table 2 shows that the e¤ect of capacity k in the reactive game B is the same as that in the

speculative game A, except that there are 187 scenarios when k has no impact on the equilibrium

outcomes as compared to 297 scenarios in game A. Such scenarios in game B correspond to the case

when the ex-ante probability of a supply shortage is zero, i.e., Prfl � m=4g = Prfk~� � 1+~"
4 g = 0

(see Proposition 3).

The e¤ect of supply uncertainty r in the reactive game B is also similar to that in the speculative

game A. In both games, supply uncertainty will always hurt the manufacturer but not the retailer.

However, unlike in game A, the regular wholesale price EwB2 as well as the regular order quantity

ExB2 change monotonically in game B. (Recall from Section 6.1 that the non-monotonicity of wA1

and xA1 in game A is due to the fact that when facing high supply risk, the manufacturer reduces

his pre-book wholesale price wA1 in order to induce the retailer to pre-book more.) Unlike in game

A; each �rm chooses an action that maximizes his/her ex post pro�t in game B after uncertainties

are resolved. Thus, the supply risk in game A that leads the manufacturer to reduce his pre-book

wholesale price with an increase of r does not exist in game B.8

The e¤ect of demand uncertainty e on the ex-ante expected pro�t of the manufacturer E�BM is

opposite to that of supply uncertainty r. Speci�cally, Table 2 suggests that supply uncertainty r

hurts the manufacturer, whereas demand uncertainty e bene�ts the manufacturer. On the surface, it

appears that both types of uncertainties should a¤ect the manufacturer�s expected pro�t negatively.

To investigate this counter-intuitive result, let us examine the manufacturer�s ex post pro�t �BM

presented in Proposition 3. As illustrated in Figure 3(a), �BM is nondecreasing and concave in the

yield ~�. This is because the marginal bene�t of yield ~� is positive but decreasing in the interval

I1 (in which supply is short relative to the desired quantity) because additional units will be sold

to customers with low reservation prices; whereas it is zero in the interval I2 (in which supply

8Note in Table 2 that E�BR and E�
B
M remain unchanged in 183 scenarios, while ExB2 and Ew

B
2 remain unchanged

in 260 scenarios. This is because a change in r can a¤ect the ex-ante expected pro�ts even when it does not alter
any �rm�s decision. For example, when a supply shortage occurs with probability 1, Appendix A2 shows that E�BR
increases in r and E�BM decreases in r although ExB2 and Ew

B
2 do not change.
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is su¢ cient relative to the desired quantity) because additional units will not be sold (see Figure

3(c)). On the other hand, Figure 3(b) shows that �BM is strictly increasing and convex in demand ~".

This is because the marginal bene�t of demand ~" is increasing in the interval I2 because additional

units will be sold to customers at a higher price; whereas it is a positive constant in the interval

I1 because no additional units will be sold but units will be sold at a higher price (see Figure

3(d)). Jensen�s inequality implies that the manufacturer�s ex-ante expected pro�t E�BM increases

with demand uncertainty e due to the convexity of �BM in ~", and that E�BM decreases with supply

uncertainty r due to the concavity of �BM in ~�. The former result is consistent with Van Mieghem

and Dada (1999), who show that the bene�t of price postponement increases as demand uncertainty

increases. Our results extend Van Mieghem and Dada (1999) by showing that the bene�t of price

postponement decreases as supply uncertainty increases.

Table 2 reveals that the e¤ect of demand uncertainty e and supply uncertainty r on the ex-ante

expected pro�t of the retailer E�BR is not unidirectional. We can see this from Proposition 3, which

shows the retailer�s ex post pro�t �BR is neither convex nor concave in ~� or ~". Note that the retailer�s

ex post pro�t remains constant as demand or supply increases beyond a certain point, whereas the

manufacturer can always take advantage of a higher demand by extracting more consumers�surplus

(see Figure 3(b)). Because the manufacturer has the pricing power as the Stackelberg leader, the

retailer does not share the extra surplus.

6.3 Comparative Statics: Advance Booking and Regular Ordering in Game AB

In the dynamic game AB, both �rms make their decisions before and after supply and demand

uncertainties are resolved. We observe from Table 2 that most equilibrium outcomes do not change

monotonically with a change of any parameter. This is primarily due to the non-monotonicity of

the pre-book wholesale price wAB1 with a change of any parameter value. (To illustrate, we provide

numerical examples in Appendix A4.)

Despite the prevalent non-monotonicity in the comparative statics of game AB, Table 2 reveals

that the general patterns observed in game AB are quite similar to those in games A and B.

Speci�cally, we observe the following dominant e¤ects of each factor:

(a) As capacity k increases, the manufacturer tends to reduce his (pre-book and regular) wholesale

prices, the retailer tends to increase her (pre-book and regular) order quantities, and both �rms

tend to obtain higher expected pro�ts.

(b) As supply uncertainty r increases, the manufacturer tends to increase his wholesale prices, the
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Figure 3: (a) �BM with Respect to Yield ~�; (b) �BM with Respect to Demand Component ~"; (c)
Demand Curve when Yield ~� Increases; (d) Demand Curves when Demand Component ~" Increases

retailer tends to reduce her order quantities, and both �rms tend to obtain lower expected pro�ts.

(c) As demand uncertainty e increases, the manufacturer tends to increase his wholesale prices, the

retailer tends to reduce her order quantities, and both �rms tend to obtain higher expected pro�ts.

7 Extension to Multiple Retailers

So far, our analysis is based on a supply chain with a single retailer who faces the demand, supply,

and price risks. In a supply chain with multiple retailers, each retailer has to compete for potentially

scarce supply with the other retailers. In addition to demand, supply and price risks, each retailer

faces an additional �allocation risk�which arises when there is insu¢ cient supply to ful�ll the orders

placed by the retailers. Without pre-booking some units, a retailer may not get her regular order

�lled because the other retailers�pre-book orders could have taken up the entire supply. Therefore,

our intuition suggests that a retailer would pre-book more in the multiple-retailer supply chain

than in the one-retailer supply chain. Below we formalize this intuitive argument by extending the

results presented in Cachon and Lariviere (1999a&b) for a one-stage setting to a two-stage setting

in our model.

