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Functional protein mining with conformal
guarantees

Ron S. Boger 1,2,3, Seyone Chithrananda 2,4, Anastasios N. Angelopoulos 4,5,
Peter H. Yoon2,6, Michael I. Jordan 5,7 & Jennifer A. Doudna 2,3,6,8,9,10,11

Molecular structure prediction and homology detection offer promising paths
to discovering protein function and evolutionary relationships. However,
current approaches lack statistical reliability assurances, limiting their prac-
tical utility for selecting proteins for further experimental and in-silico char-
acterization. To address this challenge, we introduce a statistically principled
approach to protein search leveraging principles from conformal prediction,
offering a framework that ensures statistical guarantees with user-specified
risk and provides calibrated probabilities (rather than raw ML scores) for any
protein search model. Our method (1) lets users select many biologically-
relevant loss metrics (i.e. false discovery rate) and assigns reliable functional
probabilities for annotating genes of unknown function; (2) achieves state-of-
the-art performance in enzyme classificationwithout training newmodels; and
(3) robustly and rapidly pre-filters proteins for computationally intensive
structural alignment algorithms. Our framework enhances the reliability of
protein homology detection and enables the discovery of uncharacterized
proteins with likely desirable functional properties.

In the era of protein structure prediction, there are abundant oppor-
tunities for functional annotation of proteins. However, few robust
methods available to introspect and assess the quality of these anno-
tations, which is critical for selecting which proteins to characterize
further through experimental or in-silico methods. Protein homology
plays a central role in functional annotation, providing essential
insights into protein functions and evolutionary trajectories. Protein
homologs are proteins that share a commonevolutionary origin, often
displaying similarities in sequence, structure, or function due to gene
duplication or speciation events. Homology provides a valuable fra-
mework for predicting the function of newly discovered proteins and
understanding the molecular mechanisms underlying various biolo-
gical processes. Homology searches generate a score indicating

similarity between a query protein and proteins in a lookup database,
based on either primary sequence or three-dimensional structural
comparison.

Traditionally, homology search has focused on sequence com-
parison due to its speed and the limited number of experimentally
solved protein structures. BLAST1 and HiddenMarkovModels (HMMs)
have long been used to search large databases of protein sequences by
scoring by residue overlap and alignment-based features. Classical
methods for comparing protein structures suchasDALI2 and TM-align3

confer higher sensitivity for finding remote homologs—protein
homologs with low sequence similarity. However, thesemethods were
not widely used due to the limited number of available protein struc-
tures and their slow speeds.With the development of accurate protein
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structure prediction methods such as AlphaFold24, the number of
available (predicted) protein structures has vastly increased. Despite
this, large-scale searches through these predicted structures with
classical structural alignment methods remain computationally
infeasible.

Further, it is important to note that sequence and structural
similarity do not necessarily imply shared function. For instance, there
are enzymes for which functional annotation cannot be transferred to
the protein of unknown function even when their pairwise sequence
identity is greater than 90%, indicating different functions despite high
sequence similarity5,6. Similarly, there are pairs of structures in the PDB
with a TM-score greater than0.5 and sequence identity below 10% that
exhibit entirely different functions. Additionally, distant and mean-
ingful homologies are often missed due to challenges such as long
evolutionary distances, long-branch effects, and events like horizontal
gene transfer that recombine protein parts and disrupt genomic con-
text. Some estimates suggest that current methods may fail to detect
more than half of all true homologous relationships between proteins,
particularly at large evolutionarydistances7. This underscores the need
for methods that can more reliably infer function beyond sequence
and structural comparison.

Approaches leveraging deep learning models on sequence,
structure, and function such as TM-Vec8, Foldseek9, Protein-Vec10, and
TOPH11 have provided a promising alternative for fast and highly sen-
sitive homology search, outperforming classical methods on speed
and nearly matching their sensitivity in traditional bioinformatic
benchmarks. The practical application of these protein homology
models, however, presents additional challenges. For example, a
recent work Protein-Vec10 presented state-of-the-art results across
numerous benchmarks for function prediction. However, nearly all
scores generated by thismodel fall within a range of 0.9995 to 1. These
results are hard to interpret for a biologist because even normalizing
the scores does not indicate which proteins are worthwhile for further
characterization. Other approaches suffer from a similar problem of
arbitrary thresholds; for instance, prior work has examined the sig-
nificance of TM-align scores > 0.5 in relation to protein folds12, but the
selection of 0.5 is both arbitrary and does not provide statistical
guarantees. This highlights the need for more non-arbitrary and reli-
able scoring systems that can guide experimentalists in selecting
proteins for further investigation. For instance, a biologistmaywant to
conduct a protein search that guarantees that 90% of the returned set
shares biochemical function with the query protein (i.e., a 10% false
discovery rate) and provides the probability of shared biochemical
function within this set. The need for statistically valid “needle in a
haystack” approaches to filter and retrieve a high-quality set of biolo-
gical systems becomes increasingly important as genomic datasets
rapidly expand. These challenges underscore the need for principled
statistical methods like conformal prediction, which can provide sta-
tistically valid guarantees for protein retrieval and functional
annotation.

Recent advances in conformal prediction offer a principled
approach to protein retrieval, providing statistically valid and non-
arbitrary prediction sets. Classical statistical techniques often rely on
stringent assumptions about model structure (e.g., linearity) in order
for their validity to hold; but in the era of deep-learning-based black-
box models, such model assumptions rarely hold. Conformal predic-
tion provides statistical guarantees that are black-box—they make no
assumptions whatsoever about the structure of the model. These
techniques address the emerging challenges that have arisen with the
large scale of protein data and complex deep learning architectures,
which cannot be addressed by statisticalmethods such as e-values and
likelihood thresholds. So long as there is a calibration dataset repre-
sentative of future data, conformal prediction offers a framework for
returning sets of predictions with calibrated risk, such as false dis-
covery rates or partial errors in an enzyme function annotation. By

applying conformal prediction to homology search and function
annotation models, we can transform raw similarity scores into
retrieval sets and probabilities. Thus, we allow any searchmodel to be
employed for generating candidate homologs while providing a
baseline guarantee of statistical accuracy for the final sets of proteins
returned. Additionally, we convert raw similarity scores into calibrated
probability estimates, providing normalized probabilities instead of
raw scores. This enhances the interpretability of the model outputs,
making them more accessible and useful for large-scale biological
discovery.

In this work, we address the problem of assessing which proteins
to characterize by developing a practical framework for reliable and
interpretable evaluations, providing essential screening methods
before costly and time-intensive biochemical or computational char-
acterization. Specifically, we introduce a statistically principled fra-
mework leveraging conformal prediction for protein retrieval,
focusing on efficiently returning high-quality sets of proteins with
functional similarity with statistical guarantees on their validity. Our
method adaptively ensures coverage and reliability, enhancing the
interpretability of similarity scores while providing robust statistical
guarantees for identifying proteins with homology and desired func-
tional characteristics. Our approach helps determine which proteins
should be further characterized in the labor throughhigher-resolution
algorithms, such as structural alignment or molecular dynamics. We
demonstrate the utility of our approach across diverse protein data-
sets and tasks, from annotating genes of unknown function in the
minimal viable genome to improving enzyme function prediction.
Ultimately, our work reframes and addresses these challenges in
quantitative biology as calibration and risk control problems, provid-
ing a robust approach for functional protein mining.

To further motivate the work, suppose the following setup.
Assume we are given a set of query proteins Q (i.e. uncharacterized
proteins from a novel organism) and a large lookup database of pro-
teins denoted D (i.e. proteins which were previously experimentally
characterized), and we use some statistical model of proteins to pro-
duce a set of similarity scores between the query and lookup protein,
Sij for every i ∈ [∣Q∣] and j ∈ [∣D∣] (see Fig. 1A). For every query protein
q ∈ Q, we aim to retrieve a subset of the lookup database D that
contains an attribute of interest to the query—for example, a protein
from D with sufficient functional similarity. With some abuse of nota-
tion, we sometimes refer to Qi and Dj as the ith query protein from Q
and the jth lookup protein from D respectively (with respect to some
a-priori fixed ordering). This general problem setup is called retrieval.

Developing a selection method, i.e., a method for subsetting D,
can be challenging because of errors in the model. In some cases, the
model may assign lower similarity scores to proteins with functional
similarity, while functionally distant proteins may receive higher
scores due to model limitations. Thus, we aim to create a method that
can find the optimal threshold λ̂ based on a user-specified risk toler-
ance α for a desired loss metric for functional homologs, such as false
negative rate (FNR) or false discovery rate (FDR) (Fig. 1). Given a query
protein q ∈ Q and a lookup set D, our method returns a set,
Cλ̂ðQiÞ= fDj 2 D : Sij>λ̂g, where λ̂ is selected using calibration data in a
way that guarantees low risk.

