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Modeling hyperpolarized lactate signal dynamics in cells, 
patient-derived tissue slice cultures and murine models

Fayyaz Ahamed1, Mark Van Criekinge2, Zhen J. Wang2, John Kurhanewicz2, Peder Larson2, 
Renuka Sriram2

1University of California, Berkeley, Berkeley, California, USA

2Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, 
California, USA

Abstract

Determining the aggressiveness of renal cell carcinoma (RCC) noninvasively is a critical part of 

the diagnostic workup for treating this disease that kills more than 15,000 people annually in the 

USA. Recently, we have shown that not only the amount of lactate produced, as a consequence of 

the Warburg effect, but also its efflux out of the cell, is a critical marker of RCC aggressiveness 

and differentiating RCCs from benign renal tumors. Enzymatic conversions can now be measured 

in situ with hyperpolarized (HP) 13C magnetic resonance (MR) on a sub-minute time scale. 

Using RCC models, we have shown that this technology can interrogate in real time both 

lactate production and compartmentalization, which are associated with tumor aggressiveness. The 

dynamic HP MR data have enabled us to robustly characterize parameters that have been elusive 

to measure directly in intact living cells and murine tumors thus far. Specifically, we were able 

to measure the same intracellular lactate longitudinal relaxation time in three RCC cell lines of 

16.42 s, and lactate efflux rate ranging from 0.14 to 0.8 s−1 in the least to the most aggressive RCC 

cell lines and correlate it to monocarboxylate transporter isoform 4 expression. We also analyzed 

dynamic HP lactate and pyruvate data from orthotopic murine RCC tumors using a simplified one­

compartment model, and showed comparable apparent pyruvate to lactate conversion rate (kPL) 

values with those measured in vitro. This kinetic modeling was then extended to characterize the 

lactate dynamics in patient-derived living RCC tissue slices; and even without direct measurement 

of the extracellular lactate signal the efflux parameter was still assessed and was distinct between 

the benign renal tumors and RCCs. Across all these preclinical models, the rate parameters of kPL 

and lactate efflux correlated to cancer aggressiveness, demonstrating the validity of our modeling 

approach for noninvasive assessment of RCC aggressiveness.
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1 ∣ INTRODUCTION

Conventional cross-sectional imaging using MRI has been an important part of the 

diagnostic workup of renal cell carcinoma (RCC), which is responsible for more than 15,000 

deaths annually in the USA. A key challenge in the management of RCCs is the inability 

to noninvasively assess the tumor aggressiveness for optimal treatment choice, which 

ranges from active surveillance to surgical resection. With the advent of metabolic imaging 

via hyperpolarized (HP) carbon-13 MRI, it is now feasible to assess tumor metabolism 

in situ. Dysregulated metabolism has been implicated as a key driver of development 

and progression of RCC.1 More specifically, elevated lactate dehydrogenase A (LDHA, 

the enzyme isoform responsible for preferential conversion of pyruvate to lactate2) and 

monocarboxylate 4 (MCT4, the transporter predominantly through which the excess lactate 

generated via LDHA is extruded to maintain physiological pH inside the cell3), have been 

shown to be prognostic indicators of RCC.4,5 HP MRI provides a means to assess these 

enzyme and transporter activities noninvasively.6 A series of work ranging from RCC cells 

to patient-derived RCC tissue to murine RCC models has been used to demonstrate that both 

lactate production and its efflux are hallmarks of aggressive cancers and can be assessed 

by HP 13C MR.7 This work and others8-11 highlight the differential compartmentation of 

lactate that occurs during the lifetime of the HP signals, making modeling of these signals 

difficult. This is due in part to the challenge in measuring the membrane transport rates 

and intracellular relaxation rates in situ. Here, we present comprehensive modeling of the 

HP lactate signals arising from the intracellular and extracellular compartments following 

HP [1-13C] pyruvate administration to measure directly, in real time, the intracellular 

lactate longitudinal relaxation rate and the rate of transport of lactate from the intracellular 

compartment to outside the cell, kLEfflux. These values are crucial in interpreting and 

modeling the in vivo HP data where these parameters are either assumed or fixed to values 

of the extracellular compartment, thereby obfuscating the subtleties in disease pathology.

2 ∣ MATERIALS AND METHODS

2.1 ∣ Cell lines

All three cell lines were grown in monolayers in Dulbeco's Modified Eagle's medium 

with 4.5 g/L glucose media with 10% serum. HK-2 cell line12 and A498 cell lines were 

purchased from ATCC (Manassas, VA, USA). The other two cells lines, UMRC6 and 

UOK262, were a kind gift from Dr. Bart Grossman (MD Anderson Cancer Center, Houston, 

TX, USA) and Dr. W. Marston Linehan (National Cancer Institute, Bethesda, MD, USA), 

respectively. The UMRC6 cells were derived from a localized human clear cell RCC.13 

The UOK262 cells were derived from a metastasis of the highly aggressive hereditary 

leiomyomatosis RCC.

