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In supercomputing systems, architectural changes that increase computational

power are often reflected in the programming model. As a result, in order to realize

and sustain the potential performance of such systems, it is necessary in practice to deal

with architectural details and explicitly manage the resources to an increasing extent.

In particular, programmers are required to develop code that exposes a high degree of

parallelism, exhibits high locality, dynamically adapts to the available resources, and

hides communication latency.

Hiding communication latency is crucial to realize the potential of today’s dis-

tributed memory machines with highly parallel processing modules, and technologi-

cal trends indicate that communication latencies will continue to be an issue as the

performance gap between computation and communication widens. However, under

Bulk Synchronous Parallel models, the predominant paradigm in scientific computing,

scheduling is embedded into the application code. All the phases of a computation are

defined and laid out as a linear sequence of operations limiting overlap and the program’s

ability to adapt to communication delays.

This thesis proposes an alternative model, called Tarragon, to overcome the lim-
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itations of Bulk Synchronous Parallelism. Tarragon, which is based on dataflow, targets

latency tolerant scientific computations. Tarragon supports a task-dependency graph

abstraction in which tasks, the basic unit of computation, are organized as a graph ac-

cording to their data dependencies, i.e. task precedence. In addition to the task graph,

Tarragon supports metadata abstractions, annotations to the task graph, to express local-

ity information and scheduling policies to improve performance.

Tarragon’s functionality and underlying programming methodology are demon-

strated on three classes of computations used in scientific domains: structured grids,

sparse linear algebra, and dynamic programming. In the application studies, Tarragon

implementations achieve high performance, in many cases exceeding the performance

of equivalent latency-tolerant, hard coded MPI implementations.

The results presented in this dissertation demonstrate that data-driven execution,

coupled with metadata abstractions, effectively support latency tolerance. In addition,

performance metadata enable performance optimization techniques that are decoupled

from the algorithmic formulation and the control flow of the application code. By ex-

pressing the structure of the computation and its characteristics with metadata, the pro-

grammer can focus on the application and rely on Tarragon and its run-time system to

automatically overlap communication with computation and optimize the performance.
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Chapter 1

Introduction

1.1 Motivation

In supercomputing systems, architectural changes that increase computational

power are often reflected in the programming model. As a result, in order to realize

and sustain the potential performance of such systems, it is necessary in practice to deal

with architectural details and explicitly manage the resources to an increasing extent.

In particular, programmers are required to develop code that exposes a high degree of

parallelism, exhibits high locality, dynamically adapts to the available resources, and

hides communication latency.

Hiding communication latency is crucial to realize the potential of today’s dis-

tributed memory machines with highly parallel processing modules, and technological

trends indicate that communication latencies will continue to be an issue as the perfor-

mance gap between computation and communication widens. In fact, while the number

of cores per processor continues to increase, specialized processors (often called acceler-

ators) are becoming a common attribute of high performance computing systems1. High

core counts and accelerators contribute to an increase in the relative performance gap be-

tween computation rate and data transfer rate. In addition, the finer granularity required

to leverage the parallelism in hardware makes application performance very sensitive

to data transfer latency, a slowly improving hardware characteristic [Pat04]. However,

1Including the system ranked first, four of the 10 most powerful systems in the world according to the
Top500 project use accelerators [Top]

1
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parallel programming models still lack high level abstractions for hiding communica-

tion latencies. This dissertation proposes a dataflow programming model that supports

latency-hiding scientific computations.

1.2 Foundational Models and the State of the Art

In the context of distributed memory architectures, that is computers with net-

worked computing elements with physically separated memory and operating in sepa-

rate address spaces, most programming models are inspired by three foundational pro-

gramming models: Bulk Synchronous Parallel, Dataflow, and Actors.

1.2.1 Bulk Synchronous Parallel

The classical Bulk Synchronous Parallel (BSP) programming model is the dom-

inant model in parallel scientific applications [Les90]. In a classic BSP program, pro-

cesses execute in parallel operating on a partition of the data and alternating a computa-

tion phase with a synchronous communication phase. The underlying parallel computer

is a set of processors with local memory connected by a router. BSP has been labeled

a bridging model to emphasize the intent of defining a unified model driving both soft-

ware and hardware design. In fact, BSP captures the essence of both distributed memory

machines and data-parallel algorithms. Among others, the Message Passing Interface

(MPI) and Unified Parallel C (UPC), two well known parallel programming models, are

intrinsically BSP models. These models are discussed next.

Message passing is the predominant communication model used in parallel sci-

entific computing. Processes live in a private address space and communicate by ex-

changing messages. MPI [Mes94], a language-independent standard defined by the

MPI Forum [Mes], is generally considered the de-facto standard for message passing on

distributed memory machines, and is available on virtually every parallel computer.

In an MPI program, processes execute in Single Program Multiple Data (SPMD)

mode, that is, multiple processes execute the same program, and communicate via mes-

sage passing primitives. In addition to point-to-point communication, MPI also defines

several collective communication primitives (e.g. broadcast and barrier), non-blocking
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primitives.

By focusing on the semantics of the operations, the MPI standard leaves many

implementation details unspecified, allowing for architecture-specific and implementa-

tion-specific optimizations. However, MPI primitives are low level and the application

developer is required to control both locality and communication, managing constructs

such as communication buffers and communication requests. Furthermore, application

level performance optimizations, such as overlap of communication with computation,

are expressed as part of the algorithmic formulation of the problem.

Hardware support for Remote Direct Memory Access (RDMA) and the implicit

overheads of MPI semantics motivated a more efficient communication paradigm: one-

sided communication. With one-sided communication processes can access each other’s

memory independently and without synchronization. Building on the foundations of

Active Messages [Tho92], the GASNet networking layer provides an interface to allo-

cate remotely accessible memory and to perform remote memory reads and writes [D.

02]. GASNet has been the target of source-to-source translation to introduce one-sided

communication extensions in existing programming languages. In the resulting pro-

gramming models, processes execute in SPMD mode and have access to a Partitioned

Global Address Space (PGAS).

The PGAS family of languages includes UPC, a C extension [UPC05], Titanium,

a Java extension [K. 98], and CoArray Fortran, a Fortran extension [Yur04]. The syntax

and semantics of PGAS languages differ but the programming model is the same. For

example in UPC, which is perhaps the most visible PGAS language, processes execut-

ing in SPMD mode access global data structures via one-sided data transfer primitives:

put and get. Though based on a different communication model than message pass-

ing, UPC primitives are low level and also require the programmer to manage locality

and data transfer details. In addition, asynchronous primitives that enable overlap of

communication with computation are not part of the UPC standard. Although certain

implementations provide asynchronous communication primitives [D. 04], such exten-

sions are not portable.
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1.2.2 Dataflow

Dataflow models were first conceived as architectural support for automatic par-

allelization [Pau94]. Compilers for dataflow languages produced a graphical program

representing instructions and their dependencies. The graph executes on a dataflow com-

puter where instructions are mapped to functional units that communicate according to

their data and control dependencies.

In dataflow machines execution is data-driven: the flow of data activates func-

tional units when their operands are available. Despite its inherently parallel execution

model, the fine granularity and the tight coupling required between functional units, to-

gether with the restrictions imposed on dataflow languages, hindered the adoption of

dataflow computers. However, as a programming model dataflow remained attractive

for its implicit parallelism.

Large-grain dataflow languages gained traction recently as multi-core architec-

tures pervaded computer architectures. Cilk, for example, is a multithreaded language

for task-parallelism [R. 96]. Internally, Cilk activates tasks by maintaining a dependency

graph. However, Cilk is intended for shared-memory architectures and does not support

performance optimizations. In particular, Cilk is locality oblivious and does not enable

overlap of communication with computation.

The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA)

[Jak09] is a programming model for dense linear algebra calculations designed to match

the parallelism offered by multi-core architectures. Even state of the art linear alge-

bra libraries based on MPI, such as ScaLAPACK, do not expose the same degree of

parallelism because of their inherently synchronous execution model. The approach of

PLASMA is to use a task abstraction to let the user define tasks and their dependencies

while the underlying run-time system manages execution and communication transpar-

ently.

PLASMA targets numerical linear algebra. Ad-hoc data structures and data dis-

tributions provide locality information that the run-time system uses to determine task

mapping. The graph structure unfolds dynamically during execution and cannot be ana-

lyzed for performance tuning. However, the run-time system may overlap computation

with communication.
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1.2.3 Actors

The Actors model is a data-driven programming model in which actors are first

class objects that communicate by sending messages [Hew73, Gul86]. Actors have a

persistent state and execute in response to every message that they receive. When exe-

cuting, an actor computes a new state; it may send messages to other actors, and it may

create new actors.

Charm++ is an object oriented parallel language that implements an actors model

[Kal93]. In Charm++ actors are special objects, called chares, with entry methods sup-

porting Asynchronous Remote Method Invocation [Bir84, Obj95]. Entries are like com-

munication primitives: when an entry is invoked, the underlying run-time system creates

a message that is sent to the destination chare.

In Charm++ execution is virtualized [Lax02] in the sense that chares execute

like virtual processes managed by the underlying run-time system. The run-time system

also manages communication and it can overlap communication with computation.

1.2.4 Latency Hiding

While characterized by different design and implementation choices, all BSP

models preserve the same computation structure with a communication phase that is

part of the control-flow and that lies on the critical path. Despite numerous research

efforts [A. 93, Law02, Jos06, Sco98, Cos05, Ant05], in BSP models there is no widely

adopted solution to hide latency other than to manually develop split-phase communica-

tion code. The idea of split-phase communication is simple: initiate the communication

as soon as possible (first part of the communication phase) and wait for completion only

when required by the implicit data dependencies (second part of the communication

phase). Though simple as an idea, split-phase communication requires considerable

programming effort because it involves extensive code restructuring. In addition, the

restructured code may exhibit a locality oblivious memory access pattern [Pie].

Data-driven programming models, like dataflow and actors, show promise as a

way to expose a high degree of parallelism and automatically achieve overlap. In fact,

the ability to achieve overlap in data-driven algorithmic formulations has been demon-
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strated in ad-hoc implementations of linear algebra kernels [Hus07]. However, current

data-driven programming models fail to expose and express the underlying communi-

cation pattern and do not present users with high level abstractions that support latency-

hiding algorithms.

1.3 Research Contributions

The programming-model proposed in this thesis is Tarragon: a dataflow pro-

gramming model for latency-tolerant scientific computations [Pie06a, Pie06b, Pie06c].

Tarragon supports a task-dependency graph abstraction in which tasks, the basic unit of

computation, are organized as a graph according to their data dependencies. Tasks com-

municate by transferring data along the edges of the graph and the underlying run-time

system manages dataflow execution semantics and data motion. In addition to the task

graph, Tarragon uses metadata abstractions to express locality information and schedul-

ing policies [Pau01].

The task-dependency graph and its attributes (e.g. task priority, and task affinity)

enable Tarragon programs to decouple programming and correctness concerns from per-

formance concerns; a separation that promotes performance portability. With Tarragon,

the application developer defines tasks and dependencies, focusing on the application,

rather than on details of the architecture, and exposing the desired granularity of par-

allelism. Tarragon can exploit such parallelism and overlap communication with com-

putation automatically via its data-driven execution model and underlying scheduler. In

addition, the application developer can use Tarragon metadata abstractions to fine tune

performance, for example, by establishing scheduling policies that improve overlap.

Tarragon is designed for parallel scientific applications and libraries. Its pro-

gramming model raises the level of abstraction, but it is geared to performance more

than to productivity. Tarragon is not a domain-specific library and it is intended as a

substrate providing abstractions for applications and domain-specific library extensions.

Tarragon delegates the objective of higher productivity to domain-specific extensions.

Such extensions capture the expertise in a scientific domain, increasing productivity

through software reuse and, most importantly, by presenting the application developer
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with familiar abstractions.

Tarragon has been applied to three classes of computations used in scientific

domains: structured grids, sparse linear algebra, and dynamic programming [Col04,

Asa06]. The application studies presented in this thesis demonstrate the functionali-

ties of Tarragon and its underlying programming methodology. In addition, each study

presents a performance comparison to an equivalent hand-coded latency-tolerant MPI

implementation.

The chosen applications exhibit a wide range of characteristics including reg-

ular and irregular workloads, compute-bound and memory-bound computation phases,

and coarse and fine grain communication. Therefore, the programming methodologies

presented in this dissertation are largely applicable to a wide range of computation and

communication patterns. However, these programming techniques are mostly relevant

for applications designed for distributed memory architectures, whose communication

latencies can degrade performance significantly. Tarragon is also relevant for current

and near-future heterogeneous architectures based on accelerators whose communica-

tion latencies can account for as much time as the computation does [Nha].

1.4 Organization of the Dissertation

This dissertation is organized into seven chapters that present Tarragon’s pro-

gramming model and its implementation, three applications, and a discussion of the

research contributions of this thesis.

Chapter 2 presents the programming model of Tarragon and its fundamental

abstractions. In particular, Chapter 2 details the execution model and the communication

model of Tarragon, and gives programming examples to illustrate the use of Tarragon.

Chapter 2 concludes with a review of related work.

Chapter 3 presents the implementation of the Tarragon library and the Appli-

cation Programmer Interface. Chapter 3 also presents results with a micro-benchmark

implemented with Tarragon. The micro-benchmark is used to assess the communication

overheads of Tarragon.

Chapters 4, 5, and 6 present applications implemented using Tarragon. The ap-
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plications are a finite-difference iterative solver, a direct solver for sparse systems of

linear equations, and a string alignment tool, respectively. Each application represents

a computational motif: a class of computation and data movement patterns (motifs are

defined in the classification given by Colella [Col04] and later extended by Asanovic

et. al. [Asa06]). The corresponding motifs are: structured grids (numerical methods),

sparse linear algebra (numerical methods), and dynamic programming (machine learn-

ing and optimization problems). Each Chapter presents implementations and results on

two testbeds. In addition, for demonstration purposes, Chapter 4 presents a domain-

specific library extension for applications using finite-difference grids.

Chapter 7 summarizes the contributions and the results of this dissertation, con-

cluding with a discussion of future research directions.
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Chapter 2

Programming Model

2.1 Overview

The programming model proposed in this thesis is based on a dataflow abstrac-

tion. The abstraction hides most of hardware and software low-level details while it

requires programmers to decompose the problem into tasks and express dependencies

between the tasks. Exposing parallelism is still the programmer’s duty, as in most widely

adopted programming models [Asa06, HPC, Pet], although parallel execution and con-

currency are implicit and their control transparent to the programmer.

Tarragon’s programming model is a coarse-grain dataflow model. In classical

dataflow models a program implicitly defines a graph in which nodes are instructions

and edges connect nodes such that the result of an instruction becomes an operand of

another instruction [Jac80,Jac75,J. 85,Pau94,Arv90]. The firing rule is straightforward:

an instruction executes when all its operands are available. Data is transferred along

the edges, rather than stored in memory, and there is no program counter as the graph

execution manages control flow. In Tarragon the nodes of the graph are coarse-grained

objects, called tasks. Tasks of arbitrary complexity can be defined and can preserve their

state across executions. The firing rule is user-defined and the data is stored in memory.

The edges carry data in the form of messages.

Tarragon tasks are similar to actors [Hew73,Gul86]. In the Actors model, actors

are objects that communicate by passing messages. In response to a message, an actor

processes the message and possibly sends more messages. Actors provide encapsulation

13
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(a)

(b)

(c)

Figure 2.1: Producer-consumer. The producer task sends messages executes and sends

two messages to the consumer. The first message has weight 1 (Figure 2.1a), the second

has weight 2 (Figure 2.1b). The consumer executes after receiving two messages.

by containing a private state and a set of operations. Similarly, Tarragon tasks have a

state and they process data according to their state and functionality. The computation

that a task performs can therefore be a function of both its state and the data received.

Several differences distinguish Tarragon’s model from dataflow and actors.

Mainly, Tarragon’s model differs in that it uses an explicit task graph. The graph also

accommodates the use of metadata which can be used to optimize and tune performance.

In particular, the task graph may be annotated with attributes, such as priorities, to drive

scheduling decisions and improve performance.

The example in Figure 2.1 illustrates a simple graph with two tasks working in

a producer-consumer relationship. The edge connects the tasks and is oriented toward

the consumer indicating that data flows in that direction. The producer executes first

and produces two messages: the first with weight 1, as illustrated in Figure 2.1a, and

the second with weight 2, as illustrated in Figure 2.1b. Then it stops executing. In
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(a) (b)

Figure 2.2: Map-reduce network, shaped as tree (Figure 2.2a). The steps of node 2 are

illustrated in Figure 2.2b: first the node receives the query (1), then it forwards the query

to its children nodes and processes the query (2), receives the partial answers from the

children (3,4), combines the answers with the local answer (5), and finally it sends the

combined answer to the parent node.

this example, the firing rule for the consumer is defined such that it executes only after

receiving a cumulative workload of at least weight 2. The consumer executes only after

receiving both messages, as illustrated in Figure 2.1c. In general, firing rules can take

into account characteristics of the data, in addition to the number of messages and their

source.

This example illustrates other differences between Tarragon and dataflow models

and actors. The producer sends more than one message, and it does so within the same

task execution. In fact, in the example, the first message is sent immediately, before the

second message is even produced. In Tarragon, tasks can send messages multiple times

and at any time during execution, like actors. In contrast, in dataflow each instruction

produces one result, possibly duplicated, which is transferred only after the instruction

is completed. In addition, in dataflow and actors there is one predefined firing rule:

execute when all the operands are available (one message in the case of actors), whereas

Tarragon supports user-defined firing rules.

Consider another example, a map-reduce network, illustrated in Figure 2.2. In a

map-reduce network a tree of tasks operate on a dataset in a divide-and-conquer fashion.

A problem is distributed (mapped) to the nodes of the tree, from the root towards the
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leaves, and the nodes compute a partial solution locally; then the result is reduced as a

combination of all the partial results, which move up from the leaves towards the root.

A classical dataflow implementation requires two trees: a map tree and a reduce tree.

The map tree is made of instructions that produce partial results. The reduce tree is

made of instructions that receive partial results from the map tree and from the children

nodes, and that produce partial results. The resulting graph is more complex than the one

illustrated in Figure 2.2a. This tree can be implemented in Tarragon because depending

on their state tasks can perform different operations. In this example, tasks execute two

times: first when they receive the problem, which they forward to their children before

computing the local solution, and then when they receive the solutions from the children

tasks, which they combine with the local solution before sending the combined solution

to the parent task. The sequence of steps is illustrated in Figure 2.2b. This capability

supports the construction of concise graphs which are easier to define and manipulate,

and that also occupy less space in memory. In fact, the size of the graph may be a

concern in applications with a very large number of tasks, such as dense linear algebra

computations [Jak09]. In addition, the flexibility in defining tasks enables data-parallel

formulations in which tasks are associated with a partition of the data and each partition

is accessed and modified only by the associated task.

2.2 Execution Model

Tarragon’s programming model executes under a three-layer control structure.

The three levels resemble the XYZ levels of the Phase Abstraction programming model

[Sny93]. In Phase Abstractions the X level is the process level and represents a se-

quence of instructions logically grouped together (e.g. a procedure); the Y level is the

phase level and controls processes that together execute a parallel algorithm; and the Z

level is the problem level and executes a sequence of phases. The corresponding three

levels in Tarragon are the task level, the graph level, and the control level (the levels are

listed in Table 2.1). The task level represents the instructions within a task. The graph

level controls task execution according to dataflow semantics. Finally, the control level

controls the graph abstractions and is responsible for creating and executing graphs.



17

Table 2.1: Control levels in Phase Abstractions and in Tarragon.

Level Phase Abstraction Tarragon

0 Problem (Z) Control

1 Phase (Y) Graph

2 Process (X) Task

The control level initializes Tarragon’s run-time system (RTS), creates a graph,

and launches the graph’s execution. The example in Algorithm 1 illustrates the con-

struction of a ring of n tasks. After starting the RTS (line 1), a Map is created (line 2).

A Map defines a logical naming scheme for the tasks of the graph (in this case it can

be assumed that tasks names are ids in [0..n-1]). Then, a graph containing n tasks is

allocated (line 3). At this point, all the tasks have been allocated but no dependencies

are defined. The loop (lines 4-6) connects all the tasks; the resulting graph is a ring as

illustrated in Figure 2.3. Finally, the graph is initialized and executed (lines 7-8). The

program terminates by finalizing the RTS (line 9).

Algorithm 1 Ring Program
1: Tarragon_initialize()

2: Map ring(n)

3: Graph graph(ring)

4: for all task∈graph do

5: task.connect(ring.next(task))

6: end for

7: Tarragon_initialize_graph(graph)

8: Tarragon_execute_graph(graph)

9: Tarragon_finalize()

The RTS supports the graph level of execution abstraction. Once the tasks of

the graph are defined and connected, execution is transparently carried out by the RTS,

which manages task scheduling and data motion, orchestrating the dataflow abstraction.

The execute_graph function call (line 8) encapsulates graph execution. At the graph

level, the order in which tasks are executed is constrained by dependencies, but among
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Figure 2.3: Ring with n tasks.

partially ordered tasks1, the exact ordering is determined by Tarragon’s RTS. As depen-

dencies are satisfied, tasks become ready to execute and eventually they are executed by

the RTS. When multiple tasks are ready for execution, they run in parallel as available

resources allow.

The number of tasks should reflect a logical partition of the problem and should

be independent of the number of processor cores. In fact, the number of tasks should

be large compared to the number of cores, to enable the RTS to leverage the benefits of

processor virtualization [Lax02] (e.g overlap). In contrast to the Single Program Multi-

ple Data model of execution, in which each process is an instance of a program (usually

executing with exclusive access to a core), Tarragon’s RTS schedules task execution by

mapping tasks to cores dynamically, treating tasks as virtual processes. Virtualization

also enables scheduling policies that improve performance, for example, by overlapping

execution with communication; while tasks execute the RTS transfers information along

the edges of the graph. In addition, the Application Programmer Interface (API) enables

the programmer to control scheduling and mapping of tasks to processing elements. For

example, programmers can define task priorities and affinities using graph metadata.

Finally, at the task level, tasks execute as virtual processes, unaware of the un-

derlying levels. A task becomes ready to execute when its firing rule is satisfied. Once

a task begins executing, it runs to completion. It cannot be preempted and it cannot

wait for communication events. These conditions simplify the task code which can be

1A partial order on a set defines an ordering on the elements although not all the elements of the set
are comparable; that is, the order relation is not defined on all the pairs of elements.
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designed as a self-contained sequential program, free of scheduling and concurrency

concerns.

2.3 Communication Model

In Tarragon, communication between tasks is expressed by connecting tasks with

directed edges. During graph execution, tasks can move data along the edges of the

graph. The graph is therefore a representation of the communication pattern.

Communication is one-sided in the sense that the destination task is not actively

involved in the communication. As with Active Messages [Tho92], data arrival trig-

gers a handler function execution. The handler injects data into the task and triggers

task readiness according to the firing rule that it encodes. Since sending data is an asyn-

chronous operation and there is no receive operation, a task never blocks on communica-

tion and it is therefore guaranteed that, when executing, tasks are actively computing. In

this way processor virtualization is implemented without preemption yet it is guaranteed

that cores are utilized efficiently.

Tarragon has an intuitive communication cost model in which locality is loosely

related to the mapping of tasks to processes. The cost of sending data is a function of

the amount of the data sent and whether the receiving task exists within the same ad-

dress space. Tarragon transparently manages communication within process boundaries,

where it can take advantage of shared memory, as well as between nodes. Therefore,

there is a distinction between local tasks, which live within the same address space,

and remote tasks, which do not. Process boundaries are not exposed as graph attributes

and are not part of the abstraction, although the API provides the means to obtain lo-

cality information. Whether process boundaries match physical shared-memory nodes

boundaries is a run-time configuration and it is not exposed to the programmer.

2.4 Tarragon Abstractions

The programming model of Tarragon presents several abstractions to the pro-

grammer. These abstractions, which are summarized in Table 2.2, are implemented as
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classes of Tarragon Application Programmer Interface (API). Each abstract class is a

template that the programmer must customize to define an application specific subclass.

The remainder of this Section gives a brief description of these abstractions and the ab-

stract and concrete classes of the API. All the classes are discussed in greater detail in

Chapter 3, which illustrates the implementation details.

Table 2.2: Fundamental abstractions of Tarragon.

Abstraction Abstract Class Concrete Sub-Class Description

Graph Graph VectorGraph distributed vector of tasks

Task Naming Map IdentityMap identity mapping

Node Task RingTask example: task of the ring

Edge Dependency OutDependency outgoing dependency

Message Message BufferedMessage contiguous memory message

2.4.1 Map and Graph

In Tarragon a problem is decomposed by partitioning the computation into tasks.

The partitioning should reflect a logical separation of operations, data, or both. Op-

erations and data are two natural sources of parallelism with a distinction leading to

two forms of parallelism: task parallelism and data parallelism. Task-parallelism ex-

ists when distinct groups of operations can be executed concurrently. In Tarragon each

group of operations could be naturally defined as a task and the dependencies between

tasks could be defined to both enable data transfers between tasks and to ensure the

correct order of execution. Data-parallelism exists 2 when identical sequences of oper-

ations can be applied concurrently on multiple data. In Tarragon, individual data could

be associated to a different task and the tasks would differ only in the data operated

on. The choice of which form of parallelism to exploit in an application depends on the

algorithmic formulation of the problem. The two forms of parallelism can coexist in

Tarragon.

2Data-parallelism in this context has coarser granularity in comparison to the granularity of vector
instructions.
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(a) (b) (c)

Figure 2.4: Map of tasks. A 2-dimensional mesh is decomposed into four quadrants

(Figure 2.4a). The quadrants are identified by the pair (row, column) and enumerated

from left to right, top to bottom (Figure 2.4b and Figure 2.4b).

The application programmer is responsible for decomposing the application and

choosing the appropriate level of granularity, two activities that require deep knowledge

of the application. In contrast, Tarragon manages and abstracts the low-level details of

data motion and execution. In this way Tarragon helps to separate application specific

concerns from performance concerns. In addition, because of processor virtualization,

the granularity of the decomposition and the number of tasks are logically independent

of the number of physical processing elements. The decomposition strategy can reflect

the logical structure of the computation. In contrast, in most SPMD model implemen-

tations, the decomposition strategy must reflect partitions and processing elements to

guarantee efficient execution.

Tarragon tasks are uniquely identified by a task id that can be assigned according

to a naming scheme that provides a logical interpretation of the name. For example, for

problems characterized by regular domain decomposition it is often convenient to define

tasks as if they were arranged on a multi-dimensional mesh. To support such mappings

between multi-dimensional coordinate systems and tasks, Tarragon provides the Map

class.