The statistical techniques herein build on tools from the literature
surrounding conformal prediction, as developed by13,14; for an intro-
duction to contemporary techniques in the area, see15. Conformal
prediction is a technique for calibrating arbitrary black-box prediction
algorithms in order to satisfy statistical guarantees of marginal cov-
erage (and notably, not conditional coverage16,17). This has become
especially interesting in the era of deep learning, when prediction
systems may be difficult to analyze with standard analytical
statistics18,19. Here, we focus specifically on the use of conformal risk
control techniques20–22 for the purpose of biological retrieval algo-
rithms. Although conformal prediction has been applied in several
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ways to the biomedical space (see, e.g.,23–31), we are unaware of sub-
stantial work that resembles ours. A recent work published as we were
writing this manuscript,32, leverages conformal prediction to improve
a machine learning model that the authors train, PenLight2. This is
similar to section 3.2 in our work where we improve an existing
machine learning model with better selection. Overall, however, our
goal is not to present a machine-learning model for enzyme classifi-
cation, but rather to develop a practical and rigorousmethodology for
experimentalists to decide what to characterize in the lab. Similarly,
although some initialworkhasbeendoneon conformalprediction and
recommendation systems33–36, none of these recommendation system
techniques have been used with biological data to our knowledge.

Results
Annotation of genes of unknown function with control of the
false discovery rate
Protein families (Pfams) are groups of evolutionarily related proteins
that share a common ancestor. Members of a protein family typically
have similar sequences, structures, and functions. Annotating protein
families is critical in understanding their function and evolutionary
history. Proteins can have multiple Pfam annotations; for instance, the
bacterial immune systemCRISPR-Cas9 is annotatedwith five Pfams for
different functional domains (endonuclease, PAM interaction, etc).
The Pfam database is widely used in particular to classify protein

sequences into families in domains, and serves as a classic benchmark
in functional annotation.We searched across Pfam-annotated proteins
inUniprot for exact (proteinswhere the Pfams are identical) functional
matches using Protein-Vec and demonstrated our methods in finding
the optimal similarity thresholds for false negative rate (FNR) and false
discovery rate (FDR) at α = 0.1. We shuffled the data over 100 trials to
generate a new calibration dataset to learn optimal thresholds for FNR
and FDR. It is also possible to learn optimal thresholds for partial
(proteins sharing at least one Pfam) functional matches (see Section
5.2 for more details).

We assign probabilities of a functional match to each similarity
score between query and lookup by fitting an isotonic regression.
Isotonic regression is a nonparametric technique that fits a non-
decreasing function to the data, allowing us to transform raw similarity
scores into calibrated probabilities. This approach ensures that the
assigned probabilities aremonotonically increasing with respect to the
similarity scores, a transformation that is a natural first step when
assessing whether a given match is correct (Fig. 1). We employ an
extended version of isotonic regression called Venn-Abers
prediction37, which comes with theoretical guarantees of calibration;
see Section 5.1 for details, and Supplementary Fig. 1 for evaluations.

To evaluate the statistical validity of the isotonic regression, we
employ Venn-Abers Predictors37. Venn-Abers Predictors are a type of
conformal predictor that provides reliable prediction intervals,

Fig. 1 | Study Design and Motivation for Protein Homology Search Using Con-
formal Prediction. A A query sequence q is compared against a lookup databaseD
using a protein search model (e.g., Protein-Vec). The model generates similarity
scores Sij, which are compared against a threshold λ̂ determined through calibra-
tion. Scores above the threshold are included in the retrieval set Cλ̂. Scores below
the threshold (e.g., F98079 with 0.943) are highlighted in red to indicate their
exclusion. B The process involves computing scores on calibration data, obtaining
quantiles, and constructing prediction sets. This approach provides statistical
guarantees on the validity of the returned sets, enhancing the interpretability and
reliability of protein search results. C The distribution of Protein-Vec similarity
scores for UniProt motivates the need for effective thresholds and confidence

measures in protein homology searches, particularly given the high similarity
scores clustering near 1.D Illustration of the error loss calculation for two enzymes:
EC 2.1.1.12 (Methionine S-methyltransferase) and EC 2.1.1.13 (Methionine synthase).
The loss function ℓ(q, C) assigns a value based on themaximum hierarchical loss of
the enzymes in a retrieval set C ⊆ D, with 0 meaning every retrieved protein is an
exact match. The hierarchical classification tree for part of transferases (EC 2) is
shown, with methionine synthase being the ground-truth EC number, and
methionine S-methyltransferase being in the model-retrieved retrieval set. This
results in a ℓ(q, C) = 1 hierarchical loss, due to a 4th-level family mismatch. Source
data are provided as a Source Data file.
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calibrated probabilities, adaptability to different loss functions, theo-
retical guarantees, and ease of implementation. This method helps
verify that our probability assignments are statistically valid and that
they maintain the desired coverage properties. By using Venn-Abers
Predictors, we can ensure that the isotonic regressionmodel produces
accurate and reliable probability estimates for our similarity scores.
We examine the difference in Venn-Abers test probabilities p̂0, p̂1 (the
predicted probabilities of two isotonic regressions trained with dif-
ferent statistical parameters, see 5.1 for more details) and see that
jp̂0 � p̂1j � 0, demonstrating that our model’s ability to assess the
probability of a functional match is well calibrated. We also show that
the expected calibration error (ECE) of the Venn-Abers predictor is
low, further indicating reliability (Supplementary Fig. 1). As a test case,
we investigated the possibility of rigorously annotating genes identi-
fied in JCVI Syn3.0 Mycoplasma mycoides. JCVI Syn3.0, developed by
the J. Craig Venter Institute, represents a minimal viable genome
containing only the essential genes necessary for life38. Interestingly,
despite its small genome, nearly 20% of the protein-coding genes in
JCVI Syn3.0 were classified as genes of unknown function —genes with
no homology to characterized genes via BLAST and HMMSearch — at
time of publication. Annotating the genes in this synthetic organism is
crucial for understanding their functions and the minimal

requirements for cellular life. Given the development in protein
structure prediction and remote homology algorithms since the initial
release of JCVI Syn3.0, we hypothesized that some fraction of these
genes may have remote homology (that was not found via traditional
methods) to well-characterized proteins. We applied our calibrated
methods to this dataset, aiming to identify functional annotations for
the previously unknown genes in Syn3.0.We assigned similarity scores
to each of the genes of unknown function to Uniprot using Protein-
Vec, and then filtered the results by selecting only Sij ≥ λ̂, where λ̂ is a
threshold fit to obtain FDR control at α = 0.1 (10% false discoveries
expected). We find that 39.6% of coding genes of previously unknown
function meet our criteria for an exact functional match (Fig. 2A) to
proteins in UniProt. We demonstrate a structural alignment between a
predicted structure of a gene of previously unknown function thatmet
our criteria and aUniProt reviewed (IDQ9KAV6) exonuclease (Fig. 2G).
By leveraging our approach, we provide robust and reliable annota-
tions for previously uncharacterized yet essential genes, thereby
contributing to the deeper understanding of minimal genomes and
synthetic biology. Our approach can be broadly applied to rapidly
assign high-confidence annotations to any genome of a new or
understudied organism, illuminating the discovery of biological func-
tion in the natural and synthetic world.

Fig. 2 | Robust calibration of risk and probability for Pfam domain searches.
A Hits represent proteins with similarity score above λ, determined by controlling
the FDR at α = 0.1. This yields exact functional hits for 39.6% of un-annotated genes
in JCVI Syn3.0Mycoplasma mycoides. BWe control FDR on exact Pfammatches to
α = 0.1 and demonstrate calibration across 100 trials. C FDR control at α = 0.1
retrieves roughly 25% of true positives.DWe control for a false negative rate (FNR)
loss at α = 0.1 and demonstrate α̂ is well calibrated across 100 trials. E Using the
threshold λ controlling for FNR, we are able to reduce database size by 99% on

average. F Plot of false negative rates (FNR) and false discovery rates (FDR) as a
function of similarity score threshold λ. As expected, FDR decreases as λ !
maxðSijÞ and FNR increases as λ ! maxðSijÞ. G Structural alignment between pre-
dicted structure of functional hit of previously unannotatedprotein inMycoplasma
mycoides and characterized exonuclease. H Venn-Abers predictors assign prob-
ability of exact Pfam match (two proteins that share the same set of Pfams) given
scores Sij. Source data are provided as a Source Data file.
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Robust selection strategies for enzyme function prediction
In addition to discovering genes of unknown function, we explore
techniques for accurately annotating enzyme functions. Enzyme
function annotation is a fundamental challenge in bioinformatics,
critical for systems biology level understanding of metabolic path-
ways, drug development, and materials science. However, this task is
inherently difficult because proteins can exhibit multiple enzymatic
activities or none at all, and their functions can be influenced by
complex structural and environmental factors. Traditional annotation
methods often struggle with this complexity, leading to incomplete or
inaccurate predictions.

To address these challenges, we explore a selection approach for
a recent deep-learning model called CLEAN (contrastive learning-
enabled enzyme annotation)39. CLEAN, akin to Protein-Vec, learns an
embedding space for enzymes by employing a single-aspect con-
trastive loss function that minimizes the distance between similar
(anchor and positive) enzymes, while maximizing the distance
between dissimilar (anchor and negative) ones. CLEAN is based on
Enzyme Commission (EC) numbers, a hierarchical numerical classifi-
cation scheme for enzymes in which the catalytic function of an
enzyme is specified by a series of four digits in increasing specificity.
Using the learned embeddings from CLEAN, a two-component Gaus-
sian mixture model is fit on the raw Euclidean distances between
individual enzyme sequence embeddings and different EC number
cluster embeddings. TheseECcluster embeddings are computedusing
the mean embeddings across all sequences in the training dataset
whichhavebeen annotatedwith the ECnumber, forming a centroid for
the class. At inference time, two selectionmethods are used to predict
EC numbers for enzyme sequences.