Before the game begins, suppose that the manufacturer announces the mechanism for allocating
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his supply in the event when the sum of all retailer orders in each stage exceeds the available

supply. Three popular mechanisms are proportional, linear and uniform allocations. When a supply

shortage occurs, proportional allocation gives each retailer the same fraction of her order, while

linear allocation gives each retailer her order minus a common deduction. Thus, both mechanisms

ensure that when limited supply is allocated, every retailer receives less than her order but can

receive more by ordering a larger quantity. In contrast, under uniform allocation, the manufacturer

equally divides the available supply among retailers; if a retailer orders less than her equal share, she

receives her order and the remaining supply is allocated equally among the other retailers. Thus,

a retailer cannot increase her allocation by ordering a larger quantity under uniform allocation of

limited supply. See Cachon and Lariviere (1999a&b) for more details.

The sequence of decisions and events in our model is the same as before except that the man-

ufacturer uses the allocation mechanism when a shortage occurs in each stage. Speci�cally, at the

end of the �rst stage after the random yield is realized, the manufacturer allocates available supply

to the pre-book orders placed earlier by multiple retailers. If the total pre-book orders exceed

available supply, the manufacturer allocates the supply to retailers according to the pre-announced

mechanism and then the game ends. Otherwise, the manufacturer delivers what each retailer has

pre-booked and the game proceeds to the second stage. The remaining supply after allocating the

supply to pre-book orders is common knowledge in the second stage. At the end of the second

stage, if total regular orders exceed the remaining supply, the manufacturer allocates the supply

to retailers according to the pre-announced mechanism; otherwise, the manufacturer delivers what

each retailer has ordered. In this manner, the manufacturer gives a higher priority to pre-book

orders than regular orders.

We assume that, as in Cachon and Lariviere (1999a&b), the retailers�demands are independent,

i.e., they are local monopolists. Retailer n (= 1; 2; :::; N) faces a demand curve, pn = 1 + ~"n � qn,

where pn represents a retail price to consumers, ~"n represents a random demand component, and

qn represents the quantity available for sales by the retailer. We assume that ~"n is independent and

identically distributed. Each retailer knows the distribution of the others�random demands but

does not observe their realizations. We also assume that the capacity of Nk is available, so each

retailer�s (ideal) share of capacity is k as in the one-retailer supply chain.

We consider the dominant strategy equilibrium concept in which each retailer has the ideal

allocations for her pre-book and regular orders that maximize her pro�t regardless of the orders of

the other retailers (Cachon and Lariviere 1999a). We are particularly interested in whether or not,
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in a dominant equilibrium, all retailers order the optimal quantities xAB1 and xAB2 obtained earlier

in the one-retailer supply chain without the allocation risk. Let us �rst consider retailers�regular

ordering decisions in the second stage. Given the regular wholesale price and the �xed supply,

each retailer places her regular order after observing her demand. This setting is identical to those

in Cachon and Lariviere (1999a&b), so their results apply here as follows. Under proportional or

linear allocation mechanism, all retailers ordering their ideal allocations is not a dominant equilib-

rium. In contrast, under uniform allocation mechanism, all retailers order their ideal allocations

in equilibrium. This is because, unlike the �rst two mechanisms, retailers do not receive more by

in�ating their orders when a shortage occurs.

Next, let us consider retailers�pre-book decisions in the �rst stage prior to observing uncertain

demand and yield. It is easy to see that proportional and linear allocations will induce retailers

to in�ate their orders as in the second stage, so we focus our discussion on the retailers�decisions

under uniform allocation. Suppose a dominant equilibrium exists in which every retailer pre-

books her ideal pre-book allocation. Then, when a supply shortage occurs in the �rst stage, each

retailer cannot increase her allocation by increasing her pre-book order because of the property

of the uniform allocation rule. However, when there is no supply shortage in the �rst stage, the

manufacturer has remaining supply to �ll the regular orders. In this case, any retailer can increase

her allocation by pre-booking more than her ideal pre-book allocation because pre-book orders

have a higher ful�llment priority than regular orders. These observations suggest that ordering the

optimal quantities xAB1 and xAB2 derived from the one-retailer supply chain is not, in general, a

dominant equilibrium in the multiple-retailer supply chain. Hence, in the presence of the allocation

risk, retailers have more incentives to participate in the advance booking program so that they can

secure the quantities available to them by pre-booking more.

8 Concluding Remarks

Advance booking programs are mechanisms to align the manufacturer�s and retailers� incentives

for matching supply and demand. While operations management researchers have shown that such

programs are e¤ective when uncertain demand is the only source of risk, it has not been studied

whether or not the advance booking programs are also e¤ective in the presence of demand, supply

and price risks. Motivated by an advance booking program for managing these three types of risks

in the �u vaccine supply chain, we have examined the bene�ts of the advance booking program in a
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two-level supply chain in which a manufacturer and a retailer play a two-stage dynamic Stackelberg

game.

By considering the case when the random yield and the random demand follow general proba-

bility distributions, we have shown that the advance booking program always bene�ts the manufac-

turer. Speci�cally, the manufacturer earns the highest expected pro�t (E�ABM ) when allowing the

retailer to place both advance booking and regular orders as in the dynamic game AB, the second

highest (E�BM ) when o¤ering only regular orders as in the reactive game B, and the worst (E�
A
M )

when o¤ering only advance booking as in the speculative game A; i.e., E�ABM � E�BM � E�AM :

The �rst result E�ABM � E�BM is due to the nonnegative value of an option of receiving pre-book

orders in addition to regular orders. As the Stackelberg leader, the manufacturer can always induce

the retailer to pre-book some units by charging a lower pre-book wholesale price than he would

have charged for a regular order without advance booking. The retailer responds by increasing

her total order quantity (in expectation). Because the retailer possesses the option of pre-booking

or not, the retailer also earns a higher expected pro�t under the advance booking program (i.e.,

E�ABR � E�BR). As a result of the improved match between supply and demand, the expected

leftovers at the end of the selling season are also lower under this program. This improvement in

supply chain performance is due to a reduction in the market risk that both �rms face.