Map is an abstract base class. A Map describes the task structure underlying a

graph. Programmers define customized Map subclasses, implementing a mapping func-

tion from a multi-dimensional coordinate system to a set of task ids. As an example,

Figure 2.4 shows a problem that is regularly decomposed in a 2-dimensional partition

resulting in 4 tasks. The tasks are logically arranged as a 2-dimensional coordinate sys-
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tem preserving the position of the associated partitions. The mapping is then defined in

terms of the coordinates as illustrated in Figure 2.4c. The corresponding Map encapsu-

lates the implementation of a function m : Coordinates→ Task and its inverse. In the

case of the ring example (previously introduced with Algorithm 1), the mapping defaults

to the identity function defined on the set [0..n−1]:

Map map = new Identity(n).

All the tasks of a graph are defined as an instance of class Graph. A Graph is

a container of tasks. When instantiating a Graph object, users also associate the tasks

with a map.

Graphs can be characterized by different allocation strategies and data struc-

tures. Graph is an abstract class and Tarragon allows ad-hoc Graph implementations.

However, Tarragon also provides a concrete implementation, called VectorGraph, that

implements a distributed vector template. To instantiate a graph of tasks, in the case of

the ring example, it is therefore sufficient to create a VectorGraph as follows:

Graph graph = newVectorGraph < RingTask > (map).

2.4.2 Tasks and Dependencies

Once a graph is instantiated all the tasks must be connected according to their

dependencies. In Tarragon only connected tasks can communicate and programmers

must declare how tasks exchange data and interact. By defining dependencies, program-

mers define also synchronization and precedence between tasks. For example, defining

a directed acyclic graph imposes a partial ordering on tasks. The partial order is also

imposed on execution: two tasks that have a dependence cannot execute concurrently

and but they will execute according to their ordering.

Tasks are connected using the connect method as illustrated in the ring example

in Algorithm 1 (line 5):

task.connect(map.next(task)).

When two tasks are connected, a Dependency object is automatically instantiated. Con-

nected tasks can then use the dependency as a communication channel. The argument of
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the method connect is the value returned by the next function, which is the id of the fol-

lowing task in the ring (e.g. (id +1)mod n). At the end of the loop in Algorithm 1 (lines

4-6), the ring is formed and each task has a reference to its incoming and its outgoing

dependencies. The outgoing dependency is an OutDependency object accessible only

by the source task. An OutDependency differs from a Dependency in that it may be used

to send data via a put method. The put method is a non-blocking operation that sends

a Message along a graph edge to the destination task. Eventually, the run-time system

(RTS) delivers the message, but there is no receive operation: messages are processed

by a special method of the task, called vinject, that encapsulates the firing rule for that

task and the application-specific data delivery mechanism. Low level details of the data

transfer and message dispatch are hidden and dealt with by the RTS.

The Task class defines the task in terms of its operations and its behavior. The

Task class is a template that programmers customize to define application-specific sub-

classes; in particular, when extending Task, programmers override two methods: vexe-

cute and vinject. The RTS invokes vinject to deliver messages, and invokes vexecute to

execute tasks. The subclass of Task used in the ring example is RingTask.

Algorithm 2 RingTask::vinject(message)
1: →EXEC

2: msg = message

The vinject method encapsulates a firing rule and a data delivery mechanism.

Algorithm 2 shows the vinject implementation of RingTask. In this case the firing rule is

straightforward: always execute when a message is received (line 1). The _state variable

is an attribute that the RTS monitors and it is used to encode relevant changes in the state

of the task. In this case, the task has become ready for execution and eventually the RTS

will invoke its vexecute method. The data delivery mechanism is also straightforward in

this case: a reference to the message is set.

Typical firing rules are not so simple and require inspecting the actual state of the

task, including whether or not other messages have been received since the last execu-

tion. Also, the delivery mechanism may involve sophisticated data structures and even

memory copies although it is recommended that vinject be kept as simple as possible to

avoid overloading the RTS with application-specific work. Examples of more elaborate
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Algorithm 3 RingTask::vexecute()
1: if id==0 then

2: if (trips==0) then

3: →DONE

4: else

5: dependency.put(msg)

6: →WAIT

7: end if

8: trips = trips-1

9: else

10: dependency.put(msg)

11: trips = trips-1

12: if trips==0 then

13: →DONE

14: else

15: →WAIT

16: end if

17: end if
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cases are presented in Chapters 4, 5, 6.

By changing the value of _state, vinject and vexecute control transitions of the

observable state of a task. In fact, a task is a state machine and, most notably, vinject may

cause transitions from waiting to ready to execute (from WAIT to EXEC), and vexecute

may cause transitions from executing to waiting or completed (from EXEC to WAIT or

DONE). The RTS transfers control to a task by invoking vexecute. Within vexecute, a

task executes at the task level of control, as defined in Section 2.2. At this level the task

executes to completion and produces the results that it will pack into messages and put

on the outgoing edges. vexecute encapsulates most of the application code. In the ring

example, the application sends a message around for a predefined number of times (the

trips variable). In the ring implementation of vexecute, as presented in Algorithm 3, a

small distinction is made between the first task and the others: the first task has to count

the trips executed before sending a message whereas the other tasks can forward the

message immediately. In addition, the first task executes one time more than the others

in order to receive the message that completes the last trip.

2.4.3 Messages

In Tarragon, a Message is a data object that can be transferred along edges.

Message objects are defined as data that can be transformed into a serialized sequence

of bytes, allowing the data to be transferred between tasks residing in different address

spaces. Programmers can define new types of messages together with the methods to be

used for serializing the data to be sent, and then reconstruct the message from the data

received (i.e. objects and elaborate pointer based structures).

In the ring example, a message of type BufferedMessage is used. A BufferedMes-

sage is a contiguously stored message that does not require serialization. In the example

it is assumed that one such message is instantiated during the initialization of task 0:

msg = make_message < Bu f f eredMessage > (size).
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2.4.4 A Working Example

To summarize, this section illustrates the ring example describing all the steps

that tasks and the run-time system (RTS) take during execution. The example is based

on the illustration in Figure 2.5, which represents a 4 task ring. The illustration focuses

on tasks 0 and 1, which execute different instructions; the remaining tasks execute the

same sequence of instructions that task 1 executes.

The illustration shows initialization and execution of the tasks. Figure 2.5a il-

lustrates the initialization. During the initialization, the RTS invokes vinit on every task

that is in INIT state. All the tasks, in this example, default to the INIT state when in-

stantiated, and the RTS invokes vinit on all of them. Then, vinit sets the state to WAIT

for all the tasks but one: task 0. Task 0 is the task that starts the communication ring by

sending the first message and its state is set to EXEC.

Figure 2.5b illustrates the execution of the tasks. When execution begins, the

only task that is ready to execute is task 0. When it executes, task 0 sends the message

to task 1, then enters the WAIT state. vinject delivers the message to task 1, and sets

its state to EXEC. Then, since task 1 can now be executed, the RTS executes task 1.

When executing, task 1 forwards the message and sets its state to either WAIT or DONE,

depending on whether more messages are expected or not. The message travels around

the ring, while all the other tasks repeating the instructions that task 1 executed, and

eventually reaches task 0. At this point, if there are trips left to do, task 0 continues as

in the previous iteration, otherwise it is DONE and execution terminates.

2.5 Related Work

The Candidate Type Architecture (CTA) is a parallel machine model that cap-

tures basic architectural features of distributed memory machines [Law86]: a collection

of von Neumann machines (i.e. a processor with local memory), connected by a com-

munication network. CTA emphasizes the physical separation in distributed memory

machines and supports programming models, such as Phase Abstraction [Sny93,Gai98],

and cost models, such as LogP and LogGP [Dav96, Alb95]. The three levels of execu-

tion of Phases Abstraction, the XYZ levels, identify three levels of control: processor,
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(a)

(b)

Figure 2.5: Ring execution. Tasks, which are represented by numbered square blocks,

are connected by edges forming a ring, and the RTS executes the virtual methods, rep-

resented by blocks with round corners. During the initialization, which is illustrated in

Figure 2.5a, the RTS invokes the vinit method. Then, during the execution, the RTS

invokes vinject to deliver messages, and vexecute to execute tasks.
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phase, and global; the phase and the global level introduce synchronization and coordi-

nated execution on the processor and the phase level, respectively.

Synchronization is emphasized in the Bulk Synchronous Parallel (BSP) model

[Les90]. BSP unifies the design of the architecture and of the programming model: the

machine is a set of processors, periodically synchronized, that are connected by a router

capable of delivering point-to-point messages, and that execute processes alternating

computation and communication phases. Although today’s machines have multiproces-

sor nodes, the essence of the model still applies and BSP is a widely adopted program-

ming style in current parallel programming models. For example, programs written us-

ing the Message Passing Interface (MPI) [Mes94] are generally BSP. In MPI, processes

execute in SPMD mode and communicate by exchanging messages, typically alternat-

ing between communication and computation phases. In MPI, locality is controlled by

partitioning and mapping data to processes; communication is explicitly managed by

the programmer, within the control flow of the computation.

Partitioned Global Address Space (PGAS) languages [UPC05, Yur04, K. 98],

though based on a different communication model, are also generally BSP. For exam-

ple, in Unified Parallel C (UPC), perhaps the most successful PGAS language to date,

processes execute in SPMD mode and communicate via one-sided communication prim-

itives. With one-sided communication, processes can access each other’s memory, inde-

pendently and without synchronization. Despite the decoupling between processes that

one-sided communication facilitates, some form of synchronization between processes

is necessary to preserve data dependencies; therefore, BSP remains the programming

model of choice as it simplifies dependency management.

Hiding communication latency in BSP programming models requires careful

code restructuring to implement split-phase communication. Split-phase communica-

tion is achieved by breaking up the communication phase into an initiation and a com-

pletion phase, using non-blocking primitives. For example, MPI provides non-blocking

primitives making it possible to initiate a send (or a receive) and then wait for comple-

tion later, using a wait primitive. In between the two phases the computation advances

to the extent allowed by data dependencies, and it is overlapped with communication.

Similarly, non-blocking versions of one-sided communication primitives can be defined.
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For example, the Berkeley UPC implementation supports non-blocking primitives [D.

04], however the UPC standard does not include non-blocking primitives and such ex-

tensions are not portable.

Split-phase communication requires a considerable programming effort because

it involves extensive code restructuring. Not only must communication be split in two

phases, but the computation must be rearranged accordingly. Operations whose data de-

pendencies are satisfied within the same process are extracted and executed between the

two communication phases; the remaining part is executed after the second phase, that

is when communication satisfies the remaining dependencies. As a result, the memory

access pattern which is determined by data dependencies may lead to low data locality

and therefore poor performance [Bad01, Pie].

Dataflow models were proposed as an alternative processor design for speeding

up computation via parallel execution [Jac80, Jac75, Pau94]. A dataflow computer has

a communication network that automatically transfers data packets between specialized

functional units. Dataflow machines are inherently parallel and programs written in a

dataflow language achieve high parallelism automatically. However, in order to facilitate

translation to dataflow execution, dataflow languages impose some restrictions.

The first dataflow model was a static dataflow model: only one packet was al-

lowed on an edge of the dataflow graph and operands of functional units were trivially

matched by arrival order [Jac80]. The implementation proposed supported the Value-

oriented Algorithmic Language (VAL) [McG82]. VAL observed the single assignment

rule: once a variable is assigned a value, it retains such value throughout its scope. VAL

major weaknesses included lack of I/O facilities and lack of recursion as well as other

restrictions [Pau94].

Some restrictions were relaxed in dynamic dataflow models using tagging: pack-

ets are tagged and functional units execute when operands with matching tags are re-

ceived [J. 85,Arv90]. Tagging increases parallelism and efficiency allowing out-of-order

communication and enabling functional units to be reused (e.g. in loops and procedures)

and recursion. Id [Arv73] and Streams and Iterations in a Single Assignment Language

(SISAL) [McG83] are example of languages for dynamic dataflow machines. However,

limitations in the programming model, such as the single assignment rule, and in the
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hardware, such as its memory model and scalability [Cul92], limited wide acceptance

of dataflow models.

To overcome such limitations the Large-Grain Dataflow (LGDF) model was pro-

posed. LGDF combined imperative languages, which can execute on traditional von

Neumann architectures, with dataflow semantics [Bab84]. LGDF is a compromise be-

tween dataflow and traditional sequential programming models in that it relies on mod-

ularity as a decomposition mechanism. Modules in LGDF are statically connected pro-

gram chunks forming a dataflow graph.

More recently, large-grain dataflow languages gained traction on multi-core ar-

chitectures for their ability to expose fine grain parallelism. Cilk is a multithreaded C

language extension. In a Cilk program, special asynchronous functions are executed

in parallel creating branches on the stack [R. 96, Mat98]. Functions are then efficiently

scheduled by Cilk’s run-time system which treats frames as tasks and unfolds a Directed

Acyclic Graph (DAG) of tasks. Cilk is best suited for shared-memory architectures. Its

execution is based on a shared activation stack which is expensive to support on dis-

tributed memory architectures. In addition, the programming model of Cilk is locality

oblivious: tasks are mapped to processors dynamically but without taking locality into

account.

The problem of locality in shared-memory architectures is addressed in SMARTS

[Suv99] and OSCAR [Kas98]. Both SMARTS and OSCAR infer a task graph from

loops that operate on special data structures. The idea is that the underlying run-time

system can schedule tasks that operate on the same data as soon as possible in order

to increase temporal locality. The two differ mainly in that OSCAR creates the graph

statically, at compile-time, and is therefore more limited in the type of analysis it can

perform. Neither SMARTS nor OSCAR is designed for distributed memory machines

and nor do they take communication latencies into account.

The Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

library applies dataflow ideas to support dense linear algebra operations [Jak09,Son09].

With PLASMA, tasks are defined by the application, at run time, as function calls with

special arguments. Such arguments express dependencies to other tasks: as their value

is defined, dependencies are satisfied and the corresponding tasks are automatically gen-
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erated, executed, and destroyed.

PLASMA is intended for dense linear algebra kernels that expose a high degree

of parallelism and it aims at achieving performance and scalability by supporting fine

grain task parallel algorithms. Since the size of the resulting graph for the problems

addressed can easily exceed physical memory capacity, the task graph is dynamically

unfolded by a run-time system that maintains a window of instantiated tasks. Conse-

quently, only a small portion of the graph is available at any time preventing graph

analysis for optimizations. Data motion between tasks is automatically managed by

the run-time system, which sends and receives data as required, possibly overlapping

communication with computation.

The Actors programming model also offered abstractions for fine-grain concur-

rency [Hew73, Gul86]. Actors is a data-driven programming model, based on message

passage semantics, in which actors are objects activated by messages; when activated,

an actor may change state, send messages to other actors, or create new actors. Charm++

is an implementation of actors [Kal93]. In Charm++ actors are special objects, called

chares, communicating by invoking special methods, called entry. Invoking an entry

corresponds to asynchronously sending a message to the target chare. In fact, entries

are invoked through an Asynchronous Remote Method Invocation mechanism [Kal93]

implemented using messages. The underlying run-time system manages data motion

and, when delivering messages, it activates chares by invoking the corresponding entry.

The data-driven execution model of actors and the asynchronous semantics of

entry invocations enable concurrent execution. In addition, Charm++ enables overlap of

computation with communication. Ideally, a number of chares larger than the number of

available processors is defined and because of the inherent decoupling between execu-

tion and communication, the run-time system can activate chares while communication

takes place.

In Charm++ the dataflow structure is embedded in the control flow and it is

unveiled only during program execution. The lack of an explicit control flow was con-

sidered a limitation of Charm++ [L. 04], especially from a software engineering point

of view, because it increased the complexity of extending and combining existing pro-

grams. To overcome such limitations and with the goal to achieve better productivity it



32

was introduced Charisma++ [L. 04]. Charisma++ is a high level orchestration language

that can be used to define chare arrays, and describe operations and data dependencies

between operations. Orchestration files are then translated to Charm++ and combined

with Charm++ code. The benefit lies in the ability to express a collective view of the

computation. However, Charisma++ cannot support run-time optimizations based on

the chares structure because the structure is lost during the translation.

Computer architecture continues to evolve and programming models continue to

adapt to such evolution. The High Productivity Computing System program [Don08]

funded the design and development of two additional PGAS languages: Chapel [Bra]

by Cray and X10 [Cha05] by IBM (a third HPCS language called Fortress, by Sun, was

dropped in 2006 [For]). Features of Chapel and X10 are designed for special hardware

support: Cascade and PERC are the systems conceived by Cray and IBM for Chapel

and X10 respectively. Currently, both systems are still in development and there is little

information about performance achieved and optimization techniques supported. How-

ever, the fine granularity and the asynchronous nature of certain language constructs

suggest that implementations will automatically overlap computation with communica-

tion.

Table 2.3 summarizes the characteristics of the most influential implementations

of the foundational parallel programming models.
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2.6 Discussion

Tarragon introduces a novel programming model based on dataflow semantics.

Tarragon relies on data-driven execution to expose parallelism and create opportunities

for hiding communication latencies. The proposed model borrows principles and ideas

from dataflow and actors, but it also differs from existing programming models in sev-

eral ways.

Tarragon is less restrictive than classic dataflow models; for example, in Tar-

ragon, tasks can be very complex and have a persistent state. In addition, one of the

novel features of Tarragon design is that it supports user defined firing rules. For exam-

ple, Tarragon supports static dataflow semantics but also dynamic dataflow semantics.

Users may encode tagging and inspect the metadata content when a message is delivered

via vinject. Encapsulation is achieved by defining class hierarchies rather than modules,

such as in Large Grain Data Flow. In addition, the graph in Tarragon is not statically

encoded in the program, as in classical dataflow programming models; the graph in Tar-

ragon is constructed dynamically and is an object that can be analyzed and manipulated

at run-time.

Tarragon’s model has characteristics of actors: tasks have a state, perform oper-

ations in response to messages, and may send messages to other tasks. In fact, actors

is essentially a data-driven model in which actors are unary functions firing at every

message they receive. Charm++’s execution model uses remote method invocation to

encapsulate data motion and execution, whereas Tarragon decouples data motion from

execution, and execution is regulated by custom firing rules and scheduling policies that

can improve performance. In addition, Charm++’s execution model may incur schedul-

ing overhead and cache pollution. For example, when significant computation can be

performed only after a number of messages have been received, all the messages but the

last will cause a short execution. In contrast, Tarragon’s model promotes short message

handlers, encapsulated in vinject, and the RTS tries to avoid inefficiencies by executing

a task only when it is ready to execute.

In BSP models, such as MPI and UPC, mapping partitions of a problem to com-

puting resources is usually a matter of defining how processes are laid out on proces-

sor cores. The decomposition of the computation, which matches how operations and
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data are distributed across processes, also defines locality. On the other end, dataflow

and actor models, such as Cilk and Charm++, use task abstractions that free the pro-

grammer from restrictions on the decomposition, but that also hide locality information.

PLASMA is an exception as it adopts well-defined data structures and data distributions

for dense matrices.

Tarragon also provides a task abstraction. In addition, it enables fine control on

mapping and exposes locality. In Tarragon, task mapping is resolved in two phases. The

first phase is part of the creation of the graph, when tasks are distributed over processes.

In this phase applications may control the distribution of tasks ensuring load balancing

and locality. In this way, Tarragon relies on the programmer to decide the appropriate

task granularity and the optimal workload distribution. The second phase is part of task

execution and is dynamically carried out by the RTS. In this phase the mapping problem

is implemented as a scheduling problem. While in general this phase is automatically

carried out by the RTS, the programmer can control scheduling and mapping to cores

using task attributes, that is metadata (i.e task priority and task affinity).

Tarragon’s approach to preserving locality with scheduling is similar to the ap-

proach taken in SMARTS and OSCAR. Tarragon’s RTS attempts to prioritize tasks to

favor temporal locality. However, Tarragon’s approach is general and is not limited to

dependencies inferred from predefined data structures, as in SMARTS and OSCAR.

Rather, Tarragon scheduling responds at run-time to execution order and graph depen-

dencies. In addition, Tarragon application developers have the ability to create schedul-

ing policies by defining task affinities and priorities, and they may use this ability to

improve locality in ways that are application specific.

Unlike SMARTS and OSCAR, Tarragon is designed for distributed memory ma-

chines and exposes two-tiers of memory: distributed and local memory. Shared-memory

boundaries are not exposed in the graph, but Tarragon provides such locality informa-

tion through its API: application developers can query Tarragon to discover which tasks

exist within the same address space. In this way, while the graph executes on a single-

tier memory hierarchy, Tarragon makes it possible to implement dual-tiered algorithms

that improve performance by leveraging shared memory [Sco98].

In other programming models there is no explicit representation of the commu-
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(a) (b)

Figure 2.6: Iteration space unrolling with tasks. In Figure 2.6a three iterations unroll

creating with new tasks for each iteration. In Figure 2.6b iterations unroll as part of the

encoded state of the tasks.

nication pattern as in Tarragon. Tarragon’s philosophy is that graph analysis can be used

to improve performance and therefore, it is convenient to represent the task-dependency

graph in memory. In PLASMA the problem of managing a large graph is solved by

unfolding the graph dynamically as the computation progresses, making it harder to an-

alyze the graph. The generality of Tarragon’s model supports techniques for defining a

graph such that the size of the graph is greatly reduced. For example, representing the

entire iteration space of a data-parallel iterative computation as a DAG requires storing

a very large graph. For each iteration and for each data element there must be a node in

the DAG. Even worse, if the number of iterations is not known, it would not be possi-

ble to create such graph before the computation unfolds the iteration space completely.

Tarragon overcomes these limitations by defining the iterations number as part of the

state of the tasks. In this way, the graph matches the data space and the communication

pattern in each iteration. The example is illustrated in Figure 2.6. Figure 2.6a illustrates

three iterations over a four element data array such that for each iteration there are four

tasks updating the associated data element. In contrast, Figure 2.6b illustrates a possible

representation in Tarragon with only four tasks that execute three times each.

In BSP models, the order of the instructions implicitly defines a static schedule

of operations. All the phases of the computation are defined and laid out as a linear se-

quence of operations. The order is determined by the programmer’s perception of what
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is the most elegant and perhaps the most efficient arrangements of the operations. Tar-

ragon forces the programmer to explicitly outline the units of the computation and their

data dependencies. By doing so Tarragon relieves the programmer from the responsi-

bility to define the schedule. Tarragon schedules execution dynamically, at run time,

adapting to the workload and automatically overlapping communication with computa-

tion.

In BSP models, hiding communication latencies requires tedious and error prone

split-phase coding. In addition, by disrupting the sequential flow of execution, split-

phase coding may have a negative impact on performance. Conversely, Tarragon’s data-

driven execution model supports automatic overlap of communication with computation

without the need to resort to split-phase coding. All that is required is enough parallelism

to ensure that work is available while communication takes place. By virtualizing pro-

cessors, Tarragon’s abstractions enable decompositions that meet this requirement and

Tarragon metadata can help improve overlap further through application-specific poli-

cies. Through graph and metadata analysis the RTS discovers and prioritizes tasks with

dependencies crossing shared-memory boundaries reducing the likelihood that data-

dependencies prevent a task from executing because it is waiting on data. The schedule

is modified without having to change the application.
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Chapter 3

Design and Implementation

3.1 Overview

Tarragon’s programming model poses several requirements on the underlying

implementation: the implementation must support explicitly-defined task graphs, task

graphs must be annotated with attributes, such as task priority and affinity; and, there

must be a run-time component that executes the graph, orchestrating task execution and

managing data motion.

Tarragon is implemented as a C++ library. The library includes classes that

define the building blocks of the task graph; and the run-time system (RTS) that executes

the task graph. The application programmer interface (API) of the library is logically

divided into the Core API and the Extended API. The Core API defines the interface

to the RTS and the fundamental classes that support the dataflow abstraction: graph,

task, dependency, and map. The Extended API defines additional classes providing a

useful set of ready-to-use structures and serving as an illustrative example of how to

build domain-specific library extensions (DSE) and applications.

Tarragon’s software architecture is layered (Figure 3.1): the API creates the

dataflow abstraction on top of the underlying layers, hiding low level machine-dependent

details, and increasing performance portability.

Tarragon is designed for distributed memory machines with shared-memory

nodes, i.e. multi-core nodes. It relies on a communication substrate and a threading sub-

strate. Although the current implementation uses MPI [Mes94] and PThreads [Nic96],
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Tarragon does not depend on specific communication and threading libraries and could

be ported to different ones, for example, GASNet and OpenMP.

Figure 3.1: Software architecture of Tarragon. The levels indicate software levels that

also corresponds to different levels of abstraction, starting from the bottom, which is the

system libraries level, to the top, which is the application level.

This Chapter uses UML class diagrams [Fow03] to illustrate the structure of the

API. In a class diagram, a class is represented by a box containing the name of the

class and the members of the class: fields, for data members, and methods, for function

members. Members are preceded by an access modifier: the plus sign indicates a public

member accessible by all other classes. Field names are succeeded by the their type.

Method names appear with the arguments list enclosed between parenthesis and suc-

ceeded by their return type. Underlined methods are static and do not refer to an instance

of the class but to the class itself. A UML class diagram can also represent relationships

between classes: inheritance, composition, and reference. Inheritance indicates a "is a"

relationship and is represented by a line with a closed arrowhead. Composition indicates

a "is part of" relationship and is represented by a line with a filled diamond. Reference

is a "refers to" relationship and is represented by a dashed line. Figure 3.2 illustrates

symbols of a UML class diagrams and their semantics.

3.2 Run-Time System

As discussed in Chapter 2, the execution model of Tarragon is layered and con-

sists of a control level, a graph level, and a task level (see Table 2.1). Tarragon’s RTS
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Figure 3.2: UML class diagram: symbols and semantics. In the diagram, Animal is a

base class that defines the public method eat, which takes an argument of type food and

returns a boolean value. Cat "is a" Animal, and has a public name field of type string.

In addition, Cat "references" class Fish, its favorite subclass of Food. Class Tail defines

an object that "is part of" Cat. A "reference" implies that a class knows and uses about

another class, whereas "is part of" is a stronger relation in which an object is a part of

another object and their existence is strongly related.

executes at the control level and supports the graph level and the task level by managing

graph execution and data motion. In the current implementation Tarragon uses MPI for

communication and for launching the computation. Therefore, the control level is real-

ized as set of physical processes1 that execute the RTS in Single Program Multiple Data

(SPMD) mode: multiple processes execute the same program.

The RTS is started through its interface, the Tarragon class, which is illustrated

in Figure 3.3 and summarized in Table 3.1. There must be only one RTS instance in

each Tarragon process. To ensure that only one instance of the RTS is created, Tarragon

implements the singleton design pattern [Gam02]. By construction, a singleton cannot

be instantiated more than once because its constructor is not public and the RTS is

instantiated only once through a static initialization method, as illustrated in Algorithm

4 (line 1). The instance of the RTS is then referenced via the tarragon method (line 2).

1Throughout this chapter, a physical process indicates an operating system process and will be referred
to as process. In contrast, a task is a virtual process and will be referred to as task. Many tasks can live
within a process.
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Figure 3.3: Class diagram of class Tarragon. The class defines the API to the RTS and

enables users to control the RTS, and to execute a task graph.