1. max�sep (max-separation), is a greedy approach that selects EC
numbers with the maximum separation that stands out from
other centroid embeddings.

2. p� value (p-value selection), identifies EC number centroid simi-
larity scores that stand out against the background distribution of
n = 20, 000 randomly sampled training similarity scores.

CLEAN has been evaluated on two independent datasets not
included in the model’s development to deliver a fair and rigorous
benchmark study. The first,New-39239, uses a date-cutoff onUniprot to
select 392 enzyme sequences covering 177 different EC numbers,
containing data from Swiss-Prot released after CLEAN was trained
(April 2022). The second, Price-149, was a set of experimentally vali-
dated results described by Price et al40. Curated by ProteInfer41, Price-
149 is considered a challenging dataset because the existing sequences
have frequently been incorrectly or inconsistently labeled in databases
by automated annotation methods. Adding to this challenge is major
data imbalances in the training data within UniProt, where we observe
a strong left skew in the histogramof EC labels towards a handful of EC
families with high label abundance. We observe that 4498 of the 5242
total EC annotation’s inCLEAN’s training data have less than 50protein
examples, illustrated by Supplementary Fig. 4.

Despite the advancements CLEAN offers, selecting the correct
enzymatic functions with statistical confidence remains non-trivial.
Given the frequent misannotation in the field and the effort devoted
to selection in CLEAN, we were interested in adapting our conformal
procedures independently for each dataset to develop a statistically
grounded selection technique. The hierarchical nature of the EC
system, in which each enzyme sequence can be thought of as a leaf
node in a tree, accorded well with our use of a hierarchical risk
function (7). Additionally, we wanted to explore whether calibrating
on one dataset and evaluating on the second would maintain the
coverage guarantees. This approach could potentially produce a
more performant selectionmethod than the two strategies proposed
by CLEAN.

A conformal-derived similarity threshold λ̂, in contrast to query-
specific annotations, would i) provide performance guarantees for
divergence against the hierarchical classification for some α, and ii)
enable the model to output an empty set when it is uncertain about
whether the protein should be classified with an EC number at all, an
issue both max�sep and p� value selection do not reconcile. We
demonstrate an example of this selection pathology in Fig. 3. When
asking CLEAN to annotate an antigen-binding fragment of a recently-
developed SARS-COV-2 antibody (a protein that is evidently not an
enzyme), both max�sep and p� value return annotated sets (as
max�sepmust return at least one annotation). In contrast, conformal
risk control appropriately returns an empty one. CLEAN employs a
Gaussian Mixture Model to assign a level of confidence to the results.
While this method can measure probability and manually determine a
confidence threshold for EC annotation, it comes with limitations. For
high-throughput applications like metagenomic enzyme mining, con-
formal guarantees implicitly resolve these model pathologies, pro-
viding amore robust solution. Consequently, we calibrated onN = 380
of the 392 query points provided by New, and report test precision
score, recall score, F1-score, and area under curve (AUC) in addition to
the hierarchical loss coverage on Price-149, following the metrics
reported by CLEAN. Thus, we assembled distograms for both New-392
and Price-149 against all 5242 EC cluster embeddings in CLEAN’s
training set. We then computed per-query hierarchical loss scores to
calibrate with conformal risk control.

Our findings indicate that the conformal selection strategy, using
the same underlying embeddings produced by CLEAN, outperforms
both max�sep and p� value selection. Most excitingly, we find that
not only does calibrating on New-392 and evaluating on a subset of
New-392 outperform the CLEAN selection methods, but calibrating on
New-392 and testing on the more difficult Price-149 benchmark con-
taining previously hard-to-annotate enzymes of unknown function
also yielded strong performance. We report results for both tasks in
Tables 1–2.

Despite the datasets not being exchangeable and noting sig-
nificant shifts in (i) the distribution of similarity scores produced by
CLEAN and (ii) sequence identities to functional matches in the train-
ing set for both datasets (see Supplementary Figs. 5–6), our hier-
archical risk calibration strategy still outperformed both prior
selection methods.

We believe this early work raises the opportunity to use our
method, conformal protein retrieval, on a withheld subset of training
data as a central, large calibration dataset. This approach can then be
extended tomultiple, separate annotation tasks for robust and reliable
selection, ultimately enhancing the accuracy of enzyme function pre-
diction across diverse datasets.

DALI prefiltering of diverse folds across the proteome
Further, we demonstrate how to do robust and fast screening prior to
using high-resolution yet slow in-silico algorithms such as molecular
dynamics or structural alignment. While embedding-based search
methods havebrought about the ability to do large-scale searcheswith
improved sensitivity, structural alignment methods remain important
due to their ability to provide detailed biochemical and functional
insights. We explored the possibility of extending calibration on a task
of related function, remote homology, and extend it to a broader task
that inherently relies on the same shared structural knowledge. In this
section, we aim to do so by building a robust prefiltering technique for
running DALI structural alignments,

Classicalmethods for comparing protein structures likeDALI2 and
TM-align3 confer high sensitivity for finding remote homologs and
output a structural alignment. Structural alignment is crucial for bio-
chemists and molecular biologists because it often provides insights
into functional relationships— such as the identification of active sites,
binding interactions, and conformational changes — which are often
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not evident from sequence comparisons alone. Traditionally, these
structural alignment algorithms have been limited by the number of
available protein structures and slower computational runtimes.
Although accurate protein structure prediction methods such as
AlphaFold24 have vastly increased the number of available (predicted)
protein structures and structural databases broadly, these algorithms
still remain computationally infeasible at scale. Computing a classical

structural alignment between a set of query proteins and large data-
bases such as the AlphaFold Database (AFDB)42, or even the recently
clustered 2.3M subset of AFDB43, requires time and specialized com-
pute. For instance, a recent study discovered an ancestral CRISPR-
Cas13 nuclease44 using DALI structural alignment algorithm to search
the clustered AFDB and released specialized software to aide in the
search. For instance, computing an alignment for 73 SCOPe (Structural
Classification of Proteins — extended)45 protein domains against all of
the clustered AFDB took ~ 1 day on our highly optimized super-
computer setup with 10 threads (Table 3). As access to high-
performance computational resources becomes more limited and
the number of protein folds continues to expand, this problem will
become more intractable. In contrast, embedding-based search
methods such as Protein-Vec can perform the same task in only about
~ 30 seconds on a modern laptop. Therefore, it is valuable to select
proteins efficiently prior to conducting computationally expensive in-
silico analyses.

Motivated by these slow runtimes to get high-quality structural
alignments and similarity scores, we choose to calibrate risk with a
faster embedding-search model, Protein-Vec, on a related task of
homology.We then evaluate its ability to retrieve high-ranking Z-score

Fig. 3 | Results for utilizing conformal prediction for enzyme function anno-
tation, using a leading classification model. We compare the two methods for
''EC-calling” proposed by CLEAN39, max�sep (max-seperation) and p� value

p-value selection, against our conformal method. We report confidence intervals
throughviolin plots for 10 randomshuffles of thedataset to ensure coverage across
New. A Violin plots of ROC-AUC for conformal, p� value, and max�sep. B Violin
plots of F1 for conformal, p� value, andmax�sep.CReturnedEC annotations for a
SARS-CoV-2 antibody. Conformal selection correctly identifies SARS-CoV-2
antigen-binding fragments (Fabs) as not enzymes, whereasmax�sep and p� value

methods from CLEAN return possible enzyme annotations.D–F Intuitive overview
of selection methods for EC annotation using similarity scores. Here, D represents
the cutoff threshold determined by p-values, which ranks query enzymes to each
EC cluster center ECi amongst a background of random proteins from the training
dataset. E displays our conformal distance-threshold, while F displays max-
separation selection,which aims to select ECnumbers that standout from theother
EC query-centroid distances. Here, the arrow describes the intuitive ''point of max
separation” amongst all EC numbers and the query. Source data are provided as a
Source Data file.

Table 1 | ComparisonofCLEANselectionmethods to conformalwhencalibratingon300datapoints and testingon92proteins
from New (68–77 unique EC labels)

Method Precision Recall F1 AUC

Conformal (α = 1) 56.80 ± 1.64 63.71 ± 0.29 57.65 ± 1.45 81.50 ± 0.38

Max-sep 53.05 ± 0.13 50.03 ± 1.34 50.96 ± 1.21 74.96 ± 0.66

P-Value 53.27 ± 0.51 52.01 ± 1.11 52.04 ± 0.63 75.90 ± 0.58

Train and test indices are shuffled across 10 trials to ensure robust performance acrossdifferent dataset partitions. Bold values indicate the best-performingmethod for eachmetric (higher is better).