The second result E�BM � E�AM is due to two factors: (i) price postponement : the manufac-

turer�s ability to set his regular wholesale price after observing the realized demand and supply;

and (ii) convex pro�t function and Jensen�s inequality : the manufacturer�s ex post pro�t �BM has

an increasing marginal return with respect to the realized ~". In contrast, the retailer can be better

o¤ when only advance booking is allowed (i.e., E�BR < E�AR and E�
AB
R < E�AR are possible),

especially when a supply shortage is likely to occur due to the low capacity.

Our analysis indicated that the e¤ect of demand uncertainty is opposite to that of supply

uncertainty under the advance booking program. Speci�cally, more supply uncertainty tends to

decrease the manufacturer�expected pro�t, whereas more demand uncertainty tends to increase

the manufacturer�s expected pro�t. The primary reason for this contrasting result is due to their

di¤erent impacts on the manufacturer�s ex post pro�t: the marginal bene�t of additional supply

is nonincreasing but the marginal bene�t of additional demand is nondecreasing. Although the

e¤ects of both types of uncertainties on the retailer�s pro�t are not unidirectional, our numerical

experiments suggested that their e¤ects are also opposite in most scenarios.

We have extended our model to the case when there are multiple retailers in a supply chain
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competing for potentially scarce supply. In this setting, in addition to those three aforementioned

risks, each retailer faces the allocation risk which arises when the total order quantity from all

retailers exceeds the available supply. Because pre-book orders have higher priorities over regular

orders, we have shown that a retailer has a stronger incentive to pre-book more in a multiple-retailer

supply chain than in a single-retailer supply chain.

Although our model captures the key trade-o¤s associated with the �rms� decisions under

advance booking programs, one can make further extensions to enrich our �ndings. First, while

we have shown that all retailers ordering the optimal quantities as in the one-retailer supply chain

is not a dominant equilibrium in a multiple-retailer supply chain, we are unable to compute the

equilibrium in the multiple-retailer supply chain model mainly because there are two many di¤erent

cases to analyze. For tractable analysis, one may focus on retailers�ordering decisions between two

periods for a pre-speci�ed wholesale pricing scheme. Second, based on our observation of industry

practices, we have assumed that pre-book orders are not cancellable. However, it is of interest

to examine a contract that allows cancellation of some pre-book orders with or without penalties.

Lastly, our two-stage dynamic Stackelberg game model may serve as a building block for others

to develop models that capture the competitive dynamics between multiple manufacturers and

multiple retailers over multiple time periods.
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Appendix

A1. Proofs of Analytical Results

Proof of Proposition 1. The proof is presented in the main text.

Proof of Proposition 2. Since �M (w1) in (3) is concave in w1 for any ~�; E~� [�M (w1)] is also con-

cave in w1, hence a unique wA1 exists. As illustrated in Figure 4, if k~� � 0:25; arg
w1

h
min

n
k~�w1;

w1�w21
2

oi
=

0:5 and otherwise, arg
w1

h
min

n
k~�w1;

w1�w21
2

oi
= 1� 2k~� > 0:5: Thus, if k~� � 0:25 8~�; wA1 = 0:5 and

otherwise, wA1 > 0:5: The result for xA1 (w
A
1 ) follows from Proposition 1. By substituting wA1 and

xA1 (w
A
1 ) into (2) and (3), we obtain the results for E�

A
R and E�

A
M : �

0 1w
1

MΠ

125.0 w

15.0 w

5.0

1
~wkθ when 25.0

~
<θk

θ
~

21 k−

2

2
11 ww −

Figure 4: Manufacturer�s Ex Post Pro�t �M as a Function of the Pre-book Wholesale Price w1 in
the Speculative Game A.

Proof of Proposition 3. The proof is similar to the proof of Proposition 2, hence we omit the

proof.

Proof of Theorem 1. For any given (w1; x1), E�R(w1; x1) in (7) and E�M (w1; x1) in (8) under

the dynamic game AB can be re-written respectively as follows:

E�R(w1; x1) = fAR (w1; x1) + f
B
R (x1) (9)

E�M (w1; x1) = fAM (w1; x1) + f
B
M (x1) (10)

where fAR (w1; x1) � E~�;~" [(1 + ~"� a1 � w1)a1] (11)

fBR (x1) � E~�;~"

�
m02

16
jm0 > 0; l0 � m0

4

�
+ E~�;~"

�
l02jm0 > 0; 0 < l0 <

m0

4

�
(12)

fAM (w1; x1) � E~�;~" [w1a1] (13)

fBM (x1) � E~�;~"

�
m02

8
jm0 > 0; l0 � m0

4

�
+ E~�;~"

�
(m0 � 2l0)l0jm0 > 0; 0 < l0 <

m0

4

�
:(14)

Note that fAR (w1; x1) is the retailer�s expected pro�t for any given (w1; x1) under the speculative
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game A, and that fBR (0) is the ex-ante expected pro�t of the retailer in equilibrium under the reac-

tive game B, i.e., E�BR. Similarly, f
A
M (w1; x1) is the manufacturer�s expected pro�t for any given

(w1; x1) under the speculative game A and fBM (0) is the ex-ante expected pro�t of the manufacturer

in equilibrium under the reactive game B, i.e., E�BM .