Each instance has a unique id that identifies the process and that can be retrieved via the

id method, whereas the total number of RTS instantiated, that is the number of Tarragon

processes, can be retrieved via the method size.

Algorithm 4 Tarragon Program
1: Tarragon::initialize()

2: Tarragon rts=Tarragon::tarragon()

3: Tarragon::graph_init(graph)

4: Tarragon::graph_execute(graph)

5: Tarragon::finalize()

Each instance of the RTS is composed of a scheduler in charge of scheduling

task execution and communication requests, and a pool of workers that execute the

tasks. Workers and the scheduler are threads of execution within the RTS and ideally

each thread is bound to a core exclusively. However, it is possible to create more work-

ers than available cores or to assign workers to the same core where the scheduler runs.

The RTS can be configured to run in single-threaded mode. In this case, a single thread

of execution alternates between scheduling and executing tasks. The number of pro-
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Table 3.1: Methods of class Tarragon. The class Tarragon defines the interface to the

run-time system.

Method Description

initialize initialize the RTS

finalize finalize the RTS

tarragon reference to the RTS

size number of RTSs

id RTS id

graph_init initialize the graph

graph_execute execute the graph

init_time graph initialization wallclock time

exec_time graph execution wallclock time

cesses per shared-memory node is defined when the application is launched. Different

configurations change the way cores are matched to the components of the RTS. Differ-

ent configurations can result in different performance depending on how a configuration

suits the application needs and the architecture of the machine. Figure 3.4 illustrates

different configuration examples.

Processes executing at the control level construct the graph in parallel. Once the

graph is complete, it is initialized and executed (lines 3-4). Initialization and execution

occur at the graph level and the task level of execution, respectively. The graph level of

execution is characterized by a higher degree of parallelism: the RTS activates workers

to execute ready tasks. During initialization, the RTS establishes communication chan-

nels between processes according to the communication pattern described by the graph.

Then, it activates all the tasks ready for initialization; when activated, tasks execute at

the task level. When initialization completes, the application returns to the control level

until the graph is executed.

When the graph is executed, the RTS executes the graph level and the task level

of execution, activating tasks according to dataflow semantics. Finally, when the ex-

ecution completes, the application continues at the control level. At that level, it can
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(a) (b)

(c) (d)

Figure 3.4: Run-time system configurations. Using the two nodes with two quad-core

processors each, illustrated in Figure 3.4a, three possible configurations are illustrated

in Figure 3.4b, Figure 3.4c, and Figure 3.4d. In Figure 3.4b there is a Tarragon process

per node, in Figure 3.4c there is a Tarragon process per processor, and in Figure 3.4d

there is a Tarragon process per core.

re-execute the graph, or repeat the construction-initialization-execution process with a

different graph. Before terminating, each application must finalize the RTS (line 5).

Finalization ensures that the RTS releases all the resources acquired directly, such as

allocated memory, and indirectly through the communication and threading substrates.

Figure 3.5 illustrates the phases that characterize execution in a typical Tarragon appli-

cation. Figure 3.5 also reveals barriers that synchronize processes when graph execution

is activated and terminated, and when the RTS is initialized and finalized.

Tarragon implements two timing methods that can be used to time initialization

and execution: init_time and exec_time. init_time returns the wallclock time of execut-

ing graph_init, whereas exec_time returns the wallclock time of executing graph_execute.

The RTS contains a scheduler and a pool of workers, as illustrated in Figure

3.6. While workers execute tasks, the scheduler controls graph execution and manages

queues of tasks that are ready to execute( called ready queues), queues of outgoing

messages, and queues of pending communication requests. Whenever a communication

request is completed the scheduler retires the request. If the request is a send request

(i.e. put)then the to the source task is notified. If the request is a receive request then the

scheduler instantiates the corresponding Message object and delivers the message to the

destination task (i.e. invokes vinject). If, as the result of a receive request, the receiving
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Figure 3.5: Controlflow of a Tarragon application. The execution of a Tarragon ap-

plication is divided into levels, indicated on the right. Global barrier synchronize the

processes when graph level execution begins and ends.

task becomes ready, then the scheduler schedules the task according to its priority and

affinity (both priority and affinity are attributes of the task). At this point the task is

appended to a ready queue.

The separation between graph level and task level execution is reflected in the

provision of two methods of Task: vinject and vexecute, that implement the firing rule,

and task execution, respectively. This separation is also reflected in the architecture of

the RTS. The RTS invokes vinject when a message reaches a task and completes the data

transfer. As a result, the task is assigned to a ready queue and executed only if the firing

rule is satisfied. Tasks do not necessarily execute in response to every message received,

this is determined by the firing rule of the task.

Task scheduling is affected by the scope of ready queues used. Workers in the

same process may share a process-wide ready queue, or have a private ready queue. The

choice affects how work is balanced within a process, whether tasks can be prioritized

or not, and whether tasks can have worker affinity or not. Using a shared queue helps
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Figure 3.6: Internal structure of the run-time system.

reduce the idle times in presence of load imbalance, but does not support affinity because

all the workers obtain tasks from the same queue. On the other hand, by having multiple

queues, one per worker, it is possible to specify affinities for a particular ready queue.

As a result, though with a shared ready queue a task is assigned to the first available

worker, but with affinities a task is always assigned to a specific worker. In this case,

tasks assigned to the same worker are executed in prioritized order although the scope

of the priority is restricted to the ready queue.

The use of multiple queues also enables work stealing [R. 96]. Work stealing

allows idle worker threads to steal work from the end of ready queue of busy worker

threads within the same address space. However, because stolen tasks are pulled from

the end of the queue, work stealing might cause tasks with low priority to execute before

tasks with high priority. Table 3.2 summarizes the options and their properties.

Table 3.2: Queue configurations in Tarragon. Marks in each column indicate whether a

configuration enables or not the property in the header.

Configuration Priority Load Balancing Affinity

Shared � � ×

Private � × �

Stealing × × �

Tarragon is able to overlap data transfers and computation. While scheduling
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tasks, the RTS also acts as a communication proxy [Lim97, Bad00]. In this way, data

transfers take place while the workers execute tasks; computation and data transfer may

be concurrent and overlapped.

Overlap of communication with computation may be improved using task prior-

itization. By analyzing the graph it is possible to prioritize tasks with edges directed to

tasks residing in different processes. Such prioritization scheme ensures that commu-

nication between such tasks is initiated earlier, increasing the interval of time between

when data transfers are initiated and when the data is needed. As a form of pre-fetching,

the prioritization scheme described reduces the likelihood that dependencies prevent a

task from executing because of communication latencies, creating more opportunities

for overlapping computation with communication.

3.3 Core API

The Core API defines the basic classes required to interact with the RTS. Basic

operations include graph construction, data motion, and problem decomposition includ-

ing mapping to physical resources, and error handling. The fundamental classes of the

Core API are listed in Table 3.3.

The classes of the core API include the fundamental abstractions, which are rep-

resented by abstract classes, and some concrete implementations. The concrete classes

extend the abstract classes to provide users with a basic set of ready-to-use classes.

Among the fundamental classes Tarragon is the only concrete class and it im-

plements the interface to the RTS (described in Section 3.2). The remaining classes are

abstract and they support Tarragon’s programming model and address the phases of the

workflow that typically characterize parallel applications: decomposition, mapping, and

data motion. In addition, the Core API includes an exception class that Tarragon uses to

raise error notifications to the control level.

All the classes listed are explained in detail in the following Subsections, which

also present helper classes and concrete classes that are also part of the Core API.

2Users define most of the application code within Task. In addition to the computation, the resulting
application-specific task will therefore participate to decomposition, mapping, and data motion.
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Table 3.3: Fundamental classes of the Core API.

Class Purpose Description Type

Tarragon RTS management RTS interface class Concrete

Graph graph construction task graph Abstract

and mapping

Task graph construction2 node of the graph Abstract

Dependency graph construction dependency between tasks Abstract

and data motion

Message data motion data to be sent Abstract

via dependency

Map decomposition naming scheme for tasks Abstract

Distribution mapping distribution of tasks Abstract

between processes

TarragonException error handling exception raised Abstract

error handling by Tarragon

3.3.1 Decomposition

In a process called problem decomposition, developers break problems down

in order to expose parallelism. A problem decomposition method is either applied to

the data, exposing data parallelism, or to the operations of the computation, exposing

task parallelism. The Tarragon Map supports decomposition into tasks, such that tasks

maintain the logical structure of the computation.

A Map simplifies task identification by providing a mapping function from points

in Nn
0 to task ids, and the inverse. In this way, tasks can be identified by their logical

position within the Map, or by their unique id. It is also possible to query a Map and

gather information about the map itself, such as the number of tasks it enumerates, the

size of the map, and whether a task is defined by the map. The complete list of methods

of Map is given in Table 3.4.

Users create ad-hoc naming schemes by defining a subclass of Map and over-

riding its methods: next, prev, coordinate_index, and index_coordinate. The methods
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Figure 3.7: Class diagram of Map.

enable the mapping, but also to traverse the coordinate system in the order defined by

the coordinates, rather than by id order, via the methods next, prev. As an illustrative

example, the reader can refer to the ring example presented in Chapter 2, which used an

Identity map. For example, an implementation of Identity would define the method next

as illustrated in Algorithm 5.

Algorithm 5 Identity::next(id,periodic)
1: return periodic ? (id+1) mod size() : id+1

Algorithm 6 Identity::coordinate_index(coordinate)
1: return coordinate[0]

According to the signatures given in Figure 3.7, id and periodic are two argu-

ments of next: the former is the reference task id, the latter indicates the type of bound-

ary. prev can be similarly defined. The mapping in coordinate_index, which is defined

using the Point template class, simply converts the value of a 1-dimensional point into

a task id, as illustrated in Algorithm 6. Conversely, in index_coordinate, the mapping

converts a task id to a 1-dimensional point, as illustrated in Algorithm 7.
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Table 3.4: Virtual methods of class Map.

Method Description

size number of tasks enumerated by the map

coordinates boundaries of the map

in_map evaluates the presence of a task id or point

next next point on the map

prev previous point on the map

coordinate_index map a point to a task id

index_coordinate map a task id to a point

Algorithm 7 Identity::index_coordinate(id)
1: return Point(id)

3.3.2 Mapping

The class Graph defines a distributed container of tasks and encapsulates a stor-

age structure, an allocation scheme, and a mapping of tasks to processes in the form

m : [0..t−1]→ [0..p−1]

in which t and p are the number of tasks and the number of processes respectively. As

illustrated in Figure 3.8, the mapping, which is defined by the Distribution class, is de-

coupled from storage management, which is defined by the Graph class. A distribution

is in fact associated with a Graph when the Graph is constructed. In this way, it is

possible to combine any Graph implementation to any Distribution implementation.

Table 3.5: Virtual methods of class Distribution.

Method Description

locate process where a task resides

range number of tasks mapped to a process

update update the distribution

Tarragon provides two concrete distributions: RegularDistribution and Vari-
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Figure 3.8: Class diagram of Graph.

ableDistribution. With RegularDistribution task ids are mapped to processes in con-

secutive blocks and evenly distributed between processes. For example, assuming t

tasks and p processes such that t is a multiple of p, tasks [0.. t
p −1] are mapped to pro-

cess 0. In the case that t is not a multiple of p, an extra task would be assigned to the

first t mod p processes. Instead, VariableDistribution does not attempt to distribute tasks

evenly but still uses consecutive blocks of ids. The blocks are defined via update: by

invoking update users set the boundaries of a block of ids, once for each process.

Figure 3.9 illustrates an example where a graph of 4 tasks is distributed across

two processes. The tasks are associated to a 2-dimensional domain and their coordinates

are defined to match the problem domain. The Map used in the example enumerates

tasks lower row first, left to right. The tasks of the example are also connected to form

a ring clockwise. Finally, the tasks are distributed between processes using RegularDis-

tribution.

By default, Graph uses RegularDistribution. Users can define new and more

complex distributions by extending Distribution and overriding its methods. The meth-

ods of Distribution are summarized in Table 3.5.

While Map connects the problem domain to Tarragon’s task space, Distribution

defines a mapping of the task space to processes. To a first approximation, Map could

be used to implement mapping and load balancing by carefully assigning ids to tasks
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(a) (b) (c)

Figure 3.9: Example of Map, Distribution, and Graph. Figure 3.9a illustrates the enu-

meration, represented by dotted lines, and the distribution, represented by a table. Figure

3.9b illustrates the graph and the dependencies between tasks. Figure 3.9c illustrates the

resulting deployment on two processes.

and using either RegularDistribution or VariableDistribution. Often, this may be a nec-

essary solution in regular problems when tasks perform the same amount of work and

RegularDistribution trivially achieves optimal load balancing. However, when a com-

plex distribution is required to achieve load balance, it may be convenient to define an

ad-hoc Distribution. In this way, problem decomposition, defined by Map, and distribu-

tion, defined by Distribution, are decoupled and addressed separately.

Graph is also an abstract class and requires implementations that specify dif-

ferent allocation strategies and data structures. For example, Tarragon provides two

concrete implementations: VectorGraph, that implements a distributed vector container,

and SparseVectorGraph that implements a distributed vector container that allows for

gaps. When instantiated, VectorGraph also instantiates all the tasks of the graph, since

the number and the distribution of the tasks is known. However, SparseVectorGraph is

useful in the case that a distribution method is known but it is not known which tasks

should be actually instantiated. This could be the case, for example, in sparse linear

algebra applications where the number of tasks instantiated depends on the sparsity
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Table 3.6: Virtual methods of class Graph.

Method Description

size total number of tasks

task task reference

begin graph iterator

end graph iterator end

rbegin graph reverse iterator

rend graph reverse iterator end

pattern of the data. To accommodate such situations, SparseVectorGraph requires the

application to instantiate the tasks and add them to a SparseVectorGraph via its add

method.

Table 3.6 lists the methods of Graph. Besides access to tasks by their id, Graph

supports iterators. There are two types of iterators: Graph::iterator and Graph::riterator.

The former is a forward iterator and iterates through all the local tasks in increasing id

order, the latter is a reverse iterator and iterates through all the local tasks in decreas-

ing id order. Iterators are instantiated via begin and rbegin methods and they iterate

over tasks by increment (++). Forward and reverse iterators must stop when they are

equivalent to end and rend respectively.

As an example, Algorithm 8 revises the graph construction in the ring example

providing more details than in Chapter 2. Notably, Algorithm 8 uses concrete imple-

mentations of class Map and Graph. In addition, the loop that connects the tasks of the

graph is implemented using a forward iterator. Using the iterator is convenient because

it visits the tasks local to a process without the need to express locality in user code.

3.3.3 Execution and Data Motion

Execution and data motion are defined mostly within Task. With the notable

exception of Message, all the methods that the RTS uses to activate and to interact with

the application are defined in Task.
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Algorithm 8 Ring Program
1: Tarragon::initialize();

2: Tarragon rts = Tarragon::tarragon();

3: Map map = new Identity(n);

4: Graph graph = new VectorGraph(map);

5: Iterator i = graph.begin();

6: while i != graph.end() do

7: i->connect(map.next(i->id))

8: end while

9: rts.initialize_graph(graph)

10: rts.execute_graph(graph)

11: Tarragon::finalize()

Task

Users define the core of the computation within a Task subclass, specifying firing

rules and the operations that a tasks carries out. A subclass of Task is therefore char-

acterized by its virtual methods and the application programmer must extend the Task

class to define a concrete subclass. The user-defined task inherits the virtual methods

to be overridden, and such methods are the interface that the RTS uses when managing

task execution and data motion. The RTS executes application code by invoking the

virtual methods of Task. The virtual methods of Task are listed in Table 3.7.

Table 3.7: Virtual methods of class Task.

Method Description Default

vinit initialize task set EXEC state

vinject inject data into task delete message

vexecute execute task set DONE state

vcreate create message create a buffered message

vdestroy destroy message delete message

vterminate notify termination no action
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The state of a task regulates the interaction with the RTS. A task is a state ma-

chine whose transitions are triggered by method invocation. The RTS inspects the _state

attribute, encoding the observable state of the task, and invokes Task methods accord-

ingly: vinit is invoked when a task is in the INIT state and the graph is initialized;

vexecute is invoked when a task is in the EXEC and the graph is executed; and vinject

is executed when a task is in WAIT state and a message must be delivered to the task.

Figure 3.10 illustrates the states of Task, the transitions between states, and the corre-

sponding methods causing the transitions. As part of their implementation, methods

of concrete Task instances change the observable state. For example, method vexecute

should set the _state to either WAIT or DONE, such that after execution, the task is either

waiting or completed and ready to be retired. If a task sets its state to ERROR, then the

computation aborts.

Figure 3.10: States and transitions. The lines denote state transitions between the pos-

sible states of a Task. The labels denote the method causing the transition. Notably,

ERROR and DONE are reachable from all the other states and are final states.

Task execution, which occurs at the task level of execution, is implemented by

vinit and vexecute. vinit is invoked when the graph is initialized. Defining vinit is

optional and is employed only when there is a logical distinction between operations that

are part of a task initialization and operations that are part of the actual computation. In

addition, initialization via vinit takes place after the tasks have been connected, allowing
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for parallel initialization involving communication between tasks.

In the case of the ring example, initialization is a simple operation and yet defin-

ing vinit contributes to make the code of RingTask easier to understand. Algorithm 9

shows the implementation of vinit. Task 0 is the first of the ring and the one that instan-

tiates and sends a message around the ring. Therefore, task 0 sets its state to ready for

execution (EXEC) and allocates the message. Every other task waits (WAIT).

Algorithm 9 RingTask::vinit
1: if id==0 then

2: msg = make_message<BufferedMessage>(size);

3: →EXEC;

4: else

5: →WAIT;

6: end if

When a task is ready, it is scheduled for execution and eventually assigned to a

worker that invokes vexecute. The method vexecute represents task execution: it encap-

sulates the kernel of the computation.

The last method related to task execution is vterminate. vterminate is invoked

when there are only waiting tasks and no RTS instance has tasks running. Tarragon

detects this state of quiescence and uses vterminate to notify each waiting task that graph

execution has completed. Tarragon cannot distinguish a deadlock from completion, but

the application developer can implement error handling operations in vterminate, to

detect and recover from a deadlock.

In order to form a graph, tasks are connected by Dependency objects. Depen-

dency objects are not directly instantiated by the programmer but they are instantiated

via the connect method. When invoked on a task, connect instantiates a Dependency

representing the dependence between the task and the argument:

task.connect(some_task)

.

During execution, tasks exchange information by sending messages via their de-

pendencies. The method put, which is a method of OutDependency is the only method
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Figure 3.11: Class diagram of Task and Dependency.

that triggers data motion and it is asynchronous. When a message is sent via the put

method (see Algorithm 3, line 10), it is eventually delivered to the target of the depen-

dency. For each invocation of put there is a corresponding invocation of vinject, a short

message handler that is invoked when a message arrives at a task. vinject implements

the firing rule of the task. By checking the state of a task, vinject determines whether

all the dependencies have been satisfied and the task is ready for execution. vinject is

intended to implement the firing rule, which should be a short handler, and should not

carry out extensive computations.

Memory-to-memory copies are expensive and often unnecessary during mes-

sage transmissions. When receiving messages from other processes, the RTS avoids

extra memory copies by using RTS-allocated buffers. Similarly, the RTS also uses

application-allocated buffers when sending messages to other processes.

To simplify memory management and enable applications to have complete con-

trol over memory allocation, Tarragon relies on two methods of Task:

vcreate is invoked whenever a message is received from a task residing in a differ-
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ent process. Data is received in serialized form and the RTS invokes vcreate to

initialize a message.

vdestroy is invoked whenever a message is sent to a task residing in a different process.

After a data transfer, Tarragon uses vdestroy to notify the sending task that the

message previously put is no longer required3.

By interacting with the application through vcreate and vdestroy, Tarragon dele-

gates memory management to the application. However, the RTS is capable of managing

memory as well. As long as a Task subclass does not redefine vcreate and vdestroy, the

default implementation applies. When a message is received, the default vcreate leaves

the message in an RTS-allocated buffer. When a message is sent, the default vdestroy

determines whether the message is on an RTS-allocated buffer, and in that case it returns

the message to the RTS.

The class diagram of Task and Dependency is illustrated in Figure 3.11. In ad-

dition to the classes, the diagram shows the attributes of both classes. Besides state

attributes, Task has priority and affinity attributes: priority defines the scheduling prior-

ity and affinity defines the worker affinity. Dependency has three attributes: max_size,

aggregation, and tag. The max_size attribute optionally4 defines the capacity of the

Dependency, that is, the largest amount of the data that can be sent along the edge at

once. When the graph initialized, the RTS inspects max_size to determine the size of its

communication buffers.

The aggregation attribute enables data aggregation. When aggregation is en-

abled, the RTS attempts to pack messages together. For example, when sending many

small messages, enabling aggregation may reduce the cost of communication because

the RTS can perform fewer transfers moving data in larger blocks. The tag attribute is

used to notify the RTS when edges carry the same data. If the edges are not tagged,

the RTS cannot determine when the same message is sent across multiple edges and

requiring multiple copies of the same data. However, when edges are tagged, the RTS

3Data transfer has been completed although there is no guarantee that the message has been delivered.
The semantic of communication is defined by the underlying communication substrate which may not
guarantee delivery.

4When max_size is not specified, a default size is utilized. Messages that are longer than the default
size will cause a communication error.
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automatically sends the same message across equally tagged edges avoiding unneces-

sary memory copies.

Message

Message is a class that defines data to be transferred between tasks. A Message

has three parts: data (payload), an Envelope, and a Label. In addition, as illustrated

in Figure 3.12, a Message defines the serialize method. When a message object is not

stored as a consecutive sequence of bytes, the RTS uses serialize to lay out the message

as required.

Message has a data reference in the Envelope structure and metadata defined in

the Label. The type field of the Label defines the type of the message, determining how

the message will be treated by the RTS. There are three properties encoded in the type:

whether a message needs to be serialized or it is already stored contiguously in memory,

whether a message is stored in memory allocated by the application or by the RTS,

and whether a message can be aggregated to other messages. For convenience, the label

carries also a key field, which is a value for user-defined metadata. For example, by using

key to tag messages, a programmer can define dynamic dataflow semantics [Arv90, J.

85]. Applications can also define different classes of messages and use key as a type

identifier. In this case, when a message is received in serialized form, the type identifier

is used to select the initialization procedure.

In the Core API there are two types of messages: BufferedMessage and Wrapped-

Message. A BufferedMessage is stored sequentially in memory and as such, it does not

require serialization. The WrappedMessage class defines a message wrapper with a

generic pointer to a data buffer. WrappedMessage handles serialization automatically

via its serialize method. The serialize method of WrappedMessage first writes all the

metadata into a communication buffer, and then it appends on the same buffer data ref-

erenced by the generic pointer. A programmer can define additional message classes

by extending Message or one of its subclasses. The newly defined class can have any

structure as long as it overrides the serialize method or it is stored sequentially as, for

example, BufferedMessage. The class hierarchy of the predefined message classes is

illustrated in Figure 3.12.
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Figure 3.12: Class diagram of Message.

3.3.4 Error Handling

When an error occurs, the RTS raises an exception. Figure 3.13 illustrates the

types of exceptions in Tarragon. Tarragon defines four concrete exception classes Com-

municationException, ThreadException, ExecutionException, and AllocationException.

All four are subclasses of TException, the base abstract class of the exceptions in Tar-

ragon. TException contains an error code and a description of the error that subclasses

fill according to the type of error.

CommunicationException is thrown whenever an error occurs in the underlying com-

munication layer.

ThreadException is thrown whenever an error occurs in the underlying threads library

(e.g. PThreads).

AllocationException is thrown when memory allocation within the RTS fails.

ExecutionException is thrown when an error occurs in the execution of a task and the

task is in error state. In this case, the error code is the id of the task causing the

exception.
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Figure 3.13: Class diagram of the exceptions hierarchy.

As an example, Algorithm 10 illustrates how to catch communication errors dur-

ing execution and print an error message.

Algorithm 10 Ring Program
1: try

2: rts.execute_graph(graph)

3: catch CommunicationException e

4: print "Communication error" + e.what()

5: endtry

3.4 Extended API

Tarragon is designed to facilitate extensibility, allowing new functionality to be

layered on top of the basic abstractions. The goal is to raise the level of abstraction

to that of the application and hence simplify the application development. Tarragon

imposes virtually no restrictions on task subclasses. This flexibility is inherited by the

C++ language and it is not hindered by the design of Tarragon. In fact, Task can be

simply used as an adaptor class [Gam02], a proxy class [Gam02], or some other kind

of interface between Tarragon and the application5. Therefore, programmers are free to

5Adaptor and proxy are two design patterns that decouple an implementation from its interface. In
this case, the task would be a simple interface to the application.
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reuse existing code and libraries, even those written in different languages.

One way of extending the library is to enhance the support for constructing

graphs. In particular, to define specialized tasks, maps, and helper functions for connect-

ing tasks according to specific dependence structures. The Extended API of Tarragon

comprises added functionality for constructing and optimizing commonly used graphs.

While certainly useful for a number of problems, the Extended API presented in this dis-

sertation serves primarily as an illustrative example of how it is possible to extend the

classes in Tarragon and to build domain-specific libraries. Such Domain-Specific Ex-

tensions (DSE) to the library provide ready-to-use classes for solving problems within

a specific domain.

3.4.1 Graph Analysis

In order to support additional functionality and algorithms, the objects of a graph

are element according to the visitor design pattern [Gam02]. The visitor design pattern

provides a way to define operations on data structures that separates the implementation

of the operations from the implementation of the data structure. In this way, it is possible

to extend the functionality of the graph by creating new visitors, without affecting the

interface of existing objects, such as Task and Graph, on which the library depend. In

addition, the visitor design pattern makes it possible to separate the implementation of

the visitors from the implementation of user-defined tasks. As a result, visitors can be

defined for generic task structures and then applied to graphs of a user defined task.

To realize the pattern, the Extended API defines interfaces to the data structure

classes and the operation classes. By agreeing on the interfaces, it is possible to have

visitors and elements interact through call back functions. The data structure elements

implement an interface with an accept method that the visitor uses to notify its intent

to visit the element. When notified, the element invokes the visit method of the visitor

that is appropriate for its type. Figure 3.14 illustrates the implementation of the visitor

design pattern in Tarragon and the classes that implement the Element interface. Specif-

ically Graph, Task, and Dependency implement the Element interface, which defines

the accept(Visitor) method. Visitors must implement the Visitor interface including the

overloaded visit method (Visitor takes any one of Graph, Task, or Dependencyas argu-
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ment).

Figure 3.14: Class diagram of the visitor design pattern in Tarragon.

One use of visitors is to connect the tasks. A Visitor can start from Graph and

then iterate through all the tasks connecting them according to the desired topology. In

addition, once the graph is built and the tasks connected, visitors can traverse the graph

and set task priorities, affinities, and other relevant attributes, or collect information on

the graph.