Table 2 | Generalizability test of CLEAN selection methods
when calibrating on 380 data points fromNew and testing on
all 149 samples from Price (56 EC classes)

Method Precision Recall F1 AUC

Conformal
(α = 1.5)

55.98 49.34 49.62 74.59

Max-sep 58.44 46.71 49.47 73.34

P-Value 59.26 47.74 47.77 72.34

Nearly all ofNew is used for calibration, as increasing the size of the calibration set progressively
tightens the loss coverage, detailed in Eq. (5). Bold values indicate the best-performingmethod
for each metric (higher is better).
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hits from a DALI search as the ground-truth metric. Although tools
have been developed to quickly estimate structural alignment scores8,
computationally expensive downstream analyses such as alignment
andmolecular dynamics will always be relevant for biologists. As such,
developing a robust methodology to prefilter large databases of pro-
teins into smaller subsets that retain amajority of proteinswith desired
biochemical functions remains a critical challenge in the field.

Different datasets of proteinsmay containdiverse genes that have
varying distributions of homologous sequences, depending on their
protein family, superfamily, or fold. For instance in SCOPe 2.0845

clustered at 40% sequence identity, some families contain > 100 pro-
teins, while others contain two or only one categorized protein. When
estimating a threshold λ̂, it is important to ensure we account for
adaptive set sizes in our retrieval set to filter large sequence and
structure databases. In addition, some proteins may have no known
homologs, so a model should return an empty search set. A threshold
determined with conformal risk control allows for this while providing
calibrated statistical guarantees.

To develop a prefilter for DALI structural alignments using a fast
but perhaps less sensitive model as a surrogate with statistical guar-
antees enables us to quickly search large databases.With the surrogate
model’s predictions, we aim to infer some threshold λ̂ that can obtain
our subset Ĉ � D that contains hits of structural similarity to the query.
With this subset Ĉ, we can then perform structural alignments with
DALI, thereby reducing the overall search and computation time to
feasible levels. Specifically, we address the challenge of reducing the
2.3M proteins in clustered AFDB while maintaining a minimal FNR
calibrated through conformal risk control. In effect, we seek to select
the smallest possible set which captures nearly all high Z-score
homologs thatwould have been identified byDALI in a comprehensive
clustered AFDB search.

To measure our ability to do this, we demonstrate the use of
conformal risk control to prefilter DALI across diverse ”multi-domain”
folds from the Structural Classification of Proteins—extendeddatabase
(SCOPe)45 (see 5.2 for selection procedure used in SCOPe prefilter
strategy). We begin by embedding all proteins in SCOPe and the
clustered AFDB using Protein-Vec, and use conformal risk control to

learn a λ̂ that achieves a 1% false negative rate (FNR) for SCOPe families.
This calibration task is disjoint from the subsequent task, whereweuse
the calibrated threshold to search and select proteins from the clus-
tered AFDB. By doing so, we aim to retain nearly all high Z-score
homologs identified byDALI. Althoughwe use Protein-Vec for ease, we
note this can be done with Foldseek and other fast models that mimic
structural alignment scores.

We infer a threshold that may tolerate a higher FDR for low DALI
Z-scores but ensures a low FNR for DALI Z-scores greater than Z 0. We
define the threshold Z 0 as the elbow-point of the descending sorted Z
scores per the Kneedle algorithm46, representing the point where the
rate of decrease in Z-scores starts to slow significantly. We consider
partial matches as those diverging at the family but preserving
superfamily-level homology. We then use the learned threshold, λ̂, as a
prefilter for the DALI multi-domain search task, obtaining a subset
Ĉ � D, where D 2.3M protein clustered AFDB (see Section 5.2 for pre-
processing steps).

We illustrate the effectiveness of our prefiltering approach in
Fig. 4. We display the correlation between DALI and Protein-Vec simi-
larity scores for SCOPe domains against the clustered AFDB. When
looking at the correlation between DALI and Protein-Vec similarity
scores for SCOPe domains against the clustered AFDB, two distinct
takeaways emerge. First, retrieved hits with higher structural similarity
scores Sij in Protein-Vec, corresponding toZ − score≥10 inDALI, exhibit
a distinct distribution shift, indicating our method’s ability to capture
significant hits. In contrast, Z � score ≥Z 0 exhibits much greater var-
iance in Protein-Vec similarity scores. Despite this, we show that the
retrieved Ĉ, captures 82.8% of hits above Z 0 from D, while filtering out
31.5% of the clustered AFDB (Tables 4–6).

These results demonstrate that our prefiltering method effec-
tively reduces the size of the lookup database while retaining a
majority of homologous proteins with desired biochemical properties.
By significantly reducing the clustered AFDB set while maintaining a
low FNR, our approach enables more efficient and feasible structural
alignments with DALI. This strategy not only meaningfully reduces
computational demands but also ensures the comprehensive identifi-
cation of likely structural homologs, providing a valuable tool for
structural biologists and biochemists to accelerate discovery.

Discussion
The rapid increase in genomic data and the development of new
algorithms for protein searchmark an exciting time for computational
biology. In this study, we demonstrate a robust approach for protein
search that provides statistical guarantees on the retrieval of homo-
logous proteins, thereby enabling principled prioritization for further
biochemical and biophysical characterization. Our method is groun-
ded in conformal prediction, which enables the transformation of raw
similarity scores into interpretable retrieval sets and probabilities with

Table 3 | Comparison of runtime between DALI and Protein-
Vec for searching 73 SCOPe domains against the full
clustered AFDB

Method Runtime Number of threads

DALI ~ 1 day 10

Protein-Vec ~ 30 seconds 1

Given the substantial speed difference between Protein-Vec and prior methods, prefiltering
reference databases before structural alignment can significantly reduce computational costs.

Fig. 4 | Statistically robust prefiltering can reduce the sizeof a lookupdatabase
for high accuracy yet computationally intensive methods like DALI.
A Correlation between DALI and Protein-Vec similarity scores for SCOPe domains
against the clustered AFDB. Proteins with a DALI Z < 2 are reported as Z = 0, as they
are not outputted by DALI. B Distribution of Protein-Vec scores with associated

Z-scores at different Z-score values. There is an observable distribution shift as Z
increases. C Histogram of Z scores below and above the learned threshold λ to
ensure α = 0.01 FNR for SCOPe families. We observe that most of the distribution
density for Protein-Vec scores Sij < λ is contained below Z 0, the elbow in the Z-score
distribution. Source data are provided as a Source Data file.
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statistical guarantees. Our approach for statistical guarantees in pro-
tein retrieval has meaningful applications across multiple areas in
biochemistry, bioinformatics, and structural biology. Namely, we show
statistically valid annotation of genes previously deemed as genes of
unknown function, state-of-the-art performance on an enzyme classi-
fication task without training a deep learning model, and robust pre-
filtering of the clustered AlphaFold Database to reduce the
computational burden for structural alignment.

Although we extensively use Protein-Vec in this work, our
approach is model agnostic and can be used with any search or func-
tion annotationalgorithm. Indeed, protein searchmethods that rely on
embedding pairs of proteins and computing their cosine similarity via
FAISS can especially benefit with additional statistical guarantees. It is
conceivable that fast structural search algorithms such as Foldseek
could show an even greater improvement in prefiltering the clustered
AFDB for an individual query prior to performing a more intensive
structural alignment. Additionally, we could better calibrate a prefilter
threshold using DALI scores for our entire SCOPEe40 2.08 test vs
lookup set, and calibrating to find some binned Z − score threshold we
wish to consistently retrieve in our confidence set. Such an approach
would enable the calibration set to be truly exchangeable to the test
DALI scores we are filtering against, and likely result in a higher filter
and lower FNR rate.

Our approach is not without limitations. Conformal prediction
assumes exchangeability, whichmay not apply to all protein homology

searches. However, this is not always the case with proteins due to
several factors. Organisms are sampled at different frequencies, lead-
ing to a bias where certain protein families are overrepresented, par-
ticularly those from more frequently studied organisms. When
presented with new data, this may result in distribution shifts that are
challenging for the underlying conformal approach. Additionally, the
quality of samples can vary significantly, with metagenomic proteins
often being of lower quality compared to those from well-
characterized organisms. Furthermore, some protein families may be
missing altogether, as humans have only sequenced a fraction of the
life on Earth. Finally, these datasets often lack large individual varia-
tion; single amino acid changes can meaningfully alter a protein’s
active site and function, yet alignment-based methods may not fully
capture these subtle but important differences. Calibration is only as
good as the quantity and quality of labeled data, which underscores
the importance of comprehensive and accurate datasets for achieving
reliable results. There is no silver bullet to address such distribution
shifts; however, there have been many recent advances in conformal
prediction under distribution shift that can be brought to bear on the
topic47–50. Extending our method using these techniques would be an
interesting topic for future research, although it would increase the
complexity of the calibration process.

We do not produce uncertainty bounds in the underlying simi-
larity score for a pair of proteins, but instead uncertainty between a
query and lookup database. For a model such as TM-Vec which
estimates the structural TM-align scores for a pair of two protein
sequences, methods such as conformal quantile regression51 could
be used to provide confidence bounds around the true TM-align
score. Furthermore, given that many new protein search models
leverage advances in protein language models, it may be advanta-
geous to use the sequence perplexity derived from these language
models. Indeed, it has been shown that protein language models are
biased by unequal sequence sampling across the tree of life52, which
can result in higher sequence perplexity for other organisms. In
addition, these methods offer marginal, not conditional, statistical
guarantees, the learned thresholdsmight not generalize consistently
to all protein classes.