2.2 ∣ MR experiments

2.2.1 ∣ HP 13C MR acquisition of cells and tissues perfused in a bioreactor—
A 500 MHz Varian Inova (Agilent Technologies, Palo Alto, CA, USA) equipped with a 

5-mm broadband probe was used for the bioreactor studies; 16 mol [1-13C] pyruvic acid 

was polarized in a HyperSense instrument (Oxford Instruments, Oxford, UK) and injected 
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into a NMR-compatible cell and tissue perfusion system (bioreactor) over 90 s, as previously 

described.14 A 30° flip angle was used to acquire carbon data every 3 s for a total of 5 min 

(sweep width of 200 ppm and an acquisition time of 1 s).

2.2.2 ∣ Characterization of HP substrates’ relaxation rates and the bioreactor 
flow conditions—To better characterize the impact of the bioreactor flow on the 

metabolites’ signal dynamics and model it rigorously, the bioreactor was filled with 250 

μL of cell-free alginate microspheres and perfused with the same media as if cells were 

present and flowing at the same rate of 0.5 ml/min with oxygen at 1 ml/min. The HP [1-13C] 

pyruvate and [1-13C] lactate (900 μl) were injected at 0.5 ml/min over 90 s.

2.2.3 ∣ Cells in 3D culture perfused in a MR-compatible bioreactor—As 

described previously,14 200–250 μl of cells encapsulated in alginate microspheres were 

maintained at physiological conditions in the 5-mm MR-compatible bioreactor. The MCT4 

inhibitor, 1 mM 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, disodium salt (DiDS; 

Molecular Probes, Life Technologies, Foster City, CA, USA), was added to the cell 

perfusate medium via a filter after baseline carbon measurements were made in a subset 

(n = 4) of experiments with the UOK262 cells.

2.2.4 ∣ Renal tissue slice bioreactor set-up—As described in detail previously,7 

300-350 μm-thick tissue slices from nephrectomized samples after culturing overnight 

in specialized medium15 were perfused in the 5 mm MR-compatible bioreactor using a 

microengineered construct to hold the tissue in place to assess its metabolism in benign (n = 

3) and clear RCC tissue slices (n = 6).

2.2.5 ∣ Imaging of orthotopic murine model—Mice implanted with UOK262 cells 

(n = 7) and A498 cells (n = 3) in the renal capsule were imaged on a 14.1-T vertical 

bore microimaging system (Agilent, Palo Alto, CA, USA), as detailed previously.16 Briefly, 

upon injection of 350 μl of 80 mM [1-13C] pyruvate via the tail vein, in less than 15 s, 

a 2D dynamic EPI sequence with spectrally and spatially selective RF pulses was used 

to image HP [1-13C] pyruvate and [1-13C] lactate sequentially. A constant flip angle of 

90° was used for lactate, with acquisition beginning at 15 s and measured every 3 s for 

17 time points; while, pyruvate was measured using a variable flip angle ranging from 

2-90°, with acquisition beginning 6 s from the start of the injection and measured every 

3 s thereafter for 20 time points. Additionally, T2-weighted and diffusion-weighted proton 

images were acquired with the following parameters: matrix size, 256 × 192; field of view, 

32 × 32 mm; slice thickness, 2 mm; and b-values of 25, 180, 323 and 508 s/mm, as 

detailed in Sriram et al.16 Mean tumor aparent diffusion constant (ADC) was calculated 

from manually segmented tumor ROIs after voxel-wise monoexponential fitting of diffusion­

weighted images for each slice encompassing the entire tumor.

2.3 ∣ LDH activity

Total LDH activity was measured spectrophotometrically by quantifying the linear decrease 

in nicotinamide adenine dinucleotide (NADH) absorbance at varying pyruvate (sodium salt) 

concentrations at 339 nm for 10 min.17 Semiconfluent cells were harvested and 1 million 

Ahamed et al. Page 3

NMR Biomed. Author manuscript; available in PMC 2021 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells were lysed (in buffer with 50 mM Tris pH 8.2, 2 mM DTT, 2 mM EDTA, 1% Triton 

x-100). LDH assays were then carried out on the lysates added to varying concentrations 

of pyruvate and NADH (in excess) in a 96-well plate in triplicate using a microplate reader 

(Infinite, Tecan Instruments, Switzerland). LDH activity was plotted against the pyruvate 

concentration to arrive at the maximum velocity (Vmax) and the Michaelis–Menten constant 

(Km) using the Lineweaver-Burk plot.

2.4 ∣ Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed as described 

previously14 on the total RNA extracted from the cells with RNAeasy procedure kit (Qiagen, 

USA). Assays for MCT4 (Hs00358829_m1) and LDHA (Hs01378790_g1) were procured 

from Applied Biosystems (Foster City, CA, USA) and expressed relative to cyclophilin 

housekeeping gene (Amplicon: 

TCTCAAATCAGAATGGGACAGGTGGAGAAAGTATTTATGGTGAAAAATTTGAAGA

TGAAAATTTCCATTACAAGCATGATCGGGAGGGTTTACTGAGCATGGCAAATGCA

GGCCGCAACACAAACGGTTCTCA. Forward: TCTCAAATCAGAATGGGACAGGT. 

Reverse: TGAGAACCGTTTGTGTTGCG. Probe: TTC CAT TAC AAG CAT GAT CGG 

GAG GGT).

2.5 ∣ Data analysis

The dynamic HP MR data were processed and analyzed using ACD/Labs software (Toronto, 

Ontario, Canada) with 0.5 Hz line broadening and Lorentzian peak fitting (using “peakfit” 

routine) after proper phasing and spline-based baseline correction for each metabolite.