Tarragon also takes advantage of the visitor pattern. For example, when initial-

izing the graph, the RTS visits the graph to determine the size of any required communi-

cation buffer. The visitor traverses the graph, and examines all the dependencies of each

tasks. At the end, the visitor can determine the size of the largest message and allocate

buffers that sufficiently large.

The visitor is defined by the three visit methods in Algorithm 11, Algorithm 12,

and Algorithm 13. A Visitor starts from an instance of Graph, and recursively calls

accept on each task of the graph; on Task, Visitor recursively calls accept on the depen-

dencies of the graph; on Dependency, Visitor simply updates the value of the max_size

variable. When the visit completes, max_size will store the max of the max_size at-

tributes.
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Algorithm 11 SizeVisitor::visit(graph)
1: max_size=0;

2: for all task∈graph do

3: task.accept(this)

4: end for

Algorithm 12 SizeVisitor::visit(task)
1: for all dependency∈task do

2: dependency.accept(this)

3: end for

Algorithm 13 SizeVisitor::visit(dependency)
1: update_max_size(dependency.max_size)
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3.4.2 Performance Tuning

Tuning application performance involves evaluating design decisions and pa-

rameter choices that affect performance, and discovering how they can be changed to

improve performance. One of the most important parameters is the granularity of the

decomposition, which is defined as the amount of computation carried out by each task

relatively to the amount of data transferred in each communication event. Granularity

is a critical parameter because it is strongly related to both the available parallelism and

the incurred overhead: fine-grained computations typically expose more parallelism be-

cause there are more small units of computation that can be executed concurrently, but

they incur at a higher overhead. For example, the cost of fine-grain communication tends

to be dominated by latency rather than by bandwidth. The most profitable trade-off de-

fines the optimal granularity. In SPMD models, a first gross decomposition is imposed

by the programming model because data must be split between the processes. Tarragon

relaxes this restriction. The number of tasks does not have to exactly match the number

of physical processor cores; programmers can focus on a logical decomposition of the

work while trying to achieve the best performing granularity.

Carefully mapping tasks to processes is also a crucial aspect of paralleliza-

tion. A good mapping minimizes communication among tasks residing in different

processes [Sha81]. Several other criteria may apply, but the common principle is al-

ways the same: try to maximize locality. In Tarragon, it is possible to formally define

mapping strategies via a Distribution subclass. It is also possible to visit the graph and

analyze its connectivity to infer a better mapping. Similarly, after executing a graph,

the application could improve the mapping based on retrospective information collected

during a previous execution and implement off-line load balancing.

There are also opportunities for preserving locality within each process; for ex-

ample, by scheduling back to back tasks related by data dependencies [Suv99]. The

RTS tries to preserve locality in this way and also by giving precedence to tasks that

are executed recently. Also, when multiple ready queues are used, it assigns affinities

to tasks that express affinity for a specific worker. In addition, a programmer can define

tasks priorities and affinities to better match application-specific patterns and improve

locality further.



70

Finally, while Tarragon automatically overlaps communication with computa-

tion, it is possible to change the schedule, using priorities, to improve latency hiding.

For example, the Extended API defines the OverlapVisitor that prioritizes execution of

tasks with dependencies on tasks residing in different processes. The idea is to initiate

data transfer as soon as possible [Cos05] in order to maximize overlap opportunities.

The implementation of the Visitor method in OverlapVisitor is given in Algorithm 14.

Algorithm 14 OverlapVisitor::visit(task)
1: for all dependency∈task do

2: priority += graph.is_local(dependency.id())

3: end for

3.4.3 Domain Specific Extensions

A Domain Specific Extension (DSE) to the library is a set of classes and func-

tions that raise the abstraction to the application level by defining types and operations

specific to the application domain.

The goal of a DSE is to improve productivity. By defining high level abstrac-

tions, a DSE presents a familiar interface to the application developer while hiding

lower-level implementation details. Such layered software architecture promotes soft-

ware reuse: lower layers define more general and widely used abstractions while spe-

cialization increases at the higher levels. In a similar fashion, a developer can create

performance optimization libraries targeting certain classes of applications.

Maps and Spaces

Cartesian spaces are often used in scientific computing when the physical prob-

lem space is conceived and discretized as a subset of Z3. Also, matrices can be repre-

sented conveniently as a rectangular domain of points in two dimensions.

To support higher level abstractions for rectangular domains, the Extended API

of Tarragon defines an abstract class, called Space. A Space represent data and, the

association of a Space with a Map induces a decomposition of Space into subspaces, in

which the subspaces are associated to the tasks of the Map.
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Figure 3.15 illustrates the example of a 2-dimensional Space represented by a

6×6 mesh. The mesh is associated with a 2×2 Map resulting in a decomposition into

subspaces and a mapping between subspaces and tasks; each task is associated with a

3×3 section of the mesh.

Figure 3.15: Association of Space and Map.

The Extended API of Tarragon defines several subclasses of Map and Space to

support cartesian and rectilinear geometries. The use of these classes is illustrated in the

applications presented in this dissertation. A complete reference is given in Appendix

B.

Connectors

The Extended API provides visitors to automatically connect neighboring tasks,

a scenario which is common in many communication patterns. Given a graph, a con-

nector visitor traverses the graph connecting tasks according to a certain pattern. For

example, a connector that connects each task to its successor creates a uni-directional

ring on a 1-dimensional map. The OneNeighborForwardConnector visitor is such a

connector. By using OneNeighborForwardConnector, the loop that connects the tasks

in Algorithm 8 (lines 5-8) may be replaced by the following statements:

OneNeighborForwardConnector c; graph.accept(c);

A complete list of the connectors provided by the Extended API is given in Ap-

pendix B.
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3.5 Performance Evaluation

Tarragon creates the graph abstraction by adding a software layer between ap-

plication and low-level system libraries. In particular, data motion between virtualized

tasks is built on top of a lower level communication substrate (in the current imple-

mentation the communication substrate is an MPI library). As a result, applications

experience increased communication delays due to software overheads.

The ring example is used as a benchmark to measure communication latency

overhead and bandwidth losses in Tarragon compared with an implementation of the

ring in MPI, on which Tarragon relies to carry out inter-process communication. The

ring benchmark creates a set of tasks (processes in the MPI implementation) forming a

communication ring and circulate data around the ring. By timing a number of complete

loops it is possible to determine the achieved bandwidth and latency. The experiment is

then repeated with different message sizes to collect results across a range of message

length scales. In particular, experiments to obtain a latency measure use small messages,

for which latency is dominant, and experiments to obtain the peak bandwidth use a range

of large messages. Algorithm 15 illustrates the MPI implementation of the ring program.

Algorithm 15 MPI Ring Program
1: while trips do

2: trips=trips-1

3: if myrank then

4: MPI_Recv(buffer,size,prevrank)

5: MPI_Send(buffer,size,nextrank)

6: else

7: MPI_IRecv(buffer,size,prevrank)

8: MPI_Send(buffer,size,nextrank)

9: MPI_Wait()

10: end if

11: end while

Overheads are evaluated both within a node and between nodes. In the former

case, tasks (processes in the MPI version) are instantiated on the same node, whereas in
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the latter case only one task is instantiated on a node. In addition, tests with Tarragon are

repeated using a multi-threaded RTS and a single-threaded RTS. Tarragon usually runs

multi-threaded, that is with one service thread and several worker threads. Thus, it oc-

cupies all the available cores on a shared-memory node with a RTS instance. However,

it may be convenient in certain cases to execute a RTS on each core, that is with only

one thread executing both services and tasks. For example, in applications combining

existing MPI software with Tarragon software, such mappings may be imposed by the

MPI portion of the software. The configurations described, for both MPI and Tarragon,

are illustrated in Figure 3.16.

(a)

(b)

Figure 3.16: Ring configurations. In the single-node configuration, MPI processes (tasks

in the Tarragon implementation) all execute on the same node, as illustrated in Figure

3.16a. In the multi-node configurations, there is one MPI process (task in the Tarragon

implementation) per node. Figure 3.16b illustrates the two-node configurations.
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Tests are performed on Abe, the Intel cluster at the National Center for Super-

computing Applications [Nata], and on Kraken, the Cray XT5 at the National Institute

for Computational Sciences [Natb]. Details of both machines are given in Appendix A.

3.5.1 Latency

Latency is defined as the time elapsed from the beginning of a data transfer, on

the sending side, until data arrival, on the receiving side6. With the ring benchmark,

messages of length ranging from 1B to 16KB are transferred between tasks, and the

wallclock time is measured for a hundred complete loops to average latency measure-

ments and to spread the timing overhead.

Intra-node latency is measured with one task per core, or a process per core in

MPI, within a node. In the MPI implementation, message transfer is performed via

the communication stack of the MPI library implementation and involves copying the

message in memory, between separate address spaces. In Tarragon, message transfer is

performed within a single address space.

On a node of Abe, the measured latency of the MPI implementation is approx-

imately 1.4 microseconds. In Tarragon, whether the RTS is single-threaded or multi-

threaded greatly affects the outcome. In single-threaded mode, communication is very

efficient and its latency is 0.4 microseconds, less than a third of the latency in the MPI

version. The performance advantage in this case is given by the fact that the same thread

executed all the tasks, a working set that fits in cache. In multi-threaded mode, the added

cost of synchronization between threads and of data transfer between caches results in a

4.4 microseconds latency.

Figure 3.17a illustrates the transfer time as a function of message length on Abe.

As the message length is increased, in multi-threaded mode the transfer time remains

approximately constant, dominated by the overheads. In single-threaded mode, transfer

time grows when data no longer fits in cache, but for messages up to 16KB long, transfer

latencies are lower in single-threaded mode than in the MPI implementation. In the

MPI implementation, transfer time increases gradually, according to the length of the

6Although latency is generally defined from the beginning of a data transfer until the first piece of data
is received, in this context there is no distinction because data is delivered to the user space in toto.
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message, and it is larger than with Tarragon in multi-threaded mode for messages that

are 4KB or longer; the lower cost of copying memory within the same address space

gives a performance advantage to the Tarragon implementation even in multi-threaded

mode.

On Kraken, intra-node latency measured with the MPI implementation is ap-

proximately 0.6 microseconds. In the Tarragon implementation, in single-threaded

mode the latency is 0.2 microseconds, whereas in multi-threaded mode is 4.5 microsec-

onds. The effect of caching gives to the single-threaded a performance advantage, hence

the low latency, whereas overheads penalize the multi-threaded mode. In the MPI im-

plementation, transfer time grows proportionally to the message length, and at 8KB,

transfer time is greater than in the Tarragon implementation running in multi-threaded

mode. Figure 3.17b illustrates transfer time as a function of message length on Kraken.

Inter-node latency is measured by instantiating a task per node, or process per

node in MPI, ensuring that every hop on the ring corresponds to a data transfer between

nodes. Transfer time is measured using 2, 4, and 8 nodes.

On Abe, the latency measured with the MPI implementation ranges from 5.6

microseconds to 8.3 microseconds, increasing slightly as more nodes are used. Latency

in the Tarragon implementation in single-threaded mode, matches the latency in the

MPI implementation. However, latency measured with the multi-threaded version is

twice than with the MPI version due to overheads incurred because of threading; such

overheads are relatively lower than within a node because between nodes transfer time

is greater, and are only observable for messages that are 4KB or shorter. Figure 3.18a

illustrates transfer times on 8 nodes of Abe.

On Kraken, overheads in Tarragon are higher than on Abe. On Kraken, the

latency measured with the MPI version is 6.2 microseconds, whereas with Tarragon it is

over 2 times higher in single-threaded mode, and almost 3 times higher in multi-threaded

mode. However, the gap between transfer times narrows rapidly as message length is

increased, and it becomes negligible for messages that are 8KB or longer.

A summary of latency and overheads is given in Table 3.8.
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(a)

(b)

Figure 3.17: Intra-node point-to-point transfer time on Abe (Figure 3.17a) and on

Kraken (Figure 3.17b).
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(a)

(b)

Figure 3.18: Inter-node point-to-point transfer time on Abe (Figure 3.18a) and on

Kraken (Figure 3.18b). Transfer time measured with a ring spanning 8 nodes.
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Table 3.8: Transfer time and overhead on Abe and on Kraken. Overhead is reported

relative to MPI measurements (e.g. 1.0x means no overhead). Single-node results are

measured running a process/task per core.

Machine Nodes
Latency (µsec) Tarragon Overhead

MPI Tarragon ST Tarragon MT ST MT

Abe 1 1.4 0.4 4.4 0.3x 3.1x

Abe 2 5.6 5.6 10.5 1.0x 1.9x

Abe 4 7.7 7.7 14.2 1.0x 1.8x

Abe 8 8.3 8.3 16.1 1.0x 1.9x

Kraken 1 0.6 0.2 4.5 0.3x 7.5x

Kraken 2 6.2 13.5 17.4 2.2x 2.8x

Kraken 4 6.2 13.5 18.0 2.2x 2.9x

Kraken 8 6.3 13.5 18.2 2.1x 2.9x

3.5.2 Bandwidth

Bandwidth is defined as the data transfer rate in a communication channel; in the

ring benchmark, the transfer rate between tasks and processes. Bandwidth is measured

on messages of length ranging from 64KB to 64MB, ensuring that transfer time reflects

bandwidth rather than latency.

Intra-node bandwidth is measured by instantiating a task per core, or a process

per core in MPI, within a node. Intra-node bandwidth is bounded by memory band-

width since the transfer takes place in memory and does not involve the interconnect. In

the MPI implementation, messages are copied between processes, whereas in Tarragon,

messages are copied within the same address space. As a result, the Tarragon imple-

mentations achieve higher bandwidth than the MPI implementation. On Abe, the MPI

implementation achieves an 1.1GB/s peak bandwidth, whereas the Tarragon implemen-

tations achieve an 1.8GB/s peak bandwidth.

Also on Kraken, the Tarragon implementations achieve higher bandwidth than

the MPI implementation. The Tarragon implementations achieve a 4.5GB/s peak band-
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width whereas the MPI implementation achieves a 2.3GB/s peak bandwidth.

The peak bandwidth considered for the Tarragon versions is measured for the

longest messages, because short messages fit in cache and the bandwidth achieved on

messages up to 1MB long is even higher. However, for the sake of comparison, peak

bandwidth on messages that are longer than 1MB provides a better indication of the

achievable bandwidth. Intra-node bandwidth is illustrated in Figure 3.19. On both Abe

and Kraken, the Tarragon implementations achieve higher bandwidth with small mes-

sages than with large messages, and the bandwidth decreases narrowing the gap with

the MPI implementation.

As for inter-node latency, inter-node bandwidth is measured instantiating a task

per node, or a process per node in MPI, using 2, 4, and 8 nodes.

On Abe, the peak bandwidth measured with the MPI implementation ranged

from 880 MB/s to 895 MB/s. No significant difference is observed in peak bandwidth

when using a different number of nodes. Despite the overheads in Tarragon, there is

no substantial difference in peak bandwidth. In fact, overheads only affect latency, and

for long messages the impact on performance is negligible. Figure 3.20a illustrates

bandwidth measured on 8 nodes of Abe, for increasing message length.

On Kraken, the peak bandwidth measured with the MPI implementation is ap-

proximately 1.6GB/s, which is matched by the Tarragon implementation. Also on

Kraken there is no significant difference in peak bandwidth when using a different num-

ber of nodes. Figure 3.20b illustrates bandwidth measured on 8 nodes of Kraken, for

increasing message length.
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Table 3.9: Peak bandwidth and overhead on Abe and on Kraken. Overhead is reported

relative to MPI measurements (e.g. 1.0x means no overhead). Single-node results are

measured running a process/task per core. Peak bandwidth on 1 node, for the Tarragon

implementation, is measured on messages that are 8MB or longer.

Machine Nodes
Bandwidth (MB

sec ) Tarragon Overhead

MPI Tarragon ST Tarragon MT ST MT

Abe 1 1118 1820 1820 0.6x 0.6x

Abe 2 895 918 920 1.0x 1.0x

Abe 4 894 906 907 1.0x 1.0x

Abe 8 880 881 877 1.0x 1.0x

Kraken 1 2321 4450 4420 0.5x 0.5x

Kraken 2 1662 1610 1670 1.0x 1.0x

Kraken 4 1659 1610 1620 1.0x 1.0x

Kraken 8 1640 1580 1570 1.0x 1.0x
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(a)

(b)

Figure 3.19: Intra-node point-to-point bandwidth on Abe (Figure 3.19a) and on Kraken

(Figure 3.19b).
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(a)

(b)

Figure 3.20: Point-to-point bandwidth on Abe (Figure 3.20a) and on Kraken (Figure

3.20b). Bandwidth measured with a ring spanning 8 nodes.
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3.5.3 Discussion

Communication in Tarragon builds on top of communication substrate, which in

the current implementation is MPI. Consequently, Tarragon introduces overheads that

may affect performance. On the other hand, Tarragon tasks can live within the same

address space and therefore communicate more efficiently than MPI processes within a

node.

On both platforms, Tarragon has an advantage in intra-node communication.

With Tarragon, tasks communicate sharing data within the same address space and, in

some cases, benefit from cached data. However, MPI processes always involve copying

across address spaces. As a result, when running in single-threaded mode, the intra-

node latency in the Tarragon implementation is approximately a third of the latency

in the MPI implementation, while it is larger when running in multi-threaded mode,

due to thread synchronization. As message size increases, in both modes the Tarragon

implementation outperforms the MPI implementation and achieves roughly twice as

much bandwidth than the MPI implementation on the longest messages.

Overheads affect latencies also in inter-node communication. On Abe, in single-

threaded mode overheads are not significant. However, in multi-threaded mode on Abe,

and in both single-threaded and multi-threaded mode on Kraken, overheads result in

approximately a 2 to 3 fold increase in latency. However, even for messages that are just

tens of kilobytes long, the gap is almost negligible, and both implementations achieve

the same peak bandwidth.
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Chapter 4

Structured Grids

4.1 The Motif

Structured grids are used in scientific codes to represent a discretization of space

using regularly spaced points. When solving Partial Differential Equations (PDE), struc-

tured grids can be used in both finite-volume and finite-element codes.

This dissertation will focus on finite-difference methods. In finite-difference

codes the grid points are associated with field variables that are numerically differenti-

ated, by means of a finite-difference method, to approximate functions and derivatives

as they appear in an equation of interest.

Structured-grid and finite-difference computations are also used in the basic

steps of sophisticated computational methods such as multigrid [Bra] and adaptive mesh

refinement [Ber89], in which grids with different resolutions are used on the same do-

main. Without any loss of generality, this dissertation will consider single level meshes.

Structured-grid computations exhibit a high degree of locality and, because of

their regularity, the data are stored in contiguous memory and accessed by indices. How-

ever, depending on the equation, structured-grid codes exhibit different ratios of floating

point operations to memory accesses, and this ratio determines whether a kernel is com-

pute bound or memory bound.

The communication pattern is relatively simple and is usually some form of

nearest-neighbor communication pattern enabling boundary values exchange. Boundary

values are exchanged after every update, a behavior that is an ideal candidate for Bulk

86
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synchronous Parallel (BSP) formulations. During the computation phase, each process

updates the local values; then, during the communication phase, processes exchange

boundary values.

Overlapping communication in structured grid application has been subject of

prior research, although it has been approached in most cases with solutions based on

split-phase coding [Sco98, Bad00, Fin98].

4.2 A Jacobi Iterative Solver

The finite-difference model computation considered in this dissertation is an iter-

ative solver for Poisson’s equation in a three-dimensional domain with Dirichlet bound-

ary conditions. Poisson’s equation, which is shown in Equation 4.1, is a PDE that ex-

presses a potential function, here denoted by u, in terms of a known source function, here

denoted by v, on an open region Ω ∈ R3. The value of the potential on the boundary is

given by a known function f .  ∆u = v in Ω

u = f on ∂Ω

(4.1)

The solver considered implements Jacobi’s method. Space is discretized and

represented by a Cartesian grid, in which consecutive points are uniformly spaced with a

distance h. The Laplacian (∆) is approximated using a centered 7-point finite-difference

stencil. To solve Equation 4.1, the stencil in Equation 4.2 is applied to each point of the

grid.

u′i, j,k =
(ui−1, j,k +ui+1, j,k +ui, j−1,k +ui, j+1,k +ui, j,k−1 +ui, j,k+1−h2vi, j,k)

6
. (4.2)

Two copies of the grid are stored in memory to support out-of-place updates,

as illustrated by Figure 4.1a. Figure 4.1a shows an example of a 4× 4× 4 grid with

boundary points. The two grids represent values across two iterations. Each iteration

computes a new set of values. The new values, which in this example are written on

the grid on the right, are computed reading the values from the previous iteration, which
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in this example are read from the grid on the left. The central point vi, j,k is read from

a third grid that discretizes the source function v. Finally, before a new iteration takes

place, the roles of the two grid copies is reversed.

In typical Single Program Multiple Data (SPMD) formulations, the grids are

partitioned and each partition mapped uniquely to a process. With this partitioning

scheme, in addition to the physical boundary values, additional grid points are necessary

for the calculations on the internal boundaries. Such additional points, usually referred

to as ghost cells, are copies of points that belong to neighboring processes. The values

of ghost cells are refreshed between iterations.

Figure 4.1b illustrates the decomposition of a 4×4×4 grid (6×6×6 including

the boundaries). On a 2×2×2 process geometry, each process owns a block of 8 points

(2×2×2), plus boundaries and ghost cells. In practice, meshes would be much larger

and the ghost cells would account for a much smaller fraction of the mesh. The ghost

cells lie on the internal faces. Figure 4.1c shows an example of a block with boundaries

and ghost cells; ghost cells are highlighted.

4.2.1 Reference Implementations

In this dissertation, experiments use two MPI implementations as reference: a

Synchronous variant and an Asynchronous variant.

In the Synchronous variant, each MPI process owns and is responsible for updat-

ing a partition of the grid; between updates, ghost cells are exchanged synchronously.

The kernel is implemented with a set of nested loops, as represented in Algorithm 16.

The first loop (lines 3-9) is the iteration loop, that is, how many relaxation steps are

executed1. Communication takes place at the beginning of each iteration (line 2). Then,

the three nested loops iterate over each point of the M×N×P local partition excluding

ghost cells and boundaries. Finally, the two grid copies are logically swapped.

The Asynchronous variant is a split-phase reformulation of the Synchronous

variant. Computation is divided into two phases: one to compute points in the inside

of the local grid, and one to compute points on the surface, which are the points whose

new values depend on the ghost cells. The Asynchronous variant appears in Algorithm

1Usually an additional condition ensures that, when the desired accuracy is reached, the loop exits.
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(a)

(b) (c)

Figure 4.1: Mesh, stencil, and decomposition. Figure 4.1a illustrates two meshes hold-

ing values for two iterations: current (left) and next (right). Applying the stencil (be-

tween meshes) to the values the previous iteration produces the updated value for the

next iteration, which is the value at the center of the stencil. Figure 4.1b illustrates a

regular 3-dimensional decomposition resulting in 8 blocks. The block at the top right

corner is illustrated in Figure 4.1c. The internal highlighted structure represents the

points of the original mesh, while the highlighted points on the surface represent points

of the ghost cells that are exchanged with the neighbors.
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Algorithm 16 Synchronous
1: for all r ∈ [1..R] do

2: exchange ghost cells

3: for all i ∈ [1..M] do

4: for all j ∈ [1..N] do

5: for all k ∈ [1..P] do

6: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

7: end for

8: end for

9: end for

10: swap(u,u′)

11: end for

17. Communication is initiated before the computation (line 2), but there is no imme-

diate wait; rather, the relaxation of the inner points is done first (the three nested loops

iterating over [2..M− 1]× [2..N− 1]× [2..P− 1] are summarized in lines 3-5). Then,

processes wait for communication to complete (line 6). Finally, once the ghost cells

have been received, the points on the surface of the local grid are updated. Updating the

surface takes 6 additional groups of loops, one per face, with two nesting levels (lines

7-17).

4.2.2 Tarragon Implementations

The MPI reference implementations are compared to two Tarragon variants:

BGraph, and Graph. In both Graph and BGraph, tasks are equivalent to the processes in

the MPI variants, except that Tarragon permits the number of tasks to exceed the num-

ber of processor cores. In addition, tasks do not wait on communication, and execute

asynchronously.

Algorithm 18 shows the steps to define decomposition and mapping, to allocate

the graph, and to connect the tasks in the Graph variant. The Graph variant uses a

regular three-dimensional decomposition to map tasks to each shared memory node.

This distribution is optimal because it distributes tasks evenly to processes, and because
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Algorithm 17 Asynchronous
1: for all r ∈ [1..R] do

2: initiate ghost cells exchange

3: for all (i, j,k) ∈ [2..M−1]× [2..N−1]× [2..P−1] do

4: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

5: end for

6: complete ghost cells exchange

7: for all (i, j,k) ∈ {1}× [1..N−1]× [2..P−1] do

8: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

9: end for

10: for all (i, j,k) ∈ {M}× [1..N−1]× [2..P−1] do

11: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

12: end for

13: for all (i, j,k) ∈ [2..M−1]×{1}× [2..P−1] do

14: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

15: end for

16: for all (i, j,k) ∈ [2..M−1]×{N}× [2..P−1] do

17: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

18: end for

19: for all (i, j,k) ∈ [2..M−1]× [2..N−2]×{1} do

20: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

21: end for

22: for all (i, j,k) ∈ [2..M−1]× [2..N−2]×{P} do

23: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

24: end for

25: swap(u,u′)

26: end for
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Algorithm 18 Jacobi
1: map = BlockingRegularGridMap(procs, tasks)

2: connector = NearestNeighborConnector connector(map)

3: graph = new VectorGraph < 3,Jacobi > (map)

4: graph.accept(connector)

it minimizes off-node communication.

The mapping is defined by instantiating a BlockingRegularGridMap (line 1),

which is a class of the Extended API of Tarragon (see Section 3.4 and Section 4.4).

The instance of BlockingRegularGridMap defines a rectangular set of points which is

regularly decomposed into tasks, and a mapping of the tasks to the given set of processes.

Figure 4.2 illustrates an example in which a 12× 12× 12 grid is decomposed into 64

3×3×3 blocks; each block is then assigned to a 2×2×1 mesh of processes.

In the Graph variant, tasks are connected by an instance of the NearestNeigh-

borConnector class (line 2), which is one of the connectors defined in the Extended API

of Tarragon. When visiting a graph (line 4), the NearestNeighborConnector connects

neighboring tasks in both directions, enabling neighboring tasks to exchange ghost cells,

as illustrated in Figure 4.2d.

Stencil computations are good candidates for cache blocking because they are

characterized by high spatial locality but low temporal locality. In such cases, it may be

possible to rearrange the order of the operations to maximize temporal locality, hence

improving performance. Cache blocking is such an optimization. Cache-blocking treats

blocks of values that fit in cache as a unit, and all the operations on the block are executed

before the computation proceeds to another block. In this way, temporal locality is

maximized by re-using the data of a block, as many times as possible, while the block

is in cache.