(a) We �rst prove E�ABR � E�BR. From the de�nition of fAR in (11), fAR (w1; 0) = 0; hence

from (9), E�R(w1; 0) = fAR (w1; 0) + f
B
R (0) = E�BR. For any given w1, E�R

�
w1; x

AB
1 (w1)

�
=

max
x1�0

E�R(w1; x1) � E�R(w1; 0) = E�BR: Therefore, E�
AB
R = E�R

�
wAB1 ; xAB1 (wAB1 )

�
� E�BR

where the equality holds when xAB1 = 0:

Next, we show E�ABM � E�BM : From the de�nition of fAM in (13), fAM (w1; 0) = 0, hence from

(10), E�M (w1; 0) = fAM (w1; 0)+f
B
M (0) = E�

B
M : If w1 � 1; then xAB1 (w1) � argmax

x1
E�R (w1; x1) =

argmax
x1

�
fAR (w1; x1) + f

B
R (x1)

	
= 0 because argmax

x1
fAR (w1; x1) = 0 by Proposition 1 and f

B
R (x1) is

decreasing in x1 from the observation of (12). Thus, if w1 � 1; E�M
�
w1; x

AB
1 (w1)

�
= E�M (w1; 0) =

E�BM : Therefore, E�
AB
M = E�ABM (wAB1 ; xAB1 (wAB1 )) = max

w1�0
E�M (w1; x

AB
1 (w1)) � max

w1�1
E�M (w1;

xAB1 (w1)) = E�
B
M :

(b) From Proposition 3, wB2 = maxf1+~"2 ; 1 + ~" � 2k~�g (� 0): From Corollary 2, wAB2 (x1) =

max
n
1+~"�2x1

2 ; 1 + ~"� 2k~�; 0
o
: By comparing these equations, we obtain the following result: for

any x1 � 0; wAB2 (x1) � wB2 8~�;~".

(c) From Proposition 3, xB2 = min
n
1+~"
4 ; k

~�
o
(� 0 because 1 + ~" � 0 and k~� � 0). From Corollary

2, xAB2 (x1) = max
n
min

�
1+~"�2x1

4 ; k~� � x1
�
; 0
o
and x1+xAB2 (x1) = max

n
min

�
1+~"+2x1

4 ; k~�
�
; x1

o
:

By comparing these equations, we obtain the following result: for any x1 � 0, xAB2 (x1) � xB2 �

x1 + x
AB
2 (x1) 8~�;~". �

Proof of Theorem 2. (a) Since E�ABM � E�BM from Theorem 1(a), it su¢ ces to show that

E�BM � E�AM . From (3), E�AM can be expressed as follows:

E�AM = max
w1

R ��
� w1 �min

�
k~�;

1� w1
2

�
dF (~�)

=
R ��
� w

A
1 �min

�
k~�;

1� wA1
2

�
dF (~�): (15)

From (4), E�BM can be expressed as follows:

E�BM =
R ��
�

R �"
"maxw2

�
w2 �min

�
k~�;

1 + ~"� w2
2

��
dG(~")dF (~�)

=
R ��
�

R �"
" h(

~�;~")dG(~")dF (~�);
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where h(~�;~") is de�ned from Proposition 3 as follows: if l � m
4 , i.e., ~" � 4k~� � 1; h(~�;~") =

m2

8 =

(1+~")2

8 ; and otherwise, h(~�;~") = (m� 2l)l = (1+ ~"� 2k~�)k~�. As illustrated in Figure 3(b), h
�
~�;~"
�

is strictly increasing and convex in ~" because (1 + ~" � 2k~�)k~� is tangent to (1+~")2

8 at ~" = 4k~� � 1:

Then, from Jensen�s inequality,

E�BM �
R ��
� maxw2

�
w2 �min

�
k~�;

1 + E [~"]� w2
2

��
dF (~�)

=
R ��
� maxw2

�
w2 �min

�
k~�;

1� w2
2

��
dF (~�): (16)

Since the integrand of (16) is greater than or equal to that of (15) for any ~�, E�BM � E�AM :

From (10), E�ABM = E�AM if and only if fBR (x1) = 0 8~"; ~�: We see from (14) that this occurs

when m0 � 0 or l0 � 0 with probability 1. Therefore, if xAB1 � min
�
k��; 1+�"2

	
; E�ABM = E�AM .

(b) From (9), @E�R(w1;x1)
@x1

���
x1=xA1 (w1)

=
@fAR (w1;x1)

@x1

���
x1=xA1 (w1)

+
@fBR (x1)
@x1

���
x1=xA1 (w1)

. Because xA1 (w1)

maximizes fAR (w1; x1) and f
A
R (w1; x1) is concave in x1;

@fAR (w1;x1)
@x1

���
x1=xA1 (w1)

= 0 and @fAR (w1;x1)
@x1

< 0

for x1 > xA1 (w1): From (12), we observe that f
B
R (x1) decreases in x1. Therefore,

@E�R(w1;x1)
@x1

���
x1=xA1 (w1)

� @E�R(w1;x1)
@x1

���
x1=xAB1 (w1)

= 0, hence xA1 (w1) � xAB1 (w1) 8w1:

If wAB1 � wA1 , then x
AB
1 (wAB1 ) � xA1 (w

AB
1 ) � xA1 (w

A
1 ) where the �rst inequality is due to the

earlier result that xA1 (w1) � xAB1 (w1) 8w1, and the second inequality follows from Proposition 1

which shows that xA1 (w1) decreases in w1. �

A2. Equilibrium Outcomes under Speci�c Probability Distributions

In our numerical study, we have assumed that ~� is uniformly distributed between 1� r and 1 + r;

and that ~" = e with probability 0.5 and ~" = �e with probability 0.5. This section presents the

closed-form expressions of equilibrium outcomes under these probability distributions in games A

and B, and describe the e¢ cient procedure to compute equilibrium outcomes in game AB.