2.5.1 ∣ Modeling of pyruvate and compartmentalized lactate HP signals in 
cells—As previously published,14 the intracellular and extracellular lactate peaks were 

distinguished via the 3 Hz chemical shift difference. The kinetic data were modeled using 

a three-compartment model (the input/supply function, the intracellular and extracellular; 

Figure S1) shown in the system of differential equations,

d
dt

Pyr(t)
Lacin(t)
Lacex(t)

=

−R1P − kPL − FP kLP 0
kPL −R1Lacin − kLP − kLEfflux kLInflux

0 kLEfflux −R1Lacex − kLInflux − FL

Pyr(t)
Lacin(t)
Lacex(t)

,

where the change in pyruvate magnetization, Pyr(t), is assumed to depend upon the 

longitudinal relaxation rate of HP [1-13C] pyruvate, R1P, the kinetic rate constant for 

conversion from pyruvate to lactate by LDH, kPL, and its backward rate constant, kLP, as 

well as FP, a rate constant that models the loss of pyruvate magnetization due to the constant 

flow of the bioreactor system.

Similarly, the change in intracellular lactate magnetization depends upon kPL and kLP, 

intracellular lactate relaxation rate, R1Lacin, as well as kLEfflux, the rate of transport of 

lactate out of the cell and kLInflux, the rate of lactate uptake. Lastly, R1Lacex is the rate of 

extracellular lactate relaxation and FL is a rate constant that models the effects of loss of 
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lactate magnetization due to the constant flow of the bioreactor system and is distinct from 

that of pyruvate due to transport through the alginate beads.

The kinetic data were modeled using the three-compartment model in Matlab in a stepwise 

manner to reliably estimate the kinetic parameters (Supplemental data S1), assuming a 

gamma variate input function (IF). In order to fit the data, we assumed that the IF was 

similar between samples. In this case, the matrix differential equation in Equation 1 can be 

solved as

Met(t) = eA(t − t0)x0 + IF′,

where Met = metabolite (pyruvate, lactate, etc.), A is the system matrix in Equation 1, x0 is 

the metabolite's magnetization at time t0, and IF’ is the gamma variate input function value 

at a given time point. This solution was implemented discretely to also include the effects of 

RF excitation as

Met[tn] = eA ⋅ TRx[tn − 1]cos(θ) + IF[tn − 1],

where θ is the flip angle for the discretely sampled time points at t = tn. Fitting data to this 

solution was optimized using a constrained, nonlinear least squares regression solver that 

utilizes a trust-region-reflective algorithm in Matlab, as in Larson et al.18 The code utilized 

to analyze data from all experiments is located in the GitHub repository (https://github.com/

FayyazA/bioreactor-kinetic-analysis).

2.5.2 ∣ Modeling of bioreactor flow parameters and solution state HP 
substrate relaxation rates—The pyruvate magnetization was modeled as an IF based 

on the gamma-variate distribution, Γ(k), as

IF(t) = tk − 1e−t ∕ θ

θkΓ(k)
, where Γ(k) = ∫0

∞
tk − 1e−tdt .

The shape parameters k and θ were characterized by repeated injections (n = 2) of HP 

[1-13C] pyruvate, [1-13C] lactate and 13C urea into bioreactors loaded with cell-free alginate 

microspheres, as described in Sriram et al.14 Furthermore, the HP [1-13C] pyruvate, 13C 

urea and [1-13C] lactate magnetization relaxation rates were modeled using a simplified 

equation for each metabolite, Met(t), magnetization as a function of its relaxation rate, R1, 

and flow due to the bioreactor alone, with the IF modeled as described above with tight 

constraints based on the a priori knowledge of the solution state relaxation rates of the HP 
13C substrates at this field (11.7 T):

d Met(t)
dt = − (R1 − F)x Met(t) .

2.5.3 ∣ Synthetic data analyses to assess parameter interdependencies and 
model robustness—Synthetic data were generated by using the objective function, which 
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calculates the input function and matrix exponential to generate Pyr(t), Lacin(t) and Lacex(t), 
then combining them to provide an estimate of the fit. Two sets of analyses were performed 

using synthetic data.

1) Influence of initial value in modeling:  In the first experiment, the 12 kinetic 

parameters were each set to their average value across all cell lines and synthetic data 

were generated using these average values. This was then refit over 120 trials, where each 

parameter had its initial value varied (within the boundary conditions) in linear increments 

of 1/10th of that range. The normalized error as a percentage of the expected parameter 

estimate was then calculated by:

Normalized error = Estimated value−Known value
Known value × 100 % .

The Pearson correlation coefficient between the initial conditions and normalized errors, as 

well as the range of each parameter's normalized errors, are then calculated to demonstrate 

how much of an effect the initial condition has on the final estimate of the parameter.