In summary, our work represents a significant step forward in the
field to move from protein search to experimental characterization by
integrating statistical guarantees through conformal prediction. The
ability to annotate genes of unknown function, classify enzymes with
high accuracy, and reduce computational overhead for structural
alignments highlights the practical benefits of our approach. As the
volumeanddiversity of genomic data continue to expand, the need for
reliable and efficient protein search methods becomes increasingly
critical. Future advancements in conformal prediction and protein
languagemodels will further enhance the robustness and applicability
of these methods, driving new discoveries and innovations in biology.
Our framework addresses the challenge of screening and selection
proteins for deeper characterization, paving the way for more reliable
and efficient discovery of proteins with valuable functional properties.

Methods
Protein retrieval and conformal prediction formalisms
In this section, we overview the mathematical tools we use in order to
perform retrieval for protein homologs. In particular, the key is various
methods for constructing subsets of protein space which have guar-
antees of retrieval, but are small enough to narrow down the search
process.

Throughout the appendix, we will switch to a more mathematical
notation to parallel the statistics literature on these topics. We will let
X and Y be the query and response (lookup) proteins, respectively. In
the retrieval problem, we seek to associate each query x 2 X with a set
of responses. Given a set C � Y, we measure the quality of the set C

Table 4 | Statistical summary of DALI search hits excluded
when filtering Protein-Vec hits for thresholds Z � Z0, the Z-
score elbow point found with the Kneedle algorithm

FNR TPR FDR

Mean 0.182 0.818 0.997

Std 0.174 0.174 0.004

Min 0.000 0.290 0.979

Median 0.121 0.879 0.998

Max 0.710 1.000 1.000

We report false negative rates (FNR), true positive rates (TPR), and false discovery rates (FDR).

Table 6 | Statistical summary of DALI search hits excluded
when filtering Protein-Vec hits

NðSij>λÞ
N

NðZ<2Þ
N

Z 0

Mean 0.685 0.947 5.130

Std 0.246 0.067 1.670

Min 0.104 0.737 3.200

Median 0.768 0.974 5.000

Max 0.978 1.000 14.600

Metrics include the percentage of the data retained at the λ̂ threshold (NðSij>λÞ
N ), the percentage of

hits with DALI structural alignment scores below 2 (NðZ<2ÞN ), and the Z0 elbow determined by the

Kneedle algorithm.

Table 5 | Statistical summary of DALI search hits excluded
when filtering Protein-Vec hits for thresholds Z≥2

FNR TPR FDR

Mean 0.282 0.718 0.943

Std 0.236 0.236 0.070

Min 0.010 0.108 0.712

Median 0.206 0.794 0.973

Max 0.893 0.990 1.000

We report false negative rates (FNR), true positive rates (TPR), and false discovery rates (FDR).
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using a loss function:

‘ðx, CÞ 2 ½0,B� for someB<1: ð1Þ

As an example of a loss function, imagine that for every the query
protein x 2 X and responseprotein y 2 Y, we can associate a degree of
SCOPe IDmatching,matchðx, yÞ 2 f0, 1, 2, 3, 4g. Whenmatchðx, yÞ=0, it
means the proteins are an exact match—that they each have a site with
exactly the same SCOPe family. Meanwhile, when matchðx, yÞ=4, it
means that the proteins are not even in the same SCOPe class. Inter-
mediate levels of matching indicate intermediate SCOPe ID matches.
With thismatch function inhand, we candefine the loss function as, for
example, the fraction of our retrieved set that is not exact matches.
Mathematically, this loss function is

‘ðx, CÞ= 1
jCj

X
y2C

1fmatchðx, yÞ≠0g, ð2Þ

where 1 is the indicator function that takes the value 1 when the
argument is true and 0 otherwise. We are trying to generate retrieval
sets that ensure this loss is small.

Our main tool will be to index some family of sets by a one-
dimensional parameter, λ 2 R. We will refer to this family of sets as Cλ.
An example would be

CλðxÞ= fy 2 Y : f ðx, yÞ≥ λg, ð3Þ

where f is a pre-trained machine learning model trained to predict
whether x and ymatch. Themethodologies exposed herein allow us to
pick the parameter λ such that these sets have a small loss in a
probabilistic sense,

E½‘ðX , Cλ̂ðX ÞÞ�≤α: ð4Þ

The parameter λ̂ is picked based on a calibration procedurewhichuses
a small dataset of proteins the model has not seen during training. We
will call this calibration dataset X1, …, Xn, and we assume we can eval-
uate ℓ against any of the possible responses in Y. Then, we will deploy
the λ̂ that is picked using this calibration data on a new, exchangeable
protein Xtest.

The critical assumption in all the forthcoming techniques is
the exchangeability of the calibration data and the test point.
Exchangeability means that the joint distribution function of the
calibration data and the test data point is invariant to permuta-
tions. As an example, i.i.d. data points are exchangeable;
exchangeability is a weaker condition than this. Intuitively, this
means that the calibration data must be representative of the test
data, and not involve any deleterious distribution shifts. The
particular technical condition required for our theory is that the
vector of losses ð‘ðX 1, CλðX 1ÞÞ, . . . , ‘ðXn, CλðXnÞÞ, ‘ðX , CλðX ÞÞÞ is
exchangeable for all λ—the exchangeability of the data points
implies this fact, but it is technically weaker. In other words,
exchangeability matters only insofar as the risk is concerned.

For clarity, we define some of the commonly utilized loss func-
tions for our retrieved sets, false discovery rate (FDR) and false nega-
tive rate (FNR). Motivated by the desire to control against false
significant hits, we define false discovery rate first. FDR measures the
ratio between false positive hits (false discoveries) in our retrieved set
ofmodel-derived significant hits to the total number of hits (the size of
our retrieved set). This is expressed as FP

FP +TP. The FNR, similarly, is the
number of false negative significant hits (annotated hits not in the
retrieval set) as a fractionof the totalpool of possible hits, expressed as

FN
FN +TP. For further literature relating to controlling FDR, we refer
readers to53.

Conformal risk control. Conformal risk control21 is an extension of
conformal prediction that provides an algorithm for satisfying (4)
when the function λ7!‘ðx, CλðxÞÞ is monotone for all x. As such, con-
formal risk control extends conformal prediction to control the
expected value of any monotone loss function. The monotonicity is
critical for the theoretical guarantee to hold, as λ increasing should
ensure the prediction sets become more conservative and that
ℓ(x, Cλ(x)) does not incrase. The threshold function λ̂ in the following
way:

λ̂= inf λ :
1
n

Xn
i= 1

‘ðx, CλðxÞÞ≤α � 1� α
n

( )
: ð5Þ

When the data points X1, …, Xn and X are exchangeable, this results in
exactly the guarantee in (4).

The calibration procedure for λ̂ is doing something simple and
easy to understand. On the left-hand side of the inequality in (4), we
have the empirical risk, i.e., the average loss on our calibrationdata.On
the right-hand side of the inequality, we have α minus a small fudge-
factor that decays as 1/n. Thus, we are picking the smallest λ—often
indicating the smallest retrieval set—such that the risk is bounded
above by α (fudge-factor aside). Importantly, the loss in (4) is not any
specific loss, like the false negative rate or false discovery rate—it is a
general, bounded loss (although non-monotone losses have a slightly
different algorithm; see22).

Hierarchical risk control. Here, we explain how conformal risk control
can be used to do hierarchical prediction of the SCOPe/CATH ID/EC of
a protein. Inotherwords,wewill directly address the taskof predicting
a family for protein X. Protein families are normally classified in a
hierarchy through SCOPe and CATH, with their place in the hierarchy
represented as a vector:

hðxÞ= ðA,B,C,DÞ, ð6Þ

where A, B, C, and D are strings corresponding to the domain, super-
family, fold, and family, respectively. We let C take values in the space
{A} ∪ {A. B} ∪ {A. B. C} ∪ {A. B. C. D}, for all integers A, B, C, and D,
respectively. Let our loss function be as follows:

‘ðx, CÞ= cminfi2½4�:hðxÞi = Cig, ð7Þ

where ci are nonnegative constants. An example would be c1 = 3, c2 = 2,
c3 = 1, and c4 = 0, in which case the loss function reduces tomatchðx, CÞ.
The key observation is that running conformal risk control at level α
with the above loss results in the following property:

Pð‘ðX , Cλ̂ðX ÞÞ= iÞ≤
α
ci
, ð8Þ

for all i. (Here, α/0 = ∞.) Intuitively, this means that conformal risk
control can be used to simultaneously bound the probability of all
mismatches, with a penalty that grows as the mismatches become
more extreme. The proof of this property follows from the definition
of the expected value:

E½‘ðX , CðX ÞÞ�≤α ()
X
i = 1

ciPð‘ðX , CðX ÞÞ=4� iÞ≤α

) ciPð‘ðX , CðX ÞÞ=4� iÞ≤α,8i:
ð9Þ

Non-monotone risks. In this paper, we also handle non-monotone
risks with an extension of conformal risk control, in high probability,
called Learn then Test (LTT). The main difference between this pro-
cedure and conformal risk control are twofold. First, the space of λ,
denotedΛ, must be discrete. Second, the guarantee in (4) holds in high
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probability over then calibration points. However, the algorithmshave
a roughly similar flavor; the variant of LTT we employ in all our
experiments is simply a different way of setting λ̂, and takes the form

λ̂= inf λ 2 Λ : R + ðλÞ≤α� �
, ð10Þ

using any concentration boundPðR+ ðλÞ>E½‘ðX , CλðX ÞÞ�Þ ≤ δ for all λ.We
defer further detail on this procedure to22.