In the speculative game A, aA1 (w1) depends on the random yield ~� in the following manner: if

1�w1
2k � ~� � 1 + r; aA1 (w1) =

1�w1
2 and if 1 � r � ~� � 1�w1

2k , aA1 (w1) = k~�: Thus, we can express

E~� [�M (w1)] in (3) as:

E~� [�M (w1)] = E~�[w1 � a
A
1 (w1)] =

Z 1+r

�a

w1
1� w1
2

1

2r
d� +

Z �a

1�r
w1k�

1

2r
d�; (17)

where �a � min
�
1 + r;max

�
1� r; 1�w12k

�	
. By noting that �a can take on three di¤erent values
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depending on w1, (17) can be rewritten as:

E~� [�M (w1)] =

8>>>>>><>>>>>>:

kw1 if 0 � w1 � 1� 2k(1 + r)

� w1
16rk [w1 � f1� 2k(1 + r + 2

p
r)g]

� [w1 � f1� 2k(1 + r � 2
p
r)g]

if 1� 2k(1 + r) < w1 < 1� 2k(1� r)

w1(1�w1)
2 if 1� 2k(1� r) � w1 � 1:

(18)

Proposition 2 has shown that if k(1� r) � 0:25, wA1 = 0:5: If k(1� r) < 0:25, we can show

wA1 =
2

3
(1� 2k � 2kr) + 1

3

p
4k2(1 + 14r + r2)� 4k(1 + r) + 1: (19)

The proof of the above result is as follows. From (18) , let g1(w1) � kw1, g2(w1) � � w1
16rk [w1�

f1� 2k(1 + r + 2
p
r)g] [w1 � f1� 2k(1 + r � 2

p
r)g], and g3(w1) � w1(1�w1)

2 : Note that g2 is a

cubic function of w1 and its domain [1�2k(1+r); 1�2k(1�r)] is contained in [1�2k(1+r+2
p
r); 1�

2k(1+ r� 2
p
r)]. Since d

3g2
dw31

< 0 and 1� 2k(1+ r� 2
p
r) > 0; g2 is unimodal with its maximum at

a larger root of dg2(w1)dw1
= 0; which is equal to the right hand side of (19). Also, g3 is concave in w1

with its maximum at 0:5. Since dg1
dw1

���
w1=1�2k(1+r)

= dg2
dw1

���
w1=1�2k(1+r)

= k > 0, wA1 does not exist

in the �rst interval of w1. Suppose k(1� r) � 0:25: Then, dg2
dw1

���
w1=1�2k(1�r)

= �1
2 + 2k(1� r) � 0;

hence wA1 = 0:5 2 [1 � 2k(1 � r); 1]. Next, suppose k(1 � r) < 0:25. Then, dg2
dw1

���
w1=1�2k(1+r)

>

0; dg2
dw1

���
w1=1�2k(1�r)

< 0 and dg2
dw1

���
w1=1�2k(1�r)

< 0; hence wA1 in (19) is optimal. In this case,

wA1 > 0:5 because dg2
dw1

���
w1=0:5

= 1
16kr

h�
1
2

�2 � f2k(1� r)g2i > 0: By substituting w1 = wA1 into

xA1 (w1) in Proposition 1, we can obtain the closed-form expressions for xA1 (w
A
1 ) and similarly for

E�AM and E�AR.

For the reactive game B, using the ex post equilibrium outcomes given in Proposition 3, we

compute the ex-ante equilibrium outcomes. From Proposition 3, by noting that the condition l � m
4

can be rewritten as ~� � 1+~"
4k , we can rewrite the ex-ante expected wholesale price in (5) as:

E~�;~"
�
wB2
�
= Pr(~" = e)

�
Pr(~� � �b)

1 + e

2
+

Z �b

1�r
[(1 + e)� 2k�] d�

2r

�
+ Pr(~" = �e)

�
Pr(~� � �c)

1� e
2

+

Z �c

1�r
[(1� e)� 2k�] d�

2r

�
=
1

4r

�
�1 + 3r + 1

2
f(1 + e)�b + (1� e)�cg � k

�
�2b + �

2
c � 2(1� r)2

	�
;
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where �b � min
�
1 + r;max

�
1� r; 1+e4k

�	
and �c � min

�
1 + r;max

�
1� r; 1�e4k

�	
: Similarly, we can

compute other ex-ante equilibrium outcomes such as E�BM , Ex
B
2 , and E�

B
R. Table 3 shows that

there are six possible cases of having di¤erent pairs of �b or �c: Table 4 displays the probabilities of a

supply shortage in each case. For example, in Case 1 when �b = 1+r and �c = 1+r, the probability

of a supply shortage is 1 for both demand states. Note that Case 1 represents the lowest level of

capacity with the highest probabilities of a supply shortage, whereas Case 6 represents the highest

level with the lowest probabilities; Cases 2-5 represent the intermediate level. Below we present

the closed-form expressions of the ex-ante equilibria in each of these cases. By evaluating their �rst

derivatives with respect to r; e and k both analytically and numerically, we obtain comparative

statics results as summarized in Table 5.

Case 1: �b = 1 + r; �c = 1 + r

ExB2 = k

EwB2 = 1� 2k

E�BR =
k2(r3+3)

3

E�BM = k � 2k2(r3+3)
3

Case 2: �b = 1 + r; �c = 1�e
4k

ExB2 = � 1
128rk

�
�8k � 2e� 96k2r + 16k2r2 + 8ke� 8kr + e2�1 + 16k2 + 8kre+ 1

�
EwB2 =

1
64rk

�
�8k � 2e� 96k2r + 16k2r2 + 8ke+ 56kr + e2�1 + 16k2 + 8kre+ 1

�
E�BR =

1
384rk (6k+3e+6ke

2�1+288k3r�96k3r2+96k3r3�12ke+6kr�3e2�1+ e3�1 �32k3+

6kre2�1 � 12kre� 1)

E�BM = � 1
384rk (�12k�3e�12ke

2�1�48k2e�288k2r+576k3r+48k2r2�192k3r2+192k3r3+

24ke� 12kr + 3e2�1 � e3�1 + 48k2 � 64k3 � 12kre2�1 � 96k2re� 48k2r2e+ 24kre+ 1)