2) Interdependence of parameter estimates:  The second experiment used largely the 

same set of 12 average values for each parameter but kept all the initial conditions the 

same throughout all 60 trials. Instead, 11 parameters were held fixed at the previous average 

values, while one was varied over the numerical range (set as the boundary condition for 

modeling) in linear increments of 1/5th of that range. The normalized error was calculated 

using the same formula as above. The Pearson correlation coefficient between the parameter 

that was modulated to generate new synthetic data and every parameter's normalized error 

at these parameter values was calculated; each parameter's maximum normalized error was 

also denoted to determine what the worst case error was in a given parameter when another 

parameter used to generate synthetic data was modulated. With a perfect model, changing 

any parameter used to generate synthetic data should still result in a normalized error of 

0, thus revealing which parameters are correlated. Due to computational issues with certain 

parameters like kLP and kLInflux having infinitesimally small values, normalized errors at 

minimum boundary conditions reached extremely large values, and thus, the first out of five 

trials were discarded for each parameter so that only 48 trials were counted in the results.

2.5.4 ∣ Modeling of HP [1-13C] pyruvate and [1-13C] lactate HP signals in 
patient-derived tissue slices—Tissue slice modeling was carried out similar to the cell 

culture bioreactor model, with a few notable exceptions. Due to insufficient homogeneity in 

the tissue slices, the intracellular and extracellular lactate peaks could not be distinguished, 

and the system of differential equations was simplified to

d
dt

Pyr(t)
Lac(t) =

−R1P − kPL − FP kLP
kPL −R1L − kLP − FL

Pyr(t)
Lac(t) ,

where R1L describes the apparent relaxation rate of lactate due to the impact of different 

microenvironments. The IF was kept the same, as detailed in Equation 4.
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2.5.5 ∣ Modeling of murine HP [1-13C] lactate—The most simplified, unidirectional, 

single-compartment, inputless model19 was used to fit the dynamic HP [1-13C] lactate 

signal from mice bearing UOK262 and A498 orthotopic tumors. The system of differential 

equations used to analyze the signals was

d
dt

Pyr(t)
Lac(t) =

−R1P − kPL 0
kPL −R1L

Pyr(t)
Lac(t) .

Because the model is unidirectional, it assumes only a conversion from the pyruvate pool 

to the lactate pool. The model also allows for variable flip angles by utilizing a hybrid 

discrete-continuous model that converts the measured signal to the magnetization after RF 

excitation. The model only fits the output lactate signal and does not compute a pyruvate 

signal fit.

3 ∣ RESULTS AND DISCUSSION

3.1 ∣ Characterization of bioreactor flow parameters as well as relaxation rates of HP 
signals

Because the flow conditions and infusion were maintained between experiments in the 

bioreactor set-up, we sought to characterize the flow parameters and relaxation rates in a 

cell-free setting. For this purpose, simultaneous infusions of copolarized pyruvate, lactate 

and urea into cell-free alginate microspheres were performed to assess the parameters of k 
and θ of the gamma variate input function. Furthermore, urea was used as a control substrate 

that should yield similar results for flow and input function characteristics as the metabolites 

of interest, namely, pyruvate and lactate. The cell-free alginate microspheres provided a 

similar filling factor of the bioreactor in terms of flow features while excluding metabolism 

of the substrates. Upon modeling of the parameters, as shown in Equation 5, the bounds for 

the relaxation rates of the three substrates were restricted to ± 3 s of the measured solution 

state relaxation of the three substrates at the 11.7 T field strength of 48, 38 and 44 s for 

pyruvate lactate and urea, respectively.20,21 We quantified the following values: F = 0.169 

± 0.029, k = 2.96 ± 0.03, and θ = 16.05 ± 1.31. Additionally, the R1 of each substrate was 

estimated as follows: pyruvate = 0.0206 ± 0.0001, lactate = 0.0272 ± 0.0000, and urea = 

0.0221 ± 0.0001. These values were then used for subsequent modeling of biological data 

for all bioreactor experiments, while using the lower and upper bounds for each parameter, 

based on the maximum and minimum from these results (Table S1). Because flow is a 

significant parameter, which is an order of magnitude higher than the relaxation rate (or 

more), estimating this value carefully is of paramount importance. We were able to achieve 

this by modeling the data from the cell-free bioreactor set-up.

3.2 ∣ Estimation of intracellular relaxation and efflux rate of lactate in cells encapsulated 
in alginate microspheres and perfused in the microengineered bioreactor

The excellent magnetic field homogeneity obtainable in the cell culture bioreactor allowed 

for distinction of intracellular and extracellular lactate peaks (0.02 ppm apart), as detailed 

and validated in Sriram et al.14 Figure 1 shows representative data and resultant modeled 

curves for pyruvate, intracellular lactate, and extracellular lactate signal curves versus time 
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for the UOK262 cells and the UOK262 cells treated with DIDS inhibitor. The constraints 

used for the various parameters are detailed in Table S2. The black line shows the modeled 

input function that accounts for a sub-stantial percentage of the pyruvate signal as expected, 

because the lactate signal (arising from the pyruvate signal) is two orders of magnitude 

lower than that of pyruvate. This is also in line with our prior observation22 in a similar 

bioreactor set-up with a comparable filling factor using the same UOK262 cells, that the 

intracellular pyruvate signal constituted ~1% of the injected dose. Representative fits for the 

other cell lines are shown in the supporting information (Figure S2), and a mean R-squared 

value ranging from 0.968 to 0.997 (Table S3) demonstrates robust fitting. The average 

normalized root mean square error (NRMSE) ranges from 8% to 25%. The pyruvate signal 

yielded the best fits of all modeled HP signals, averaging 8% ± 0.6% NRMSE, largely 

attributable to the iterative stepwise fitting approach, while the lactate signals (intracellular 

and extracellular) had a slightly lower NRMSE (15% ± 1.2%). The R1 parameter for 

pyruvate was tightly constrained between 0.0196 and 0.0213 s−1 and, as can be seen from 