Assigning probability to hits: isotonic regression and Venn-Abers
predictors. The next method we present is geared towards a different
goal: calibration. That is, given a protein x and a retrieval z, we would
like to produce a probability that the retrieval is correct (i.e. there is a
functional match). We allow for any notion of correctness, para-
meterizing a function correctðx, zÞ 2 f0, 1g; the indicator of an exact
match is one possible choice of correct. The formal goal is to produce a
probability p̂ satisfying Pðcorrectðx, zÞ= 1jp̂Þ= p̂. This technique is use-
ful when we have a query protein x, a set of known/labeled retrievals
for that protein, and we seek uncertainty quantification on one or
many unlabeled potential retrievals.

In this section, we develop our techniques in the setting that each
protein X has a set of labeled retrieval proteins, Z(1), …, Z(m). Then, we
would like to predict the probability of correctðX ,Z Þ= 1 on a new,
unlabeled retrieval protein Z. We also assume we have a pre-fit esti-
mate of this quantity, such as the confidence of a retrieval system. This
retrieval system estimate may not be any good, and its probabilities
may be very uncalibrated. Our goal is to calibrate these probability
estimates. We denote them as dcorrecti = dcorrectðX ,Z ðiÞÞ, and assume
without loss of generality that they are sorted.

The canonical method for correcting these probabilities is called
isotonic regression54. Isotonic regression solves the following optimi-
zation problem:

minimize
p̂1 , ..., p̂n

Pn
i= 1

ðp̂i � correctiÞ2

subject to p̂1 ≤ . . . ≤ p̂n,
ð11Þ

for any sequence p̂1, . . . , p̂n and any integern. This is a convex problem
admitting simple OðnÞ-complexity solutions (using algorithms first
introduced by55 and56). Once the sequence p̂1, . . . , p̂n is found, then we
can set the predicted probability of a match on the test retrieval Z as

p̂=
Xn
i = 1

p̂j1 dcorrectðX ,Z Þ 2 dcorrectj�1, dcorrectj

h in o
, ð12Þ

(When j = 0, we set dcorrectj =0.)
Under normal circumstances, the isotonic regression algorithm,

given n independent and identically distributed data points with (X, Y),
will converge to a calibrated estimate for the true, population prob-
ability of a match as n → ∞. The Venn-Abers predictor37 offers an
alternative calibration strategy that does not require n → ∞.

The Venn-Abers predictor works by running two isotonic regres-
sions with hypothetical values correctðX ,Z Þ. Namely, for b ∈ {0, 1},
define

p̂b
1 , . . . , p̂b

n, p̂
b =

minimizep̂1, ..., p̂n , p̂
Pn

i= 1ðp̂i � correctiÞ2 + ðp̂� bÞ
subject toorderðp̂1, . . . , p̂n, p̂Þ=order dcorrect1, . . . , dcorrectn, dcorrectðX ,Z Þ

� �
,

ð13Þ

where order returns the list of indexes sorting its argument.
When the data points are exchangeable, the Venn-Abers predictor

gives the following guarantee:

PðcorrectðX ,Z Þ= 1jp̂0Þ= p̂0 orPðcorrectðX ,Z Þ= 1jp̂1Þ= p̂1
: ð14Þ

Thus, the interval ½p̂0, p̂1� is a valid interval on the probability of cor-
rectness. One can use this strategy to report to the user that the pro-
teins X and Z are, say, 70 − 73% likely to be a match.

Dataset preparation
SCOPe and Pfam IDs. We select both query and lookup proteins from
both UniProtKB57 and SCOPe45. We use an annotated and reviewed
version of UniProtKB from July 3, 2023 and select all proteins created in
the database after May 25, 2022, as per10. The split was select to ensure
there is no train-calibration leakage for the proteins used to calibrate
the conformal score. This leaves 2, 350 proteins as calibration/valida-
tion, used for querying a lookup set of the remaining 540, 560 proteins.
These are filtered further depending on the labels associated with the
desired conformal guarantee, ie proteins annotated with Pfams. To
examine guarantees across proteins with hierarchical relationships, we
draw from the Astral Structural Classification of Proteins (SCOPe)45

database version 2.08, using 40% sequence identity threshold in order
to simulate the test case of remote homology. This leaves 15,177
domains in the training set acrossover 4693 families. For calibration,we
use a test set of 400 domains, which are ensured to have < 30%
sequence identity to every protein in the training set. This ensures that
the model is adequately evaluated on its ability to capture features
relating to remote homology. Thedomains in the set arefiltered tohave
at least one other family, superfamily and fold member. For SCOPe, we
calibrate on 300 proteins and test on 100 proteins

For each model and query protein qi, we return an ordered list of
lookup proteins vj and their similarity scores to the query as
Sij = f(qi, vj), along with the associatedmetadata (i..e. UniProt ID) of the
query and list of lookup proteins (i.e.: annotated Pfams, SCOPe IDs,
organism information, etc). We generate scores Sij using Protein-Vec10;
we also tested similarites derived from TOPH11, TM-Vec8, and
Foldseek9. We return a rank-ordered list by similarity for each query
protein qi using FAISS. With the scores Sij and annotations, we create
pairs {Sij, yij}, where yij indicates a desired match in annotations. For
instance, if we wish to calibrate to retrieve partial Pfam matches at a
given risk (ie qi has Pfam annotation {Pfam12345} and vj has Pfam
annotations {Pfam12345, Pfam56789}), we denote yij = 1 if there is a
partial match in annotations and yij = 0 otherwise. This approach is
particularly relevant for searching across proteins with multiple
domains and/or multiple functions.

Testing for exchangeability. It is important to note that conformal
techniques require that the data be exchangeable, else the theoretical
guarantees provided are invalid. No dataset is exactly exchangeable in
practice. However,wehave included validations of the exchangeability
assumption. In particular, we seek to show that the losses of the data
are exchangeable. We test for exchangeablility of the data in the fol-
lowing manner:

• We split the data across timeframe. Specifically we calibrate on
timeframe 2022-05-25 to 2022-12-14 and testing on 2022-12-14 to
2023-06-28. This yields 870 and 994 labeled proteins to test
against the lookup set, respectively.

• We examine the cumulative density function (CDF) of FNR and
FDR between samples from each timeframe and the lookup
dataset.

These results are shown in Supplementary Figs. 2, 3 for FDR and
FNR control, respectively. We observe the CDFs of the losses across
time nearly overlap, indicating evidence of approximate exchange-
ability. Although it does not hold exactly, it holds to a reasonable
extent, and we believe that this is sufficient to justify the use of the
method.

Enzyme classification (EC)within UniProt. Similarly to before, we use
an annotated and reviewed version of UniProtKB from July 3, 2023 and
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select all proteins created in the database after May 25, 2022 as our
evaluation queries qi. We filter our lookup and query/evaluation sets
Uniprot to only choose proteins with fully characterized EC numbers
(ex: containing the full hierarchy 0a:b:c:d0), returning a lookup set size
of 211720 and a query set size of 438. This forms our distancematrix of
size (438 × 211720) which we calibrate with conformal risk control
using the hierarchical loss function matchðx, yÞ= f0, 1, 2, 3, 4g as
described in (Sec 5). For the EC task, we calibrate on 300 and test on
the remaining 138 proteins.

CLEAN enzyme classification preparation. For the generalizability
test, we calibrate on ∣Q∣ = 380 query points of the 392 provided byNew
to maximize the calibration dataset size,. We report test precision
score, recall score, F1-score, and area under curve (AUC) in addition to
the hierarchical loss coverage on Price-149, following the metrics
reported by CLEAN39. Thus, we assemble distograms for both New-392
and Price-148 against all EC cluster embeddings inCLEAN’s training set,
forming size (∣Q∣, 5242) matrices where ∣Q∣ represents the number of
query proteins. Here, we use euclidean distances for embedding
comparisons (smaller λ → smaller retrieval set), as done in the original
work, and compute per-query hierarchical loss scores to calibrate with
conformal risk control. EC numbers are normally classified in a hier-
archy vector h(x) = (A, B, C, D) where (A, B, C, D) refer to enzyme class,
subclass, sub-subclass, and serial number respectively. It is worth
noting that some enzymes may be missing labels at the lower level of
the hierarchy; these are denoted as * (for instance 2.3. 1. * or 2.3. *. * as
Acyltransferases without further characterization). We use the hier-
archical loss matchðx, yÞ= f0, 1, 2, 3, 4g, where matchðx, yÞ=0 if
h(x) = h(y) exactly (two enzymes share the same class, subclass, sub-
subclass, and serial number) andmatchðx, yÞ=4 ifh(x)[0]≠h(y)[0] (two
enzymes are from different classes altogether). We note that this
choice of hierarchical loss is arbitrary and can be tuned to specific
application areas; for instance one may choose loss
matchðx, yÞ= f0, 1, 2, 4, 100g to significantly penalize class-level mis-
matches for enzyme functional annotation.