Case 3: �b = 1 + r; �c = 1� r

ExB2 =
k
2 +

1�e
8

EwB2 =
3+e
4 � k

E�BR =
(1�e)2
32 + k2

2 +
k2r2

6

E�BM = (1�e)2
16 + (1+e)k

2 � k2(r2+3)
3

Case 4: �b = 1+e
4k ; �c =

1�e
4k

ExB2 = � 1
64
�8k+e2�32k2r+16k2r2�8kr+16k2+1

kr

EwB2 =
1
32
�8k+e2�32k2r+16k2r2+24kr+16k2+1

kr

E�BR =
1
192

6k�3e2+96k3r�96k3r2+32k3r3+6ke2+6kr�32k3+6kre2�1
kr

E�BM = � 1
192

�12k+3e2�96k2r+192k3r+48k2r2�192k3r2+64k3r3�12ke2�12kr+48k2�64k3�12kre2+1
kr
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Case 5: �b = 1+e
4k ; �c = 1� r

ExB2 = � 1
128

�8k+2e+e2�32k2r+16k2r2�8ke�24kr+16k2+8kre+1
kr

EwB2 =
1
64
�8k+2e+e2�32k2r+16k2r2�8ke+40kr+16k2+8kre+1

kr

E�BR =
1
384

6k�3e�3e2�e3+96k3r�96k3r2+32k3r3+12ke+6ke2+18kr�32k3�12kre+18kre2�1
kr

E�BM = � 1
384rk (�12k+ 3e+ 3e

2 + e3 + 48k2e� 96k2r+ 192k3r+ 48k2r2 � 192k3r2 + 64k3r3 �

24ke� 12ke2 � 36kr + 48k2 � 64k3 � 96k2re+ 48k2r2e+ 24kre� 36kre2 + 1)

Case 6: �b = 1� r; �c = 1� r

ExB2 =
1
4

EwB2 =
1
2

E�BR =
1+e2

16

E�BM = 1+e2

8

Table 3. Six Possible Cases of �b and �c in Game B

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

�b 1 + r 1 + r 1 + r 1+e
4k

1+e
4k 1� r

�c 1 + r 1�e
4k 1� r 1�e

4k 1� r 1� r

Table 4. Probabilities of Supply Shortage in Six Cases of �b and �c in Game B

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

high demand (~" = e) 1 1 1 (0, 1) (0, 1) 0

low demand (~" = �e) 1 (0, 1) 0 (0, 1) 0 0

Table 5. E¤ect of k; e and r on the Ex-ante Equilibrium Outcomes in Game B

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
@ExB2
@k + + + + + 0

@EwB2
@k � � � � � 0

@E�BR
@k + + + + + 0

@E�BM
@k + + + + + 0

@ExB2
@r 0 � 0 � � 0

@EwB2
@r 0 + 0 + + 0

@E�BR
@r + � + � � 0

@E�BM
@r � � � � � 0

@ExB2
@e 0 � � � � 0

@EwB2
@e 0 + + + + 0

@E�BR
@e 0 � � � � +

@E�BM
@e 0 + + + + +

Note: � indicates that the sign of the derivative can be + or �.
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For the dynamic game AB, we have presented in Corollary 2 the closed-form expressions of

the equilibrium outcomes in the second stage game. As we show below, the determination of the

retailer�s equilibrium pre-book quantity in the �rst stage involves the analysis of 39 cases. Thus,

instead of �nding the closed-form expressions for each case, we devise an e¢ cient procedure to

compute the equilibrium outcomes in the �rst stage.

First, we consider the retailer�s problem in the �rst stage. Note that the conditions provided

in Corollary 2 can be re-written as follows: l0 � m0

4 as ~� � 1+~"+2x1
4k , l0 > 0 as ~� > x1

k ; and

m0 > 0 as x1 < 1+~"
2 . De�ne threshold numbers �d � min

�
1 + r;max

�
1� r; 1+e+2x14k

�	
; �e �

min
�
1 + r;max

�
1� r; 1�e+2x14k

�	
, and �f � min

�
1 + r;max

�
1� r; x1k

�	
; and the indicator func-

tion I(y) = 1 if y is true and I(y) = 0, otherwise. Then E~�;~" [�R(x1; w1)] in (7) can be rewritten

as:

E~�;~" [�R(x1; w1)] =

Z 1+r

�f

(1� x1 � w1)x1
d�

2r
+

Z �f

1�r
(1� k� � w1) k�

d�

2r

+ Pr(~" = e)I

�
x1 <

1 + e

2

�"
1

16

Z 1+r

�d

(1 + e� 2x1)2
d�

2r
+

Z �d

�f

(k� � x1)2
d�

2r

#
(20)

+ Pr(~" = �e)I
�
x1 <

1� e
2

�"
1

16

Z 1+r

�e

(1� e� 2x1)2
d�

2r
+

Z �e

�f

(k� � x1)2
d�

2r

#
:

Depending on the values of �d; �e, �f , I
�
x1 <

1+e
2

�
, and I

�
x1 <

1�e
2

�
; the retailer�s expected

pro�t E~�;~" [�R(x1; w1)] in (20) takes on di¤erent functional forms of x1. Note that �d; �e or �f

is either a constant or a linear function of x1; and I
�
x1 <

1+e
2

�
or I

�
x1 <

1�e
2

�
is either 0 or

1. Hence, in each interval of x1 having a di¤erent combination of �d; �e, �f , I
�
x1 <

1+e
2

�
, and

I
�
x1 <

1�e
2

�
, E~�;~" [�R(x1; w1)] is at most a cubic function of x1. The pre-book order quantity

xAB1 (w1) that maximizes E~�;~" [�R(x1; w1)] for any given w1 is either a boundary point between

any two intervals or an interior point at which the �rst order condition is satis�ed. There are

potentiality 39 candidates for xAB1 (w1) which consist of 9 boundary points between two intervals

of x1 and 30 interior optimal points within any interval of x1. The boundary points are: 0; 1+e2 ,

1�e
2 ;