Table 1, there is no significant difference between R1 values across the cells (including 

the ones treated with small molecule inhibitor). The mean R1 of pyruvate across the cells 

is 0.0200 ± 8.65 x 10−5 s−1. Similarly, the R1 of extracellular lactate constrained between 

0.0265 and 0.028 s−1 resulted in a mean value of 0.0273 ± 0.0013 s−1 across the cells 

(Table 1). The ability to measure the compartmentalization of the lactate HP signal enables 

the modeling and thereby measurement of the intracellular lactate relaxation rate. Similar 

to pyruvate and extracellular lactate values, the intracellular lactate relaxation rate also 

converged to a mean intracellular lactate relaxation rate of 0.0609 ± 0.0057 s−1 (Table 1). 

This is the first measure of intracellular lactate relaxation rate in situ, which was made 

feasible by the excellent homogeneity afforded by the bioreactor set-up. Prior measures of 

intracellular relaxation rates were indirect and involved the use of paramagnetic species (in 

the form of gadolinium-based contrast agents)9,10 to quench the extracellular signal and 

determine the intracellular lactate signal alone; or it required the use of artificial systems10,23 

(mimicking the viscosity of the intracellular component), or modeling the single lactate 

signal using multiple relaxation rates (and other variables).24 Such measurements of lactate 

relaxation times were in the range of 15 to 25 s. Our measure of 16.42 s suggests that the 

lower end of the range is a more realistic estimate of the intracellular longitudinal relaxation 

time.

Figure 2 depicts the trends in the apparent kinetic rate constant and the corresponding 

protein activity or expression in the different cell lines. The apparent rate of conversion of 

pyruvate to lactate (kPL) increases from HK-2 (0.0037 ± 0.0001 s−1) to UMRC6 (0.013 ± 

0.003 s−1) to UOK262 (0.028 ± 0.009 s−1). This is corroborated with the LDH activity of 

the three cell lines, which also increased from HK2 to UMRC6 to UOK262, with a highest 

mean VMax of 0.113 ± 0.015, 0.158 ± 0.013 and 0.190 ± 0.024 μmoles NADH/min/107 

cells, respectively, congruent with our prior observations.14 Similar trends between the 

modeling parameter kLEfflux, the rate of lactate transport from inside to out of the cell, 

and MCT4 expression, the transporter predominantly responsible for efflux of lactate out 

of the cell,25,26 were found. The HK-2 cell line had the lowest average kLEfflux value at 

0.147 ± 0.038 s−1 and the lowest MCT4 expression relative to cyclophilin of 2.43-fold, 

followed by UMRC6 of 0.519 ± 0.126 s−1 and 6.41-fold, respectively, with the highest in 
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UOK262 of 0.835 ± 0.430 s−1 and 15.39-fold. Furthermore, upon inhibition of the MCT4 

transporter using a small molecule (DiDS), which is nonspecific for MCT4, a reduction 

in both kPL and kLEfflux of 39% (0.028 to 0.017 s−1) and 34% (0.834 to 0.553 s−1) was 

observed, respectively, compared with the untreated UOK262 cells. These results showcase 

the range of transport and enzymatic conversion rates and highlight their dependence on 

the underlying biological system. For the renal cell lines studied here, the rate of MCT­

facilitated transport of lactate is consistently much higher (greater than 2-fold) than the 

LDH-mediated conversion from pyruvate. It is important to note that while we expect LDH 

to be operating at near equilibrium, MCT will be functioning well below its Km, which 

ranges from 3.5 (for MCT1) to 30-40 mM (for MCT4).3,27 Because only 750 μL of 12 

mM pyruvate was injected into the bioreactor over a 90-s period, and was further diluted 

by a flowing bioreactor (0.5 ml/min) with a media volume of 2.5 ml before it reached the 

cell-laden alginate microspheres, we expected that during the course of the HP experiments 

that MCT4 was not saturated, even if 100% of the injected pyruvate was taken up by the 

cells and converted to lactate. Other measures of lactate efflux rate using the HP lactate 

signal ranged from 0.03824 to 0.328 s−1 in PC3 cells and from 0.00924 to 0.259 s−1 in MCF-7 

cells. These ranges of values highlight the nuances in assessment of the lactate transport 

rate using HP signals, which is characteristic of the cell line under study and is heavily 

influenced by the modeling parameters as well as the experimental set-up. For instance, 

the study by Breukels et al.28 was performed in a highly homogenous modified Shigemi 

NMR tube that allowed the intracellular and extracellular HP lactate signals to be resolved. 

However, the modeling used to extract the lactate transport value assumed that intracellular 

and extracellular lactate magnetization had the same longitudinal relaxation, as it best fitted 

their data. This would have a direct impact on the transport rate as both the movement of 

lactate out of the cell, as well as that of the longitudinal relaxation rate, would be additive 

in their contribution to the decrease in the intracellular lactate signal. Furthermore, the 

experimental set up of 2.5–5 mM pyruvate concentration injected into the NMR tube (and 

retained in the same space for the entirety of the measurement) combined with the efflux of 

lactate in the same extracellular space could alter the MCT rate kinetics. This work strives 

to circumvent some of these hurdles by minimal assumptions and a well-characterized 

continuous perfusion system that allows the cell metabolism to be studied in situ with little 

alteration to the physiological parameters in the extracellular space.