We calibrate atα = 1 for theNew test benchmark, andα= 1.5 for the
Price generalizability benchmark. We chose a different loss threshold,
α = 1, primarily because in the hierarchical classification scheme pro-
vided by EC, the finest-resolution 4th digit is often a ”serial number”,
differentiating between different enzymes having similar function, on
the basis of the actual substrate in the reaction. In this regime, serial
number errors may be somewhat tolerable to the experimentalist,
whereas sub-subclass errors are less so. Thus, for a dataset with a
distribution shift from New, such as Price, one may want to be more
tolerant in the retrieval process and calibrate the model to consider
mismatches 50% of the time at the sub-subclass level, and 50% of the
time at the finest sub-subclass level (producing an expected α = 1.5), to
accurately obtain all enzymes of similar function. Additionally, many
”preliminary” annotated enzymes exist with specificity only to the sub-
subclass, so encouraging partial matches is important to attenuate the
false negative rate (FNR), implicitly.We note that each query protein in
New and Pricemay have multiple possible valid EC assignments. Thus,
given a set of possible labels for each query protein x, we take the
minimum of the hierarchical losses computed against this set of pos-
sible labels and the retrieved set of EC label centroids. Here, if a test
enzyme x has k valid EC assignments (x1, …, xk), we want to evaluate
retrieval using the assignment that produces the minimum hier-
archical loss against the returned set. We do this to not unfairly
penalize the model as long as it is retrieving EC cluster centroids that
are close in hierarchy to one possible assignment.

Preprocessing of diverse Dali folds across the proteome. We
extracted all 73 entries classified as ”multidomain” from the Structural
Classification of Proteins—extended database (SCOPe)45. Each entry’s
corresponding Protein Data Bank (PDB) file was retrieved using its

unique PDB identifier (PDBID) from the Research Collaboratory for
Structural Bioinformatics (RCSB) PDB database. These files were then
processed into the DALI compatible format using the built-in import
function (import.pl) of the DALI software2.

We utilized 73 of these chains (one was omitted as it was too
short for DALI) as query structures to search against a specialized
database of 2.3 million non-singleton structure representatives
from the Foldseek Clustered AlphaFold database, as described in43.
To enhance the efficiency of the DALI search process, the database
was divided intomultiple batches, each containing 1000 structures.
The searches were conducted in parallel across these batches using
multiple threads to optimize computational resource usage and
decrease total runtime.

Similarly, we constructed the equivalent query and lookup set for
both Protein-Vec and TM-Vec. We embed both the entire sequence
database of the 2.3M Foldseek Clustered Alphafold database, aswell as
the 73 “multidomain” SCOPe entries, on a single A6000 GPU. Using
FAISS, we index and generate similarity scores for the entire query ×
lookup set.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The associated data generated in this study to reproduce all visuali-
zations, by figure, have been deposited in the following repository:
https://zenodo.org/records/14272215. All original datasets relating to
the CLEAN enzyme annotation tasks, and training data to compute
embedding similarities against are available in the original source
repository: https://github.com/tttianhao/CLEAN Source data are pro-
vided with this paper.

Code availability
Code for all computational analysis, conformal prediction, algorithms,
and figures is available at https://github.com/ronboger/conformal-
protein-retrieval/under an Apache-2.0 license, and on Zenodo at
https://doi.org/10.5281/zenodo.1427950158.

References
1. Altschul, S. F., Gish,W., Miller,W., Myers, E. W. & Lipman, D. J. Basic

local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
2. Holm, L. Using Dali for Protein Structure Comparison.MethodsMol.

Biol. 2112, 29–42 (2020).
3. Zhang, Y. & Skolnick, J. TM-align: A protein structure alignment

algorithm based on the TM-score. Nucleic Acids Res. 33,
2302–2309 (2005).

4. Jumper, J. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

5. Gerlt, J. A., & Babbitt, P. C. Can sequence determine function?
Genome Biol., 1(5), reviews0005.1-0005.10 (2000).

6. Whisstock, J. C. & Lesk, A. M. Prediction of protein function from
protein sequence and structure. Q. Rev. Biophysics 36, 307–340
(2003).

7. Brenner, S. E., Chothia, C. & Hubbard, T. J. P. Assessing sequence
comparison methods with reliable structurally identified distant
evolutionary relationships. Proc. Natl Acad. Sci. USA 95,
6073–6078 (1998).

8. Hamamsy, I. Protein-Vec: A pre-trained embedding space for pro-
teins, enabling rapid structural and functional predictions. Bioin-
formatics 39, i13–i20 (2023).

9. van Kempen,M. J. A. Fast andSensitive Searchof Protein Structures
Using Foldseek. Nat. Biotechnol. 41, 198–208 (2023).

10. Hamamsy, I. Learning transferable representations of protein
functions. Bioinforma. Adv. 3, vbad023 (2023).

Article https://doi.org/10.1038/s41467-024-55676-y

Nature Communications |           (2025) 16:85 11

https://zenodo.org/records/14272215
https://github.com/tttianhao/CLEAN
https://github.com/ronboger/conformal-protein-retrieval/
https://github.com/ronboger/conformal-protein-retrieval/
https://doi.org/10.5281/zenodo.14279501
www.nature.com/naturecommunications


11. Boger, R. S. TOPH: Tools for Operationalizing Protein Homology.
Nat. Commun. 14, 123–145 (2023).

12. Xu, J. & Zhang, Y. How significant is a protein structure similarity
with TM-score= 0.5? Bioinformatics 26, 889–895 (2010).

13. Vovk, V., Gammerman, A., Shafer, G. Algorithmic Learning in a
Random World. (2005).

14. Błasiok, J. &Nakkiran, P. Smooth ECE: Principled reliability diagrams
via kernel smoothing. The Twelfth International Conference on
Learning Representations (ICLR, 2024) https://openreview.net/
forum?id=XwiA1nDahv.

15. Angelopoulos, A. N., Bates, S. A gentle introduction to conformal
prediction and distribution-free uncertainty quantification. arXiv
preprint arXiv:2107.07511 (2021).

16. Vladimir, V. Conditional validity of inductive conformal predictors.
25, 475–490 (2012).

17. Barber, R., Candés, E., Ramdas, A. & Tibshirani, R. The limits of
distribution-free conditional predictive inference. Inf. Inference 10,
455–482 (2021).

18. Hechtlinger, Y., Póczos, B. &Wasserman, L. Cautious deep learning.
arXiv preprint arXiv:1805.09460. (2018).

19. Angelopoulos, A., Bates, S., Malik, J. & Jordan, M. I. Uncertainty sets
for image classifiers using conformal prediction. https://
openreview.net/forum?id=eNdiU_DbM9 (2021).

20. Bates, S., Angelopoulos, A. N., Lei, L. & Jordan, M. I. Distribution-
Free, Risk-Controlling Prediction Sets. J. Mach. Learn. Res. 22,
1–40 (2021).

21. Angelopoulos, A. N. Conformal Risk Control. Proc. 39th Int. Conf.
Mach. Learn. 162, 808–834 (2022).

22. Angelopoulos, A. N., Bates, S., Candés, E. J., Jordan, M. I. & Lei, L.
Learn then test: Calibrating predictive algorithms to achieve risk
control. arXiv preprint arXiv:2110.01052. (2021).

23. Sun, J. Applying mondrian cross-conformal prediction to estimate
prediction confidence on large imbalanced bioactivity data sets. J.
Chem. Inf. modeling 57, 1591–1598 (2017).

24. Alvarsson, J., McShane, S. A., Norinder, U. & Spjuth, O. Predicting
with confidence: using conformal prediction in drug discovery. J.
Pharm. Sci. 110, 42–49 (2021).

25. Svensson, F. Conformal regression for quantitative
structure–activity relationship modeling—quantifying prediction
uncertainty. J. Chem. Inf. Modeling 58, 1132–1140 (2018).

26. Sapounidou, M., Norinder, U. & Andersson, P. L. Predicting endo-
crinedisruptionusingconformal prediction–aprioritization strategy
to identify hazardous chemicals with confidence. Chem. Res. Tox-
icol. 36, 53–65 (2022).

27. Angelopoulos, A. N. et al. Image-to-image regression with
distribution-free uncertainty quantification and applications in
imaging. International Conference on Machine Learning.
(PMLR, 2022).

28. Fannjiang, C., Bates, S., Angelopoulos, A. N., Listgarten, J. & Jordan,
M. I. Conformal prediction under feedback covariate shift for bio-
molecular design. Proc. Natl Acad. Sci. 119, e2204569119 (2022).

29. Lu, C., Lemay, A., Chang, K., Höbel, K. & Kalpathy-Cramer, J. Fair
conformal predictors for applications in medical imaging., 36,
12008–12016 (2022).

30. Lu, C., Angelopoulos, A. N. & Pomerantz, S. Improving trust-
worthiness of AI disease severity rating in medical imaging with
ordinal conformal prediction sets., 545–554 (2022).

31. Zhou, H., Cao, H. & Skolnick, J. FRAGSITE: a fragment-based
approach for virtual ligand screening. J. Chem. Inf. modeling 61,
2074–2089 (2021).