4k(1+r)�(1+e)
2 (at which 1+r = 1+e+2x1

4k ), 4k(1�r)�(1+e)2 (at which 1�r = 1+e+2x1
4k ), 4k(1+r)�(1�e)2

(at which 1+r = 1�e+2x1
4k ), 4k(1�r)�(1�e)2 (at which 1�r = 1�e+2x1

4k ), k(1+r) (at which 1+r = x1
k ),

and k(1� r) (at which 1� r = x1
k ). To �nd the interior optimal points, we �rst �nd the expression

of E~�;~" [�R(x1; w1)] in (20) for each of the following 30 cases:

(i) If x1 � 1+e
2 , I

�
x1 <

1+e
2

�
= I

�
x1 <

1�e
2

�
= 0; so E~�;~" [�R(x1; w1)] can have 3 di¤erent expres-

40



sions when �f = 1 + r; 1� r or x1k ;

(ii) If 1�e2 � x1 <
1+e
2 , I

�
x1 <

1+e
2

�
= 1 and I

�
x1 <

1�e
2

�
= 0; so E~�;~" [�R(x1; w1)] can have 9

di¤erent expressions when �f = 1 + r; 1� r or x1k , and �d = 1 + r; 1� r or
1+e+2x1

4k ;

(iii) If x1 < 1�e
2 , I

�
x1 <

1+e
2

�
= I

�
x1 <

1�e
2

�
= 1; so E~�;~" [�R(x1; w1)] can have 18 di¤erent

expressions when �f = 1 + r; 1 � r or x1k , �d = 1 + r; 1 � r or
1+e+2x1

4k , and �e = 1 + r; 1 � r or
1�e+2x1

4k (note: 18 cases exist instead of 27 cases because �d � �e).

For each of the above 30 cases, we can easily obtain an interior optimal point from the �rst order

condition (which we omit here). By comparing E~�;~" [�R(x1; w1)] at these 39 candidates, we can

�nd the retailer�s best response xAB1 (w1) for any given w1:

Next, we examine the manufacturer�s decision of his pre-book wholesale price w1 in the �rst

stage. Similar to (20), we can rewrite E~�;~" [�M (x1; w1)] in (8) as:

E~�;~" [�M (x1; w1)] =

Z 1+r

�f

(w1x1)
d�

2r
+

Z �f

1�r
(w1k�)

d�

2r

+ Pr(~" = e)I

�
x1 <

1 + e

2

�"
1

8

Z 1+r

�d

(1 + e� 2x1)2
d�

2r
+

Z �d

�f

(1 + e� 2k�) (k� � x1)
d�

2r

#

+ Pr(~" = �e)I
�
x1 <

1� e
2

�"
1

8

Z 1+r

�e

(1� e� 2x1)2
d�

2r
+

Z �e

�f

(1� e� 2k�) (k� � x1)
d�

2r

#
:

We can e¢ ciently compute the pre-book wholesale price wAB1 that maximizes E~�;~"
�
�M (x

AB
1 (w1); w1)

�
as follows. We �rst compute the retailer�s pre-book quantity xAB1 (w1) as a function of w1 and iden-

tify boundary points between any two adjacent intervals of w1 at which xAB1 (w1) switches from

one of the 39 candidate points to another. In each interval of w1, E~�;~"
�
�M (x

AB
1 (w1); w1)

�
is a

continuous function, hence its local maximum is attained at either a boundary point or an interior

point at which the �rst order condition is satis�ed. By comparing local maxima, we can identify a

global optimal point wAB1 .

A3. Comparative Statics in Games A and B

Proposition 4 In the speculative game A, suppose capacity k increases. Then,

(i) If k� � 0:25, then the equilibrium outcomes remain unchanged;

(ii) Otherwise, wA1 decreases, E�
A
M increases, xA1 (w

A
1 ) increases, and E�

A
R increases.

Proof. (i) The result follows from the proof of Proposition 2(i).

(ii) From the proof of Proposition 2(ii), if k~� � 0:25; arg
w1

h
min

n
k~�w1;

w1�w21
2

oi
= 0:5, and otherwise,
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arg
w1

h
min

n
k~�w1;

w1�w21
2

oi
> 0:5: As k increases, Prfk~� � 0:25g decreases, hence wA1 decreases.

Then, by Proposition 1, xA1 (w
A
1 ) increases in k. E�

A
M increases because E~� [�M (w1)] in (3) increases

in k for all w1. From (2), if aA1 (w
A
1 ) = k~�; �R(w

A
1 ) = �

�
k~� � 1�wA1

2

�2
+

(1�wA1 )2
4 and otherwise,

�R(w
A
1 ) =

(1�wA1 )2
4 : In the former case, �R(wA1 ) increases in k because a

A
1 (w

A
1 ) = k

~� � 1�wA1
2 . In

the latter case, �R(wA1 ) increases in k because w
A
1 < 1 and w

A
1 decreases in k. Thus, E�

A
R increases

in k: �

Proposition 5 In the speculative game A, suppose ~�1 dominates ~�2 in the sense of second-order

stochastic dominance, i.e., ~�1 �SSD ~�2: Then, E~�1 [�
A
M ] � E~�2 [�

A
M ] where the equality holds when

Prf~�1 � xA1 (w
A
1 )

k g = Prf~�2 � xA1 (w
A
1 )

k g = 1 or Prf~�1 > xA1 (w
A
1 )

k g = Prf~�2 > xA1 (w
A
1 )

k g = 1:

Proof. First, note that �M (w1) = min
n
k~�w1;

w1�w21
2

o
in (3) is concave in ~� for any given w1.

By the well-known property of the second-order stochastic dominance, E~�1

h
u(~�1)

i
� E~�2

h
u(~�1)

i
for any concave function u. Thus, E~�1 [�M (w1)] � E~�2 [�M (w1)] 8w1: Therefore, E~�1 [�

A
M ] =

max
w1
E~�1 [�M (w1)] � max

w1
E~�2 [�M (w1)] = E~�2 [�

A
M ]: When a

A
1 (w

A
1 ) = k~� 8~� or aA1 (wA1 ) = xA1 (w

A
1 )

8~�; �M (w1) is linear or constant with respect to ~�, so E~� [�M (w1)] is independent of the distribution

of ~�; hence E~�1 [�
A
M ] = E~�2 [�

A
M ]: �

Proposition 6 In the reactive game B, suppose capacity k increases. Then,

(i) If Prfl � m
4 g = Prf~� �

1+~"
4k g = 1, then the equilibrium outcomes remain unchanged;

(ii) Otherwise, wB2 decreases, E�
B
M increases, xB2 (w

B
2 ) increases, and E�

B
R increases.