While stencil computations are good candidates for cache blocking, optimiza-

tions are not always necessary when comparing the communication cost of different im-

plementations: as long as the sequential performance is the same, optimizations should

not affect the outcome of the comparison. However, While cache blocking can be an ef-

fective optimization for stencil methods, the same effect can be achieved through over-

decomposition. Over-decomposition conveys the same locality effect of cache block-
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(a) (b)

(c) (d)

Figure 4.2: Mesh decomposition in Tarragon. The complete 12×12 mesh is illustrated

in Figure 4.2a. The mesh is partitioned into 64 blocks, as illustrated in Figure 4.2b.

The blocks are then mapped to 4 processes. Each process owns 16 blocks, organized in

2×2×4 structures. In Figure 4.2c the structures are at the top, bottom, left, and right of

the mesh. Figure 4.2d illustrates the corresponding task graph. Each block is associated

to a task, and neighboring tasks are connected.
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ing, because tasks are treated like units of computation. While extensive optimization

and tuning of stencil computations are out of the scope of this thesis 2, the effect of

cache blocking must be taken into account when comparing the Tarragon variants to the

MPI variants. For this reason, BGraph and the MPI variants implement cache blocking,

whereas Graph relies solely on over-decomposition as a means of achieving the effect

of cache-blocking. For the sake of clarity, the additional loops required to implement

cache blocking have been omitted in Algorithm 16 and Algorithm 17.

BGraph also uses a different partitioning scheme than Graph does. Graph

achieves better locality through over-decomposition, creating a large set of tasks. In-

stead, BGraph employs cache-blocking and it has no incentive to create a large number

of tasks. Rather, since using fewer tasks may reduce communication and scheduling

overheads, BGraph uses a rectilinear partition to create thinner tasks on the boundaries

to ensure that even when a small number of tasks are created there is enough com-

putation to overlap with communication. Figure 4.3 shows an example of rectilinear

partition.

Algorithm 19 shows the steps to define decomposition and mapping, to allocate

the task graph, and to connect the tasks: to automatically create a rectilinear partition,

BGraph allocates an instance of BlockingRectilinearGridMap, a class defined in the Ex-

tended API of Tarragon. By creating an instance of BlockingRectilinearGridMap (line

1), BGraph obtains a Map with the desired number of tasks, as directed via the argument

tasks, and which defines the desired decomposition, as directed via the arguments procs

and steps. In particular, steps defines the width of the partitions.

Algorithm 19 Jacobi
1: map = BlockingRectilinearGridMap(procs, tasks,steps)

2: connector = NearestNeighborConnector connector(map)

3: graph = new VectorGraph < 3,Jacobi > (map)

4: graph.accept(connector)

Both Graph and BGraph use a customized subclass of Task, called Jacobi. The

class overrides the methods vinject and vexecute, which are illustrated in Algorithm 20

2An overview of stencil computations optimization and tuning is given by Datta et. al. [Dat08].
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Figure 4.3: Rectilinear decomposition scheme. Blocks with off-node neighbors are

smaller than with regular decomposition; in the figure, these are the blocks on the left.

The adjacent blocks that do not border on neighbors are bigger than with regular decom-

position.

and Algorithm 21, respectively. The method vinject handles incoming data and defines

the firing rule. In Jacobi, when all the ghost cells arrive, the receiving task becomes

ready for execution (line 7). It can also happen that two messages arrive from the same

direction before messages from other directions have arrived. In fact, because of the

asynchronous nature the algorithm, it is possible that after an initial exchange of ghost

cells a task does not execute while its neighbors do, and that it also receives the fol-

lowing iteration’s ghost cells. For this reason, an extra buffer is provided for pending

messages (lines 2 and 3). However, not more than one level is necessary, because recip-

rocal dependencies prevent a task from proceeding two or more iterations ahead of its

neighbors.

vexecute encapsulates the code for the relaxation of the grid partition associated

with the task. There is no iterations loop as in traditional implementations. Instead, a

task executes as many times as required by controlling the transitions between its states:

WAIT, EXEC, and DONE. At the end of each invocation of vexecute, before releasing

control, the task state is set based on the number of executions. If the desired number of
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Algorithm 20 vinject(message)
1: direction = message.direction()

2: if ghosts[direction] then

3: ghosts_hold[direction] = message

4: else

5: ghosts[direction] = message

6: if ++ received = dependencies then

7: →EXEC

8: end if

9: end if

iterations is reached, the task sets its state to DONE; otherwise, it sets its state to WAIT,

stalling execution until ghost cells arrive, or to EXEC if ghost cells have been received

already.

Algorithm 21 vexecute
1: for all (i, j,k) ∈ [1..M−1]× [1..N−1]× [1..P−1] do

2: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

3: end for

4: put messages

5: swap(u,u′)

6: if ++ iteration = R then

7: →DONE

8: else

9: reset dependencies

10: if received 6= dependencies then

11: →WAIT

12: end if

13: end if
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Figure 4.4: Cache-blocking effect with over-decomposition on Abe. The performance

achieved by Graph, running on Abe, is reported as a function of the number of tasks

instantiated.

4.3 Performance Evaluation

The four variants are evaluated on two platforms: Abe and Kraken. Abe is

an Intel powered cluster, Kraken is a Cray XT5. Detailed specifications of the two

platforms are given in Appendix A.

4.3.1 Results on Abe

The first experiment measures the effect of cache blocking on Abe. Figure 4.4

shows the effect of increasing the number of tasks when executing Graph on 1 core.

On a 5123 grid, changing the number of tasks visibly affects performance and, up to 64

tasks, performance increases because of better locality due to the cache blocking effect.

At 64 tasks, Graph achieves its peak performance of 0.87 GFLOPS. With more than 64

tasks, performance degrades. The loss in performance is due to scheduling overheads:

the cost of scheduling and activating a task becomes large relative to the time the task

spends computing.

The effect of cache blocking also suggests that the application is memory bound.

In fact, the stencil implemented is characterized by a relatively small number of arith-
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metic operations per data point loaded from memory. The systems considered in this

thesis are hierarchically organized platforms in which each node has multiple cores shar-

ing the available memory bandwidth. As a result, a fraction of the available cores can

saturate the available bandwidth, and using all the available cores might not be ben-

eficial, or could even be detrimental. The next experiment measures the incremental

performance contribution of each core.

Table 4.1: Single node performance on Abe. The table shows the performance, mea-

sured in GFLOPS, of Synchronous and Graph when increasing the number of cores.

Cores 1 2 4 8

Synchronous 0.84 1.40 1.42 1.53

Graph 0.87 1.40 1.53 1.60

Table 4.1 shows the performance of the Synchronous and the Graph variants

when the number of cores is increased from 1 to 8. The achieved GFLOPS rate increases

as more cores are added but the contribution of each added core decreases. Memory

bandwidth is the limiting factor and even on two cores, one per socket, can saturate a

large fraction of the available bandwidth. Therefore, using more cores only marginally

improves performance since most of the available bandwidth is already fully utilized.

In the following experiments on Abe, both the Synchronous and Asynchronous

variant use all the available cores, whereas Graph and BGraph use 7 cores per node, one

for the Tarragon service thread, and 6 for the worker threads.

In weak scaling, the user increases the workload in proportion to the number of

processes, for example, to increase mesh resolution. The weak scaling study that fol-

lows compares the performance of the four variants on Abe. As shown in Table 4.2, the

problem size ranges from 5123 to 30723, running on 8 to 2048 cores. In every config-

uration there are approximately 16M points per core and the computation completes 50

iterations in approximately 30 seconds.

The Asynchronous variant suffers a performance loss, in comparison to the Syn-

chronous variant, as a result of the poor locality of split-phase coding [Bad01, Pie].

The cost of updating the surface points outweighs the gain of the overlap of compu-

tation with communication. Graph and BGraph perform better than the Synchronous
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Table 4.2: Weak scaling on Abe. The Table shows the performance, measured in

GFLOPS, of the four variants: Synchronous (S), Asynchronous (A), BGraph (BG), and

Graph (G). The Table also shows the percentage of time spent communicating in Syn-

chronous (Comm), the speedup of Graph over Synchronous (S/G), and the percentage

of the communication time that is hidden in Graph (Hidden).

Problem Size Cores S Comm A BG G S/G Hidden

5123 8 1.5 7% 1.4 1.6 1.6 1.06 74%

6403 16 3.1 4% 2.9 3.2 3.2 1.04 93%

8003 32 6.0 7% 5.7 6.2 6.3 1.05 74%

10003 64 11.6 7% 11.3 12.4 12.5 1.08 98%

12003 128 23.6 8% 22.4 24.0 24.9 1.06 64%

16803 256 47.3 6% 45.7 49.7 49.8 1.05 83%

20003 512 93.4 7% 90.2 99.2 99.3 1.06 87%

24323 1024 185.7 9% 175.0 197.8 197.6 1.06 68%

30723 2048 372.5 8% 364.7 390.7 394.6 1.06 70%

variant. The speedup enjoyed is the result of the reduced communication time that,

in Synchronous lies on the critical path, whereas in Graph and BGraph it is hidden.

The comparison between the cost of communication, which is measured by difference

running the Synchronous variant omitting calls to communication primitives, and the

speedup achieved by Graph indicates that Graph hides at least 64% of the communica-

tion cost, and more than 70% of the communication cost in most of the cases. BGraph

and Graph achieve similar performance. Although BGraph can create fewer tasks and

possibly reduce scheduling overheads, compared to Graph there is no substantial differ-

ence in performance.

Strong scaling is considered next. In strong scaling the workload remains fixed

as the number of processes increases. With strong scaling, the surface-to-volume ratio

increases: the number of partitions increases but the workload does not. Consequently,

the volume of the partitions decreases faster than the surface does and, as a result, effi-

ciency degrades because the amount of work done per data transferred is reduced.
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Figure 4.5: Strong scaling on Abe. Comparison between the performance of Syn-

chronous, Asynchronous, Graph, and ideal performance, which is the performance that

Synchronous achieves omitting communication. The ideal values represents an upper

bound on performance. Graph gets to within 5% of the upper bound.
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Figure 4.5 compares Synchronous, Asynchronous, and Graph on a 16003 prob-

lem, on 256, 512, 1024, and 2048 cores. Figure 4.5 also shows the ideal performance,

which is measured by running Synchronous but omitting communication. For Syn-

chronous, the gap between ideal performance and actual performance increases with the

number of cores, whereas the performance of Graph closely follows the ideal curve. In

fact, as shown in Table 4.3, the speedup of Graph over Synchronous increases, follow-

ing the trend of the relative cost of communication. On 2048 cores, Graph achieves a

1.25 speedup over Synchronous reducing the wait time on communication by 86%. As

before, Asynchronous achieves worse performance than Synchronous.

Table 4.3: Strong scaling on Abe. Performance, measured in GFLOPS, of the four

variants: Synchronous (S), Asynchronous (A), and Graph (G), with the percentage of

total running time spent communicating in Synchronous (Comm), the speedup of Graph

over Synchronous (S/G), and the percentage of the communication time that is hidden

in Graph (Hidden).

Cores S Comm A G S/G Hidden

256 47.3 9% 45.6 49.7 1.05 57%

512 93.8 9% 83.2 99.4 1.06 63%

1024 174.8 15% 127.4 197.2 1.12 78%

2048 312.8 23% 266.8 391.9 1.25 86%

The last experiment on Abe explores Tarragon’s ability to tolerate increasing

communication latencies. In this experiment, communication delays are artificially in-

creased by padding the end of the message buffer with extra data. Figure 4.6a compares

Synchronous and Graph when solving a 10003 problem on 64 cores, as a multiplicative

factor is applied to the amount of data exchanged. Figure 4.6a also shows the commu-

nication cost.

The running time of Synchronous exhibits the same growth as the communica-

tion cost, whereas the running time of the Tarragon version increases gracefully, and at

a much lower rate. Figure 4.6b illustrates the correlation between the percentage of time

that Synchronous spends in communication and the speedup achieved by Graph over

synchronous. The two curves are characterized by the same slopes indicating a strong
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correlation between communication cost and speedup. In fact, while Graph successfully

overlaps communication with computation, the larger the contribution of communica-

tion to the total running time, the larger the speedup achieved. As reported in Table

4.4, communication time increases, contributing from 9% to 34% of the total running

time, and Graph, which hides from 90% to 100% of the communication time, achieves

a speedup over Synchronous that increases from 1.09 to 1.3.

Table 4.4: Communication cost scaling on Abe. The Table shows the running time,

measured in seconds, of the two variants: Synchronous (S) and Graph (G). The Table

also shows the increase in size in the communication buffer (Comm X), the percentage

of total running time that is spent communicating (Comm), the speedup of Graph over

Synchronous (S/G), and the percentage of the communication time that is hidden in

Graph (Hidden).

Comm X S Comm G S/G Hidden

1 34.7 9% 31.8 1.09 100%

2 34.8 9% 31.9 1.09 97%

4 35.3 11% 32.0 1.10 94%

8 36.4 14% 32.4 1.12 87%

12 40.4 27% 32.6 1.24 91%

16 42.7 34% 32.9 1.30 90%
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(a)

(b)

Figure 4.6: Effect of communication increase on performance on Abe. Figure 4.6a

illustrates wallclock time relative to communication cost. Figure 4.6b illustrates the

speedup of Graph over Synchronous, in relation to communication time.
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4.3.2 Results on Kraken

The first experiment measures the effect of cache blocking. Figure 4.7 shows

the effect of increasing the number of tasks when executing Graph on 1 core. On a

6003 grid, while the number of tasks affects performance, the peak performance of 0.82

GFLOPS is achieved on a wide range of configurations. The peak is first reached at

just 32 tasks, but the achieved performance stays within 1.2% of the peak from 8 to

1800 tasks; then, the performance degrades due to overheads: the cost of scheduling

and activating a task becomes very larger relative to the time spent computing.

Kraken is a Non-Uniform Memory Access 3 (NUMA) architecture and, in ad-

dition to evaluating how core occupancy saturates the available memory bandwidth, it

is also important to evaluate how data location in memory affects performance. Specif-

ically, the variants that use Tarragon are multi-threaded and they may suffer a perfor-

mance loss due to memory traffic across sockets if memory is not carefully allocated.

Tarragon does not expose the physical properties of the local memory hierarchy, and

traffic between sockets cannot avoided when one process occupies all the cores. How-

ever, by instantiating one process per socket, each process accesses only the closest

memory.

The next experiment evaluates occupancy configurations in Synchronous and

Graph. Table 4.5 shows the performance of the Synchronous variant and of the Graph

variant, with the latter running with one process per node (Graph-1), and with one pro-

cess per socket (Graph-2). While Graph-1 seems to be limited to scale only up to 8

cores, Graph-2 scales further and achieves its peak at 10 cores. On the NUMA archi-

tecture, using one process per socket restricts memory access to the closest memory,

efficiently utilizing the available memory bandwidth. In the experiments that follow,

Graph is always deployed with one process per socket. In the Synchronous variant, each

process is assigned to a core and memory accesses are localized to the closest memory.

The Synchronous variant achieves its peak performance on twelve cores.

3Non-Uniform Memory Access (NUMA) architectures are characterized by memory access time that
depends on the relative distance between memory and the processor.
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Figure 4.7: Cache-blocking effect with over-decomposition on Kraken. The perfor-

mance achieved by Graph, running on Kraken, is reported as a function of the number

of tasks instantiated.

Table 4.5: Single node performance on Kraken. The table shows the performance,

measured in GFLOPS, of Synchronous and Graph as a function of the number of cores.

Graph results are reported for both the 1-process (Graph-1) and 2-process configuration

(Graph-2).

Cores 1 2 4 6 8 10 12

Synchronous 1.16 3.06 4.16 4.59 4.48 4.43 4.77

Graph-1 1.17 1.87 2.20 2.38 2.48 2.50 2.50

Graph-2 1.17 2.61 3.85 4.56 4.88 4.92 4.86

Synchronous, Asynchronous, and Graph are next compared under weak scaling.

The problem size ranges from 6003 to 38403, running on 12 to 3072 cores. In every con-

figuration there are approximately 18M points per core and the computation completes

50 iterations in approximately 30 seconds.

Table 4.6 shows the performance of the three variants on Kraken. The Asyn-

chronous variant is the slowest because of its poor locality. On 24 cores, the cost of

communication is much higher than the average 6%, probably because of an inefficient

data alignment which increases the cost of data packing and unpacking. However, such
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high communication cost may not be present in the Graph variant, which uses a differ-

ent decomposition, and the speedup of Graph over Synchronous is 8% on 24 cores, the

highest observed. Graph is always outperforming Synchronous due to the overlap of

communication with computation; in fact, Graph hides at least half of the communica-

tion cost in all the cases, and more than 70% of the communication cost in the majority

of the cases.

Table 4.6: Weak scaling on Kraken. The Table shows the performance, measured in

GFLOPS, of the three variants: Synchronous (S), Asynchronous (A), and Graph (G).

The Table also shows the percentage of time spent communicating in Synchronous

(Comm), the speedup of Graph over Synchronous (S/G), and the percentage of the com-

munication time that is hidden in Graph (Hidden).

Problem Size Cores S Comm A G S/G Hidden

6003 12 4.8 3% 4.5 4.9 1.03 100%

7683 24 8.8 11% 8.5 9.5 1.08 73%

9603 48 17.1 5% 16.6 17.8 1.04 75%

12003 96 34.4 5% 31.7 35.9 1.04 75%

15003 192 66.1 7% 64.2 69.2 1.05 64%

19203 384 138.3 8% 137.1 147.3 1.07 76%

24003 768 265.3 7% 261.6 276.2 1.04 58%

30243 1536 539.2 5% 514.1 556.2 1.03 61%

38403 3072 1101.7 5% 1056.8 1146.9 1.04 61%

The last experiment on Kraken evaluates the two MPI variants and Graph in

strong scaling. Figure 4.8 compares Synchronous, Asynchronous, and Graph on a

15363 problem, on 384, 768, 1536, and 3072 cores. Figure 4.8 also shows the ideal

performance, which is measured by running Synchronous but omitting communication.

The Asynchronous variant is the slowest because of its poor locality, although its per-

formance is in this case closer to the performance of the Synchronous variant than in

weak scaling; while the overall efficiency of the computation decreases, the performance

penalty due to poor locality is relatively smaller.
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Figure 4.8: Strong scaling on Kraken. Comparison between the performance of Syn-

chronous, Asynchronous, Graph, and ideal performance, which is the performance that

Synchronous achieves omitting communication. The ideal values represents an upper

bound on performance. Graph gets to within 10% of the upper bound on up to 1536

cores, and it gets to 82% of the upper bound on 3072 where Synchronous gets to 72%

of the upper bound.
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For Synchronous, the gap between ideal performance and actual performance

increases with the number of cores. Also for Graph the gap increases in absolute terms,

although Graph is able to hide 38% or more of the communication. As shown in Table

4.7, the speedup of Graph over Synchronous varies from 1.02 to 1.15, but there is no

clear trend like there was on Abe. Although Graph achieves an average 1.09 speedup,

performance appears to become more dependent on locality effects induced by the fine-

grained partitioning.

Table 4.7: Strong scaling on Kraken. Performance, measured in GFLOPS, of the four

variants: Synchronous (S), Asynchronous (A), and Graph (G), with the percentage of

total running time spent communicating in Synchronous (Comm), the speedup of Graph

over Synchronous (S/G), and the percentage of the communication time that is hidden

in Graph (Hidden).

Cores S Comm A G S/G Hidden

384 131.8 6% 129.6 135.1 1.02 38%

768 239.5 15% 237.3 276.3 1.15 87%

1536 482.9 13% 467.8 512.3 1.06 44%

3072 808.5 28% 790.5 920.6 1.14 44%

4.3.3 Discussion

On both testbeds, results show that a split-phase implementation of an over-

lapping MPI implementation degrades performance due to its suboptimal locality. In

memory bound applications, split-phase coding may greatly reduce performance if lo-

cality is not taken into account. However, since tasks in Tarragon are treated like units

of computation, locality is preserved.

The Tarragon variants achieve overlap and outperform the Synchronous variant

by hiding 50% or more of the total communication cost, in weak scaling, and 38% or

more in strong scaling. In addition, the Tarragon variants successfully hide communi-

cation even when the relative cost of communication increases, indicating the ability to
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achieve overlap when communication cost is very high (e.g. on platforms with acceler-

ators).

4.4 A Finite-Difference Library Extension

This section illustrates the design of a Domain-Specific Extension (DSE) for

finite-difference computations on Cartesian grids, inspired by the implementation of

the Jacobi solver. The extension encapsulates all the encodings that characterize the

observed computation and communication patterns.

According to the patterns, computations will have the following requirements:

memory allocated to represent the points of the grid, including boundaries and ghost

cells; nearest neighbor communication, in order to exchange ghost cells; and a main

relaxation loop. In this context, codes differ in the type of cells represented, how the

grid is initialized, and the equations that govern the system.

To satisfy these requirements, the extension provides template classes and func-

tions that users can easily combine and customize. Creating the graph and the underlying

grid of values should be very simple. In order to meet these goals, the extension pro-

posed provides the three template classes and the template function illustrated in Figure

4.9.

Algorithm 22 compute
1: if ++ iteration≤ R then

2: for all (i, j,k) ∈ [1..M]× [1..N]× [1..P] do

3: u′(i, j,k) = stencil(u(i, j,k), l(i, j,k))

4: end for

5: swap(u,u′)

6: else

7: →DONE

8: end if

Most of the implementation is encapsulated in the GridTask class. GridTask

extends Task and provides a pointer to the storage associated to the task (_grid), the
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Figure 4.9: Class diagram of the Finite-Difference extension. The extension defines

two classes, GridTask and CartesianGrid, and a template function, make_grid. Carte-

sianGrid is based on classes of the Extended API of Tarragon: CartesianGridMap,

RectilinearGridMap, and VectorGraph. The template function make_grid helps in the

instantiation of a graph of tasks which are instances of a subclass of GridTask. In the

diagram, the # indicates protected access to a member, a + indicates public access to a

member.
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size of the partition (_sides), and some methods, including data packing and unpacking

methods. In addition, the class provides helper methods to initialize the grid.

GridTask fills in most of the details of the implementation of pack and unpack,

vinit and vinject, and defers the application-specific implementation to the virtual meth-

ods set_conditions and compute. When using this extension, users are only required to

define the initial conditions in the set_conditions method, and to encode the stencil oper-

ator in the compute method. Algorithm 22 shows a DSE implementation of the compute

method for a Poisson solver that is equivalent to Graph. Using the same notation as in

Algorithm 21, Algorithm 22 shows the DSE implementation of compute, which sim-

ply encapsulates the relaxation loop of the stencil operator and does not contain any

dependency checks.

The rest of the extension deals with constructing the task graph. Class Cartesian-

Grid extends VectorGraph in order to instantiate tasks of type GridTask. In addition, it

has a reference to the associated map, which is either a CartesianGridMap or a Rectilin-

earGridMap. Finally, the make_grid template function conveniently creates the graph

and the associated map, and connects the tasks:

Graph* jgraph = make_grid<dimensions,fields,CartesianGridMap>

(tasks_decomposition, bounding_box);

Table 4.8 compares the complexity of the code of Synchronous, Asynchronous,

Graph, and the DSE based variant. The table presents the number of source lines and

the Cyclomatic Complexity [McC96] of the functions that implement the stencil code.

Cyclomatic Complexity is a simple metric that represents the complexity of a program

based on the number of conditions it contains, and it is often used to indicate the number

of tests required for statement coverage testing. In this context, Cyclomatic Complex-

ity is used to compare the complexity of the variants providing an indication of the

complexity in using Tarragon, rather than MPI or MPI with split-phase coding, and the

benefits of DSE libraries.

Asynchronous and Graph require more lines of code then Synchronous. How-

ever, they do so for two different reasons: the Asynchronous code is larger because the

loops are split to separate the computation of the values on the surface; the Graph code is



112

larger because data packing and unpacking is implemented explicitly. In contrast, Syn-

chronous takes advantage of MPI’s derived data types, persistent communication, and

multiple initiation/completion primitives, which favor a compact formulation. However,

in DSEGraph, communication details are encapsulated in the library extension and the

code is much shorter than in any other variant.

The comparison using Cyclomatic Complexity gives a different perspective.

Asynchronous is more complex than Synchronous due to the additional loops introduced

by split-phase coding. However, the complexity of Graph is lower than the complexity

of Synchronous, because Graph does not implement cache blocking, and it is much

lower than the complexity of Asynchronous. As expected, since most of the complexity

is encapsulated by the library, DSEGraph is the simplest implementation in terms of

Cyclomatic Complexity.

Table 4.8: Comparison of complexity. For the comparison, the codes were stripped of

I/O operations, and include statements, and other portions of the code that would be

removed in a production version. The table compares the Synchronous, Asynchronous,

Graph, and DSEGraph variants. Two measures are compared: source lines of code

(SLOC) and Cyclomatic Complexity (CC).

Metric Synchronous Asynchronous Graph DSEGraph

SLOC 198 235 247 32

CC 20 29 16 5

The Finite-Difference Extension proposed and the comparison presented offer

an example of how the gory details of common operations can be encapsulated in ad-

hoc library extensions. Doing so promotes software reuse and considerably reduces the

complexity of the software. For example, converting DSEGraph to a solver that uses

a 19-point stencil requires a different implementation of the method stencil, which is

invoked in Algorithm 22 (line 3), but the codes are otherwise identical.

The Finite-Difference Extension presented serves as an example that illustrates

the development process for a DSE library. While Building domain-specific libraries for

block structured computations has been subject of prior research [Sco98,Man95,Agr95,

Col], the design and implementation of a comprehensive extension is out of the scope
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of this thesis.
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Chapter 5

Sparse Linear Algebra

5.1 The Motif

Sparse linear algebra problems often arise in scientific computing. The task at

hand is to solve a system of linear equations of the form Ax = b, where x and b are

dense vectors and A is a sparse matrix, i.e. most of its entries are zero. Implementations

of sparse linear algebra operations take advantage of sparsity in two ways: they avoid

operations involving zeros, and store only nonzeros in a compressed format. When the

sparsity pattern is irregular, it is impossible to define a scheme for storing nonzeros

without also storing their position within the matrix; therefore, nonzeros are accessed

through some level of indirection. As a result, additional memory traffic is generated and

the memory access pattern depends not only on the algorithm, but also on the sparsity

pattern. It follows that, when data is characterized by irregular sparsity patterns, sparse

linear algebra kernels exhibit poor locality and irregular communication patterns.

5.2 Sparse LU Factorization

The sparse linear algebra operation considered in this chapter is LU factoriza-

tion. LU factorization is employed in direct solvers of systems of linear equations. In

such solvers, given a linear system of the form Ax = b, first A is factorized, via some

variant of Gaussian Elimination, into two matrices which are a lower and an upper tri-

116
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angular matrix (L and U); then, the resulting triangular systems, Ly = b and Ux = y, are

solved by means of forward and backward substitution, respectively. The result of the

latter solve gives the solution to the system Ax = b.