32. Ding, K., Luo, J. & Luo, Y. Leveraging conformal prediction to
annotate enzyme function space with limited false positives. PLOS
Computational Biol. 20, e1012135 (2024).

33. Kagita, V. R., Pujari, A. K., Padmanabhan, V., Sahu, S. K. & Kumar, V.
Conformal recommender system. Inf. Sci. 405, 157–174 (2017).

34. Himabindu, TadiparthiV. R., Padmanabhan, V. & Pujari, A. K. Con-
formal matrix factorization based recommender system. Inf. Sci.
467, 685–707 (2018).

35. Angelopoulos, A. N., Krauth, K., Bates, S., Wang, Y. & Jordan, M. I.
Recommendation systems with distribution-free reliability guaran-
tees. 175–193 (2023).

36. Wang, C. et al. Confidence-aware Fine-tuning of Sequential
Recommendation Systems via Conformal Prediction. arXiv preprint
arXiv:2402.08976, (2024).

37. Vovk, V. & Petej, I. Venn-abers predictors. arXiv preprint
arXiv:1211.0025 (2012).

38. Hutchison III, C. A. Design and synthesis of a minimal bacterial
genome. Science 351, aad6253 (2016).

39. Yu, T. Enzyme function prediction using contrastive learning. Sci-
ence 379, 1358–1363 (2023).

40. Price, M. N. Mutant phenotypes for thousands of bacterial genes of
unknown function. Nature 557, 503–509 (2018).

41. Sanderson, T., Bileschi, M. L., Belanger, D. &Colwell, L. J. ProteInfer,
deep neural networks for protein functional inference. Elife 12,
e80942 (2023).

42. Varadi, M. AlphaFold Protein Structure Database: massively
expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids Res. 50, D439–D444 (2022).

43. Barrio, A. M. Clustering the alphafold protein structure database.
Nat. Biotechnol. 41, 425–435 (2023).

44. Yoon, P. H. Structure-guided discovery of ancestral CRISPR-Cas13
ribonucleases. Science 385, 538–543 (2024).

45. Fox, N. K., Brenner, S. E. & Chandonia, J.-M. SCOPe: Structural
Classification of Proteins—extended, integratingSCOPandASTRAL
data and classification of new structures. Nucleic Acids Res. 42,
D304–D309 (2013).

46. Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a “Knee-
dle" in a Haystack: Detecting Knee Points in System Behavior., 166-
171. https://doi.org/10.1109/ICDCSW.2011.20 (2011).

47. Barber, R. F., Candes, E. J., Ramdas, A. & Tibshirani, R. J. Conformal
prediction beyond exchangeability. Ann. Stat. 51, 816–845
(2023).

48. Tibshirani, R. J., Foygel Barber, R., Candes, E. & Ramdas, A. Con-
formal prediction under covariate shift. Adv. Neural Inf. Process.
Syst., 32, (2019).

49. Bastani, O. Practical adversarial multivalid conformal prediction.
Adv. Neural Inf. Process. Syst. 35, 29362–29373 (2022).

50. Gibbs, I. & Candes, E. Adaptive conformal inference under dis-
tribution shift. Adv. Neural Inf. Process. Syst. 34, 1660–1672 (2021).

51. Romano, Y., Patterson, E. & Candes, E. Conformalized quantile
regression. Adv. Neural Inf. Process. Syst., 32 (2019).

52. Ding, F. & Steinhardt, J. N. Protein language models are biased by
unequal sequence sampling across the tree of life. bioRxiv,
2024–03 (2024).

53. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a
practical and powerful approach tomultiple testing. J. R. Stat. Soc.:
Ser. B (Methodol.) 57, 289–300 (1995).

54. Brunk, H. D., Barlow, R. E., Bartholomew, D. J. & Bremner, J. M.
Statistical inference under order restrictions.(the theory and appli-
cation of isotonic regression). Int. Stat. Rev. 41, 395 (1972).

55. Brunk, H. D. Maximum likelihood estimates of monotone para-
meters. The Annals of Mathematical Statistics, 607–616 (1955).

56. Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T. & Silverman, E. An
empirical distribution function for sampling with incomplete infor-
mation. The annals of mathematical statistics, 641–647, (1955).

57. UniProt Consortium. UniProt: a worldwide hub of protein knowl-
edge. Nucleic acids Res. 47(D1), D506–D515 (2019).

58. Boger, R. & Chithrananda, S. Functional protein mining with con-
formal guarantees, conformal-protein-retrieval. https://doi.org/10.
5281/zenodo.14279501. (2024).

Article https://doi.org/10.1038/s41467-024-55676-y

Nature Communications |           (2025) 16:85 12

https://openreview.net/forum?id=XwiA1nDahv
https://openreview.net/forum?id=XwiA1nDahv
https://openreview.net/forum?id=eNdiU_DbM9
https://openreview.net/forum?id=eNdiU_DbM9
https://doi.org/10.1109/ICDCSW.2011.20
https://doi.org/10.5281/zenodo.14279501
https://doi.org/10.5281/zenodo.14279501
www.nature.com/naturecommunications


Acknowledgements
We thank members of the Doudna lab and the Innovative Genomics
Institute for helpful discussions. We thank UCSF for giving us access to
the high performance compute cluster Wynton to meet our compute
needs. We acknowledge Dr. Daniel Bellieny Rabelo for helping run DALI
on the Wynton compute cluster and Dr. Benjamin A. Adler, Dr. Jason
Nomburg, Kenneth M. Loi, and Marena Trinidad for helpful feedback on
themanuscript. RSB thanks the HenryWheeler Center for Emerging and
Neglected Diseases (CEND) at UC Berkeley for the Thomas C. Alber
Science & Engineering for Global Health fellowship. SC thanks the
Masason Foundation, the Mercatus Center for the Emergent Ventures
Fellowship, and New Science for the Computational Life Sciences
microgrant. ANA thanks the National Science Foundation (NSF) for the
Graduate Research Fellowships Program and the Berkeley Fellowship.
PHY thanks the National Science Foundation (NSF) for the Graduate
Research Fellowships Program. J.A.D. is an investigator of the Howard
Hughes Medical Institute, and research in the Doudna laboratory is
supported by the Howard Hughes Medical Institute (HHMI), NIH/NIAID
(U19AI171110, U54AI170792, U19AI135990, UH3AI150552 and
U01AI142817), NIH/NINDS (U19NS132303), NIH/NHLBI (R21HL173710),
NSF (2334028), DOE (DE-AC02-05CH11231, 2553571 and B656358),
Lawrence Livermore National Laboratory, Apple Tree Partners (24180),
UCB-Hampton University Summer Program, Mr. Li Ka Shing, Koret-Ber-
keley-TAU, Emerson Collective and the Innovative Genomics Insti-
tute (IGI).

Author contributions
R.S.B., A.N.A., S.C., and J.A.D. designed and conceived this project.
R.S.B., S.C., and A.N.A. generated all introductory figures for study
design and motivation. R.S.B. and A.N.A. designed, performed all com-
putational work, and generated all figures for risk control on genes of
unknown function. S.C. and R.S.B. designed, and performed all com-
putational work and figure generation around improved enzyme func-
tion prediction and hierarchical risk control. P.H.Y. and R.S.B. designed
the structural alignment experiments around the clustered AlphaFold
database. R.S.B. and S.C. performed all computational analysis and
figure generation. R.S.B., A.N.A., S.C., P.H.Y. wrote themethods section,
detailing mathematics and data acquisition. R.S.B., A.N.A., S.C., M.I.J.
contributed to the mathematical formulations in the work. All authors
wrote the original draft of the manuscript, reviewed and edited the
manuscript, and supported its conclusions.

Competing interests
J.A.D. is a co-founder of Caribou Biosciences, Editas Medicine, Intellia
Therapeutics, Mammoth Biosciences and Scribe Therapeutics, and a

director of Altos, Johnson & Johnson and Tempus. J.A.D. is a scientific
advisor to Caribou Biosciences, Intellia Therapeutics, Mammoth Bios-
ciences, Inari, Scribe Therapeutics, Felix Biosciences and Algen. J.A.D.
also serves as Chief Science Advisor to Sixth Street and a Scientific
Advisory Board member at The Column Group. J.A.D. conducts aca-
demic research projects sponsored by Roche and Apple Tree Partners.
The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-55676-y.

Correspondence and requests for materials should be addressed to
Jennifer A. Doudna.

Peer review information Nature Communications thanks Jeffrey Skol-
nick and the other, anonymous, reviewer for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-024-55676-y

Nature Communications |           (2025) 16:85 13

https://doi.org/10.1038/s41467-024-55676-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Functional protein mining with conformal guarantees
	Results
	Annotation of genes of unknown function with control of the false discovery rate
	Robust selection strategies for enzyme function prediction
	DALI prefiltering of diverse folds across the proteome

	Discussion
	Methods
	Protein retrieval and conformal prediction formalisms
	Conformal risk control
	Hierarchical risk control
	Non-monotone risks
	Assigning probability to hits: isotonic regression and Venn-Abers predictors

	Dataset preparation
	SCOPe and Pfam IDs
	Testing for exchangeability
	Enzyme classification (EC) within UniProt
	CLEAN enzyme classification preparation
	Preprocessing of diverse Dali folds across the proteome

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