The average value ± standard error for the remaining parameters fit by the model are 

provided in the supporting information (Table S4). Notably, the average values for kLP 

and kLinflux were found to be effectively 0 s−1. The FP parameter was largely constant 

across cell lines, in the 0.1–0.2 s−1 range, which indicates that the flow was affecting the 

pyruvate magnetization roughly equally across cell lines. However, FL, the loss of lactate 

magnetization attributed to flow, increased from HK-2 to UOK262 by 0.08 to 1.82 s−1. This 

suggests that the flow parameter for lactate is convolved with the efflux rate due to cellular 

processes and merits further investigation. In fact, kLefflux and FL are strongly correlated 

(R-squared of 0.8259 and p < 0.0001 using Pearson two-tailed correlation; Figure S2). 

While most parameters fit well within the bounds used for each variable, Table S5 shows the 

details for each replicate of the cell lines.
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One of the shortcomings of the experimental set-up is the use of a large RF flip angle 

(30°), which could have an impact on the modeling parameters. Our fitting approach used a 

hybrid discrete-continuous model that specifically includes RF flip angle compensation and 

can ideally account for these large flip angles. Although the calibration of the RF coil was 

performed regularly, the flip angle compensation becomes challenging in the presence of 

flow and RF coil edge or slice profile effects.29

3.3 ∣ Assessing model stability and parameter interdependence using synthetic data

The synthetic data experiments largely show that the model is effective at finding minima 

(local or global) regardless of a parameter's initial value and confounding effects from other 

kinetic rate parameters.

1. Influence of the initial value in modeling: Ideally, if our model was perfect, 

the normalized errors would be equal to 0; however, because there is variation 

in errors, the impact of the initial value used for modeling is expressed as the 

range of normalized error for each parameter in Table 2. Overall, most of the 

parameters (R1P, kPL, FP, KLefflux, R1Lex, and FL) had ranges of normalized 

errors within fractions of a percent to 15%, so the magnitude of the effect of 

the initial condition is negligible. However, the parameter R1Lin had a strong 

correlation between the initial value and the normalized error (p = 0.99) with a 

maximal error of 102%. The parameters KLP and KLinflux were not considered, 

as they were found to be negligible in the modeling results from the cell data. 

This validates the model as 10 out of 12 parameters successfully converge to 

their correct local minima in such a way that the errors in their estimates are 

negligible.

2. Interdependence of parameter estimates: The Pearson correlation matrix is 

computed for non-negligible parameters (Table S6). As can be noted, every 

parameter is incidentally correlated with the error in the other parameter 

estimates; this is because, as the synthetic data changes slightly, different 

parameters in the main diagonal of the matrix (Equation 1) can shift relative 

to one another slightly to improve the fit during optimization. These adjustments 

likely result in these correlations with the other parameters, but the magnitude 

of the association between parameters also plays a major role in the final 

parameter estimates. To parse out the importance of this interdependence we 

then looked at the maximal normalized error in the other parameter's estimate 

by varying the first parameter's true value, as shown in Table S7. As can be 

seen, the maximal error for other estimates are no more than 30%. Using a 

threshold of 0.7 for Pearson correlation and more than 30% maximal error as 

the cutoff between negligible and non-negligible changes in estimates, the only 

significant interactions were between kLP and kLInflux with the other parameters. 

These interactions are inconsequential because both parameters are negligible 

compared with the kinetic parameters describing the reverse reaction, kPL and 

kLEfflux. Because both parameters have known values that are infinitesimally 

small, this again causes extremely large errors when other parameters are 
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adjusted slightly in the matrix, making it appear as though there are large 

changes in the estimates of these parameters when in reality they are negligible.

3.4 ∣ Modeling of kinetic rate parameters of patient-derived renal tissue slices perfused in 
the microengineered bioreactor

Due to larger inhomogeneity in the tissue slices compared with cells in the bioreactor, 

intracellular lactate and extracellular lactate peaks could not be distinguished in the majority 

of the data sets, and only a larger combined lactate peak could be observed. Figure 3A,B 

depict representative plots of HP [1-13C] pyruvate and [1-13C] lactate signal over time and 

model-produced fits. Because of the negligible kLinflux (based on the modeling results from 

the cell data) and simplification of the differential equations (Equation 6), the parameter 

FL is representative of the lactate magnetization loss not only attributable to the flow of 

the perfusate media, but also to that of the physical transport across cell membrane. The 

boundary conditions of all the kinetic rates and input function were set to be similar to those 

of the cells, and the fit within these constraints for each data set are given in Tables S8 and 

S9. Similar to the fits of the HP signals from the cells in the bioreactor, the fits were robust, 

resulting in mean R-squared values ranging from 0.956 to 0.997 across both tissue slice 

categories (Table S10). Similarly, the mean NRMSE across the tissue slice categories ranged 

from ~ 8% to 29% of the measured signal, similar to the cell modeling data. These measures 

of fit demonstrate that the simplified two-compartment model used in these experiments 

model the data well. As expected, the input function descriptors are identical between the 

tissue slices (Table 2) as well as to the cell bioreactor modeling (Table S4), reinforcing the 

consistency of the infusion of the HP [1-13C] pyruvate (over both time and amount) between 

experiments and model systems.