Ak =



U1,1 · · · · · · · · · · · · · · · U1,n

L2,1
. . . · · · · · · · · · · · · ...

... · · · Uk−1,k−1 · · · · · · · · · Uk−1,n

... · · · Lk,k−1 Uk,k · · · · · · Uk,n

... · · · Lk+1,k−1 Lk+1,k

... · · · ...
... Ak

(k+1:n,k+1:n)

Ln,1 · · · Ln,k−1 Ln,k



Figure 5.1: Doolittle’s in-place right-looking LU factorization, step k. Ak is obtained

by scaling Ak−1
(k+1:n,k), as in Equation 5.1, and then updating the trailing submatrix

Ak−1
(k+1:n,k+1:n), as in Equation 5.3. Entries outside Ak−1

(k:n,k:n) persist in Ak.

In LU factorization, the lower triangular matrix L is a matrix of transforma-

tions and U is the upper triangular matrix that results from the elimination process. In

Doolittle’s algorithm, L and U are constructed column by column, from left to right

(right-looking factorization) [Gol96].

Figure 5.1 illustrates a step of the factorization with in-place updates to transform

A into L+U− I. Starting from the n×n matrix A0 = A, each step produces a column of

L and a row of U . At step k, Lk+1:n,k is obtained by scaling values of Ak−1
(k+1:n,k) by ak−1

k,k ,

as illustrated in Equation 5.1.

L(k+1:n,k) =
A(k+1:n,k)

ak−1
k,k

(5.1)

Since lk,k = 1 for each k, therefore it follows from Equation 5.2 that U(k,k:n) = Ak−1
(k,k:n).

U(k:n,k+1) =
Ak−1(k : n,k)

lk,k
(5.2)
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Finally, the trailing submatrix Ak−1
(k+1:n,k+1:n) is updated with a rank-1 update operation

of the form M = M + αxyT , in which xyT is the outer product; Equation 5.3 illustrates

the rank-1 update in the factorization step.

Ak
(k+1:n,k+1:n) = Ak−1

(k+1:n,k+1:n)−L(k+1:n,k)U(k,k+1:n) (5.3)

Algorithm 23 illustrates the steps of the LU factorization described. The outer

loop iterates over the columns of the matrix (lines 2-7); each column of the lower trian-

gular matrix is scaled (lines 3-5); finally, the trailing submatrix is updated with a rank-1

update (line 6).

Algorithm 23 LU Factorization
1: LU=A

2: for all k ∈ [1..n] do

3: for all r ∈ [k +1..n] do

4: LUr,k = LUr,k/LUk,k

5: end for

6: rank-1_update(LU(k+1:n,k),LU(k,k+1:n),LU(k+1:n,k+1:n),−1)

7: end for

To take advantage of cache locality and of highly-tuned single-core dense linear

algebra libraries, factorization algorithms are implemented using blocking. With block-

ing, the algorithm is expressed in terms of submatrices of contiguous rows and columns

rather than individual rows and columns, and operations between submatrices are ex-

ecuted by invoking dense linear algebra routines, such as those provided in the Basic

Linear Algebra Subprograms library [Law79, R. 00]. In parallel formulations, blocking

also results in more efficient communication because it increases messages length while

decreasing their number than for un-blocked algorithms. Consequently, the available

bandwidth is used more efficiently and the total communication cost is reduced.

Figure 5.2 illustrates a step of blocked factorization. Since operations involve

blocks, the number of steps matches the number of block columns, which are the blocks

of contiguous columns of L. In addition, the basic operations of the algorithm are ex-

pressed in terms of submatrices. Algorithm 24 illustrates LU factorization with block-

ing. With respect to the un-blocked algorithm, the loop iterates through N, the number
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Ak =

Dk
1 Rk

1

Ck
1

. . . ...

Dk
k−1 Rk

k−1

Dk
k Rk

k

· · · Ck
k−1

Ck
k Ak

k

Figure 5.2: Blocked in-place right-looking LU factorization, step k. Ak is obtained by

factorizing block column (D(k− 1)k,C(k− 1)k) (Algorithm 23), then updating block

row R(k− 1)k (triangular solve), and finally updating the trailing submatrix A(k− 1)k

(Equation 5.4). Entries outside Dk
k,C

k
k ,R

k
k, and Ak

k persist in Ak.

of block columns; the scaling of a column is replaced by a factorization routine that ap-

plies the un-blocked algorithm to the block column (line 2); the scaling in Equation 5.2,

which was omitted in Algorithm 23 because lk,k = 1, is replaced by a lower triangular

solve (line 3); finally, the rank-1 update is replaced by a matrix multiplication routine

that updates the trailing submatrix as illustrated in Equation 5.4 (line 4).

Ak
k = Ak−1

k −Ck
kRk

k (5.4)

Algorithm 24 Blocked LU Factorization
1: for all k ∈ [1..N] do

2: LUfactorization(Dk,Ck)

3: triangular_solve(Dk,Rk)

4: matrix_multiplication(Ck,Rk,Ak,−1)

5: end for

In sparse LU factorization, block rows and block columns are further divided

into blocks, and only blocks that contain nonzeros are stored. Blocked matrices are



120

stored in a compressed format, which stores only blocks containing nonzeros, together

with information to indicate their location.

5.2.1 Reference Implementation

In this dissertation, an LU factorization code implemented with Tarragon is eval-

uated and compared to an MPI reference implementation. The reference MPI implemen-

tation is provided by the SuperLU_DIST software package [Li,05, Xia03]. The solver

in SuperLU_DIST is a distributed memory sparse direct solver for general systems of

equations1. The solver is characterized by a symbolic factorization phase in support of

a static pivoting strategy [Li,98]; during the symbolic factorization the matrix is trans-

formed to ensure stability and to preserve sparsity. Tarragon is applied to the numerical

factorization which takes place after the symbolic factorization.

Figure 5.3: 2-dimensional cyclic mapping. A matrix partitioned into blocks is mapped

to a 2× 3 process mesh. The number inside each block of the matrix indicates the

process mapping.

SuperLU_DIST stores L and U in a distributed compressed format. After the

symbolic factorization, which defines the blocking structure of the matrices, blocks are

mapped to a 2-dimensional process mesh in a cyclic fashion: block (i, j) is mapped to

process (i mod r, j mod c) where r and c are the dimensions of the process mesh. Figure

5.3 illustrates a mapping example.

1Systems of equations characterized by a positive-definite matrix can be solved more efficiently using
Cholesky factorization.
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Each process stores its blocks in block columns containing blocks of L, and block

rows containing blocks of U . The two data structures have a different format. Blocks

of L, as well as the rows within a block, are stored out of order due to the permutations

applied during the symbolic factorization. The rows span the whole block column width,

and the nonzeros of a block column are therefore stored as a dense matrix. However,

nonzeros are stored in column major order and the nonzeros within a row are not stored

contiguously. Blocks of U are stored in order. However, within a block, columns may

have a different length, and the nonzeros are therefore stored contiguously in memory,

but do not form a dense matrix. When operating on a block of U, nonzeros need to be

first stored as a dense matrix. Both L and U data structures include an index structure

that provides blocks and subscript information. Figure 5.4 illustrates the data structures

of L and U.

Algorithm 26 shows the steps of the factorization in SuperLU_DIST. The fac-

torization routine receives the input matrix A′ (A′ is derived by A in the symbolic factor-

ization step). A′ is stored in the data structure that, at the end of the factorization, will

contain the resulting L and U matrices. During the factorization process, A′ is updated

in-place and eventually transformed into L +U − I. The factorization is divided into

steps, one step per block along the main diagonal of the matrix, and the main loop iter-

ates over the steps of the factorization routine (lines 1-11). In each step, a block column

of L is factorized (line 2-4); this factorization, illustrated in Algorithm 25, involves a

scaling operation and rank-1 updates as previously described; then, a block row of U

is obtained via a sequence of triangular solves (line 6); finally, the trailing submatrix is

updated (matrix multiply updates, line 10).

Algorithm 25 block_column_factorization(s)
1: if row(s)=myrow then

2: factorize block column s

3: send diagonal block

4: else

5: wait diagonal block

6: factorize block column s

7: end if
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Algorithm 26 LU factorization
1: for all s∈[1..block columns] do

2: if col(s)=mycol then

3: block_column_factorization(s)

4: send block column s

5: else

6: wait block column s

7: end if

8: if row(s)=myrow then

9: update and send block row s

10: else

11: wait block row s

12: end if

13: update trailing submatrix

14: end for

Algorithm 25 and Algorithm 26 also shows interprocess communication, and the

conditions that determine which processes contribute to the operations in a step. The

block column factorization starts with the process that owns the block on the diagonal.

This process factorizes the local block column, then sends the pivots and the upper

triangular part of the diagonal block to the processes along its process column (lines

2-3). Each other process that owns part of the block column waits for the diagonal

block, and then factorizes the local part of the block column. When the factorization

is complete, the block column is sent to the other processes along rows of the process

mesh (line of ).

After receiving the block column, processes that own the block row perform the

update and then send the block row to the other processes along columns of the process

mesh (line 6). Lastly, all the processes participate in updating the trailing submatrix

(line 10). In the following step, processes may execute different phases of the pipeline,

depending on which process owns the block on the diagonal. Because there is no explicit

synchronization between steps, execution is pipelined across different steps.

Figure 5.5 illustrates a step of the factorization and the accompanying communi-
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cation pattern. In the example, after the factorization of the first block column, process

0 sends the pivots to process 3, enabling the factorization of the remote blocks of the

block column. This phase of the step is illustrated in Figure 5.5a. Then, process 0 sends

the local blocks of the block column to other processes on the same process row, as

illustrated in Figure 5.5b. The receiving processes can then update the block row via

triangular solves. Finally, processes with blocks of the block column, and processes

with blocks of the block row send the local data, enabling the trailing matrix update on

every process, as illustrated in Figure 5.5c.
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(a)

(b)

Figure 5.4: SuperLU_DIST decomposition, mapping, and data structures. Figure 5.4a

illustrates a matrix that is decomposed into blocks. Grey blocks contain nonzeros; typi-

cal matrices are much sparser but this example uses a fairly dense matrix for the sake of

simplicity. Blocks are stored as columns, which include blocks of L and the blocks on

the diagonal, and as rows, which include blocks of U. For each block column, processes

have a pair of pointers to the local block row and block column. Figure 5.4b illustrates

the storage format of blocks rows and block columns. Block rows are stored as an in-

dex files containing row subscripts, and a values array in which nonzeros are stored in

column major format; as illustrated on the right of the blocks, column of nonzeros span

all the blocks of the block column. Block columns are stored as an index files contain-

ing the row subscript of the first element of each column, and a values array in which

nonzeros are stored in column major format.
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(a)

(b)

(c)

Figure 5.5: Factorization step. Figure 5.5a, Figure 5.5b, and Figure 5.5c illustrate three

snapshots in a factorization step. Figure 5.5a illustrates the communication in factoriz-

ing the block column; after the factorization of the diagonal block, process 0 sends the

pivots to process 3, which is the only other process with blocks of the block column.

Figure 5.5b illustrates the update of the block row, which is enabled when process 0

sends the block column to process 1, which it the only other process with blocks of the

block row. Figure 5.5c illustrates the update of the trailing submatrix; processes with

blocks of the block column and processes with blocks of the block row send the local

data enabling every process to participate to the trailing matrix update.
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Algorithm 27 LU factorization with overlap
1: block_column_factorization(1)

2: initiate communication of block column 1

3: for all s∈[1..block columns] do

4: complete pending block column communication

5: if row(s)=myrow then

6: update and send block row s

7: else

8: wait block row

9: end if

10: if col(s+1)=mycol then

11: update block column s+1

12: block_column_factorization(s+1)

13: initiate communication of block column s+1

14: update remainder of trailing submatrix

15: else

16: update trailing submatrix

17: end if

18: end for

SuperLU_DIST employs software pipelining to overlap communication with

computation. The resulting one-step look-ahead is implemented by split-phase cod-

ing [Xia03]. The look-ahead step, which was omitted in Algorithm 26 for the sake of

simplicity, is now illustrated in Algorithm 27. The first block column is factorized and

communication initiated before the main loop (lines 1-2). Then, in each iteration of the

loop, the trailing matrix update is split into two phases. In the first phase it updates

the block column which should be factorized in the following step (line 11); the update

of the trailing submatrix is then suspended and the updated block column is factorized

(line 12), and communication initiated (line 13). In the second phase, the update of the

trailing submatrix is resumed and completed (line 14). In this way, the communication

of the block column is initiated before completing the update and overlapped with the

second phase of the update.
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The factorization of the block on the diagonal is asynchronous with respect to the

block column factorization: after factorization, the process owning that block sends the

pivots and then continues computing. It does not wait for communication to complete

until it performs another block column factorization.

5.2.2 Tarragon Implementation

The Tarragon implementation of factorization is embedded in SuperLU_DIST

and replaces the original factorization based on MPI, which is illustrated in Algorithm

26. As illustrated in Algorithm 28, after an LUMap and an LUGraph are instantiated

(lines 3 and 4), tasks are created within a modified symbolic factorization (line 4). Then,

the call to the numerical factorization routine is replaced by graph initialization and

execution. Finally, the resulting triangular systems are solved as in the original solver

(line 8).

Algorithm 28 compute
1: Tarragon::initialize()

2: Tarragon rts = Tarragon::tarragon()

3: Map map = new LUMap()

4: Graph graph = new LUGraph(map)

5: symbolic_factorization(A,graph)

6: rts.initialize_graph(graph)

7: rts.execute_graph(graph)

8: Tarragon::finalize()

9: solve_backward_forward(A)

In SuperLU_DIST, Blocks are mapped onto a process mesh, and in Tarragon, the

tasks must reflect this mapping. In the Tarragon implementation, the number of tasks

depends both on the number of steps and the number of processes. LUMap defines a

mapping from a 3-dimensional space (process id, step, and type of task) to task ids of

the form

m : [0..p−1]× [0..sn−1]× [0..3]→ [0..t−1]

where p is the number of processes, sn is the number of block columns, and t is the total
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Figure 5.6: Class diagram of the tasks in LU factorization. SLU Task is the base class

and it is extended by DTask, SLU, SLU, and SLU. The subclasses define the different

types of tasks corresponding to the operations within a factorization step.

number of tasks. LUMap assigns contiguous ids to triplets with the same value in the

first position; consequently, by virtue of the RegularDistribution, which maps blocks of

consecutive ids to processes, such triplets are mapped to the same process ensuring that

a subspace p′× [0..sn−1]× [0..3] is mapped to each process.

Not all the tasks are instantiated. The symbolic factorization is modified such

that while the data structures of L and U are prepared, only the tasks whose associated

blocks have nonzeros are instantiated and added to the graph. At the same time, the

graph is formed and the dependencies are defined. Dependencies intended for tasks that

are not instantiated are either directed to other tasks, such as in the case in which there

are transitive dependencies, or not defined at all.

Figure 5.6 shows the class diagram of the five types of tasks defined: SLUTask,

DTask, LTask, UTask, and LUTask. SLUTask is the basic task used to define LUGraph;

in fact, LUGraph is a SparseVectorGraph of SLUTask objects, that is, a graph built on a

sparse set of tasks (SparseVectorGraph is described in Section 3.3.2). DTask is in charge

of starting a new factorization step; DTask updates and factorizes a block column and

sends the block on the diagonal to LTasks and UTasks. LTask updates and completes

the block column factorization on processes other than the one that owns the block on

the diagonal. UTask performs triangular solves to update the corresponding block row.

Finally, DTasks, LTasks, and UTasks send data to LUTask, enabling the trailing matrix
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update, as well as to the tasks that belong to the following step, to enable updates and to

continue the process. Once the update is completed, LUTask signals the next local task

that the step is completed. Figure 5.7 illustrates the tasks involved in a factorization step

and their dependencies.

(a) (b)

Figure 5.7: LU factorization task-dependency graph. Figure 5.7a illustrates the blocks

within the matrix associated with the tasks. The step is illustrated in Figure 5.7b. LTasks

(L) depend on DTask (D) for the block column factorization, UTasks (U) depend on

DTask for the block row update, and LUTasks (LU) depend on the other tasks for the

trailing matrix update. In addition, LUTasks are connected to tasks in the following

steps to signal when the step is completed.

The Tarragon implementation effects a compromise between creating a large

number of small tasks and maintaining the coarse granularity of the original formula-

tion. Creating a large number of small tasks would be ideal for exposing a high degree

of parallelism. However, preserving interoperability with other SuperLU_DIST routines

introduces limitations on the design choices in the Tarragon implementation. For exam-

ple, due to permutations performed in the symbolic factorization phase, rows of L are

stored out of order, and the order differs within each block column. In addition, blocks

of U are stored as columns of different size. As a result, factorization involves searches

and data formatting operations before dense linear algebra routines can be used. Such

operations would be duplicated in a fine grained task-parallel implementation causing
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high computational overheads. The approach adopted in the Tarragon factorization algo-

rithm is conservative in that it is task-parallel, but the tasks defined match the granularity

of the phases of the MPI implementation.

There are also limitations on the way factorization can be executed in the Tar-

ragon implementation. The SuperLU_DIST design assumes an underlying SPMD ex-

ecution model (MPI) and it uses a block-cyclic mapping of blocks to processes. With

Tarragon, when a single multi-threaded run-time system is deployed on each node, a

block-cyclic distribution maps consecutive blocks on different nodes causing a signif-

icant increase in inter-node communication. For this reason, the Tarragon implemen-

tation runs more efficiently if it follows the same process mapping of SuperLU_DIST,

though this prevents the run-time system from transferring data via shared-memory and

the available parallelism is limited. In addition, while the data structures used in Su-

perLU_DIST are stored in buffers ready for communication with MPI, in Tarragon such

data structures must be integrated with a message header requiring extra memory copies.

5.3 Performance Evaluation

The test suite used for the experiments is composed of twelve matrices from real

world science and engineering problems. Eight matrices are taken from the University

of Florida Sparse Matrix Collection [Duf89, Tim94], two from a fusion energy study

[cem], one from an accelerator structural design problem [com], and one is a dense

matrix. The matrices were selected with different sizes, number of nonzeros, sparsity,

and sparsity pattern to ensure that performance is evaluated under different conditions.

In particular, the dense matrix generated for this study is used to create a balanced

workload distribution in the attempt to isolate communication delays due to data transfer

from delays due to load imbalance. This test case is useful because with an uneven

workload distribution, waiting times due to load imbalance are also accounted for as

communication delays, but cannot be overlapped with computation. The characteristics

of each matrix are summarized in Table 5.1.

To accommodate memory requirements in the symbolic factorization, in the ex-

periments that follow the three largest matrices (the dense matrix, dds15, and matrix181)
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Table 5.1: Benchmark matrices characterization: order of the matrix (N), number of

nonzeros (nnz(A)), number of nonzeros in the factorized matrix (nnz(L+U)), sparsity

(nnz(A)/N), defined as the number of nonzeros per row, structural symmetry (Sym),

defined as nnz(S & S’)/nnz(S) where S is the sparsity pattern of A, and discipline of the

problem (Discipline).

Matrix N nnz(A) nnz(L+U) nnz(A)
N Sym Discipline

bbmat 38744 1771722 36074161 46 53% CFD

dense 8000 64000000 64000000 8000 100% generated

dds15 834575 13100653 875305401 16 N/A structural

g7jac200 59310 717620 37369148 12 3% economic

inv-extrusion 30410 1793881 30245222 59 97% CFD

matrix31 17298 2683044 12323340 155 N/A fusion

matrix181 589698 95179212 898865100 161 N/A fusion

mixing-tank 29957 1990919 44562362 67 99% CFD

nasasrb 54870 2677324 21128018 49 100% structural

stomach 213360 3021648 140580464 14 85% 2D

torso1 116158 8516500 27742019 71 42% 3D

twotone 120750 1206265 11360029 10 24% circuit
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are factorized occupying only half of the available cores on a node. This limitation af-

fects both implementations and in the experiments that follow, both implementations are

executed occupying the same number of cores.

Understanding performance differences between the two implementations is very

difficult. While both implement the same algorithm, the order of the operations may dif-

fer. In fact, in SuperLU_DIST, two communication phases are asynchronous, but block

row communication is synchronous; in contrast, communication is always asynchronous

in Tarragon. In addition, because of the inherent load imbalance, the communication

cost perceived by the application includes delays due to load imbalance, which cannot

be overlapped, and that expose communication overheads in Tarragon.

5.3.1 Results on Abe

The first experiment on Abe illustrates the impact on performance of memory

copies that, in Tarragon, take place during communication. When a task sends the same

data to different tasks, it must send a message to each destination. As a result, the same

data is copied once per destination task.

To avoid such inefficiency, Tarragon enables tagging: by annotating the edges of

the graph with tags, an application can notify the run-time system of which edges will be

carrying the same data (see Section 3.3). Then, during the execution of the graph, every

time that a message is sent through a tagged edge, the message is also sent automatically

over identically tagged edges, avoiding the extra memory copies. For example, in Figure

5.6, the edges from the D task to the L tasks carry the same data and are therefore be

tagged. Similarly, the edges from the D task to the U tasks are tagged, as are the edges

from the L tasks and from the U tasks to the LU tasks.

Table 5.2 shows the peak performance that the Tarragon implementation achieves

in LU factorization with and without tagging. Overall, tagging improves performance,

and it leads to an average 1.02 speedup. However, the improvement is observed only

on certain matrices. In fact, the effectiveness of tagging depends on the sparsity pattern,

which determines the number of equal messages that are sent by each task. Other fac-

tors also affect the outcome. For example, even when sending many messages at once,

not all the messages are communicated concurrently, and avoiding copies and posting
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communication requests faster may not result in much faster communication.

Table 5.2: Comparison of peak performance on Abe. The table compares the peak

performance that the Tarragon implementation achieves with and without tagging.

Matrix
No Tagging Tagging

Speedup
GFLOP/s Cores GFLOP/s Cores

bbmat 13.9 16 14.4 16 1.03

g7jac200 14.3 32 14.3 32 1.00

inv-extrusion-1 8.3 16 8.6 16 1.04

matrix31 12.4 16 12.7 16 1.03

mixing-tank 17.2 16 17.7 16 1.03

nasasrb 8.6 16 8.7 16 1.01

stomach 9.3 8 9.5 16 1.02

torso1 13.3 16 13.4 16 1.01

twotone 2.9 16 2.9 16 1.00

dense 235.4 512 235.4 512 1.00

dds15 19.5 64 19.5 64 1.00

matrix181 76.3 512 82.1 256 1.08

The next experiment compares the Tarragon implementation, with tagging en-

abled, to the SuperLU_DIST implementation. The results are shown in two tables:

Table 5.3 shows the results of the set of small matrices, solved on 1 to 32 cores, Table

5.4 shows the results of the set of large matrices, solved on 16 to 512 cores.

For most of the small matrices, the peak performance (timing in boldface) is

achieved on a small number of cores due to load imbalance and the little available par-

allelism. However, in many cases the Tarragon implementation achieves its peak on a

larger number of cores. However, the Tarragon implementation is less efficient in some

cases in which, on an equal number of nodes, it is slower than the SuperLU_DIST im-

plementation. Overall, on the small matrices, the Tarragon implementation achieves a

1.09 average speedup over the SuperLU_DIST implementation.

On two of the large matrices, the Tarragon implementation outperforms the
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SuperLU_DIST implementation. However, on matrix matrix181, the Tarragon im-

plementation does not improve its performance when scaling from 256 cores to 512

cores, whereas the SuperLU_DIST implementation, which is significantly slower on

256 cores, enjoys a performance improvement scaling to 512 cores. As a result, the

SuperLU_DIST implementation is faster than the Tarragon implementation. Overall, on

the large matrices, the Tarragon implementation achieves a 1.05 average speedup over

the SuperLU_DIST implementation.

To summarize, Table 5.5 shows the peak performance achieved by both imple-

mentations on each matrix. The highest performance is achieved on the dense matrix

owing to even load distribution and to the presence of large dense blocks; two ideal con-

ditions which enable efficient computations and good scaling. In the factorization of the

dense matrix, the Tarragon implementation is faster than the SuperLU_DIST implemen-

tation and achieves a 1.16 speedup, indicating a better overlap. On most of the matrices,

the Tarragon implementation outperforms the SuperLU_DIST implementation. Only

in two occurrences is Tarragon outperformed by the SuperLU_DIST implementation,

in which cases load imbalance may be exposing overheads in Tarragon. For example,

though tagging avoids duplicate messages, data in Tarragon is serialized by the run-time

system whereas SuperLU_DIST sends the data in the format they are is stored. As a

result, when load imbalance causes processes to idle because of a dependency, there are

no opportunities for overlap and the communication delay directly affect the running

time. Overall, the Tarragon version achieves better performance than SuperLU_DIST

and achieves an average 1.08 speedup on Abe.
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Table 5.3: Comparison of running time on Abe. The table compares the LU factorization

in SuperLU_DIST to the Tarragon implementation. The comparison, which is on the

set of small matrices, is based on the wallclock time. Timings are given in seconds.

Boldface timings indicate the best performance achieved on a given matrix.

Implementation Matrix
Processors

1 8 16 32

SuperLU_DIST bbmat 13.75 2.45 2.03 2.35

Tarragon bbmat 13.35 2.57 1.78 2.09

SuperLU_DIST g7jac200 29.46 5.37 3.55 3.85

TAR g7jac200 28.61 5.90 3.38 3.03

SuperLU_DIST inv-extrusion-1 9.03 1.54 1.25 1.51

Tarragon inv-extrusion-1 9.07 1.61 1.12 1.34

SuperLU_DIST matrix31 1.53 0.45 0.47 0.51

Tarragon matrix31 1.49 0.46 0.40 0.47

SuperLU_DIST mixing-tank 7.10 1.40 1.19 1.24

Tarragon mixing-tank 7.22 1.54 1.02 1.16

SuperLU_DIST nasasrb 2.86 0.81 1.03 1.37

Tarragon nasasrb 2.88 0.85 0.80 1.09

SuperLU_DIST stomach 28.32 5.51 6.11 9.91

Tarragon stomach 28.56 6.03 4.93 7.60

SuperLU_DIST torso1 6.79 1.61 1.70 2.40

Tarragon torso1 6.83 1.89 1.69 1.99

SuperLU_DIST twotone 18.89 3.56 3.12 4.52

Tarragon twotone 18.18 3.70 2.98 3.47
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Table 5.4: Comparison of running time on Abe. The table compares the LU factorization

in SuperLU_DIST to the Tarragon implementation. The comparison, which is on the set

of large matrices, is based on the wallclock time. Timings are given in seconds. Boldface

timings indicate the best performance achieved on a given matrix.

Implementation Matrix
Processors

16 32 64 128 256 512

SuperLU_DIST dds15 40.75 31.40 28.66 28.98

Tarragon dds15 43.47 34.63 27.72 34.19

SuperLU_DIST matrix181 160.93 79.33 51.31 31.75 27.41 22.41

Tarragon matrix181 216.90 103.70 53.10 35.70 23.23 24.23

SuperLU_DIST dense 12.89 11.74 5.04 3.01 1.75 1.68

Tarragon dense 16.95 8.56 4.91 2.77 1.77 1.45

Table 5.5: Comparison of peak performance on Abe. The table compares the peak

performance that the two implementations achieve in the LU factorization.