Proof. The proof proceeds similar to the proof of Proposition 4. �

Proposition 7 In the reactive game B, suppose ~�1 �SSD ~�2: Then,

(a) E~�1 [�
B
M ] � E~�2 [�

B
M ] where the equality holds when Prf~�1 � 1+~"

4k g = Prf~�2 �
1+~"
4k g = 1;

(b) E~�1 [w
B
2 ] � E~�2 [w

B
2 ] where the equality holds when Prf~�1 � 1+~"

4k g = Prf~�2 � 1+~"
4k g = 1 or

Prf~�1 < 1+~"
4k g = Prf~�2 <

1+~"
4k g = 1;

(c) E~�1 [x
B
2 ] � E~�2 [x

B
2 ] where the equality holds when Prf~�1 � 1+~"

4k g = Prf~�2 � 1+~"
4k g = 1 or

Prf~�1 < 1+~"
4k g = Prf~�2 <

1+~"
4k g = 1:

Proof. (a) From Proposition 3, the manufacturer�s ex post pro�t �BM is increasing and concave in

~� for ~� < 1+~"
4k and is constant for ~� � 1+~"

4k . Thus, �
B
M is nondecreasing and concave in ~�. By the

same argument as presented in the proof of Proposition 5, E~�1 [�
B
M ] � E~�2 [�

B
M ]; where the equality

holds when �BM is constant for all ~�1 � 1+~"
4k and ~�2 � 1+~"

4k .
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(b) From Proposition 3, wB2 is linearly decreasing in ~� for ~� < 1+~"
4k and is constant for ~� � 1+~"

4k .

Thus, wB2 is nonincreasing and convex in ~�: By using the same method as in (a), we obtain the

result.

(c) From Proposition 3, xB2 is linearly increasing in ~� for ~� < 1+~"
4k and is constant for ~� � 1+~"

4k .

Thus, xB2 is nondecreasing and concave in ~�: By using the same method as in (a), we obtain the

result. �

Proposition 8 In the reactive game B, suppose ~"1 �SSD ~"2: Then,

(a) E~"1 [�
B
M ] � E~"2 [�BM ] where the equality holds when Prf~"1 > 4k~� � 1g = Prf~"2 > 4k~� � 1g = 1;

(b) E~"1 [w
B
2 ] � E~"2 [wB2 ] where the equality holds when Prf~"1 > 4k~�� 1g = Prf~"2 > 4k~�� 1g = 1 or

Prf~"1 � 4k~� � 1g = Prf~"2 � 4k~� � 1g = 1;

(c) E~"1 [x
B
2 ] � E~"2 [xB2 ] where the equality holds when Prf~"1 > 4k~� � 1g = Prf~"2 > 4k~� � 1g = 1 or

Prf~"1 � 4k~� � 1g = Prf~"2 � 4k~� � 1g = 1:

Proof. (a) From Proposition 3, �BM is increasing and convex in ~" for ~" � 4k~� � 1 and is linearly

increasing for ~" > 4k~��1. Thus, �BM is increasing and and convex in ~". By using the same method

as in the proof of Proposition 7, we obtain the result.

(b) and (c) The proofs are similar to (a), hence we omit them. �

A4. Non-monotonicity in Comparative Statics of Game AB

As discussed in Appendix A3, the retailer�s expected pro�t E~�;~" [�R(x1; w1)] in (20) is a piecewise

continuous function of x1; and the optimal quantity xAB1 (w1) which maximizes E~�;~" [�R(x1; w1)]

is either a boundary point between any two intervals or an interior point at which the �rst order

condition is satis�ed. The non-monotonicity of xAB1 and wAB1 is due to the fact that xAB1 (wAB1 )

can move from an interior optimal point in one interval of x1 to an interior optimal point in the

other interval as wAB1 varies with a change of any parameter value. To illustrate, we provide the

following numerical examples:

Example 1. When (k; e; r) = (0:2; 0:3; 0:1); xAB1 = 0:036; ExAB2 = 0:159; wAB1 = 0:662; EwAB2 =

0:609; E�ABR = 0:036; E�ABM = 0:122:

Example 2. When (k; e; r) = (0:3; 0:3; 0:1); xAB1 = 0:087; ExAB2 = 0:172; wAB1 = 0:547; EwAB2 =

0:481; E�ABR = 0:063; E�ABM = 0:139:

Example 3. When (k; e; r) = (0:4; 0:3; 0:1); xAB1 = 0:084; ExAB2 = 0:208; wAB1 = 0:611; EwAB2 =

0:416; E�ABR = 0:074; E�ABM = 0:149:
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In the above examples, as k increases from 0.2 to 0.3 and to 0.4 for the �xed values of (e; r), neither

wAB1 nor xAB1 has changed monotonically (see also Figure 5). We �nd that xAB1 in each example is

attained in a di¤erent interval of x1 in which one of �d; �e and �f di¤ers as follows:

- In Example 1, xAB1 is the interior optimal point at which �d = 1+r; �e =
1�e+2xAB1

4k ; and �f = 1�r;

- In Example 2, xAB1 is the interior optimal point at which �d = 1 + r and �e = �f = 1� r;

- In Example 3, xAB1 is the interior optimal point at which �d =
1+e+2xAB1

4k and �e = �f = 1� r.

For the same reason, in some instances, we observe that both wAB1 and xAB1 have increased

with an increase of k. Although the order quantities in each stage may increase or decrease in k,

Table 2 shows that the expected total order quantity is always nondecreasing in k.

Figure 5: Examples 1, 2 and 3: (a) xAB1 as a Function of w1 and (b) E�M as a Function of w1.
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