The apparent enzymatic conversion rate of pyruvate to lactate, kPL, in the patient-derived 

renal tissue slice bioreactor largely followed trends similar to those of the cell culture 

model (Figure 4), in that the malignant tissues had higher values than those of the benign 

tissues. The average kPL of benign tissue slices was 0.003 s−1, and significantly lower (p 
= 0.0275, one tail assuming unequal variances) than that of malignant tissue slices (0.017 

s−1). These values are similar to the HK-2 cells and in between UMRC6 and UOK262 cells, 

respectively, thereby validating the range of kPL values for RCC across models that stratifies 

aggressiveness.

The rest of the kinetic rate parameters are given in Table 3. The average R1 of pyruvate 

for benign as well as malignant tissue slices was 0.02 ± 1.7 x 10−4 s−1, and matches 

that measured from the cell-laden bioreactors. The mean R1 of lactate for both benign 

and malignant tissue slices was 0.03 s−1, even when the bounds of the R1L ranged from 

0.02 to 0.1 s−1. The flow parameter FL in this model reflects a combined effect of lactate 

magnetization loss as a function of both the efflux rate out of the cells as well as the 

decrease in lactate magnetization as a function of the flow of the perfusate in the bioreactor. 

Similar to cell-laden bioreactor modeling (see the prior section), the flow parameter is 

correlated to the efflux rate, and hence in this setting it can be used as a surrogate for 

efflux rate because the physical flow rate setting, as well as the loading of the amount 

of tissue in the RF-sensitive region of the coil, were identical for all tissue slice samples. 

Ahamed et al. Page 11

NMR Biomed. Author manuscript; available in PMC 2021 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As described previously, the efflux rate is a reflection of the amount of the transporter 

MCT4, the monocarboxylate transporter isoform that is predominantly responsible for the 

export of lactate out of the cell. The mean FL was 0.006 s−1 for benign and 0.033 s−1 

for malignant tissue slices. This 5.5-fold increase in FL in malignant tissues matches the 

trend of increased expression of the MCT4 protein between benign tissue slices and clear 

cell RCC, as observed in previous work,7 and also mimics the 5-fold difference between 

HK-2 and UOK262 cells (see the prior section) representing benign and aggressive tumor 

cells. Although we did not see the expected difference in the estimated lactate relaxation 

rates between the benign and malignant tissues, as would be an effectiveT1 of intracellular 

and extracellular compartments weighted by the amount of lactate that are present in the 

respective compartments, we believe it is recapitulated in the FL parameter. The FP was 1.52 

± 1.31 s−1 on average for the benign and 14.06 ± 3.13 s−1 for the malignant tissues. This 

huge increase in the loss of pyruvate signal in malignant tissue, attributed to the flow of 

the perfusate in the bioreactor, could be a consequence of the cancerous tissue morphology, 

all else being considered equal. The average for benign samples is influenced by an outlier 

of 4.13 s−1, while all the other samples are in the 0.1–0.5 s−1 range, similar to that of the 

cell-modeling data. The kLP of both benign and malignant samples were predominantly zero 

(with the exception of one data set, Figure S3).

3.5 ∣ Modeling HP signal kinetics of orthotopic murine RCC models

The inputless model19 was used to fit a simplified one-compartment model (Equation 7) 

without modeling the pyruvate signal or determining the input function. To compute the 

kPL, the model was fit by holding the R1s of pyruvate and lactate fixed at 0.04 and 0.05 

s−1, respectively. The values of the R1 parameter were chosen based on the intracellular 

lactate relaxation rates quantified from the cell bioreactor and empirically adjusted for 

compartmentalization (25% for lactate) and the field effect (11.7 vs. 14.1 T). The initial 

value and boundary conditions are shown in Tables S11 and 12.

Dynamic HP signals from mice bearing orthotopic renal tumors inducted using either 

A498 (n = 3) or UOK262 cells (n = 7) were used for this analysis. Figure 5A depicts a 

representative fit of the lactate signal kinetics from a mouse bearing an orthotopic renal 

tumor of UOK2 62 cells. The kPL values thus obtained were 0.044 ± 0.010 for UOK262 

and 0.047 ± 0.005 for A498 tumors. These values are similar to the upper range of kPL 

values observed for UOK262 cells when perfused in the bioreactor. The apparently higher 

kPL value could arise from the contribution of the extracellular lactate signal in the in 

vivo tumors that are not effectively washed away, unlike in the bioreactor set-up. Prior 

work16 on these two tumor xenografts showed that while the LDH activity of A498 tumors 

was significantly higher, the apparent glycolytic rate (presented as the ratio of HP [1-13C] 

lactate to [1-13C] pyruvate signal, equivalent to kPL) was lower in comparison with UOK262 

tumors. This was attributed to the lower cell density of the A498 tumors contributing to the 

lactate signal (for the same voxel volume). Prior work in Sriram et al.16 has demonstrated 

that cellular density and proton ADC are inversely correlated (cellular density ~ 1/ADC) 

for these RCC tumors. Thus, using the same rationale and data, cell density-normalized 

kPL values can be calculated by using the kPL x ADC product. Consequently, we can 

retrieve the expected biological trend reflected in the apparent glycolytic rate, the density­
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normalized kPL, as shown in Figure 5B. Pursuant to prior work,19,30,31 we only considered 

unidirectional conversion of pyruvate to lactate as it would make it an underdetermined 

problem. However, this could be explored in future work with the modeling of diffusion­

encoded HP signals. Overall, this seems to indicate that (1) the apparent rate of pyruvate 

to lactate conversion kPL is similar between the in vitro study as well as in the in vivo 

tumor model for the aggressive cells, giving us an estimate of the range of kPL values for 

aggressive RCC tumors; and (2) the simplified model is a good approximation (not requiring 

the two-compartment model) as the high lactate efflux effect is blunted in the in vivo model 

because of the crowded interstitial space.