Matrix
SuperLU Tarragon

Speedup
GFLOP/s Cores GFLOP/s Cores

bbmat 12.6 16 14.4 16 1.14

g7jac200 12.2 16 14.3 32 1.17

inv-extrusion-1 7.7 16 8.6 16 1.10

matrix31 11.3 8 12.7 16 1.13

mixing-tank 15.2 16 17.7 16 1.17

nasasrb 8.6 8 8.7 16 1.01

stomach 8.5 8 9.5 16 1.12

torso1 14.1 8 13.4 16 0.95

twotone 2.8 16 2.9 16 1.05

dense 203.2 512 235.4 512 1.16

dds15 19.0 64 19.5 64 1.03

matrix181 85.9 512 82.1 256 0.96
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5.3.2 Results on Kraken

The first experiment on Kraken examines the impact on performance of memory

copies involved with communication. Table 5.6 shows the peak performance that the

Tarragon implementation achieves in LU factorization, with and without tagging. On

Kraken, tagging improves performance on all matrices and it leads to an average speedup

of 1.06, indicating that communication delays on Kraken account for a higher fraction

of the running-time than on Abe (on Abe, the average speedup achieved by tagging is

1.02).

Table 5.6: Comparison of peak performance on Kraken. The table compares the peak

performance that the Tarragon implementation achieves with and without tagging.

Matrix
No Tagging Tagging

Speedup
GFLOP/s Cores GFLOP/s Cores

bbmat 16.9 12 17.3 12 1.02

g7jac200 15.6 12 15.8 12 1.01

inv-extrusion-1 11.1 12 11.4 12 1.03

matrix31 23.1 24 24.3 24 1.05

mixing-tank 12.7 24 13.8 24 1.09

nasasrb 14.6 12 14.9 12 1.02

stomach 14.3 12 14.4 12 1.01

torso1 19.9 12 22.7 12 1.14

twotone 4.6 12 4.7 12 1.02

dense 220.2 120 237.0 120 1.08

dds15 88.4 48 101.9 48 1.15

matrix181 20.8 120 22.6 120 1.09

The next experiment compares the Tarragon implementation, with tagging en-

abled, to the SuperLU_DIST implementation. The results are shown in two tables:

Table 5.7 shows the results of the set of small matrices, solved on 1 to 36 cores, Table

5.8 shows the results of the set of large matrices, solved on 16 to 120 cores.

For most of the small matrices, the peak performance (timing in boldface) is
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achieved on 12 cores, that is, on just a single node of Kraken. Communication delays

have a significant impact on performance and limit the scalability of the application.

Even on Abe, peak performance on the small matrices is achieved with at most 16

cores. Kraken has 12 cores per node and using an additional node, therefore introducing

off-node communication, does not lead to a performance improvement. Overall, on the

small matrices, the Tarragon implementation achieves a 1.02 average speedup over the

SuperLU_DIST implementation.

On the large matrices, the peak performance of the two implementations is

within a 1% difference on matrix181 and the dense matrix, but on matrix dds15, the

Tarragon implementation achieves a 1.08 speedup over the SuperLU_DIST implemen-

tation. In that case, the Tarragon implementation enjoys a performance improvement

when using 60 cores instead of 48, leading to its peak performance, whereas the Su-

perLU_DIST implementation achieves its best on 48 cores. In this case, the ability to

scale to a larger number of cores leads to the performance advantage observed. Over-

all, on the large matrices, the Tarragon implementation achieves a 1.02 average speedup

over the SuperLU_DIST implementation.

To summarize, Table 5.9 shows the peak performance achieved by both imple-

mentations on each matrix. On most matrices, the Tarragon implementation outperforms

the SuperLU_DIST implementation by a small margin and, overall, it achieves a 1.02

speedup. Only in two cases the SuperLU_DIST implementation is slightly faster, with

a less than 2% difference in peak performance, in which case the Tarragon implementa-

tion may be penalized by its overheads.
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Table 5.7: Comparison of running time on Kraken. The table compares the LU fac-

torization in SuperLU_DIST to the Tarragon implementation. The comparison, which

is on the set of small matrices, is based on the wallclock time. Timings are given in

seconds. Boldface timings indicate the best performance achieved on a given matrix.

Implementation Matrix
Processors

1 12 24 36

SuperLU_DIST bbmat 11.76 1.47 1.54 1.78

Tarragon bbmat 10.66 1.41 1.47 1.61

SuperLU_DIST g7jac200 23.44 2.80 3.15 3.31

Tarragon g7jac200 21.31 2.74 2.87 3.00

SuperLU_DIST inv-extrusion-1 7.29 0.91 0.97 1.25

Tarragon inv-extrusion-1 6.45 0.84 0.89 1.05

SuperLU_DIST matrix31 1.26 0.23 0.21 0.24

Tarragon matrix31 1.17 0.23 0.21 0.23

SuperLU_DIST mixing-tank 5.88 0.74 0.68 0.79

Tarragon mixing-tank 5.48 0.74 0.68 0.74

SuperLU_DIST nasasrb 2.33 0.46 0.79 1.01

Tarragon nasasrb 2.17 0.47 0.63 0.70

SuperLU_DIST stomach 23.76 3.27 6.77 9.54

Tarragon stomach 20.89 3.25 6.19 6.80

SuperLU_DIST torso1 6.51 1.05 1.90 2.18

Tarragon torso1 6.27 1.00 1.84 2.12

SuperLU_DIST twotone 16.29 1.92 4.22 4.59

Tarragon twotone 14.47 1.89 3.61 4.99
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Table 5.8: Comparison of running time on Kraken. The table compares the LU factor-

ization in SuperLU_DIST to the Tarragon implementation. The comparison, which is on

the set of large matrices, is based on the wallclock time. Timings are given in seconds.

Boldface timings indicate the best performance achieved on a given matrix.

Implementation Matrix
Processors

24 36 48 60 120

SuperLU_DIST dds15 29.04 24.71 23.97 26.95

Tarragon dds15 35.29 29.13 24.71 22.42

SuperLU_DIST matrix181 45.56 33.10 26.69 24.70 17.47

Tarragon matrix181 44.05 35.07 26.47 23.27 17.41

SuperLU_DIST dense 6.25 4.25 3.21 2.66 1.43

Tarragon dense 6.11 4.10 3.03 2.53 1.44

Table 5.9: Comparison of peak performance on Kraken. The table compares the peak

performance that the two implementations achieve in the LU factorization.

Matrix
SuperLU Tarragon

Speedup
GFLOP/s Cores GFLOP/s Cores

bbmat 16.6 12 17.3 12 1.04

g7jac200 15.5 12 15.8 12 1.02

inv-extrusion-1 10.5 12 11.4 12 1.08

matrix31 24.3 24 24.3 24 1.00

mixing-tank 13.8 24 13.8 24 1.00

nasasrb 15.2 12 14.9 12 0.98

stomach 14.3 12 14.4 12 1.01

torso1 21.6 12 22.7 12 1.05

twotone 4.6 12 4.7 12 1.03

dense 238.7 120 237.0 120 0.99

dds15 95.3 48 101.9 60 1.07

matrix181 22.6 120 22.6 120 1.00
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5.3.3 Discussion

The Tarragon implementation takes advantage of tagging as a way to avoid un-

necessary memory copies when communicating the same data to different tasks. In

MPI, such optimization is not required because the MPI implementation allows the

same buffer to be sent to different destinations concurrently. Tarragon does not recog-

nize tasks that send identical messages to different tasks, and therefore it creates copies

of the same message. There are two situations when this occurs. First, the destination

field of the message differs. Second, if the message is not serialized, it is serialized

once for each destination and stored in a different buffer. Tagging, which is based on

graph metadata, avoids such inefficiencies and demonstrates how high level abstractions

support performance tuning.

It is difficult to compare the SuperLU_DIST implementation and the Tarragon

implementation, due to irregularity that characterizes the problem. But the results, over-

all, suggest that the Tarragon implementation achieves overlap. In particular, on Abe,

in the factorization of the dense matrix, Tarragon achieves a 1.16 speedup over the

SuperLU_DIST implementation. However, the same performance is not achieved on

Kraken on the dense matrix, where the Tarragon factorization is 1% slower. In the

Tarragon implementation, the ability to achieve overlap may be hindered because on

Kraken, communication is less expensive and Tarragon experiences higher overheads

than on Abe (see Section 3.5). In fact, even in the factorization of the dense matrix,

messages are only tens to few hundreds of kilobytes long.

In many cases, there is no significant difference in performance between the two

implementations, although on average, the Tarragon implementation is slightly faster

than the SuperLU_DIST implementation. While both implementations often achieve

their peak on the same number of cores, in some cases an implementation can enjoy a

speedup over the other by using more cores. In these cases, differences in the implemen-

tations, such as different scheduling and overheads, determine which implementation

performs better. Nevertheless, the performance of the Tarragon implementation is never

below 5% of the performance of the SuperLU_DIST implementation, and it is better in

most of the cases, proving its ability to achieve high performance and overlap.

While Tarragon achieves overlap and meets the performance of the
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SuperLU_DIST implementation, which is also overlapping communication with com-

putation, the potential of applying Tarragon to sparse LU factorization is not completely

expressed. In particular, the data decomposition and mapping imposed on Tarragon

limits its ability to execute one process per shared memory node and to execute fine-

grained tasks. A finer decomposition would create more opportunities for scheduling

tasks adapting to communication delays and achieving better overlap. Future research

should explore ways to enable the conditions that are most favorable to Tarragon, start-

ing from the symbolic factorization.

5.4 Acknowledgments

This chapter, in part, is currently being prepared for submission for publication.

Pietro Cicotti; Scott B. Baden. The dissertation author is the primary investigator and

author of this material.



143

References
[cem] Center for Extended MHD Modeling (CEMM). http://w3.pppl.gov/

cemm.

[com] Community Petascale Project for Accelerator Science and Simulation (COM-
PASS). https://compass.fnal.gov/.

[Duf89] Duff, I. S. and Grimes, Roger G. and Lewis, John G. Sparse matrix test prob-
lems. ACM Trans. Math. Softw., 15(1):1–14, 1989.

[Gol96] Golub, Gene H. and Van Loan, Charles F. Matrix computations (3rd ed.).
Johns Hopkins University Press, Baltimore, MD, USA, 1996.

[Law79] Lawson, C. L. and Hanson, R. J. and Kincaid, D. R. and Krogh, F. T. Basic
Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math. Softw.,
5:308–323, September 1979.

[Li,98] Li, Xiaoye S. and Demmel, James W. Making sparse Gaussian elimination
scalable by static pivoting. In Proceedings of the 1998 ACM/IEEE conference
on Supercomputing (CDROM), Supercomputing ’98, pages 1–17, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[Li,05] Li, Xiaoye S. An overview of SuperLU: Algorithms, implementation, and
user interface. ACM Trans. Math. Softw., 31(3):302–325, 2005.

[R. 00] R. Clint Whaley, Antoine Petitet and Jack Dongarra. Automated Empirical
Optimization of Software and the ATLAS Project. Technical Report UT-CS-
00-449, September 2000.

[Tim94] Timothy A. Davis. university of Florida Sparse Matrix Collection. 1994.

[Xia03] Xiaoye S. Li and James W. Demmel. SuperLU_DIST: A Scalable Distributed-
Memory Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans.
Mathematical Software, 29(2):110–140, June 2003.



Chapter 6

Dynamic programming

6.1 The Motif

Dynamic programming is a method for solving a problem by breaking down

the problem into simpler overlapping subproblems. Dynamic programming is widely

applicable, especially to optimization problems in which an optimal solution can be

built on optimal solutions of subproblems.

A common implementation technique relies on a multi-dimensional table repre-

senting all the subproblem instances and their solution. The table is filled incrementally,

according to the underlying dependence structure, and the solution is reached when the

table is completely filled.

The behavior of a dynamic programming algorithm depends on the problem to

be solved. However, since the underlying recurrence relation describing the dependence

structure used to combine the subproblem solution is repeatedly applied, until the final

solution is reached, the computational pattern is repeated over time. In addition, the un-

derlying communication pattern exhibits the dependence structure that characterizes the

recurrence relation, and it is also repeated over time. Therefore, a dynamic program-

ming algorithm often exhibits some regularity in its computation and communication

patterns.

Data reuse and locality can vary greatly. The recurrence relation and the amount

of overlap in subproblems determine how often data is reused, and the type of locality

characterizes the computation.

144
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6.2 Needleman-Wunsch

In computational molecular biology, sequence comparison (e.g. DNA) is a fun-

damental primitive operation and is at the basis of more complex manipulations and

analysis [Alu05]. For example, the comparison between two sequences can provide a

measure of how similar the sequences are and suggest some kind of correlation. Tools

that solve these types of problem are used in DNA sequence manipulations, such as

fragment assembly, and analysis, such as database searches based on similarity.

One way to define similarity is to quantify the minimum number of transforma-

tions needed to make two sequences equal. Other approaches are concerned not only

with similarity, but rather, with an alignment that maximizes the number of matching

characters that occupy the same position in the sequence. Usually this type of align-

ments allows using special characters to accommodate differences in sequences and to

maximize the number of matches.

Needleman and Wunsch were the first to design an algorithm that finds a prov-

ably optimal alignment [Nee70]. Their algorithm is based on the observation that an

optimal alignment can be built by extending optimal alignments of prefixes of the se-

quences. The observation led to a dynamic-programming algorithm that incremen-

tally builds the final solution. Subsequently, other dynamic-programming algorithms

were proposed to solve different formulations of the problem. For example, the Smith-

Waterman algorithm for local alignments [Smi81] is perhaps the most well known.

The model problem considered in this section is to find an optimal global align-

ment between two DNA sequences defined on the alphabet Σ = {A,C,G,T}. The im-

plementation is a variation of Needleman-Wunsch, but the results presented apply to

other variants, such as Smith-Waterman, that are formulated using the same dynamic-

programming approach.

The Needleman-Wunsch algorithm is based on the computation of an edit matrix

for the given input sequences, which are usually referred to as reference and query. The

edit matrix represents the optimal alignments between prefixes of the input sequences.

Rows and columns of the edit matrix are associated with the characters of the query and

the reference, respectively, and each entry of the edit matrix is the score of the alignment

between the corresponding prefixes of the sequences. The score measures the quality of
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the alignment. At the end of the computation, the bottom-right corner holds the score

of the complete alignment. As an example, Figure 6.1a illustrates the edit matrix that

results from the sequences ACCT and ACTG.

Scores are assigned according to a recurrence relation and a scoring function

Σ×Σ :→ Z. The recurrence relation defines the dependencies between entries and how

the scoring function is applied when prefixes are extended. The scoring function assigns

scores to matches and mismatches, and assigns a penalty to the insertion of a gap (_),

representing a simple genetic mutation that caused insertion or deletion of a base.

This dissertation uses the recurrence relation with linear gap penalties shown in

Equation 6.1. GAP is a given constant for a single gap penalty (−1), and sim is the

scoring function. The scoring function assigns a negative unit score for mismatches,

and a unit score for matches. Though the resulting alignment is affected by the choice

of the scoring function and the gap penalty, the number of operations and performance

do not. Choosing an optimal scoring function is out of the scope of this dissertation and

will not be discussed.

A[i, j] = max


A[i−1, j−1]+ sim(r( j),q(i))

A[i, j−1]+GAP

A[i−1, j]+GAP

(6.1)

Needleman-Wunsch has two phases: the first phase computes the edit matrix;

the second phase traverses the edit matrix along the path that corresponds to the optimal

alignment. The computational complexity of the first phase is O(mn), where m and n

are the length of the two sequences, and the cost of computing an entry of the matrix

is constant. The assumption holds for the class of scoring functions considered in this

dissertation. The computational complexity of the second phase is O(m+n) because the

length of the path that traverses the matrix from the bottom-right corner to the top-left

corner is bounded by the lengths of the two sequences; each step is either a move up or

a move to the left, and has constant cost. It follows that the first phase accounts for the

majority of the computation time. For this reason, only the first phase is considered.

The recurrence formula in Equation 6.1 establishes data dependencies such that

each entry of the matrix depends on three previously filled entries. In particular, each
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(a) (b)

(c) (d)

Figure 6.1: Needleman-Wunsch alignment. Figure 6.1a shows the edit matrix with

arrows representing the dependencies between entries. Figure 6.1b shows the wavefront

execution on a matrix decomposed into blocks, the arrows represent the dependencies

between blocks. Striped blocks are filled; tiled blocks are ready for execution, that is the

wavefront; empty blocks cannot be computed yet because of their dependencies. Figure

6.1c shows the wavefront after the completion of the second diagonal. The blocks are

mapped to two processes forming a communication ring. The ring is represented on the

right of the matrix. The diagonal dependency is implied and satisfied by communication

along the columns. Figure 6.1d shows the corresponding task graph in Tarragon.
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entry (i,j) depends on three entries in the previous row and previous column, namely

entries (i-1,j), (i-1,j-1), (i,j-1), as shown in Figure 6.1a. The dependence structure makes

the algorithm an ideal candidate for 2-dimensional wavefront parallelization [Lam74,

Gen].

In wavefront algorithms, as dependencies are satisfied, entries are filled in paral-

lel, along the anti-diagonal, creating a wavefront that advances through the table. Wave-

front algorithms can also be blocked. With blocking, the dependencies are inherited

by the blocks so that a block depends on three previously filled blocks: as with ma-

trix entries, blocks on the top left, top, and left, respectively. Figure 6.1b illustrates the

dependence structure. Starting from the top-left corner, as soon as the first submatrix

is filled it satisfies the dependencies on the right, down, and down-right. Two blocks

can then be computed concurrently, then three, and so on. Figure 6.1b illustrates the

progress of the wavefront on a matrix decomposed into 16 submatrices (4×4).

6.2.1 Reference Implementations

In this dissertation, two MPI implementations are used as reference: a Syn-

chronous variant and an Asynchronous variant.

The Synchronous variant is written in MPI. In Synchronous, blocks are assigned

to processes using a 1-dimensional cyclic mapping along the columns, such that row j

is assigned to process j mod p, where p is the total number of processes. Each process

fills the blocks of the matrix that it owns, row by row, left to right.

Each block is filled using a linear-space computation [Hir75]. Since each entry

of the matrix depends on just three neighboring entries, a new row is computed access-

ing values on the preceding row of the matrix, and there is no need to store the entire

block (Figure 6.2a). This principle is applied locally to the computation in each block.

However, the traceback phase requires the content of the blocks. To preserve the ability

to reconstruct the whole block, the left and top sides are stored together with the right

column and the bottom row (Figure 6.2b). The right column and the bottom row are

then sent to the neighboring blocks.

Although this solution is not linear in space, it reduces the amount of memory re-

quired, considerably improving the scalability of the algorithm. Globally, the algorithm
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(a) (b)

Figure 6.2: Hirschberg linear-space computation. Figure 6.2a shows the computation

of a block where only two rows are stored in memory. At any stage, each row can be

computed as long as the previous row is stored, as indicated by the dependencies. Figure

6.2b shows the block and columns required to compute the block and the communication

pattern. Left and top entries are received by neighboring blocks, bottom and right entries

are sent to neighboring blocks.

requires O(m×n
r×c ×(r+c)) space, where r and c are the number of rows and columns in a

block, because two rows and two columns are stored to represent each block, and there

are m×n
r×c blocks. However, storing the entire blocks requires O(m×n) space, that is, the

total amount of space required to store the entire matrix.

r and c define not only the space used, but also the granularity of the computa-

tion. In addition, the space saving technique renders the computation of a block CPU

bound as it generates virtually no memory traffic. In the experiments that follow, r and

c were varied to tune performance. Memory size was not a limiting factor in selecting

the optimal values of r and c.

Communication takes place after each process completes a block. Processes

send the bottom of the computed block, forming a communication ring, as illustrated in
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Figure 6.1c. The ring is implemented using blocking communication primitives and the

exchange is done in two phases: first even-rank processes send and odd-rank processes

receive, then even-rank processes receive and odd-rank processes send.

The Asynchronous variant implements the communication phase differently than

the Synchronous variant. In Asynchronous, processes maintain a communication sched-

ule, which defines in which order communication will take place, and post non-blocking

receives in advance. In this way, communication requests a posted in advance enabling

overlap, and avoiding extra memory copies within MPI. Then, as the computation pro-

gresses, processes follow the communication schedule retiring completed receives and

posting new ones. In this way, each process tracks a window of pending receives using

a circular queue. Similarly, sends are posted as soon as possible but retired only later, as

the window of pending sends slides forward.

6.2.2 Tarragon Implementations

The MPI reference implementations are compared to two Tarragon variants:

Block, and Panel.

In the Block variant, the graph is obtained by the blocked representation of the

matrix and the corresponding dependencies, with the exception that there is no diagonal

edge. The diagonal dependency is implied by the vertical edge. Figure 6.1d illustrates

the resulting graph. Each submatrix is associated with a task. Tasks execute after re-

ceiving a message from the task on the left, and the task from the top. The two messages

provide data on the leftmost column of the block and the first row, and therefore satisfy

the dependencies enabling the computation in the associated block. When executing, the

task fills the associated block of the edit matrix. Finally, the task terminates by sending

the last row and the rightmost column to the task below and to the task on the right.

In the Panel variant a whole row of blocks is associated with a task. Blocks

are still the unit of computation; because each block in a row can execute only after

the preceding block, the amount of parallelism is not reduced with respect to Block.

However, the size of the graph is reduced, and so is the memory utilized to store the

graph. In addition, scheduling overheads are also reduced, and the run time system

(RTS) can therefore be more responsive in handling communication events, an issue
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that appeared to affect the performance in Block.

6.3 Performance Evaluation

The four variants are compared in the computation of the edit matrix under weak

scaling. The number of entries of the edit matrix per core is kept constant as the number

of cores increases.

The four variants are compared on two platforms: Abe and Kraken. Abe is

an Intel powered cluster, Kraken is a Cray XT5. Detailed specifications of the two

platforms are given in Appendix A.

6.3.1 Results on Abe

The four variants are compared in the computation of the edit matrix under ex-

periments are repeated weakly scaling the length of the sequences, such that the number

of entries of the edit matrix per core is constant while the number of cores increases.

The first experiment on Abe evaluates the performance on a single node compar-

ing the four variants on 2, and 8 cores, using weak scaling. On 8 cores, the compared

sequences are twice as long as in the 2 core test. Since the computational complexity is

quadratic, both tests are expected to finish in the same amount of time. In addition, since

the communication cost on a node is very low, the results give an empirical indication

of whether the application is CPU bound or memory bound, a characteristic that affects

the optimal configuration of the service threads in Tarragon.

The results are given in Table 6.1. The running times of the Synchronous and

the Asynchronous variant are very similar on both 2 and 8 cores, indicating that the

application is CPU bound.

Since the application is CPU bound in Tarragon, dedicating a CPU core to a ser-

vice thread results in a performance penalty. Therefore, the Tarragon variants are tested

in both multi-threaded mode, that is, with one process per node, and single-threaded

mode, that is with one process per core. In multi-threaded mode each core is occupied

by a worker thread, and one core is shared by a service thread and a worker thread. In
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Table 6.1: Running times on Abe. The table presents single-node running times in

comparing two sequences whose length is reported in the first column. In addition to

the running times of the Synchronous and the Asynchronous variant, the table lists the

running times of 4 configurations: the Block variant running single-threaded (TB1),

and multi-threaded (TBM), and the Panel variant running single-threaded (TP1), and

multi-threaded (TPM). Times are given in seconds.

Length Cores Synchronous Asynchronous TB1 TBM TP1 TPM

216 2 11.5 11.4 10.1 10.9 10.4 10.4

217 8 10.9 10.8 10.0 19.2 10.3 11.4

single-threaded mode, there is only one thread per core that alternates service execution

with task execution.

On 2 cores, all the variants achieve approximately the same performance. How-

ever, on 8 cores, Block running multi-threaded is slower than the other variants. In

Block, the run-time system is frequently scheduling tasks and synchronizing with worker

threads due to the large number of tasks. The resulting overheads heavily affect the

performance of the Block variant. In contrast, Panel has coarser grained tasks and over-

heads do not appear to affect performance.

When running in single-threaded mode, Block is the fastest on 8 cores. Since

there is no thread synchronization, Block achieves 8% and 9% speedup compared to the

Synchronous and the Asynchronous variants, respectively.

Another aspect of the application that affects performance is the order of execu-

tion of the blocks. If the rows of blocks are considered as stages of a pipeline, blocks

that are on the same row are processed in the same stage, sequentially, from left to right;

the computation pipeline extends vertically.

In the MPI implementations the pipeline is implicitly defined as part of the hard-

coded schedule, in which the top rows of blocks are completed first. The schedule

is optimal for locality because it ensures that blocks are executed from left to right,

starting from the top rows, and the ordering matches the order in which data are stored

in memory.

By default, tasks in Tarragon are scheduled dynamically and without any prede-
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Table 6.2: Running times on Abe with and without prioritized execution. The table

lists the speedup achieved by prioritizing the tasks in the Block variant running single-

threaded (TB1), the Panel variant running single-threaded (TP1), and the Panel variant

running multi-threaded.

Length Cores TB1 TP1 TPM

217 8 1.00 1.00 1.00

218 32 1.00 1.00 1.03

219 128 1.00 1.00 1.06

220 512 1.07 1.00 1.26

fined order. However, if the order of execution does not match the order in which data

are stored in memory, some spatial locality is lost. In addition, when running in multi-

threaded mode, concurrent execution of tasks with edges directed to remote tasks may

cause an inefficient burst of communication, increasing communication and reducing

the overlap.

To establish an efficient scheduling policy, task priority attributes are introduced

as task graph metadata giving higher priority to the tasks that are closer to the top of the

matrix, as illustrated in Figure 6.3. In this way, tasks with low priority can execute when

all the high priority tasks are blocked, in response to communication delays; otherwise,

the computation proceeds according to the optimal schedule.

Table 6.2 shows the difference in performance between the Tarragon variants,

with and without prioritized execution. In some cases, prioritized execution is crucial

to realize high performance. There are two reasons. The first reason is that the order

induced by priorities exhibits better locality. The second reason is that the order induced

by priorities promotes a more efficient communication schedule. This is especially the

case for the Panel variant, when it executes in multi-threaded mode; when more than one

thread generates messages directed to another process, concurrency in communication

may limit the transfer rate. However, concurrency is avoided when following the order

induced by the priorities.

When executing in single-threaded mode, the Panel variant executes tasks fol-

lowing the optimal order of execution and prioritized execution has virtually no effect
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(a) (b)

Figure 6.3: Priority assignment. Figure 6.3 shows priority assignment to blocks of a

matrix in the MPI codes: darker blocks have higher priorities. Similarly, Figure 6.3b

shows how priorities are assigned to tasks in a 4x4 task graph.

on performance.