4 ∣ CONCLUSIONS

Having already demonstrated the importance of lactate efflux as a biomarker of cancer 

presence and metastatic potential using novel bioengineering tools and model systems in 

conjunction with metabolic imaging, we have demonstrated here that rigorous analysis of 

HP 13C data can yield greater insights into cellular biophysical processes. The results of 

these studies demonstrate that robust modeling of this data can reliably and noninvasively 

measure previously inaccessible biological parameters such as intracellular relaxation rates 

and molecular transport rates in situ using HP metabolic imaging.
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IF input function
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LDH lactate dehydrogenase
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MCT monocarboxylate

NADH nicotinamide adenine dinucleotide

NRMSE normalized root mean square error

RCC renal cell carcinoma

Vmax maximum velocity
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FIGURE 1. 
Representative plots of HP pyruvate, intracellular lactate and extracellular lactate signal 

over time (individual points) and the resultant fits (smooth lines) for each metabolite for 

(A) UOK262 control, (B) UOK262 with DiDS treatment and (C) shows the region of 

intracellular and extracellular HP lactate region of UOK262 cells with and without DiDS 

treatment
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FIGURE 2. 
Average ± standard error for apparent rate constants, associated LDH activity and MCT4 

expression from cell culture bioreactor model. (A) Model-calculated mean kPL for the three 

cell lines and UOK262 cells treated with DiDS inhibitor; (B) lactate dehydrogenase activity 

(n = 3) for the three cell lines, as determined by calorimetric assay; (C) model-calculated 

mean kLefflux for the three cell lines and UOK262 cells treated with DiDS inhibitor; and 

(D) MCT4 tRNA expression (n = 3) for each cell line relative to its cyclophilin expression, 

as determined by qRT-PCR
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FIGURE 3. 
Representative plots of pyruvate (blue) and lactate (green) signal versus time depicting both 

data (points) and the resultant fit (line) for (A) benign and (B) RCC renal tissue slice. The 

solid black line represents the fitted input function
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FIGURE 4. 
Kinetic rate parameters from modeling dynamic HP signal changes in tissue slice cultures. 

Average ± standard error of (A) kPL and (B) FL (lactate signal loss due to flow) in benign 

and RCC tissue slices
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FIGURE 5. 
Modeling in vivo HP signals from tumor-bearing mice. (A) Representative plot of pyruvate 

and lactate HP signal versus time (each timepoint = 3 s), including computed kPL values and 

fits of the lactate data acquired from orthotopically implanted UOK262 cells. (B) Average ± 

standard error for kPL * 1H ADC product for mice injected with UOK262 cells (left) and 

A498 cells (right)
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TABLE 1

Average ± standard error of pyruvate, intracellular lactate, and extracellular lactate R1s in cell culture 

bioreactor model calculated by kinetic model

Relaxation rate (s−1) HK-2 UMRC6 UOK262 UOK + DIDS

Pyruvate 0.0203 ± 3.05E-04 0.0201 ± 7.96E-06 0.02 ± 1.45E-04 0.0199 ± 1.38E-04

Lactate intracellular 0.06 ± 0.0208 0.0584 ± 0.0171 0.0586 ± 0.0054 0.0677 ± 0.0156

Lactate extracellular 0.0266 ± 4.51E-05 0.0274 ± 3.73E-04 0.0275 ± 1.79E-04 0.0273 ± 2.97E-04
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TABLE 2

Impact of the initial parameter estimate on the resulting model fit, as characterized by the range of the 

normalized error of each parameter. The initial values were varied between its minimum and maximum value 

from cell modeling, n = 5

Range of % error (max.-min.)

R 1P 6.5125

k PL 10.0147

FP 0.2925

R 1Lin 103.6789

k LEfflux 0.1282

R 1Lex 5.4421

FL 15.8624
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TABLE 3

Average ± standard error for all kinetic rate parameters for benign and RCC tissue slices

Benign Cancer

R1P (s−1) 0.02 ± 3.19E-04 0.02 ± 1.18E-04

R1L (s−1) 0.03 ± 4.22E-04 0.03 ± 7.25E-04

FP (s−1) 1.52 ± 1.31 14.06 ± 3.13

FL (s−1) 0.006 ± 0.006 0.033 ± 0.017

kLP (s−1) 0.01 ± 0.01 3.39E-03 ± 3.39E-03

k 3.79 ± 0.67 3.33 ± 0.21

θ 18.46 ± 1.82 19.66 ± 0.61

γ 3.71E+08 ± 1.91E+08 6.18E+08 ± 1.30E+08
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