The next experiment compares the performance of the Block variant, which is

the best performing variant that uses Tarragon, to the performance of the MPI variants.

Table 6.3 shows that in scaling up to 512 cores, the Block variant is faster than both

MPI variants. Both the Block variant and the Asynchronous variant achieve a significant

speedup over the Synchronous variant, indicating that both reduce the communication

cost significantly by overlapping communication with computation. However, the Block

variant is also faster than the Asynchronous variant because it is able to adapt the sched-

ule to tolerate communication delays, achieving a 1.08 speedup over Asynchronous.

6.3.2 Results on Kraken

To evaluate the performance on a single Kraken node, the first experiment com-

pares performance on 3 and 12 cores. The results are given in Table 6.4. As expected,

the execution time of the Synchronous variant does not change, which is ideal because

the problem is scaled weakly. Also on Kraken the application is CPU bound.

On 3 cores, the Tarragon variants run in times comparable to Synchronous and
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Table 6.3: Running times on the Abe. The table presents running times of the Syn-

chronous variant, the Asynchronous variant, and the Block variant running single-

threaded (TB1). The table also reports the speedup of the Block variant over the Syn-

chronous variant (TB1/S), and over the Asynchronous variant (TB1/A). Times are given

in seconds.

Length Cores Synchronous Asynchronous TB1 TB1/S TB1/A

217 8 10.9 10.9 10.0 1.09 1.09

218 32 12.1 11.3 10.2 1.19 1.11

219 128 12.6 11.6 10.6 1.19 1.09

220 512 14.2 13.2 12.2 1.16 1.08

Asynchronous. However, as previously observed, Block running multi-threaded is slo-

wer than the other variants because of its high overheads. There is little improvement

in Block running in multi-threaded mode because of the modest communication cost.

In fact, intra-node communication is more efficient on Kraken than on Abe (see Section

3.5).

Table 6.4: Running times on Kraken. The table presents single-node running times in

comparing two sequences whose length is reported in the first column. In addition to

the running times of the Synchronous and the Asynchronous variant, the table lists the

running times of 4 configurations: the Block variant running single-threaded (TB1),

and multi-threaded (TBM), and the Panel variant running single-threaded (TP1), and

multi-threaded (TPM). Times are given in seconds.

Length Cores Synchronous Asynchronous TB1 TBM TP1 TPM

217 3 15.9 15.7 15.7 15.8 16.0 15.8

218 12 15.9 15.9 15.7 19.1 16.3 17.3

The second experiment assesses the effect of prioritized execution in the Tar-

ragon variants. Table 6.5 shows the difference in performance between the Tarragon

variants, with and without prioritized execution. As previously observed on Abe, the

Panel variant executes tasks following the optimal order of execution when executing
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single-threaded, hence its performance is not affected by priorities. Both Block, ex-

ecuting single-threaded, and Panel, executing multi-threaded, experience a significant

speedup. However, the speedup in Panel is much lower than on Abe because of the

lower communication cost. The speedup on Panel running in multi-threaded mode is

lower on 768 cores than on 192. In that case, since the number of tasks available to

run at any time decreases, and because Panel has by construction a smaller number of

tasks than Block, there are fewer opportunities for scheduling tasks in an order that is

different from the order induced by the priorities.

Table 6.5: Running times on Kraken with and without prioritized execution. The table

lists the the speedup achieved by prioritizing the tasks in the Block variant running

single-threaded (TB1), the Panel variant running single-threaded (TP1), and the Panel

variant running multi-threaded.

Length Cores TB1 TP1 TPM

218 12 1.00 1.00 1.00

219 48 1.00 1.00 1.02

220 192 1.01 1.00 1.08

221 768 1.07 1.00 1.06

The next experiment compares the performance of the Block variant, which is

the best performing variant that uses Tarragon, to the performance of the MPI variants.

Table 6.6 shows the results scaling up to 768 cores. The Block variant is faster than both

MPI variants. Both the Block variant and the Asynchronous variant achieve better per-

formance than the Synchronous variant, but the improvement is much smaller than on

Abe due to the lower communication costs on Kraken. Because of its ability to sched-

ule tasks dynamically, the Block variant is also slightly faster than the Asynchronous

variant.

6.3.3 Discussion

On both testbeds, results show that the Asynchronous variant is faster than the

synchronous variant. The improvement is due to the ability to overlap communication
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Table 6.6: Running times on the Kraken. The table presents running times of the

Synchronous variant, the Asynchronous variant, and the Block variant running single-

threaded (TB1). The table also reports the speedup of the Block variant over the Syn-

chronous variant (TB1/S), and over the Asynchronous variant (TB1/A). Times are given

in seconds.

Length Cores Synchronous Asynchronous TB1 TB1/S TB1/A

218 12 15.9 15.9 15.7 1.01 1.01

219 48 16.7 16.6 16.2 1.03 1.02

220 192 17.1 16.9 16.5 1.04 1.02

221 768 19.0 18.5 18.4 1.03 1.01

with computation. The Block variant is also faster than the Synchronous variant indicat-

ing that overlap is automatically achieved with Tarragon. In addition, the Block variant

also outperforms the Asynchronous variant because of its ability to dynamically adapt to

communication delays, producing an optimal schedule that is otherwise unpredictable.

To achieve its peak performance, the Block variant has to ensure that an optimal

scheduling policy is established. To do so, the graph is annotated with priorities. Priori-

tized execution improves performance on both platforms, proving that graph annotations

enable optimizations and portable performance.

The speedup achieved by the Block variant is lower on Kraken than on Abe. This

is a consequence of the fact that the communication cost is lower on Kraken than on Abe

(see Section 3.5). In addition, a lower communication cost implies smaller delays that,

on Abe, Tarragon was hiding by adapting the schedule.
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Chapter 7

Conclusion

7.1 Research Summary

This dissertation presented Tarragon, a programming model that supports latency-

hiding applications in scientific computing. Tarragon introduces a novel task graph ab-

straction that enables the programmer to express parallelism and data dependencies,

and that shields the programmer from the complexity of communication, threading,

and scheduling details. The task graph and its attributes create a separation of struc-

tural and correctness concerns from performance concerns. In addition, by virtue of

its data-driven execution model, Tarragon automatically overlaps communication with

computation.

Tarragon is a generic programming model for scientific computations and it is

applicable to problems that exhibit very different computation and data motion patterns.

The Finite-Difference solver presented in Chapter 4 is characterized by regular decom-

position and communication pattern, coarse granularity, and high locality. The sparse

linear system solver presented in Chapter 5 is characterized by highly irregular decom-

position and communication pattern, fine granularity, and little locality but some degree

of reuse. The sequence alignment tool presented in Chapter 6 is characterized by regular

decomposition and communication pattern, fine granularity, and no reuse.

Tarragon supports the definition of library extensions for specific classes of prob-

lems. Such extensions provide programmers with a set of abstractions that reduce the

programming effort, as demonstrated in the example in Section 4.4, and improve pro-
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ductivity facilitating rapid development.

The results in the application studies demonstrate Tarragon’s ability to achieve

high performance and to realize overlap. In all of the applications, the Tarragon im-

plementation meets or exceeds the performance of the corresponding overlapping MPI

reference most of the times. In addition, even when split-phase coding affects the mem-

ory access pattern and negates the performance improvement due to overlap, Tarragon

supports overlapping algorithms that preserve locality. For example, results with the

Finite-Difference solver show that the MPI overlapping version suffers a performance

loss compared to the non-overlapping MPI version, whereas the Tarragon version ex-

ceeds the performance of the non-overlapping MPI version owing to overlap and good

locality.

The results of the sequence alignment application demonstrate that the Tar-

ragon version achieves overlap and that its performance is maximized by an appropriate

scheduling policy. While Tarragon always achieves overlap, default scheduling policies

might cause execution to diverge from the critical path. However, with graph analysis

and prioritization users can identify and establish the most appropriate scheduling poli-

cies. These results demonstrate that graph-metadata can be used to tune performance

without affecting correctness of execution.

The results in LU factorization code indicate that certain conditions, in the case

examined imposed by existing code, may limit the potential of Tarragon. While on

Abe the Tarragon version clearly outperforms the SuperLU_DIST implementation, on

Kraken, where communication is more efficient and overheads in Tarragon are higher,

the Tarragon implementation improves performance only marginally. Tarragon’s ability

to achieve overlap, and hide also communication overheads, in the LU factorization

code is hindered by the limited parallelism available. In fact, Tarragon has to adapt

to the decomposition, mapping, and data structures of SuperLU_DIST. As a result, on

Kraken, the Tarragon version exhibits an overall modest improvement compared to the

performance of the SuperLU_DIST implementation.

In conclusion, this dissertation demonstrates that data-driven execution coupled

with metadata abstractions support latency tolerance. In addition, Tarragon’s program-

ming model supports performance optimization techniques that are decoupled from the
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algorithmic formulation and the control flow of the application code; while enabling

performance tuning, the resulting separation of concerns between performance and cor-

rectness promotes performance portability.

7.2 Limitations

The current implementation of Tarragon introduces communication overheads

that may limit performance in fine-grained applications. To alleviate the impact of these

overheads, Tarragon supports message aggregation. However, message aggregation did

not appear to be beneficial in the applications examined.

Tarragon’s interoperability with legacy code may be limited. For example, when

the MPI code imposes its Single Program Multiple Data execution model forcing Tar-

ragon to run single-threaded. In addition, as it was the case in the LU factorization, if

the MPI code dictates data structures and a data distribution that are inherently ineffi-

cient for highly parallel task formulations, a Tarragon application must adapt by defining

tasks with coarser granularity than otherwise desirable. Both single-threaded execution

and coarse granularity may reduce the available parallelism and hence hinder the ability

of the run-time system to achieve overlap.

Finally, a limitation of this dissertation is represented by the scope of the applica-

tion studies; an exhaustive study should address all the motifs [Col04,Asa06]. However,

the applications considered exhibit diverse computation and communication character-

istics common to many scientific applications, the target of Tarragon. In addition, the

ability to achieve high performance with data-driven models has been demonstrated on

other motifs, such as dense linear algebra [Jak09], unstructured grids [Bha00], and N-

body methods [Jet08].

7.3 Future Research Directions

The explicit task graph representation used in Tarragon lends itself to analysis-

driven performance optimizations. For example, graph analysis can suggest a task re-

distribution that minimizes inter-node communication and hence the overall communi-
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cation cost. Using a richer set of metadata, perhaps collected partly by the application

and partly by the run-time system, offers promise for even more complex optimizations.

Load balancing is such an example; if the graph is annotated by the run-time system

with measured load information, or by the application with expected load information,

graph analysis can determine the optimal workload distribution.

Tarragon can be extended to support clusters of accelerators (i.e. GPUs), an area

in which communication latencies are a major performance bottleneck [Nha]. The idea

of supporting hybrid code that executes on clusters of multicore nodes with accelerators

appears to be promising in a context in which metadata can support dynamically tuned

scheduling. For example, by carefully assigning affinities tasks could elect to execute on

either a processor core or an accelerator. Finding the optimal mapping of tasks to a set

of heterogeneous processing elements while overlapping computation with communica-

tion is an open problem. Future research should focus on graph analysis and metadata

annotation as a way for defining scheduling policies to optimize execution on clusters

of accelerators.

Tarragon mostly delegates productivity concerns to library extensions. However,

the use of libraries in refactoring and porting existing code bases to emerging architec-

tures still requires some degree of redevelopment. A promising approach in refactoring

existing code is to use automatic translation tools [Qui02]. To this end, automatic trans-

lation to apply transformations and optimize MPI code is an active area of research,

including an effort for translating MPI code to Tarragon code.
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Appendix A

Testbed

A.1 Abe

Abe is the Dell Intel 64 Cluster at the National Center for Supercomputing Ap-

plications (NCSA). Abe is part of the Teragrid infrastructure [Cat07], and it is intended

for highly scalable parallel applications. The system counts 1200 Dell PowerEdge 1995

nodes, hosting two Intel Xeons (Clovertown E5345) processors each, for a total of 8

cores per node, and 9600 cores for the whole system. Of the nodes, half are configured

with 8GB of memory, and half are configured with 16GB of memory. Nodes are con-

nected via InfiniBand (Mellanox Technologies MT25208 InfiniHost) and share 100TB

of storage in a Lustre parallel file system.

Each node hosts two Intel Xeon processors running at 2.33GHz. The processor

has four cores, each with 32KB L1 caches (data and instructions); the processor also

has two 4MB L2 caches, which are each shared by two cores. The aggregate bandwidth

available on a node is 21.33GB/s, which is provided by four DDR2-667 channels (two

channels and 10.66GB/s per socket).

A.2 Kraken

Kraken is the Cray XT5 at the National Institute for Computational Science

(NICS). Kraken is part of the Teragrid infrastructure [Cat07], and it is intended to pro-
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vide a capability resource for computationally challenging problems. The system counts

9408 nodes, each hosting two AMD Opteron (Istanbul) processors for a total of 12 cores

per node, and 112,896 cores for the whole system. Each node has 16GB or memory.

Nodes are connected via Cray SeaStar (3D Torus) interconnect and share 2400TB of

storage in a Lustre parallel file system.

Each node hosts two AMD Istanbul processors running at 2.6GHz. The proces-

sor has six cores, each with a 128KB L1 cache (data and instructions) and a 512KB L2

cache. The six cores also share a 6MB L3 cache. The aggregate bandwidth available on

a node is 25.6GB/s, which is provided by four DDR2-800 channels (two channels and

12.8GB/s per socket).
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Appendix B

API Reference

B.1 Core API

The core API defines the basic classes required to define and construct the

graphs, and to interact with the run-time system.

B.1.1 Task and Dependency

Task and Dependency are the building blocks of a graph. Task defines the unit

of computation and is a base class that must be extended by the application developers.

Dependencys connect Task objects, represent task dependencies, and enable inter-task

communication.

Both Task and Dependency have metadata attributes that the run-time system can

inspect. The attributes of Task are used to maintain information that both the task itself

and the run-time system access and can modify. The attributes of Task Are:

_state , the scheduling state of the task,

_priority , the scheduling priority of the task,

_affinity , the worker affinity,

_last is the last worker that executed the task.
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Figure B.1: Class diagram of Task and Dependency

The attributes of Dependency are initialized when the graph is constructed and may not

be changed during execution. The attributes of Dependency are:

_id , is the id of the task that the Dependency connects to,

_max_size , is the cpacity of the Dependency, that is the largest amount of the data that

can be sent along the edge at once,

_aggregation , enables data aggregation.

_tag , enables tagging.

Tasks definition

Tasks are the unit of computation and the application programmers are expected

to extend the Task class to define customized tasks. The sub-class (class derived from

Task) can access two fields of Task: the _id field, which is set to the identifier of the task,

and the _graph field which is a reference to the graph the task belongs to. The sub-class

inherits several virtual methods that may be overriden to define the behavior of the new

type of task. The virtual methods of Task are:

vinit is invoked when the graph is initialized. Defining vinit is optional and should be

done only when there is a logical distinction between operations that are part of the
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initialization of the tasks and operations that are part of the actual computation.

In addition, with respect to the object initialization, vinit is executed when the

graph is already constructed making it possible to define a globally coordinated

initialization of the tasks involving communication between tasks.

vexecute is invoked when the task is ready to be executed and it represents the actual

task execution. Most of the application code is exected to be encapsulated in

vexecute. When the task is ready is scheduled for execution is eventually assigned

to a worker which invokes vexecute.

vinject(message) is a short message handler that is invoked when a message reaches a

task. The method is used to deliver the mssage referenced by the argument mes-

sage. In addition, the vinject method implements the semantics of the dependen-

cies. By checking the state of a task, vinject determines whether the dependencies

have been satisfied and the task is ready for execution. vinject is not intended to

carry out extensive computations.

vcreate(buffer) is invoked whenever a message is received from a remote task. Data is

received in serialized form and the run-time system uses vcreate to interpret the

data and instantiate a Message object.

vdestroy(message) is invoked whenever a message is sent to a remote task. Since data

is transferred asynchronously, Tarragon uses vdestroy to notify the source that the

data transfer has been completed locally; there is no guarantee that the message

has been delivered.

vterminate in invoked when there are waiting tasks but no process has tasks running.

Tarragon detects quiescence and uses vterminate to notify each waiting task that

the graph execution can be completed. On tasks that transition to the state indi-

cating completion (DONE) vterminate is not invoked.

Tasks Connection

Once defined, in order to form a graph tasks are instantiated and then connected

by the Dependency objects. Dependency objects are not directly instantiated by the
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programmer but they are instantiated through methods of Task:

connect(task) is invoked on a task and takes another task as argument. The argument

can be a task id or a reference to a task object and it is the destination of the

resulting Dependency.

disconnect(task) is invoked when the shape of the graph is changed. disconnect is only

useful if a graph, after being used, is modified and then reused. In general this not

the case and the graph is deallocated as a whole. In that case all the Dependency

objects are deallocated automatically.

Tasks Communication

During execution, tasks communicate by sending messages along the edges.

There is only an asynchronous operation to send data:

put(message) is a method of Dependency and it used to put data on an edge. Such data

will be delivered eventually to the tak the Dependency is directed to.

B.1.2 Message

Message is the class that defines data that can be transferred between tasks. Mes-

sage represent data and defines only methods to be used to access data and its metadata.

The only functionality method is Serialize, which is invoked by the run-time system to

layout the message as a contiguous sequence of bytes.

Data and metadata are defined or referenced by the Envelop of the message. The

envelop has a Label, that is metadata fields, and a reference to the payload, which is the

data. A message has three types of metadata: message type, transfer information, and

user-defined meta-data. The type of the message determines how it will be treated by

the run-time system and there are three fields in the type: whether a message needs to be

serialized or it is already stored contiguosly in memory, whether a message is stored on

memory allocated by the application or by the run-time system, and whether a message

can be aggregated to other messages. Transfer information are source and destination

task id, and the size of the message. Finally, for convenience, the label carries a key,

which is a value for user-defined metadata.
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Figure B.2: Class diagram of Message

Figure B.3: Class diagram of Map

Tarragon APIs include two predefined types of messages: the BufferedMessage

class, and the WrappedMessage class. A BufferedMessage is stored sequentially in

memory and as such does not need any explicit serialization whereas the WrappedMes-

sage class simply defines a message wrapper with a generic pointer pointing to a data

buffer. WrappedMessage handles serialization automatically via its it serialize method.

The serialize method of WrappedMessage first writes all the metadata onto a communi-

cation buffer then, to the same buffer, it appends the data pointed to by the reference.

B.1.3 Point, Region, and Map

A Map defines a naming scheme for identifying tasks. A Map defines a set of

n-tuple M ∈ Zn representing the tasks. A Map also defines an enumeration M :→N that

associates the n-tuples to tasks ids.
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It is possible to query the map to gather information about the map itself, as well

as to map to associate coordinates and task ids. For this purpose, Map defines several

methods. Some of them overladed methods (defined for different arguments) and take

a task argument that can either be a task id, in which case the coordinates associated to

task are used for the query, or the coordinates of a task. A brief descrition the methods

of Map follows:

size returns the total number of points in the map,

coordinates returns a point, whose coordinates are the number of tasks in each dimen-

sion,

in_map(task) returns a boolean value: true if the argument given refers to a point that

falls inside the map, false otherwise,

next(task,a,periodic) returns the id of the task which, relatively to task, is next in the

dimension a. If periodic is true, periodic boundaries are assumed and in this case,

the first task in one dimensino is the next with respect to the last in the same

dimension,

prev(task,a,periodic) returns the id of the task which, relatively to task, is previously

in the dimension a. If periodic is true, periodic boundaries are assumed and in

this case, the last task in one dimension is the previous with respect to the first in

the same dimension,

coordinates_index(coordinates) performs the mapping between coordinates and the

id of the associated tasks,

index_coordinates(id) performs the mapping between a task id and the coordinates of

the asssociated task.

Point and Region are two supporting classes that are used to define maps. Point

is a multidimentional template class and is used to define the coordinates on a map. A

Region is a rectangular region identified by two points, the lower bound and the upper

bound.
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Figure B.4: Class diagram of Graph

B.1.4 Graph

The class Graph defines a distributed container of tasks (Figure B.4) and encap-

sulates different storage and allocation schemes to control task allocation and distribu-

tion. It has five methods:

range the number of local tasks

size the total number of tasks

task(id) returns a reference to a task for the given id, or null if the task is not a local

task,

is_local(id) returns true is the id identifiies a local task, false otherwise,

locate(id) returns the process id of the process where the task identified by id is located,

For convenience Graph can also be iterated through. There are two types of

iterators, Graph::iterator and Graph::riterator. A Graph::iterator can be used to iterate

through the local tasks of the graph in increasing id order, a Graph::riterator can be

used to iterate through the local tasks of the graph in decreasing id order. Iterators are

instantiated by the begin and rbegin methods, can be moved over the tasks by increment

(++), and can be compared to end and rend to stop the iteration process.

Graph allocates tasks according to a given mapping of tasks to processes. The

mapping is formalized as a Distribution object. Distribution defines an interface and it is

possible to create new mappings. The interface is composed by the following methods:
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locate(id) return the process where the tasks identified by id is defined,

range returns the number of local tasks,

sort signals of an opportunity for internal optiomization before use,

begin returns the lowest task id among local tasks,

end returns the highest task id among local tasks,

update(pid,id) updates the distribution, the highest id on processs pid is id.

Tarragon provides two predefined distrubions: RegularDistribution and Sparse-

Distribution. By default graph use the RegularDistribution, in this case the tasks are

equally distributed between processes, in increasing order, such that each process is

assigned the same number of tasks (the difference can be at most of one task). The

SparseDistribution supports sparse sets of tasks, that is set of tasks where only crertain

tasks are instantied.

B.1.5 Visitor

In oder to support additional functionalities and algorithms, the objects of a

graph are defined as element classes according to the visitor design pattern [Gam02].

In the specific case of Tarragon, Graph, Task, and Dependency implement the Element

interface, which defines the accept(Visitor) method. Visitors must implement the Visi-

tor interface which includes the visit method overloaded to accept as argument any of

Graph, Task, or Dependency. Figure B.5 shows the class diagram including the classes

that implement the Element interface.

B.1.6 Exceptions

Tarragon raises exception when errors occur within the run-time system. Tar-

ragon defines four exception classes CommunicationException, ThreadException, Exe-

cutionException, and AllocationException (Figure B.6). All four are subclasses of TEx-

ception and differ only in what type of error each subclass characterizes. The description

of the exception classes follows.
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Figure B.5: Class diagram of the visitor design pattern in Tarragon.

Figure B.6: Class diagram of the exceptions hierarchy

TException is the base exception class of the exceptions thrown in Tarragon. A TEx-

ception is essentially a wrapper exception containing an error code and a descrip-

tion of the error.

CommunicationException are thrown whenever an error occurs in the underlying com-

munication layer.

ThreadException are thrown whenever an error occurs in the underlying threads li-

brary.

AllocationException are thrown when memory allocation within the run-time system

fails.

ExecutionException is thrown when an error occurs in the execution of a task and the

task enters the error state. In this case, the error code is the id of the task causing

the exception.
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B.2 Extended API

B.2.1 Region and Spaces

The Extended API of Tarragon defines the Space class to help representing prob-

lem domains. Users can define a Space subclass that represent a problem domain and

data, and then combine a Map with the Space subclass to induce a domain decomposi-

tion, and an association between subdomains and tasks.

The class hierarchy, which is presented in Figure B.8, illustrates how the defini-

tion of a Space is based on the concept of Region: a rectangular domain identified by its

lower bound and upper bound.

Figure B.7: Class diagram of Space. Space is based on Point and Region, which is

defined by two Points.

The Extended API of Tarragon provides the users with a set of subclasses of Map

and subclasses of Space to support domains that can be represented by a discretized

rectangular region. Figure B.8 illustrates the class hierarchy of these classes.

CartesianSpace and RectilinearSpace represent the discretization of a rectangu-

lar region. CartesianSpace assumes a regular decomposition with the same number of

points in each dimension, whereas RectilinearSpace assumes a rectilinear decomposi-

tion and requires the user to specify a vector of distances defining the size of the blocks.

Descending from Map, the Extended API defines CartesianMap, a Cartesian coordi-

nates system. The combination of the spaces and the map results in two more classes:

CartesianGridMap and RectilinearGridMap.

A similar class hierarchy is defined using BlockingCartesianMap, leading to the
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definition of two more classes: BlockingCartesianGridMap and BlockingRectilinear-

GridMap. BlockingCartesianMap and CartesianMap differ in how they enumerate the

tasks. CartesianMap enumerates tasks in row major order, counting from the first di-

mension to the last. BlockingCartesianMap defines blocks of tasks and uses the same

order hierarchically to enumerate tasks within blocks first, and then to order blocks.

Figure B.9 illustrates the difference between the two mappings on a 2-dimensional grid.

All the leaf classes of the hierarchies presented, CartesianGridMap, Rectilin-

earGridMap, BlockingCartesianGridMap, and BlockingRectilinearGridMap, unify the

interfaces of Map and of Space. The unified interface supports the mapping between

task ids, coordinates, and spaces.

Connectors

The Extended API provides visitors to connect neighboring tasks. The class

hierarchy, which is illustrated in Figure B.10, shows the set of connectors defined. The

hierarchy is rooted in Connector, which is an abstract visitor defining helper methods

that are reused by the other connectors. Each subclass of Connector has a specialized

purpose, and the result is a hierarchy of visitors in which each can be used to connect

neighboring tasks according to a certain pattern:

NearestNeighborConnector connects all the neighboring tasks in both directions,

OneNeighborConnector connects all the neighboring tasks in one dimension only,

OneNeighborHalfConnector connects all the neighboring tasks in one dimension and

one direction only,

OneNeighborForwardConnector connects all the neighboring tasks in one dimen-

sion, from lower rank to higher rank,

OneNeighborBackwardConnector connects all the neighboring tasks in one dimen-

sion, from higher rank to lower rank.

Using any connector is simple. A user can instantiate the connector and use it to

visit a graph, as in the following statements:

OneNeighborForwardConnector c; graph.accept(c);
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(a)

(b)

Figure B.8: Class diagram of maps, spaces, and grids in the extended API. The classes

defined, which combine the interface of Space and Map and their functionality, represent

task defined of discretized rectangular regions.
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(a) (b)

Figure B.9: Grid and task mapping. A 2-dimensional grid is decomposed into 16 blocks,

each assigned to a task as indicated by the enclosed number. Figure B.9a illustrates the

mapping using a CartesianGridMap, that in this case results in a 1-dimensional blocking

scheme with rectangular panels of tasks assigned to processes. Figure B.9b illustrates

the mapping when using a BlockingRegularGridMap, that in this case results in a 2-

dimensional blocking scheme with squared blocks of tasks assigned to processes.
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Figure B.10: Class diagram of connectors in the extended API. In the hierarchy rooted

in Connector, each descendant implements a communication pattern.




